
Under review as submission to TMLR

Policy Learning with a Language Bottleneck

Anonymous authors
Paper under double-blind review

Abstract

Modern AI systems such as self-driving cars and game-playing agents achieve superhuman
performance. But they often lack human-like generalization, interpretability, and inter-
operability with human users. This paper introduces Policy Learning with a Language
Bottleneck (PLLB), a framework enabling AI agents to generate linguistic rules that capture
the high-level strategies underlying rewarding behaviors. PLLB alternates between a rule
generation step guided by language models, and an update step where agents learn new
policies guided by rules. Crucially, PLLB enables this kind of language-guided learning
even when a natural language rule is insufficient to completely describe the target policy.
Across five diverse tasks, including a two-player signaling game, maze navigation, image
reconstruction, and robot grasp planning, we show that PLLB learns more interpretable
and generalizable behaviors than standard policy learning methods. In three additional
human subject studies, we show that show the learned rules significantly improve human
task performance, enabling more effective human-AI coordination.1

ℒ!: If I see Blue,
go Right or Left
ℒ" : I should always
go Right on Blue.

Select high/low reward examples

update:
explore and learn new
policy regularized by ℒ!

Iteration 1

r=4 r=3 r=2 r=1

r=10 r=8 r=3 r=2

Iteration 2

gen_rule:
describe successful
strategy with LM

Figure 1: Policy Learning with a Language Bottleneck (PLLB) alternates between two steps: 1) gen_rule
generates a linguistic rule Li explaining the agent’s best behaviors by prompting a language model with
contrastive (positive and negative) episodes; 2) update learns a new policy conditioned on Li. PLLB
strengthens human-AI coordination by constraining policies to be more interpretable and generalize better.

1 Introduction

As AI systems play an increasingly central role in automation and decision-making, their success depends
not only on their performance, but also on their ability to model and align with human behavior. To be
truly effective assistants, these systems must act and generalize in ways that align with human expectations.
However, many of today’s AI systems do not meet these standards. Self-driving cars or game-playing agents
like AlphaZero may achieve super-human performance, but they lack interpretability (McIlroy-Young et al.,
2020) and often act unpredictably, especially outside their training distribution (Wang et al., 2023).

Unlike AI systems that are trained in isolation, humans acquire most of their skills and knowledge from
interacting with others, often using language — via instructions, advice, or explanations that improve their
decision-making capabilities (Carruthers & Boucher, 1998; Mesoudi & Thornton, 2018). Language acts as
a communicative medium, enabling us to teach, learn from, and coordinate with others to solve complex

1We provide source code for our experiments at [REDACTED].

1

Under review as submission to TMLR

problems. It also supports other cognitive functions: even when not used for communication, it allows us to
represent abstract concepts (Hesse, 1988; Lakoff & Johnson, 2008), and plan (Vygotsky, 1965; Clark, 1998);
it guides our attention (Waxman, 1994; Yoshida & Smith, 2003), and prompts relational thinking (Gentner
& Loewenstein, 2002).

Consider a driver learning to navigate novel social conventions (e.g., triangle-shaped stop signs). While
adapting to the environment, they might verbalize strategies to themselves to avoid future mistakes (e.g., If
the sign is triangular, I should stop, a cognitive use), or transmit this convention to others (e.g., telling a
friend In Japan, stop signs are triangles, a communicative use). Representing learned information in language
helps humans solve problems and transmit knowledge by effectively capturing abstract problem structures
that facilitate learning and generalization (Boutonnet & Lupyan, 2015; Chopra et al., 2019; Tessler et al.,
2021). Importantly, language remains useful even when it cannot fully encapsulate an entire strategy (e.g.,
a drivers’ reflexive actions, or fine-grained driving mechanics).

There exist many recent examples in the literature of AI systems leveraging language-based representations or
linguistic feedback, but these often rely on external supervision: humans in the loop or hard-coded feedback
functions (Luketina et al., 2019; Colas et al., 2022). We argue that more human-like AI systems should not
only use language-based supervision but also generate their own language-based feedback to leverage both
the communicative and cognitive functions of language. Importantly, this capability should also extend to
tasks that require updating an underlying policy that is only partially expressible in natural language, such
as low-level control or reflexive actions.

This paper introduces Policy Learning with a Language Bottleneck (PLLB), a framework that provides
artificial embodied agents the ability to generate linguistic rules that capture the strategies underlying their
most rewarding behaviors. As shown in Figure 1, PLLB alternates between a rule generation step that
explains the agent’s experiences by prompting a language model (LM) with contrastive episodes, and a
policy update step that learns a new policy guided by these rules. Unlike past work that solely leverages
LMs for modeling agent behavior and multistep reasoning (Park et al., 2023; Wei et al., 2023), PLLB is
applicable even when aspects of the target policy cannot be expressed with language.

Policy Learning with a Language Bottleneck can be applied to a wide range of agent types, from RL policies
to LLM-based learners to robot pose estimators, and the core mechanism of PLLB remains the same: using
contrastive reward signals to extract linguistic rules via an LLM, and then conditioning policy updates
on these rules depending on the type of learning agent. We investigate the role of PLLB in shaping
more human-like policies across five distinct tasks. They perform better: in two image reconstruction
tasks, PLLB agents generate instructions increasing the listeners’ performance compared to non-linguistic
baselines (Section 7), and PLLB agents also help more efficiently learn robot grasping policies (Section 8).
They improve few-shot generalization: in a maze task, PLLB rules uncover abstract problem structure
that improve learning similar mazes (Section 6), and PLLB also reduces reliance on non-generalizable visual
features in robotic manipulation (Section 8). They are more interpretable: in a coordination task, agents
converge on humans’ preferred policy when multiple optimal policies exist (Section 5). They are more
inter-operable: in maze and image reconstruction tasks, humans achieve better rewards when interacting
with PLLB agents compared to agents trained without a bottleneck (Sections 6 and 7).

2 Background & Related Work

PLLB is inspired by the dual use of language as both a communicative and cognitive tool for decision-making
in both humans (Carruthers & Boucher, 1998) and machines (Colas et al., 2022).

Language for communication. Language facilitates cooperation and coordination between humans and
machines via instructions (Hermann et al., 2017; Chevalier-Boisvert et al., 2019), advice (Watkins et al.,
2021), explanations (Zhong et al., 2020; Lampinen et al., 2022), or the formation of conventions (Hawkins
et al., 2020; Hu & Sadigh, 2023). Such communicative functions increase the fidelity and breadth of cultural
transmission — a process of social learning that underlies human ecological success (Mesoudi & Thornton,
2018). PLLB agents not only learn from language, but also generate their own to be shared with others.

2

Under review as submission to TMLR

Language for cognition. Language also augments a learner’s cognitive abilities. Language-augmented RL
agents represent more abstract goals (Jiang et al., 2019), generalize better (Hill et al., 2020; Colas et al.,
2020; Wong et al., 2021), explore more efficiently (Colas et al., 2020; Tam et al., 2022; Klissarov et al.,
2023) and can decompose complex goals into simpler ones (Chen et al., 2021; Ahn et al., 2022; Hu et al.,
2022; Sharma et al., 2021; Hu & Clune, 2023). Our work extends these benefits to agents that learn from
self-generated linguistic feedback.

Inner speech. Generating linguistic rules for oneself is a form of inner speech. In the Vygotskian tradition,
inner speech is seen as the internalization of the social speech generated by caretakers to help children solve
problems (Vygotsky, 1965; Luria, 1959). As a result, it is thought to support our capacities for complex,
long-term behaviors (Vygotsky, 1965; Luria, 1959; Hermer-Vazquez et al., 2001; Spelke, 2003). AI agents
endowed with forms of inner speech (explanations, descriptions or subgoals) have been found to perform
and generalize better than agents trained with purely neural representations (Wong et al., 2021; Lampinen
et al., 2022; Roy et al., 2022; Hu & Clune, 2023; Kim et al., 2020). Unlike these approaches, PLLB approach
generates language in an unsupervised way and maximizes downstream performance as well as interpretability
and inter-operability.

Multi-step reasoning and text agents. Recent works have proposed guiding LMs’ reasoning by prompt-
ing them to step through sequences of “thoughts” (Wei et al., 2023; Yao et al., 2022; Li et al., 2023b; Shinn
et al., 2024). Our approach similarly uses a language bottleneck to concisely express intermediate informa-
tion useful for later behavior (i.e. policy learning). However, unlike text-based reasoning agents such as
ReAct (Yao et al., 2022), Rememberer (Zhang et al., 2023), and Reflexion (Shinn et al., 2024), PLLB does
not require the underlying policy to be fully expressible in text. For example, we show that a
text-only maze solving agent completely fails, whereas PLLB can improve classical Q-learning style agents
(Section 6). Moreover, instead of describing actions for a particular state, PLLB rules capture high-level
strategies over a sequence of states and actions, enabling generalization. We also show the learned rules can
be shared to improve human task performance across multiple user studies (Sections 6 and 7).

3 The Language Bottleneck

PLLB builds on the standard RL framework to train agents to solve decision-making tasks in human-like
ways. We formalize decision-making tasks (e.g., solving a maze) as Markov decision processes (S, A, f, R, T)
with reward function R : S ×A→ R (e.g., solving speed) over states S (e.g., cell coordinates) and actions
A (e.g., directions), finite time horizon T , and a deterministic transition function f : S ×A→ S that maps
state–action pairs (s, a) to next states s (e.g., moving between cells). Standard RL then involves training
a policy π to maximize expected reward (e.g., learning to solve the maze faster). This is usually done by
alternating between two steps: (1) collecting data with the current policy: D ← πi and (2) updating the
policy using the data: πi+1 ← update(πi, D), where update implements an RL algorithm (Sutton & Barto,
2018). This procedure often fails to yield interpretable, human inter-operable, or generalizable behaviors.

Our key idea is to introduce a language bottleneck between data collection and policy update. We extract
linguistic rules explaining past rewarding behaviors and then use them to regularize the policy’s behavior
in the next learning iteration (e.g., I should go right in blue cells, see Figure 1). Our experiments will show
that this improves the interpretability and inter-operability (communicative use), and performance and
generalization (cognitive use) of our agents over standard RL baselines in a variety of tasks (see Figure 2 and
Sections 5 to 7). The resulting algorithm thus alternates between three steps: (1) data collection, Di ← πi,
which is implemented just as in ordinary policy learning approaches; (2) language bottleneck generation,
Li ← gen_rule(Di) and (3) policy updating, πi+1 ← update(πi, Di,Li) (see Figure 1).

The core mechanism underlying PLLB is consistent across all instantiations: gen_rule prompts a language
model with contrastive examples (high- vs. low-reward trajectories) to extract a rule L capturing what
distinguishes successful from unsuccessful behavior, and update conditions the agent’s subsequent learning
on L. What varies across domains is only how update incorporates the rule, which is depends on the learning
agent’s modality in that domain (e.g. Q-value regularization (Sections 5–6), prompt conditioning for LMs
(Section 7) or visuomotor control (Section 8). We next describe these the gen_rule and update steps in
more detail.

3

Under review as submission to TMLR

Output a rule that best
summarizes the strategy

I should follow

Output a rule I should
follow when providing

descriptions

Output a rule I should
follow when providing

descriptions

Output a rule that best
summarizes the strategy

I should follow

LOW REWARD
A small bird
perched on a
tree branch.

HIGH REWARD
A white

pelican bird
is swimming
in the water.

I should select the same
action as the observation.

If I observe Blue, move
NORTH.

Avoid using vague terms
like "scattered”.

Describe the bird’s
coloration and species.

𝓛 + [observation] + I
should select

𝓛 + [observation] + I
should select

𝑄 3 =
{1: 0, 2: 0, 3: 0.8, 4: 0.1, 5:0}

Four blue
triangles at
(0.8, 0.7)…

SAYSELECT MAZE BUILDER BIRDS

LOW REWARD

HIGH REWARD

LOW REWARD
(White, South), (White,
North), (Blue, West),

REWARD: 10

HIGH REWARD
(White, East), (Blue,
North), (White, North),

REWARD: 100

LOW REWARD
OBSERVATION: 4

ACTION: 5
REWARD: 3.84

HIGH REWARD
OBSERVATION: 4

ACTION: 4
REWARD: 5.42

At least five
dots scattered
across canvas

Red dots at
(0.49, 0.24),
(0.5, 0.24)…

𝓛 + [observation] +
Provide a description

𝓛 + [observation] +
Provide a description

𝑄[(0,2)] =
{𝐍𝐨𝐫𝐭𝐡: 𝟎. 𝟖, South: 0,

East: 0, West:0.2}

A red bird,
likely a
cardinal

gen_rule
(LM)

update
(LM)

𝓛

Output a rule I should
follow when grasping the

object

LOW REWARD

ACTION: (50, 19)
TORQUE:-4.5

HIGH REWARD

ACTION: (54, 60)
TORQUE: -0.9

Grasp closer to the
center for stable pickup.

GRASP

𝓛 + [observation] + I
should select

𝑄 𝑖𝑚𝑔 =
{… 𝟔𝟎, 𝟓𝟎 : 𝟎. 𝟕,
60,60 : 0.1, …}

𝐴: {1, 2, 3, 4, 5}
R: 𝑓𝑖𝑛𝑑 𝑏𝑙𝑢𝑒 𝑏𝑎𝑙𝑙𝑠

𝐴: {𝑁, 𝑆, 𝐸,𝑊}
R: 𝑠𝑡𝑒𝑝𝑠 𝑡𝑜 𝑔𝑜𝑎𝑙

𝐴: 𝑖𝑚𝑎𝑔𝑒 𝑑𝑒𝑠𝑐.
R: 𝐿𝑒𝑣𝑒𝑛𝑠𝑡𝑒𝑖𝑛

𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠

𝐴: 𝑖𝑚𝑎𝑔𝑒 𝑑𝑒𝑠𝑐.
R: 𝐶𝐿𝐼𝑃 𝑠𝑖𝑚.
𝑏𝑡𝑤𝑛 𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑛𝑑
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙

𝐴: 𝑔𝑟𝑎𝑠𝑝 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡
R: 𝑡𝑜𝑟𝑞𝑢𝑒

Figure 2: PLLB can be applied to a diversity of domains. In all domains, it iterates between gen_rule,
a function that prompts an LM (top gray boxes) to extract a linguistic rule (L, blue) by contrasting high
and low reward episodes from past experience (green and red boxes), and update, a function for updating
an agent’s policy through interaction with the environment conditioned on L. PLLB can be applied to
multi-step decision making tasks and visual or robotics tasks alike with minimal implementation variations
(replacing the LM by a VLM in gen_rule, or replacing policy regularization by simple instruction condi-
tioning in update. Gray boxes represent prompts gen_rule and update, and full prompt details are in
Appendix Section B.7.

3.1 Rule Generation (gen_rule)

Using all the experience Di collected by the policy πi in the current iteration, gen_rule aims to infer an
abstract rule Li that best explains the agents’ successful behaviors: Li ← gen_rule(D). This is done
by prompting an LM with contrastive episodes from Di (top-N highest vs. top-N lowest total rewards)
and asking it to provide the rule that should be followed to obtain high rewards (see first row of Figure 2
and Appendix Section B.7 for full prompts). Importantly, this requires the first iteration of gen_rule to
start only once we observe a pair episodes with sufficiently different rewards. We found this contrastive
approach, inspired by Zhong et al. (2023) and Dunlap et al. (2023), to provide more precise rules than
simply summarizing high-reward strategies.

3.2 Rule-Guided Policy Update (update)

Given a rule Li, the update step produces a new policy πi+1 ← update(πi, Di,Li) that is better aligned
with Li. There exist many methods for leveraging language instructions to update agents’ policies, though
these methods traditionally focus on instructions provided by human experts. Crucially, which method to
implement PLLB with depends on the underlying agent and action space representation, and will improve
with advances in multi-modal modeling.

For RL policies, we leverage InstructRL (Hu & Sadigh, 2023), which regularizes the learned policy with
another policy induced by the linguistic rule πL. For instance, in the maze example shown in Figure 1, if
the rule is I should go right on every blue cell, the induced policy πL should assign probability 1 to the
right action in blue cells, but equal probabilities to all actions in every other situations. In the Q-learning
algorithm, this approach simply adds a regularizing term (orange) to the standard Q-learning update rule 2:

2This regularizing term can also be applied in the function approximation setting (Mnih et al., 2013).

4

Under review as submission to TMLR

Qθ(st, at)← rt+1 + γQθ(st+1, at+1) where at+1 = arg max
a

[Q(st+1, a) + λ log πL(a | st)].

Here γ is a discount factor and λ controls the strength of the rule-induced regularization and could be made
time-dependent with a pre-defined or learned schedule (e.g., stronger regularization early).

But how do we induce πL from L? Since L is expressed in natural language, we may obtain a rule-conditional
policy by prompting an LM. In particular, our experiments condition the LM on both the current rule and
the current state of the agent st, and instruct the LM to generate the next action to obtain a probability
distribution over admissible actions (e.g directions), as in Hu & Sadigh (2023). While these prompted
LMs may perform tasks poorly on their own (e.g. because of their inability to perform long-range planning
or process complex visual input), the regularizer may nonetheless guide Q-learning in the right direction.
Running Q-learning updates with the regularization term from experience data gives us a new Q-table Qθ

i+1
from which we can derive the new policy πi+1 by taking actions with maximum expected value in every state
πi+1(st) = maxaQθ

t+1(st, a).

Finally, there exist some domains where the policy can be directly implemented by an LM or VLM, such as
text-based games explored by methods like ReAct (Yao et al., 2022) or Rememberer (Zhang et al., 2023).
In these cases, update can be implemented by conditioning the policy on the rule L and adding it to the
prompt πL, ultimately steering the agent’s: πi+1 ← πLi

. Given a new policy πi+1, we can now close the loop
and generate a new rule Li+1.The choice between InstructRL-style regularization and prompt conditioning
depends on the action space and policy architecture. In settings with large, continuous action spaces (e.g.
reasoning over free-text), conditioning text-generation on rules is likely more tractable, whereas Q-learning
style updates may be more appropriate for interactive environments with feedback (e.g. game playing). We
implement PLLB with tabular RL agents in Sections 5 and 6, with LM/VLM policies in Section 7, and
visuomotor robot controllers in Section 8.

4 Experiment Set-Up

We run experiments on a diverse set of five tasks, with different agent architectures and action spaces, to
showcase how PLLB can train more human-like agents. These include a simple two-player communication
game called SaySelect (Section 5), a Maze solving task (Section 6), two collaborative image reconstruction
tasks with synthetic (Builder) and natural (Birds) images (Section 7), and grasp planning for a 7-DoF
robot (Section 8). For all tasks, we include hyperparameter details (Appendix B.1), the exact prompts used
in gen_rule and update (Appendix B.7), and examples of generated rules. For our main experiments, we
prioritized using accessible and low-cost open weight language models such as llama-2-70b-chat. However,
we analyze the effect of changing the underlying language model on gen_rule in Appendix B.8 and B.9.

To evaluate the cognitive function of PLLB, we first evaluate the policies learned by artificial agents in each
environment based on performance metrics such as task reward, similarity to known human-like policies, or
generalization. For all tasks, we compare our Bottleneck approach with baseline methods (e.g., standard
RL, base LM) and an Adversarial ablation of PLLB that leverages invalid linguistic rules (e.g., obtained by
labeling high reward examples as low reward) in gen_rule. The purpose of Adversarial is to test whether
PLLB gains arise from meaningful rule content rather than merely introducing any linguistic signal.

To evaluate the communicative function of PLLB, we conduct several human subject studies showing that
generated rules L can help improve human task performance on a variety of metrics (e.g., reward, solving
time). Participants were either recruited in-person (for Maze) or on Prolific (Builder, Birds), compensated
at a rate of US$12/hour. All studies were approved by our institution’s IRB. To the best of our knowledge,
our work is the first to validate self-generated agent rules from LMs for training human participants.

Finally, we conduct additional sensitivity analysis on the affects of variations in prompt, model temperature,
and non-contrastive episode selection in the Appendix.

5

http://prolific.com

Under review as submission to TMLR

Bottleneck

InstructRL (Oracle)

TabularQ (Baseline)

Adversarial
Bottleneck

a. Standard (Reward) b. Standard (Interpretability) c. Fixed Speaker (Reward)
R

ew
ar

d

R
ew

ar
d

In
te

rp
re

ta
bi

lit
y

Episode Episode Episode

Figure 3: SaySelect. a) Bottleneck agents learn as fast as TabularQ and InstructRL and faster than
agents using adversarial rules Adversarial. b) Unlike TabularQ, they learn human-interpretable policies;
this without relying on an external instruction like InstructRL. c) When faced with speakers enforcing a
non-human-interpretable policy, Bottleneck converges faster than InstructRL.

5 SaySelect

As a proof-of-concept, we first consider SaySelect, a simple collaborative game introduced in Hu & Sadigh
(2023). Here, a speaker can see a hidden set of five balls including two blue ones and must help a listener
find the two blue balls by communicating with them only via numbers, see Appendix Figure 8. In principle,
the speaker and listener could converge on any bijective convention associating messages to balls, and this
is what we find with RL agents (multiple optimal policies). Humans, on the other hand, empirically prefer
the mapping 1→ 1, 2→ 2, etc. which we call the human-interpretable policy. Whereas Hu & Sadigh (2023)
showed that regularizing the listener’s policy with the instruction I should select the same number as my
partner successfully guided the two RL agents to the human-interpretable policy, we ask whether PLLB
could learn a similar rule and achieve a similar interpretability on its own?

Task Overview. The speaker and listener are RL agents trained with Q-Learning that receive positive
rewards when the listener collects blue balls, negative rewards otherwise. After training both agents for
200 episodes, we prompt llama-2-70b-chat3 with the task description and a contrastive set of high- and low-
reward episodes to generate a rule L, e.g., I should choose action 4 whenever the observation is 2, 3, 4, or
5. (gen_rule, see Figure 2).

We generate new rules every 500 training episodes. In between, we regularize the listener’s policy with a
another policy πL induced from the current rule L. This is done by applying a softmax on the LM’s logits (see
method in Section 3) across all possible actions and obtaining a distribution. In the following experiments,
we compare our Bottleneck method, with the Adversarial version (corrupted rule), a TabularQ baseline,
as well as an InstructRL upper bound using the same predefined instruction as (Hu & Sadigh, 2023).

5.1 PLLB helps learn human-interpretable policies

We first compare the four methods along two dimensions: their reward and their interpretability measured
as the proportional (0 to 1) similarity between the listener’s policy and the optimal human-interpretable
policy (the intuitive message-ball described above). All methods but Adversarial quickly solve the task
(Figure 3a), showing that corrupted rules hinder learning. Bottleneck and InstructRL both converge on
the human-interpretable policy thanks to their linguistic rules while TabularQ — deprived of such rule —
does not (Figure 3b). Interestingly, Adversarial policies are more interpretable than TabularQ ones,
suggesting that even corrupted language may provide inductive biases towards more human-like behavior.
Qualitatively, we observe that generated rules converge towards describing the human-interpretable policy
(e.g., I should follow the strategy of choosing the same action as Agent 1, see examples in Section B.8).

3https://huggingface.co/meta-llama/Llama-2-70b-chat-hf

6

Under review as submission to TMLR

a. Standard b. Generalization c. Adaptation

Bottleneck

LinearQ (Baseline)

TabularQ (Baseline)

Adversarial Bottleneck

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

Episode Episode Episode

*LinearQ Agent
evaluated after
100 episodes

Figure 4: Results in Maze. a) Bottleneck agents learn as fast as the non-linguistic Baseline agents,
but faster than Adversarial and LinearQ agents. b) When faced with a new maze with similar structure,
Bottleneck agents learn faster than TabularQ (which does not perceive color) and LinearQ (which does,
but learns slower). c) When faced with a maze of a different structure, Bottleneck agents adapt swiftly
while LinearQ cannot recover. We do not evaluate Adversarial for the Generalization or Adaptation
experiments due to its poor performance in the standard setting.

5.2 PLLB can learn counter-intuitive policies

A potential confound in the preceding experiment is the possibility that PLLB converges to a human-
interpretable policy because this is the only behavior an LM can describe. To test this hypothesis, we
fixed the speaker to use a counter-intuitive policy using a random mapping between balls and messages
(e.g., 1 → 3, 5 → 2, etc.). Here, the human-interpretable policy is mis-aligned, and would lead the
listener to fail or learn slower. In Figure 3, we observe that while InstructRL and Adversarial, both
regularized by misaligned rules (the human-interpretable one for InstructRL, another random permutation
for Adversarial), eventually adapt to the fixed speaker, they converge at a slower rate than both TabularQ
(no rule) and Bottleneck. This effect was more pronounced at higher values of λ. Overall, Bottleneck is
the only method that adapts to a fixed speaker policy while also converging on the human-like policy when
the speaker is learning, without human supervision.

6 Maze

In the Maze domain, agents must navigate a maze to find the goal using four directional actions (N/S/E/W).
We study mazes in which environment cues provide hints about the optimal path. This setup helps us
study the impact of the language bottleneck: can PLLB agents infer the underlying structure and use it
to generalize across mazes (cognitive use)? Can they transmit this knowledge to humans and help them
perform better in novel settings (communicative use)?

Task Overview. We randomly generate different 7x7 mazes with the gym-maze code base.4 Agents receive
as reward the inverse of the number of steps they needed to reach the goal as an incentive to learn the optimal
solution. Although all mazes are random, we introduction additional structures by coloring cells for which
the optimal action is south (red) or north then east (blue) with probability 50% (or they are left blank).
Therefore, agents that leverage color information can better generalize to new mazes where the coloring is
preserved, even if the optimal action sequence differs.

The first iteration of PLLB corresponds to training a standard RL algorithm to obtain π1, in our case a
tabular Q-learning agent (TabularQ). After the agent observes at two solved mazes, we run gen_rule by
prompting a llama-2-70b-chat LM with contrastive episodes and a task description. This gives us a linguistic
rule L1 (e.g., Upon observing RED, take SOUTH) that we can use to update the policy. We first induce the
regularizing policy πL1 with rule L1 by obtaining a probability distribution over the 4 actions from the LM,
and then run the RL algorithm for 5 episodes to obtain the new policy π2 (procedure described in Section 3).
We repeat these steps every 5 episodes of interactions with the environment.

Baselines include the tabular Q-learning algorithm without language bottleneck (TabularQ) and a variant
of Bottleneck generating rules from reward-randomized episode samples (Adversarial). We also evaluate

4https://github.com/MattChanTK/gym-maze

7

Under review as submission to TMLR

LinearQ, an agent learning a linear model Q-function with an additional feature for cell color. We train
LinearQ with a batch size of 10 and learning rate 0.001, after performing a hyperparameter sweep. We
found LinearQ took significantly longer to converge than the other methods, likely due to the increased
state representational complexity.

6.1 PLLB improves few-shot generalization

We next evaluate PLLB’s ability to improve the few-shot generalization capabilities for policies on unseen
mazes with a similar underlying structure. For a a fair comparison, we start with the fully converged policy for
each method (requiring 100 episodes for LinearQ). Figure 4a shows that, in the Standard setting, learning a
valid rule (Bottleneck) does not increase learning speed of a single maze over TabularQ. However, using a
corrupted rule (Adversarial) or learning from linear features (LinearQ) slows down learning. Furthermore,
Bottleneck outperforms TabularQ with respect to few-shot generalization: when we switch to a new 7x7
maze sharing the same underlying color semantics, but with a different optimal action sequences. Bottleneck
leverages the learned rule and generalizes to the new maze more effectively than all other agents (Figure 4b).
While TabularQ cannot generalize because it does not perceive colors, LinearQ does generalize faster at
first, but converges slower.

The generated rules improve over time to better capture the underlying structure of the maze (e.g., if I
observe BLUE, then take the NORTH action; see other examples in Appendix B.8). Across all trials, 100%
of the final rules mention the red→ south rule and 60% uncovered the more complex blue→ north-then-east
rule. Finally, we find that a policy that does not update Q-values (that is, purely implemented via the
LM) achieves a success rate 0% within the same time limit, even when using the final rules generated from
PLLB. This highlights the importance of leveraging experience that cannot be expressed with language,
which text-based reasoning agents cannot do.

6.2 PLLB learns adaptable policies

In Figure 4c, we reproduce this same experiment on a maze with a different underlying structure (red now
indicates west while blue indicates east then south). Although the rule Bottleneck learned does not apply
anymore, it can still adapt faster than the baselines. We find that all trials end with rules capturing the
new mapping (100% red → west, 50% blue → east-then-south). Meanwhile, LinearQ overfits to the first
maze and struggle to adapt. Overall, our results show that PLLB supports human-like cognitive functions
by finding a tradeoff between the efficiency of TabularQ and the generalization capabilities LinearQ, while
remaining more adaptable.

6.3 PLLB is more interpretable and inter-operable

Can generated rules be useful to humans as well? We asked 50 university students to solve a 7x7 maze in
the fewest steps possible using arrow keys. They could only observe the cells they had already visited and
the walls they had already bumped into (see Figure 10 in Appendix). We split them into three groups: a
Control group receiving no assistance, and two others receiving information about a similar but different
maze sharing the same underlying color semantics. The Visual group is shown a visual representation of
the optimal policy (arrows in each cell, see Figure 9 in Appendix), while the Bottleneck group is provided a
randomly sampled language rule L learned by PLLB. This set-up lets us evaluate how generalizable the two
different aids are to a new maze, as well as how quickly participants can account for incorrect information
depending on modality.

Participants using PLLB rules solve the new maze with fewer steps than others and find this aid significantly
more useful than the visual one in average (see Figure 5). Participants indeed found it harder to extract
the relevant information from the visual aid, which contained a great deal of non-transferable information
(optimal actions in all non-colored cells). PLLB rules focus on the useful and transferable information
learned by the previous agent, which is much more readily usable by humans. Overall, the results in Maze
demonstrate the ability of PLLB to train agents that are more generalizable and adaptable (cognitive use)
as well as more interpretable by, and inter-operable with humans (communicative use).

8

Under review as submission to TMLR

7 Collaborative Image Reconstruction

Color Background Species

Adversarial Bottleneck
(From Scratch)

Adversarial Bottleneck
(Continual Learning)

Human
Speaker

No Human

Re
w

ar
d

Re
w

ar
d

* *

Ti
m

e
(s

)
Re

w
ar

d

*
*

Bottleneck
(From Scratch)

Baseline

Bottleneck
(Continual Learning)

a. b.

c.

d.

e.

BIRDSBUILDER

Figure 6: Builder: Bottleneck listeners improve upon Baseline descriptions over time, unlike an
(Adversarial) listener that inaccurately represents rewards. Human users reconstructed target images
with b. higher accuracy, and c. less time, when provided Bottleneck instruction vs. original Baseline
descriptions. Birds: PLLB rules (3 iterations) help d. automated and e. human speakers generate better
descriptions for naturalistic image reconstruction for three distinct reward functions.

Control Bottleneck Visual Bottleneck Visual

of

 S
te

ps

U
se

fu
ln

es
s R

at
in

g

*

*

2

3

4

5

20

60

80

100

Figure 5: Participants given PLLB rules
solve new mazes faster than those given ei-
ther visual or no aid (control). They also
self-reported linguistic feedback as more
useful than visual. * marks statistical sig-
nificance at level 0.05 with two-sided Mann-
Whitney test after Bonferroni correction.

PLLB is not restricted to the training of RL agents. This sec-
tion introduces two collaborative image reconstruction tasks in-
spired by the collaborative assembly task of McCarthy (2020).
Builder and Birds both consider two agents: a speaker, who
can see a hidden target image, and a listener, who must accu-
rately reconstruct the target image based on a description from
the speaker. Both agents aim to converge to a description style
leading to high reconstruction accuracy. We consider both syn-
thetic images built from sequences of discrete actions by the lis-
tener (Builder), and natural images of birds that the listener
reconstructs using a text-to-image generation model (Birds).
Here, PLLB combines with state-of-the-art multi-modal mod-
els to let agents perceive semantic visual features.

7.1 Task Overview

Dataset. In Builder, we construct a dataset of synthetic
images with a variable number of shapes (triangle, square, cir-
cle) in different colors (magenta, blue, red, green) and locations
on a 2D grid. Each image is created by a sequence of discrete
actions, each representing a particular combination of shape, color, and location (e.g., [ACT12 ACT2 ACT4],
where ACT2 adds a magenta circle in the lower right area of the grid). In Birds, we construct a dataset
of natural bird images by selecting 5 images for each of 10 bird species from the CUB-200-2011 dataset
provided by Wah et al. (2011) (see Appendix Section B.4 for species list).

Reward. In Builder, since target and reconstructed images are fully determined by their action sequences,
we measure task success via the Levenshtein similarity between the (sorted) corresponding sequences. In
contrast, the Birds listener outputs text-to-image generations with varied properties, so we define three
reward functions: Color, Background, and Species. To evaluate a reconstructed image xr against a
target xt, we form a contrast set C from three CUB-200-2011 images differing in the target property (e.g.,
color) but most similar in others. Reward is then r =

∑
c∈C d(CLIP(xr), CLIP(xc))− d(CLIP(xr), CLIP(xt)),

where CLIP denotes the CLIP image embedding (Radford et al., 2021). For both Builder and Birds,
rewards are reported on a held-out validation set.

9

Under review as submission to TMLR

Models. As open-source VLMs struggle with describing synthetic images, we use the llama-2-70b-chat
LM as our speaker for Builder, representing images in raw text that list all shapes’ type, color, and exact
coordinates individually in sequence. On the other hand, we use the open source Llava VLM as our speaker
for Birds (Liu et al., 2023). We prompt both speaker models using the target image and a general task
description, as well generated rules after the first iteration.

We implement the listener for Builder with a neural sequence-to-sequence model pre-trained on English text
(Lewis et al., 2019), which we fine-tune at each episode on a training set of (description, action sequence)
pairs using descriptions provided by the speaker. Meanwhile, we use the Stable Diffusion text-to-image
diffusion model as the listener for Birds.

For both tasks, we consider two settings: From Scratch, where the listener is initialized using the original
pre-trained model weights at every episode, and Continual Training, where the listener is continuously
updated over time using descriptions by the speaker. We create separate held-out splits for training, early
stopping, selecting samples for gen_rule, and evaluation.

Implementation. We first generate base image descriptions for both tasks by providing the speaker a
prompt containing a general task description and target image, but without any rule L. For the Builder
task, an original image description is: At least five dots in total - four red and one green - scattered across
the canvas, with two sets of matching locations (x = 0.49 / y = 0.24 and x = 0.5 / y = 0.24), another set
at x = 0.52 / y = 0.3, and finally, one dot located near x = 0.76 / y = 0.71. This description is overly
complex, mixes different coordinate formats, and difficult for the listener to use to reconstruct the target
image, leading to low reward. Meanwhile, an example original image description for the Bird task is: “a
bird on a branch”. While simple, this description does not contain sufficient information about the Color,
Background, and Species, causing the listener to generate an image reconstruction with low reward.

We next evaluate these base descriptions using each task’s respective reward functions, and select the (image,
description) examples with the 5 highest and lowest rewards. Using the prompts shown in Section B.7, we
implement gen_rule using the llama-2-70b-chat and llava models for Builder and Birds, respectively. For
Birds, we observe that output rules L are specific to the reward function: an example rule we get for the
Species reward is: “Identify the bird’s species if possible, and include any distinctive characteristics that
set it apart from other birds.”, while an example rule we get for the Background reward is: “Describe the
setting or background of the image, such as the presence of snow, water, or other elements”.

We implement update for both tasks by simply appending the output rule L to the original prompt to the
speaker, as shown in Figure 2, using the speaker’s output as the new description for a given target image. We
repeat this cycle of eliciting rule L , appending L to the same prompt used to generate the base instructions
in order to re-label our data with new instructions, and training and evaluating the listener model for a total
of 5 iterations for Builder and 3 iterations for Birds. We qualitatively show this leads to improved image
reconstruction from the listener in Appendix Figure 13, and next discuss our experimental results.

7.2 PLLB helps speakers provide more usable instructions

For both tasks, listeners following rules generated by PLLB (Bottleneck) outperform listeners trained from
uninformed (Baseline) or misinformed (Adversarial) speakers (Figure 6). This holds true for all three dif-
ferent reward functions in Birds, as well as both training settings, with Continual Learning learning
enabling Bottleneck to have an even stronger improvement over Baseline image descriptions by leveraging
learned task experience. Continual Learning does not significantly help the Adversarial method, empha-
sizing that the linguistic rules L in Bottleneck do capture succesfull task strategies. However, Continual
Learning is not required for Bottleneck to outperform Baseline image descriptions. The success of the
From Scratch training setting can be interpreted as the speaker generating abstract rules to guide its own
learning, leading to improved performance and showing evidence for a cognitive use of language.

Finally, we observe that the generated rules L encourage the speaker to reduce vague and general language,
and describe properties relevant to the corresponding underlying reward function in Birds, although this
might take several cycles to fully converge (see example rules in Appendix Section B.8). Furthermore, rules L
become more complex over time, and across different trials we observe path dependency where different trials

10

Under review as submission to TMLR

converge to different rules (e.g., (x, y) vs. x = 0.xx, y = 0.yy for coordinates in Builder). Overall, these
rules help guide the speaker and listener agents in both tasks to iteratively improve image reconstruction
over time, which can also be seen qualitatively in Appendix Figure 13.

7.3 PLLB can collaborate with human listeners

Do human listeners benefit from image descriptions provided by speakers following Bottleneck rules? We
conduct a human subject study for the Builder task, where we replace the listener with study participants
at the end of one iteration of PLLB, and evaluate how quickly they can reconstruct target images from a
held-out test set. We recruit 20 crowdworkers on Prolific to reconstruct 5 images using descriptions from
a speaker following a rule L generated with (Bottleneck), and 5 images using the original (Baseline)
descriptions. We provided participants an interface that included a drawing canvas and buttons controlling
shapes and colors (Section B.3), allowing us to use Levenshtein similarity between (sorted) user actions and
the underlying action sequences for a target image as reward.

Participants using Bottleneck descriptions built target images faster and more accurately than partici-
pants using control descriptions (Wilcoxon signed-rank test, p < 0.05, Figure 6). In a post-study survey,
55% preferred Bottleneck descriptions, describing them as “more direct and less ambiguous”. 10% found
both descriptions types equally easy to follow while remaining participants preferred Baseline descriptions
because they gave more flexibility, leading to a more unstructured user study. However, we note that that
user preference for customization does not correlate with any notion of improved performance in our original
goal of image reconstruction.

7.4 PLLB collaborates with human speakers

Can humans benefit from rules generated by PLLB? We asked 12 Prolific crowdworkers to act as speakers
and provide descriptions for our dataset of Birds images. Half of the participants were provided rules
corresponding to one of the three reward functions (L3) while the other half were not. Figure 6 (bottom)
shows that listeners instructed by human speakers provided with PLLB rules outperform those instructed
by uninformed human speakers (Baseline) (Bonferroni-corrected t-tests p < 0.05 for species and colors).

The descriptions from users not provided a rule are more diverse and less focused e.g., A barbed wire is
an uncomfortable stop for a bird. With PLLB rules on the other hand (e.g., Describe the bird’s coloration
accurately), they generate more specific descriptions: Red and black bird on barbed wire. Bright red chest, red
at top of head, black wings and beak for the same target image (see other example rules in Appendix Table 4).
PLLB agents can easily transmit what they learned from experience (the rule) to humans.

8 Robot Grasp Planning

Can PLLB rules improve policy learning in embodied tasks with complex action spaces such as robot
planning? Existing works on LM-based agents (e.g., ReAct (Yao et al., 2022) or Reflexion (Shinn et al.,
2024)) and robot policies (e.g., Code as Policies) leverage pre-trained models for action generation, but
cannot be applied in domains where a (non-LM-based) policy must be updated using real-world RL signals.

Consider training a robot to lift a paper bag. The most intuitive grasp would be at the bag’s handles; indeed,
a zero-shot Oracle prompt of the molmo-7b multi-modal language model outputs grasp keypoints on bag
handles (Figure 7). However, if the bag is too heavy, a robot should adapt to less common grasps (e.g. by
the side) to avoid tearing. Because VLMs are not grounded with actual physical quantities, such adaptation
is impossible without leveraging an external reward (Gao et al., 2024). On the other hand, existing RL-based
approaches for robotic manipulation are often inefficient (Kalashnikov et al., 2018). We show that PLLB
rules can be used to efficiently learn non-intuitive robot grasping policies.

8.1 Task Overview

In the Grasp task, our agent is a Franka Emika Panda Arm robot that needs to lift and move a paper
bag filled with unknown objects off of a shelf, as shown in Appendix Figure 12. Due to the complex action

11

Under review as submission to TMLR

allenai/Molmo-7B: The
robot should grasp the
gift bag by its handle.
The most suitable
keypoint for the robot
to hold the bag would
be: (50,25).

Given the contrasting examples (,)
where should the robot grasp the object?

Bottleneck Zero-Shot VLM (Oracle)Vanilla RL(Baseline) Adversarial Bottleneck

a. Standard

b. Generalization

R
ew

ar
d

R
ew

ar
d

Episode

Episode

c. Zero Shot VLM Output d. Bottleneck Examples

allenai/Molmo-7B:
target a stable area close to
its center of mass rather than
flexible sections

allenai/Molmo-7B:
grasp the bag by its
sides, avoiding the
top handles

Where should the robot
grasp the object?

low reward

high reward

ℒ ℒ

Figure 7: Results in Grasp. a) Bottleneck agents learn faster than the non-linguistic RL Baseline agents,
as well as Adversarial and an Oracle zero-shot prompt of a VLM without any internal policy update. b)
Bottleneck agents generalize faster than both Baseline (which over-relies on image details) and Oracle to
unseen bag designs and locations, (c) shows the fixed linguistic rule d) Example grasps, shaded by reward.

space, we follow Kalashnikov et al. (2018) and decompose the robot’s policy into (i) perceiving the scene
and identifying an appropriate grasp location, and (ii) planning a path to this location.

We begin with a fixed keypoint-conditioned path-planning policy which is pre-trained on a dataset of 50
trajectories with 3D-point cloud observations using Sphinx (Sundaresan et al., 2025). This model outputs
a trajectory of 7-DoF end-effector poses (x/y/z/yaw/pitch/row/gripper) for the robot to execute given the
keypoint. We then use PLLB to train (via RL) a grasp prediction policy that selects a grasp keypoint (a 2-D
position) given an image of the environment. We define a successful grasp as one where the robot can lift the
bag without it breaking, and so set our reward to be 0 for a successful grasp, -100 if the bag is not grasped at
all, and use the normalized downward torque (e.g. -20Nm) applied to the robot’s shoulder joint as a dense
reward for unsuccessful grasps. Initially, the agent performs random grasps. After it observes one successful
grasp, we run gen_rule with the open-source molmo-7b vision–language model with contrastive images of
successful and unsuccessful grasp keypoints. This gives us a linguistic rule L (e.g. grasp the left side of the
bag) that we can use to update the policy. We regularize the initial grasping policy toward the policy πL
induced from rule L by prompting molmo-7b while conditioning on L, then instructing it to generate random
keypoints. By executing Sphinx with these keypoints, the overall policy is updated to condition on L.

We compare our Bottleneck method with an Adversarial version (swapping high and low reward grasps
and an Oracle that always guides the policy with the rule generated from zero-shot prompting molmo-7b
(no constrasting examples based on a reward). We call this Zero-Shot VLM an Oracle as it represents the
VLM’s privileged prior knowledge about intuitive grasping strategies, or knowledge a human expert would
also possess. We also evaluate a Vanilla RL baseline where the policy only uses image observation data to
predict a grasp keypoint based on task reward after execution, which helps us isolate PLLB’s incremental
value for keypoint selection.

8.2 PLLB can learn counter-intuitive policies

As shown in Figure 7, when averaged across 20 random seeds, our Bottleneck converges to higher reward
compared to all other methods. Because the Oracle method suggests a rule encouraging the policy to
predict key points near the bag’s handles, it requires more episodes to learn that this behavior leads to lower
reward. Qualitatively, we observe the generated rules converge towards guiding the robot to grasp at less
common locations (e.g., Grasp the bottom of the object, see examples in Appendix Section B.8). This shows
that PLLB can help improve over standard RL methods even for learning counter-intuitive policies.

12

Under review as submission to TMLR

8.3 PLLB improves few-shot generalization

To evaluate few0shot generalization, we create an environment with a new bag, location, and set of visual
distractions (see Appendix 12). We then evaluate Bottleneck, Zero-Shot VLM (Oracle), and Vanilla
RL (Baseline) when intialized with the policies learned in the original environment, allowing for updates
from the environment over time. As shown in Figure 7, the rules learned by Bottleneck outperform
alternative methods for generalizing to this new environment. Because the Vanilla RL policy can only rely
on image features, it is not able to leverage the more generalizable strategy PLLB rules capture and select
grasp keypoints that hold semantic meaning (e.g. the bottom of the bag) captured by pre-trained LMs.
Overall, the Grasp results show that PLLB can improve policy convergence even for the complex dynamics
of embodied tasks.

9 Limitations & Discussion

PLLB helps agents becomes more interpretable by and inter-operable with humans. In our current imple-
mentation, rule_gen requires converting episodes into LM-compatible representations (text/images), which
may limit use with long-horizon sensorimotor trajectories. Nevertheless, our Grasp task successfully uses
pretrained robotic models, and advances in long-context modeling can address this limitation. A natural
question is whether PLLB’s gains arise specifically from language or from reward-aligned abstraction more
generally. Comparing against non-linguistic bottlenecks (e.g., learned latent codes) is challenging: such rep-
resentations require training across many task variations to become meaningful, whereas language provides
pre-structured abstractions via pretrained LLMs that transfer to single tasks. Our Adversarial ablations
across experiments confirm that rule content, not merely the presence of a bottleneck, drives improvements
with PLLB.

Our human studies also demonstrate uniquely linguistic benefits (interpretability, human transfer) that would
be unavailable with other latent representations (including code). However, rule generation can fail when
the LM either abstracts too much (e.g., in Birds we once found the rule: “Use descriptive language that
conveys the mood, such as the serenity of a snowy day or the freedom of flight”) or, more seriously, causes
harm in safety-critical situations by creating a false trust in generated rules. We believe improvements in
multi-modal models can help mitigate these issues (Appendix B.9), as well as additional human-in-the-loop
verification steps of rules for high-stakes situations.

Our work opens up a set of interesting questions around designing intelligent sampling of contrastive episodes
in rule_gen. For example, sampling episodes that are not outliers can help with handling stochastic envi-
ronments, where high reward trajectories may not necessarily be optimal. Sampling of contrastive episodes
can also adjust to known properties of how LMs attend to long context (i.e. more attention to episodes at
the start and end). Another interesting direction for future work is applying PLLB to tasks with complex
reward functions that reflect hard-to-articulate human preferences, such as image captioning for accessibility
(Nie et al., 2020) and personalizing language models (Li et al., 2023a). Although one concern is whether
the linguistic rules from PLLB might exacerbate spurious reward signals, any reward misspecification be-
comes more detectable and diagnosable through interpretable rules, whereas black-box policies offer no such
transparency.

Our experiments with PLLB focus on environments with tractable action spaces (e.g. discrete choices,
text captions, keypoints for robotic grasping). In like open-ended text generation in math reasoning or code
synthesis, this approach would require adaptation. Possible extensions include: (1) using the rule as a verifier
or reward bonus rather than an action prior, (2) discretizing the action space into semantically meaningful
categories that the LM can reason over, or (3) using the rule to filter or re-rank candidate actions from a base
policy. Such adaptations would extend the cognitive and communicative benefits of language-guided learning
to a broader class of sequential decision-making problems (Colas et al., 2022), and we leave exploration of
these extensions to future work.

13

Under review as submission to TMLR

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn,

Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say: Grounding
language in robotic affordances. 2022.

Allen Institute for AI. Molmo blog. https://molmo.allenai.org/blog. Accessed: 2025-02-25.

Bastien Boutonnet and Gary Lupyan. Words jump-start vision: A label advantage in object recognition.
Journal of Neuroscience, 35(25):9329–9335, 2015. doi: 10.1523/JNEUROSCI.5111-14.2015. URL https:
//www.jneurosci.org/content/35/25/9329.

Peter Carruthers and Jill Boucher. Language and Thought. Cambridge University Press, 1998.

Valerie Chen, Abhinav Gupta, and Kenneth Marino. Ask your human: Using human instructions to improve
generalization in reinforcement learning. Proc. of ICLR, 2021.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of grounded language
learning. Proc. of ICLR, 2019.

Sahil Chopra, Michael Henry Tessler, and Noah D Goodman. The first crank of the cultural ratchet: Learning
and transmitting concepts through language. Proc. of CogSci, 2019.

Andy Clark. Magic Words: How Language Augments Human Computation. In Peter Carruthers and Jill
Boucher (eds.), Language and Thought. Cambridge University Press, 1 edition, 1998. ISBN 978-0-521-
63108-2 978-0-521-63758-9 978-0-511-59790-9.

Cédric Colas, Tristan Karch, Nicolas Lair, Jean-Michel Dussoux, Clément Moulin-Frier, Peter F. Dominey,
and Pierre-Yves Oudeyer. Language as a cognitive tool to imagine goals in curiosity driven exploration.
Proc. of NeurIPS, 2020.

Cédric Colas, Tristan Karch, Clément Moulin-Frier, and Pierre-Yves Oudeyer. Language and culture inter-
nalization for human-like autotelic ai. Nature Machine Intelligence, 4(12):1068–1076, 2022.

Lisa Dunlap, Yuhui Zhang, Xiaohan Wang, Ruiqi Zhong, Trevor Darrell, Jacob Steinhardt, Joseph E. Gon-
zalez, and Serena Yeung-Levy. Describing differences in image sets with natural language, 2023.

Jensen Gao, Bidipta Sarkar, Fei Xia, Ted Xiao, Jiajun Wu, Brian Ichter, Anirudha Majumdar, and Dorsa
Sadigh. Physically grounded vision-language models for robotic manipulation. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2024. URL https://arxiv.org/abs/
2309.02561.

Dedre Gentner and Jeffrey Loewenstein. Relational Language and Relational Thought. Erlbaum, 2002.

Robert D Hawkins, Minae Kwon, Dorsa Sadigh, and Noah D Goodman. Continual adaptation for efficient
machine communication. Proc. of ACL, 2020.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David Szepes-
vari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, Marcus Wainwright, Chris Apps,
Demis Hassabis, and Phil Blunsom. Grounded language learning in a simulated 3d world. 2017.

Linda Hermer-Vazquez, Anne Moffet, and Paul Munkholm. Language, space, and the development of cog-
nitive flexibility in humans: The case of two spatial memory tasks. Cognition, 79(3):263–299, 2001.

Mary Hesse. The Cognitive Claims of Metaphor. The Journal of Speculative Philosophy, 1988.

Felix Hill, Andrew K. Lampinen, Rosalia Schneider, Stephen Clark, Matthew Botvinick, James L. McClel-
land, and Adam Santoro. Emergent systematic generalization in a situated agent. Proc. of ICLR, 2020.

14

https://molmo.allenai.org/blog
https://www.jneurosci.org/content/35/25/9329
https://www.jneurosci.org/content/35/25/9329
https://arxiv.org/abs/2309.02561
https://arxiv.org/abs/2309.02561

Under review as submission to TMLR

Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-AI coordination,
2023.

Hengyuan Hu, David J Wu, Adam Lerer, Jakob Foerster, and Noam Brown. Human-AI coordination via
human-regularized search and learning, 2022.

Shengran Hu and Jeff Clune. Thought cloning: Learning to think while acting by imitating human thinking.
Proc. of NeurIPS, 36, 2023.

Yiding Jiang, Shixiang Gu, Kevin Murphy, and Chelsea Finn. Language as an abstraction for hierarchical
deep reinforcement learning. Proc. of NeurIPS, 2019.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Qt-opt: Scalable deep rein-
forcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293, 2018. URL
https://arxiv.org/abs/1806.10293.

Jinkyu Kim, Suhong Moon, Anna Rohrbach, Trevor Darrell, and John Canny. Advisable learning for self-
driving vehicles by internalizing observation-to-action rules. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 9658–9667, 2020. doi: 10.1109/CVPR42600.2020.00968.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal Vincent,
Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence feedback. 2023.

George Lakoff and Mark Johnson. Metaphors We Live By. University of Chicago press, 2008.

Andrew K. Lampinen, Nicholas A. Roy, Ishita Dasgupta, Stephanie C. Y. Chan, Allison C. Tam, James L.
McClelland, Chen Yan, Adam Santoro, Neil C. Rabinowitz, Jane X. Wang, and Felix Hill. Tell me why!
– explanations support learning of relational and causal structure. Proc. of ICML, 2022.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves
Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension, 2019.

Belinda Z Li, Alex Tamkin, Noah Goodman, and Jacob Andreas. Eliciting human preferences with language
models. 2023a.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-
Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented code emulator.
2023b.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning,
2023.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefenstette,
Shimon Whiteson, and Tim Rocktäschel. A survey of reinforcement learning informed by natural language.
2019.

Aleksander R Luria. The directive function of speech in development and dissolution. Word, 15(2), 1959.

William McCarthy. Emergence of compositional abstractions in human collaborative assembly. 2020. URL
https://api.semanticscholar.org/CorpusID:233179096.

Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Aligning superhuman ai with
human behavior: Chess as a model system. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery Data Mining, KDD ’20. ACM, August 2020. doi: 10.1145/3394486.
3403219. URL http://dx.doi.org/10.1145/3394486.3403219.

Alex Mesoudi and Alex Thornton. What is cumulative cultural evolution? Proceedings of the Royal Society
B, 285(1880):20180712, 2018.

15

https://arxiv.org/abs/1806.10293
https://api.semanticscholar.org/CorpusID:233179096
http://dx.doi.org/10.1145/3394486.3403219

Under review as submission to TMLR

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

Allen Nie, Reuben Cohn-Gordon, and Christopher Potts. Pragmatic issue-sensitive image captioning, 2020.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. Generative agents: Interactive simulacra of human behavior, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision, 2021.

Nicholas A Roy, Junkyung Kim, and Neil Rabinowitz. Explainability via causal self-talk. Advances in Neural
Information Processing Systems, 35:7655–7670, 2022.

Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill induction and planning with latent language.
Proc. of ACL, 2021.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Lan-
guage agents with verbal reinforcement learning. Proc. of NeurIPS, 2024.

Elizabeth S Spelke. What makes us smart? core knowledge and natural language. Language in mind:
Advances in the study of language and thought, pp. 277–311, 2003.

Priya Sundaresan, Hengyuan Hu, Quan Vuong, Jeannette Bohg, and Dorsa Sadigh. What’s the move?
hybrid imitation learning via salient points. In Proceedings of the International Conference on Learning
Representations (ICLR), February 2025.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Allison Tam, Neil Rabinowitz, Andrew Lampinen, Nicholas A Roy, Stephanie Chan, DJ Strouse, Jane
Wang, Andrea Banino, and Felix Hill. Semantic exploration from language abstractions and pretrained
representations. Proc. of NeurIPS, 2022.

Michael Henry Tessler, Jason Madeano, Pedro A. Tsividis, Brin Harper, Noah D. Goodman, and Joshua B.
Tenenbaum. Learning to solve complex tasks by growing knowledge culturally across generations, 2021.

L.S Vygotsky. Thought and Language. MIT Press, 1965.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset.
Technical report, 2011.

Tony T. Wang, Adam Gleave, Tom Tseng, Kellin Pelrine, Nora Belrose, Joseph Miller, Michael D. Dennis,
Yawen Duan, Viktor Pogrebniak, Sergey Levine, and Stuart Russell. Adversarial policies beat superhuman
go ais, 2023.

Olivia Watkins, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Jacob Andreas. Teachable reinforcement
learning via advice distillation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Proc. of NeurIPS, 2021.

Sandra R Waxman. The development of an appreciation of specific linkages between linguistic and conceptual
organization. Lingua, 92:229–257, 1994.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Catherine Wong, Kevin Ellis, Joshua B. Tenenbaum, and Jacob Andreas. Leveraging language to learn
program abstractions and search heuristics. Proc. of ICML, 2021.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. 2022.

16

Under review as submission to TMLR

Hanako Yoshida and Linda B Smith. Sound symbolism and early word learning in two languages. In Proc.
of CogSci, 2003.

Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu, Zihan Zhao, and Kai Yu. Large language models are
semi-parametric reinforcement learning agents. arXiv preprint arXiv:2306.07929, 2023.

Ruiqi Zhong, Peter Zhang, Steve Li, Jinwoo Ahn, Dan Klein, and Jacob Steinhardt. Goal driven discovery
of distributional differences via language descriptions, 2023.

Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. RTFM: Generalising to new environment dy-
namics via reading. In Proc. of ICLR, 2020.

A Appendix

B Appendix

B.1 Hyperparameters

1. SaySelect: We use the same default parameters used in InstructRL (Hu & Sadigh, 2023), including
setting the regularization strength λ = 0.25. Additionally, each time we invoke gen_rule, we create
an ensemble of 3 rules, which we aggregate over when construct the probability distribution over
actions during update.

2. Maze: We use the InstructRL objective with a tabular Q-learning agent, but introduce a ϵLM

parameter that controls whether the regularization strength λ is 0 or 1 at each time-step in an
episode. Although we did not observe a strong effect on modifying ϵLM , we did not explore values
larger than ϵLM = 0.4 as that led to increased inference cost and experiment latency. Finally, each
time we invoke gen_rule we create an ensemble of 4 rules, which we aggregate over when construct
the probability distribution over actions during update.

3. Builder: For the listener agent we finetune BART for a maximum of 100 epochs at each iteration of
PLLB, employing early stopping on a held-out validation set and using the default arguments pro-
vided by the HuggingFace Transformers library (Lewis et al., 2019). Each time we invoke gen_rule,
we same 3 rules and select the rule with the highest aggregate likelihood across all tokens. Likewise,
for each image description (the speaker’s action), we sample 3 possible descriptions under the given
rule and select the one with the highest probability.

4. Birds: For the fine-tuned version of the listener agent, we finetune StableDiffusion for 1000 steps on
a separate finetuning dataset. When generating images, we simply sample one image per description,
using 10 inference steps and a guidance scale of 7.5.

5. Grasp: For grasp keypoint selection,we train an upper confidence bound agent on a neural contex-
tual bandit using image features as context, with learning rate 0.01, with an (100, 100) action space
containing integer coordinates of the environment image. During update, we sample 20 coordinates
following a given rule from gen_rule, which we use as the probability distribution over actions, set-
ting λ = 0.2 as the regularization strength. To execute the grasp, we use a grasp model built by
training Sphinx (Sundaresan et al., 2025) over 50 waypoint trajectories with learning rate 0.0001 for
100 epochs.

B.2 SelectSay Overview

B.3 Maze

See Figures 9 and 10.

17

Under review as submission to TMLR

Figure 8: Overview of SaySelect game, reproduced from Hu & Sadigh (2023).

Figure 9: Visual aid provided to participants in the human subject study for the Maze task.

B.4 Dataset Details for Birds.

We consider images of the following bird species in the CUB-200-2011 dataset from Wah et al. (2011) for
the Birds task: [Indigo Bunting, Cardinal, Yellow Breasted Chat, American Crow, Vermillion
Flycatcher, California Gull, Blue Jay, Tropical Kingbird, White Pelican, Horned Puffin].

B.5 Grasp

B.6 Builder and Birds Iterations

B.7 Full Prompts

We first provide the full prompts used for gen_rule. For space constraints, we do not include example
samples, but note they follow the format shown in Figure 2.

1. SaySelect: You will be given a list of (OBSERVATION, ACTION, REWARD) examples collected from
two agents learning to solve a task. Possible ACTIONS an agent can take are: 1, 2, 3, 4, 5, and quit. Each
OBSERVATION describes the ordered sequence of actions that AGENT 1 picks, and each ACTION describes
the ACTION that AGENT 2 picks based on the given OBSERVATION. The examples are separated into
HIGH REWARD and LOW REWARD examples.+[samples]+Output a language rule that best summarizes
the strategy AGENT 2 should follow to receive HIGH REWARD, not LOW REWARD, based on the
examples. Start the instruction with the prefix ’I should’.

2. Maze: You will be given a list of example (OBSERVATION, ACTION) trajectories collected from an
AGENT learning to solve a maze. Each trajectory receives a REWARD. Possibles OBSERVATIONS an
agent see are: WHITE, RED, BLUE Possible ACTIONS an agent can take are: NORTH, SOUTH, EAST,
WEST. The examples are separated into HIGH REWARD and LOW REWARD examples + [samples]
+ Output a language rule that best summarizes the strategy the AGENT should follow when picking a
sequence of ACTIONS to solve the maze and receive HIGH REWARD, not LOW REWARD, based on the
examples. Start the instruction with the prefix ’I should’.

3. Builder: There are two agents. The goal of Agent 1 is to provide instructions to Agent 2 that helps Agent 2
to successfully recreate the image. You will be given a list of (ORIGINAL, AGENT 1 INSTRUCTION, RE-
WARD) values where ORIGINAL is the original description of an image, INSTRUCTION is the instruction

18

Under review as submission to TMLR

Figure 10: Interface used in the human subject study for the Maze task. Cells not visited by the participants
are hidden in gray.

Figure 11: Interface used in the human subject study for the Builder task.

provided by Agent 1 to Agent 2, and REWARD is the reward Agent 2 receives when trying to re-create the
image (higher is better). The examples are separated into HIGH REWARD and LOW REWARD examples.
+ [samples]+

Based on the examples above, output a list of 2 RULES for Agent 1 to follow when generating INSTRUC-
TION in order to receive HIGH REWARD, instead of LOW REWARD. Write the rules after the prefix
RULES:

4. Birds: The top row of three images have the following HIGH REWARD descriptions:+high reward
samples+The bottom row of three images have the following LOW REWARD descriptions:+low reward
samples+Provide a rule I should follow in order to provide image descriptions with HIGH REWARD, not
LOW REWARD. Provide the rule after the prefix RULE:

19

Under review as submission to TMLR

a. Standard Setting b. Generalization Setting c. Environment Overview

Figure 12: Task environment for Grasp, showing new location and distractors for the Generalization setting.

i=1 i=2 i=3

Test Target Listener Reconstructions

BIRDS

BUILDER

Figure 13: Both the builder and birds tasks consist of speaker and listener agents. At test time, the speaker
needs to provide a language description to the listener that helps them recreate the image accurately. For
both tasks, PLLB helps improve listener accuracy over time.

5. Grasp: The top image shows a grasp keypoint with HIGH REWARD. The bottom image shows a grasp
keypoint with LOW REWARD. Based on these images, provide a rule the robot should follow in order to
select a grasp keypoint that results in HIGH REWARD, not LOW REWARD. Provide the rule after the
prefix RULE:

We next provide the full prompts used in update for each task.

1. SaySelect: [L]+Agent 1 selected [observation]. So I should select

2. Maze: You are an agent solving a maze following a provided RULE. You will be given a list of PREVIOUS
ACTIONS and the CURRENT OBSERVATION. Follow the RULE to select your NEXT ACTION (East,
West, South, North):
RULE: + [L]+ PREVIOUS ACTIONS: + [τ1...t−1] + CURRENT OBSERVATION: + [observation] +
What is the NEXT ACTION you should take? Output one of (East, West, South, North) after the prefix
NEXT ACTION:.

3. Builder: You will be given a DESCRIPTION of an image. Your goal is to use this description to provide a
short INSTRUCTION to help someone else, who cannot see the image, accurately re-construct it. You will
also be given a list of RULES you must follow when providing the instruction.
DESCRIPTION: + observation +
RULES: +L +
Please provide a short instruction following the prefix INSTRUCTION:

4. Birds: Provide a one-sentence description of this image, using the following RULES:+L

5. Grasp: Provide a keypoint in the image where the robot should grasp the object, following the RULE: L.

20

Under review as submission to TMLR

B.8 Examples of Generated Rules for All Environments

See Tables 1, 2, 3, 4, and 5.

Setting L1 L2 L5
Standard I should follow the strategy of

choosing action 4 whenever the
observation is 2, 3, 4, or 5.

I should follow the strategy
of choosing actions based on
the observation provided by
AGENT 1. If the observation
is 1, I should choose action 1.
If the observation is 2, I should
choose action 3. If the obser-
vation is 3, I should choose ac-
tion 3. If the observation is 4,
I should choose action 4. If
the observation is 5, I should
choose action 5.

I should follow the strategy of
choosing the same action as
AGENT 1 for observations 1,
2, 3, 4, and 5.

Fixed Speaker I should choose action 1 when
observation is 1 or 2 or 4 or 5.
I should choose action 2 when
observation is 3.

I should choose action 1 when
observation is 1, 2, 3 or 5. I
should choose action 2 when
observation is 4.

I should choose action 1 when
observation is 1. I should
choose action 4 when obser-
vation is 2. I should choose
action 5 when observation is
3. I should choose action 2
when observation is 4. I should
choose action 3 when observa-
tion is 5.

Table 1: Example L rules generated for the SaySelect environment, for the Standard setting (both Listener
and Speaker agents are RL agents trained from random initialization) and a Fixed Speaker agent.

B.9 Effect of Model on Generated Rules

We additionally compare the effect of different language models, in particularly those of different sizes, on
our results. We did not observe a significantly strong quantitative difference in performance when gen_rule
is instantiated with models of different sizes (e.g. llama-2-70b-chat vs. llama-2-13b-chat). However, we did
notice interesting qualitative differences across samples that are likely due to the additional fine-tuning step
using reinforcmenet learning from human feedback (RLHF, see https://llama.meta.com/llama2/ for more
information). We describe these differences per environment below.

1. SaySelect: Because of the simplicity of this environment, it is possible for a rule L to summarize
the full optimal human-interpretable policy as a sequence of if-statements (e.g. “If the current state
is ’1’, I should take action 1.”) - we observed that smaller language models (e.g. llama-2-7b-chat
and llama-2-13b-chat) always did this, while larger models (e.g. llama-2-70b-chat and mistral-8x-7b-
instruct) were better able to generalize and use more efficient language, such as “I should take the
same action as the observation”. The smaller models also often included superfluous language, such
as “I should always take the action that leads to the highest reward”.

2. Maze: The majority of generated rules captured the underlying color semantics of the maze, enabling
generalization. However, smaller model sizes (e.g. llama-2-7b-chat) resulted in more superfluous
language (e.g. “I should always prioritize taking actions that lead to the most recent reward, and
avoid taking actions that lead to low reward.”), and the generated rules focused more on the first
few actions the agent should take, which may not always generalize.

3. Builder: While we do not observe any model-specific differences, there exists variation across
samples in the type of formatting and syntax generated rules encourage (e.g. provide coordinates “
using the format (x, y)” vs. “ using the format "x=0.XX, y=0.YY"”), leading to agents converging
to different descriptions. Furthermore, some rules encourage list formats in image descriptions
(e.g. 1.Draw a green dot at (0.72, 0.21). 2. Draw a green dot at (0.73, 0.72).) while other rules
encouraged clustering of identical shapes (e.g. Draw two green dots at (0.72, 0.21) and (0.73, 0.72).)

21

https://llama.meta.com/llama2/

Under review as submission to TMLR

Size L1 L2 L5 L8
7x7 I should start by mov-

ing north, then con-
tinue moving north un-
til I reach a wall, then
turn east and move un-
til I reach a wall, then
turn south and move un-
til I reach a wall, then
turn west and move un-
til I reach the end of the
maze.

I should prioritize moving
North, East, and South
over moving West, as
the HIGH REWARD EX-
AMPLES show a higher
frequency of these ac-
tions. 2. I should avoid
moving West unnecessar-
ily, as it is rarely seen in
the HIGH REWARD EX-
AMPLES and often leads
to LOW REWARD EX-
AMPLES

I should take the EAST
action when I see
WHITE, and then repeat
the EAST action until
I see RED, then take
the SOUTH action, and
then repeat the EAST
action until I see BLUE,
then take the NORTH
action, then take the
EAST action until I see
RED again, then take
the SOUTH action, and
finally take the WEST
action.

I should take the EAST
action when I observe
WHITE, and keep tak-
ing EAST actions until I
observe RED, then take
the SOUTH action. Af-
ter taking the SOUTH
action, I should take the
EAST action again un-
til I observe BLUE, then
take the NORTH action.
After taking the NORTH
action, I should take the
EAST action until I ob-
serve RED again, then
take the SOUTH action.

Table 2: Example L rules generated for the Maze environment for the 7x7 maze size.

Setting L1 L2 L3
Re-Initialization 1. Be specific with location

details: Agent 1 should pro-
vide detailed location informa-
tion for each element in the
image, such as x and y coor-
dinates. 2. Use descriptive
language for elements, such as
"red dot" or "green triangle".

1. Use specific coordinates
when instructing Agent 2 to
draw shapes. 2. Use descrip-
tive language to specify the
color and shape of each ele-
ment. For example, "a green
triangle" instead of "a green
thing".

1. Be specific with location co-
ordinates: provide specific co-
ordinates for the location of
each shape, using the format
x=0.XX, y=0.YY. 2. Use
descriptive shape names: In-
stead of using generic terms
like "dot" or "square," use more
descriptive names that indi-
cate the shape’s color and size,
such as "green triangle" or "red
square."

Continual Training 1. Be specific and detailed in
your instructions. High reward
examples have specific coordi-
nates and shapes, while low re-
ward examples have more gen-
eral descriptions. 2. Use a
consistent format for your in-
structions. High reward ex-
amples have a consistent for-
mat for listing coordinates and
shapes, while low reward ex-
amples have a more free-form
format.

1. Provide explicit coordinates
for each element in the image,
using the format (x, y). 2. Use
specific colors when referring
to elements in the image, such
as "red", "green", or "blue".
Avoid using vague terms like
"colored" or "shaded".

1. Use a consistent for-
mat for describing shapes,
such as always listing the x-
coordinate first, followed by
the y-coordinate. For example,
instead of "one green square
at the point x=0.53, y=0.24",
use "one green square at (0.53,
0.24)". 2. Avoid using vague
terms like "various shades of
green". Instead, use spe-
cific colors, such as "green" or
"blue". Additionally, use spe-
cific shapes, such as "square"
or "triangle", rather than vague
terms like "rectangle".

Table 3: Example L rules generated for the Builder environment.

4. Birds: Rules demonstrated more reward-specificity (i.e. specific to background, color, or species
rewards) when generated with larger VLMs (e.g. llava-13b) versus smaller models (e.g. llava-v1.6-
vicuna-7b), with the latter primarily proposing rules that encouraged more detailed descriptions (e.g.
“Avoid using vague or general terms”).

5. Grasp: We found that most VLMs other than molmo-7B performed poorly at recognizing keypoints,
and instead relied heavily on task information. For example, one rule generated by llava-13b was
“A robot should grasp a keypoint that is visible and not obstructed by other objects.” We believe the
superior performance of the molmo series of models are due to specifically training on the PixMo
dataset with 2D-points (Allen Institute for AI).

22

Under review as submission to TMLR

Reward L1 L2 L3
color Describe the bird’s color,

species, and any distinctive
markings or patterns.

Describe the bird’s coloration
accurately.

Describe the bird’s coloration
accurately.

background Include details about the bird’s
surroundings, such as the type
of branch or post it is on, and
any additional elements in the
background.

Include the bird’s action
(perched, flying, standing)
and its location (on a branch,
railing, pole, etc.)

Describe the bird’s action (fly-
ing, perching, standing) and
the environment it is in (sky,
tree, water).

species Describe the bird’s color,
markings, and any distinctive
features.

Describe the subject’s unique
features, such as coloration,
beak shape, or other distin-
guishing characteristics.

Include specific details about
the bird’s appearance, such as
the color of its feathers, beak,
or eyes, and any distinctive
markings or patterns.

Table 4: Example L rules generated for the Birds environment demonstrate reward-specificity over time.

Reward L10 L30 L50
Shoulder
Torque

Select keypoints that are away
from sharp edges or corners of
the object to avoid potential
damage and improve stability
during grasping.

Prioritize grasp keypoints that
are closer to the center of the
object for more stable and pre-
cise pickup.

Prioritize grasping at the mid-
dle of the object’s surface
rather than the top edges or
handles to ensure a stable grip.

Table 5: Example L rules generated for the Grasp environment.

B.10 Sensitivity Analysis of Rule Generation

We next compare the sensitivity of PLLB to the implementation of gen_rule, specifically variations in the
prompt and temperature for sampling. We present results for SaySelect, as its discrete action space and
deterministic dynamics provide the clearest signal for detecting sensitivity effects.

B.10.1 Prompt Variations

For SaySelect, we evaluate prompt sensitivity in gen_rule by comparing the following variations with the
Adversarial baseline described in 5.:

• (Original) You will be given a list of (OBSERVATION, ACTION, REWARD) examples collected
from two agents learning to solve a task. Possible ACTIONS an agent can take are: 1, 2, 3, 4, 5, and
quit. Each OBSERVATION describes the ordered sequence of actions that AGENT 1 picks, and each
ACTION describes the ACTION that AGENT 2 picks based on the given OBSERVATION. The
examples are separated into HIGH REWARD and LOW REWARD examples.+[samples]+Output a
language rule that best summarizes the strategy AGENT 2 should follow to receive HIGH REWARD,
not LOW REWARD, based on the examples. Start the instruction with the prefix ‘I should’.

• (No Format Instruction) You will be given a list of (OBSERVATION, ACTION, REWARD)
examples collected from two agents learning to solve a task. Possible ACTIONS an agent can take
are: 1, 2, 3, 4, 5, and quit. Each OBSERVATION describes the ordered sequence of actions that
AGENT 1 picks, and each ACTION describes the ACTION that AGENT 2 picks based on the
given OBSERVATION. The examples are separated into HIGH REWARD and LOW REWARD
examples.+[samples]+Output a language rule that best summarizes the strategy AGENT 2 should
follow to receive HIGH REWARD, not LOW REWARD, based on the examples.

• (Low Context) You will be given a list of (OBSERVATION, ACTION, REWARD) examples
collected from two agents learning to solve a task. Output a language rule that best summarizes the
strategy AGENT 2 should follow to receive HIGH REWARD, not LOW REWARD, based on the
examples. Start the instruction with the prefix ‘I should’.

• (Rephrase) You’ve been given a list of (OBSERVATION, ACTION, REWARD) triples from two
agents learning to solve a task. Possible ACTIONS each agent might take are: 1, 2, 3, 4, 5, and quit.

23

Under review as submission to TMLR

Each OBSERVATION refers to the ordered sequence of actions that AGENT 1 selects, and each
ACTION refers to the ACTION that AGENT 2 selects based on the seen OBSERVATION. The
examples are divided into HIGH REWARD and LOW REWARD examples.+[samples]+Describe the
strategy AGENT 2 uses in HIGH REWARD examples that differs from LOW REWARD examples.
Start it with ‘I should’.

Table 6 and 7 show that PLLB is mostly robust to variations in prompt and always outperforms the
Adversarial baseline, showing that PLLB indeed places higher weight on the content of the contrasting
episodes rather than relying on any specific syntax for rule generation.

B.10.2 Temperature Variation

For SaySelect, our default temperature for sampling with gen_rule is 0.5. We compare with temperatures
0.1 (low diversity) and 0.9 (high diversity), and find only slight decrease in reward at the higher temperature
of 0.9 (see Table 6). Importantly, across all temperatures the average reward and human-interpretability
scores are stronger than baselines, indicating robustness towards sampling temperature.

Episode 500 1000 6000
Reward (Original, temp=0.5) 0.63± 0.1 0.8± 0.1 0.96± 0.03
Reward (Original, temp=0.9) 0.47± 0.2 0.68± 0.1 0.96± 0.05
Reward (Original, temp=0.1) 0.66± 0.1 0.70± 0.09 0.96± 0.02

Reward (No Format Instruction) 0.51± 0.2 0.77± 0.05 0.96± 0.02
Reward (Low Context) 0.56± 0.2 0.73± 0.1 0.96± 0.02

Reward (Rephrase) 0.64± 0.1 0.81± 0.2 0.96± 0.02
Reward (Adversarial) 0.21± 0.1 0.45± 0.03 0.8± 0.05

Table 6: Reward across ablations to probe sensitivity of rule generation to prompt variation and temperature.
Results are averages across 5 trials.

Episode 500 1000 6000
Interpretability (Original, temp=0.5) 0.77± 0.03 0.87± 0.04 0.97± 0.02
Interpretability (Original, temp=0.9) 0.72± 0.05 0.80± 0.05 0.93± 0.03
Interpretability (Original, temp=0.1) 0.87± 0.04 0.90± 0.1 0.95± 0.02

Interpretability (No Format Instruction) 0.67± 0.06 0.91± 0.03 0.94± 0.02
Interpretability (Low Context) 0.77± 0.04 0.84± 0.05 0.97± 0.03

Interpretability (Rephrase) 0.8± 0.04 0.97± 0.04 0.97± 0.02
Interpretability (Adversarial) 0.55± 0.03 0.57± 0.03 0.65± 0.06

Table 7: Human interpretability across ablations to probe sensitivity of rule generation to prompt variation
and temperature. Results are averages across 5 trials.

B.11 Non-Contrastive Variant

A core feature of PLLB is using contrastive episodes (examples of both low and high reward episodes)
to gen_rule. Here we report a non-contrastive ablation for the SaySelect (RL) and Birds (diffusion-
model based communication game) environments, where we only use high reward examples in the prompt to
gen_rule. Our results show that contrastive episodes are important for strong performance. Concretely, for
SaySelect, the non-contrastive ablation decreases both task reward and human-interpretability of the RL
policy, across different total number of episodes seen (see Table 8). Likewise, for the Birds task, the non-
contrastive ablation results in lower reward than PLLB, although still leads to a non-trivial improvement
over the Baseline and Adversarial methods (see Table 9). Upon a closer look, we find that without contrasting
episodes (i.e. negative episodes that highlight what behaviors are shared between high and low rewarding
strategies), PLLB rules often capture spurious features of the tasks, such as “ Include details about the

24

Under review as submission to TMLR

bird’s actions. This helps in creating a more vivid and engaging description.”. This subsequently results in
highly-specific captions such as a bird ‘possibly displaying a territorial or mating display‘ or ‘looking at the
camera‘, neither of which are relevant for any of our reward functions. Overall, these results highlight the
importance of using contrasting episodes to improve PLLB rule equality.

Episode 500 1000 6000
Reward (Original) 0.63± 0.1 0.8± 0.1 0.96± 0.03

Reward (Non-contrastive) 0.53± 0.02 0.7± 0.2 0.91± 0.03
Reward (Adversarial) 0.21± 0.1 0.45± 0.03 0.8± 0.05

Interpretability (Original) 0.77± 0.03 0.87± 0.04 0.97± 0.02
Interpretability (Non-contrastive) 0.75± 0.02 0.8± 0.06 0.88± 0.02

Interpretability (Adversarial) 0.55± 0.03 0.57± 0.03 0.65± 0.06

Table 8: Reward and human-interpretability scores for contrastive and non-contrastive versions of PLLB in
SaySelect. Results are averages across 5 trials.

(a) Color
Method Score
Baseline 1.69± 0.5
Bottleneck 2.93± 0.4
Non-contrastive 2.64± 0.3
Adversarial 1.43± 0.5

(b) Background
Method Score
Baseline 1.27± 0.5
Bottleneck 2.30± 0.3
Non-contrastive 1.78± 0.4
Adversarial 1.01± 0.4

(c) Species
Method Score
Baseline 1.59± 0.5
Bottleneck 2.69± 0.5
Non-contrastive 2.51± 0.5
Adversarial 1.21± 0.4

Table 9: Noncontrastive ablation in comparison with main results for Birds task across 3 reward functions.
Results are averaged across 5 trials.

25

	Introduction
	Background & Related Work
	The Language Bottleneck
	Rule Generation (gen_rule)
	Rule-Guided Policy Update (update)

	Experiment Set-Up
	SaySelect
	PLLB helps learn human-interpretable policies
	PLLB can learn counter-intuitive policies

	Maze
	PLLB improves few-shot generalization
	PLLB learns adaptable policies
	PLLB is more interpretable and inter-operable

	Collaborative Image Reconstruction
	Task Overview
	PLLB helps speakers provide more usable instructions
	PLLB can collaborate with human listeners
	PLLB collaborates with human speakers

	Robot Grasp Planning
	Task Overview
	PLLB can learn counter-intuitive policies
	PLLB improves few-shot generalization

	Limitations & Discussion
	Appendix
	Appendix
	Hyperparameters
	SelectSay Overview
	Maze
	Dataset Details for Birds.
	Grasp
	Builder and Birds Iterations
	Full Prompts
	Examples of Generated Rules for All Environments
	Effect of Model on Generated Rules
	Sensitivity Analysis of Rule Generation
	Prompt Variations
	Temperature Variation

	Non-Contrastive Variant

