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Abstract
Knowledge representation in RDF guarantees shared semantics and enables interoperability in data
exchanges. Various approaches have been proposed for RDF knowledge graph construction, with
declarative mapping languages emerging as the most reliable and reproducible solutions. However,
not all information systems can understand and process data encoded as RDF. In these scenarios, to
guarantee seamless communication there is a need for a further conversion of RDF graphs to one or
more target data formats and models. Existing solutions for the declarative lifting of data to RDF are not
able to effectively support knowledge conversion towards a generic output. Based on an examination of
existing mapping languages and processors for RDF knowledge graph construction, we define a reference
workflow supporting a knowledge conversion process between different data representations. The
proposed workflow is validated by the mapping-template tool, an open-source implementation based
on a popular template engine. The template-based mapping language enables the definition of mappings
without requiring prior knowledge of RDF and provides unlimited flexibility for the target output.
The tool is evaluated qualitatively, considering common challenges in the declarative specification of
mappings, and quantitatively, considering performance and scalability.
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1. Introduction

The challenge of data interoperability can be addressed by representing knowledge according
to shared semantics in RDF graphs. In recent years, several approaches have been proposed for
lifting, i.e., the generation of RDF graphs from heterogeneous data sources. Declarative mapping
languages emerged, in contrast with ad-hoc procedures, as a suitable solution to improve the
maintenance and reproducibility of the mapping process. Different requirements led to the
definition of multiple declarative mapping languages and the implementation of several mapping
processors interpreting and executing them [1]. In this context, the recent and ongoing research
activities mainly focus on (i) the extension of declarative mapping languages to support new
mapping challenges and requirements for RDF knowledge graph construction [2], and (ii) the
improvement of performances for mapping processors against the identified benchmarks [3, 4].
However, not all information systems are able to process information represented as RDF. In
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these cases, a knowledge conversion process from the knowledge graph towards a generic
output is required [5, 6]. While the available declarative mapping languages for RDF graph
generation can not directly support such a process, they propose key contributions to address
this problem. Based on the analysis of the literature reported in Section 2, we propose a workflow
for a generic knowledge conversion process, enabling not only transformations to/from RDF but
also conversions among data formats and data models not bound to Semantic Web technologies.
The workflow aims to identify the key characteristics of existing declarative mapping languages
and processors and propose an approach to overcome the current limitations.

We implemented the mapping-template tool1 as an open-source software component that
leverages a popular template engine to enact and validate the defined workflow. The adoption
of a template-based language enables the definition of mapping rules by users not familiar with
RDF and the possibility of targeting a generic output format and schema. Section 3 describes
the proposed workflow, and Section 4 presents the tool.

In Section 5, we discuss example templates demonstrating how the tool can address the
requirements of RDF graph generation and cover additional scenarios. In Section 6, we perform
a quantitative evaluation of the tool considering an RDFmaterialisation task. Finally, in Section 7,
we describe the tool’s adoption for different use cases, while in Section 8, we draw conclusions
and discuss future work.

2. Preliminaries and related work

The W3C Knowledge Graph Construction Community Group2 involves researchers and practi-
tioners aiming at investigating the problem of RDF graph construction, the different approaches
and solutions proposed, and the potential extension of the R2RML W3C recommendation [7]
beyond relational databases [2]. This section introduces the main terminology adopted in the
paper and the state-of-the-art declarative mapping languages and processors.

2.1. Terminology

The RDF knowledge graph construction process targets the techniques and tools that can
process (semi-)structured heterogeneous data sources to generate an RDF representation of the
input data. In this paper, we adopt the definitions proposed by Van Assche et al. [1].

Schema mappings define a set of rules according to a mapping language to transform a source
schema in a target schema. We identify as schema both the data format (e.g., RDF, JSON) and
data model (e.g., ontology, JSON Schema) adopted. A schema transformation applies the schema
mappings to an input data source represented through the source schema and generates output
data according to the target schema. A data transformation applies a custom logic (e.g., functions)
to process data values (e.g., changes in string capitalization). This paper considers a generic
mapping process (also referred to as a conversion process) that may require both schema and data
transformations. In particular, we do not restrict the data format of the target schema to RDF.

1https://github.com/cefriel/mapping-template
2https://www.w3.org/community/kg-construct/
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As a final remark, it is essential to highlight that we focus on approaches for the materialisation
of the output, i.e., storing the result of the mapping process.

2.2. Declarative mapping languages and processors

The process of RDF graph generation from (semi-)structured data encompasses three main
approaches [1]:

• Hard-coded procedures. The definition of these procedures does not require learning
a mapping language; however, they are difficult to maintain since every modification
requires a new development for its implementation. Moreover, they are not reusable, and
the user should completely handle the optimisation of the mapping process.

• Format-specific mappings. The mapping language and processor are optimised for the
specific format considered. However, the definition and execution of mappings for
data sources in different formats require learning and maintaining multiple solutions.
Moreover, it is not possible to integrate data sources with different formats.

• Declarative mappings: Propose a single solution for the declarative definition of mappings
from different data sources. The mappings are reusable and decoupled from the processor
executing them. Indeed, other processors may be used to execute the mappings if they
conform to the same mapping language adopted.

The declarative mapping languages can be classified as (i) dedicated languages based on R2RML
syntax (R2RML [7], RML [8], D2RML [9], KR2RML [10], R2RML-F [11], xR2RML [12]), (ii)
dedicated languages with custom syntax (Helio Mapping Language [13], D-REPR [14]), (iii)
repurposed languages based on constraint languages (ShExML [15] extending the ShEx syntax),
(iv) repurposed languages based on SPARQL syntax: XSPARQL [16], Facade-X [17], SPARQL-
Generate [18]. Each mapping language is implemented by at least one mapping processor able
to execute a set of mappings fulfilling its specification.

Different solutions address specific requirements and have their advantages and disadvantages.
For this reason, it is crucial to offer comparison workflows for the user to choose and promote
initiatives to reconcile the proposed solutions.

The paper from [19] discusses an ontological approach for representing declarative mapping
languages generating an RDF output. The paper defines the Conceptual Mapping ontology to
cover both features offered by state-of-the-art mapping specifications and a set of mapping
challenges collected by members of the knowledge graph construction community3. The high-
level concepts identified by the ontology are considered in this work to support the workflow
definition. Moreover, we use the ontological requirements4 for the evaluation of the mapping
capabilities of our tool.

The literature review by Van Assche et al. [1] provides an overview of mapping languages
and available mapping processors for RDF graph generation. The review identifies a set of
characteristics for both schema transformation and data transformation. It compares approaches
for materialisation and virtualisation of the RDF knowledge graph based on declarative mapping

3https://kg-construct.github.io/workshop/2021/challenges.html
4https://github.com/oeg-upm/Conceptual-Mapping/tree/main/requirements
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languages. RML emerges as the language providing a wider number of compatible mapping
processors. We considered the reviewed tools and the extracted characteristics to define a
generalised conversion process.

Several efforts in the literature focus on the evolution of mapping languages to cover new
requirements. The integration of the Function Ontology (FnO) with RML is proposed in [20] to
enable the declaration of data transformations in the mappings. The authors in [21] describe
the extension of the RML Logical Source to support Web APIs and streams. Moreover, they
introduce the RML Logical Target to define the characteristics of the expected knowledge graph
generated. An RML extension to directly support the mapping of in-memory data structures
is discussed in [22]. RML Views [23] are proposed to facilitate the mapping of tabular data
sources. The RML-star [24] extension for the RML language enables the definition of declarative
mappings to generate RDF-star5 triples, while the RML-CC6 extension allows generating RDF
Collections and Containers. Finally, the RML Fields [25] proposal defines an approach to handle
mapping rules for complex nested data structures. The new RML ontology [2] incorporates
several of the discussed extensions and is designed as a modular solution: RML-Core for schema
transformations, RML-IO for the logical source and target, RML-CC, RML-FNML for data
transformations, RML-star.

Another set of contributions targets the performance and scalability of the mapping pro-
cess. The GTFS-Madrid-Bench [26] defines a benchmark to test the scalability of solutions for
knowledge graph construction. A qualitative and quantitative comparison of different (R2)RML
processors is provided by Arenas-Guerrero et al. in [3]. Optimisations for the processing of
data transformations defined within the mappings are proposed by FunMap [27] and Drago-
man [28]. The usage of support data structures to speed up the mapping execution is proposed
by SDM-RDFizer [29]. Finally, the concurrent processing of mapping rules is investigated by
Chimera [30] and Morph-KGC [31].

2.3. Beyond RDF knowledge graph construction

Declarative mapping languages for knowledge graph construction assume RDF triples as the
expected output of the mapping process. However, a lowering procedure targeting heteroge-
neous data formats and models is often needed to process the knowledge represented in the
RDF graph. The position paper from Bennara et al. [5] discusses how knowledge graphs can
foster the interoperability of web services on the Web of Things (WoT) and claims the need for
appropriate lowering procedures enabling communication among different devices. In previous
work, we described how semantic technologies can enhance data exchanges between different
data standards within a multi-stakeholder environment, and we demonstrated it considering
a use case from the transportation domain [6]. We claimed the need to lower RDF data to
heterogeneous data formats to achieve this goal, and we proposed a solution based on the
Apache Velocity language. The presented mapping-template tool represents a generalisation
of the proposed approach for defining mappings between different data representations. XS-
PARQL offers a solution for the definition of lifting and lowering mappings to/from RDF but is
limited to the XML format [32]. The SPARQL Template Transformation Language (STTL) [33]

5https://w3c.github.io/rdf-star/cg-spec/editors_draft.html
6https://github.com/kg-construct/rml-cc
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provides a SPARQL-based solution for the definition of lowering mappings from RDF data to
heterogeneous data sources.

The advantages of applying a single approach for the definition of lifting and lowering
mappings emerge from the literature mentioned. The possibility of reusing declarative lifting
mappings (e.g., RML mappings) for both directions is also discussed but with limited results [34,
35] due to the difficulties of inverting uniquely and unambiguously the assertions defined for
the lifting process.

3. A workflow for declarative knowledge conversion

Starting from the analysis of available languages and tools for declarative RDF knowledge
graph construction, we designed a workflow to generalise the declarative conversion process
between different data representations. We consider a mapping scenario where data from a data
source, represented according to an input data format and data model, should be converted to an
output data format and output data model and stored in a data sink. The mapping scenario may
involve integrating additional data sources to generate the output and data transformations to
be applied during the process. The workflow defines the building blocks for a generic declarative
mapping language and the corresponding block for a mapping process executing the mappings.

Figure 1 describes the complete workflow proposed through a diagram that identifies and
decouples the different steps. The mapping process can be described as an Extract-Transform-
Load (ETL) process [3] defined through a declarative mapping language. The workflow is
designed to synthesize the analysed solutions for RDF knowledge graph construction and
overcome the limitation of generating only RDF outputs.

3.1. Extract

The Data Source Specification defines how to access and retrieve the data to be processed during
the mapping process. Different configurations may be needed according to the data source, for
example, whether it is local or remote, a dataset or a data service (stream or connection to a
database). The Data Source Access indicates the location (e.g., URL) to access the data source,
the protocol to access the resource, and the security mechanisms restricting the access. The
Reading Strategy indicates the type of interaction expected, e.g., push versus pull mechanism,
synchronous versus asynchronous, batch versus stream. The RML Logical Source7 can be used
to define a Data Source Specification declaratively. The implementation of the Data Source
Reading functionality requires the selection of Data Source Connector (s) supporting the selected
data source(s) and the expected interaction in reading data from them.

The parsing and extraction process from heterogeneous data sources can be generalised
considering the concept of data frame, i.e. a two-dimensional data structure made of rows and
columns. The selection of a data frame as the input data structure to apply the mapping rules is
inherited by declarative languages based on the R2RML syntax. Indeed, tabular data sources
already fit a data frame, and query languages (like SPARQL8) usually define their result set in

7https://w3id.org/rml/io/spec
8https://www.w3.org/TR/rdf-sparql-query/
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Figure 1: Overview of the proposed workflow for the generalisation of the declarative mapping process.

a tabular format. To enable the definition of declarative rules over hierarchical data formats
(e.g., JSON and XML), several declarative mapping languages relied on the definition of an
intermediate representation based on a tabular data structure. For example, the authors in
[10] considered the Nested Relational Model (NRM) an intermediate abstraction. Differently
from NRM, we define the identification of a complete flattening strategy as a requirement for a
generic conversion process, e.g., not allowing nested tables or objects. Indeed, NRM can also be
normalized in the general case [36]. Similarly, the RML [8] specification implicitly defines a
flattening strategy for hierarchical data sources through the rml:iterator and rml:reference
operators. The approach proposed by RML Fields [25] results in a more explicit identification
of a tabular structure for complex nested data sources in RML. In this paper, we claim that the
explicit declarative definition of the data frame(s) as the intermediate abstraction between the
Extract and Transform steps of the mapping process can facilitate the definition and optimisation
of schema and data transformations.

The Data Frame Definition defines a proper Reference Formulation (e.g., SQL, XQuery, etc.) to
express a Flattening Strategy that extracts one or more data frames from the input data source
according to its data format and model. This workflow mainly focuses on mapping (semi-)
structured data sources; however, assuming a specific procedure to define a data frame from
unstructured data sources (e.g., text in a PDF), the overall workflow may also be applied to these
data sources.

The implementation of the Data Frame Extraction functionality requires the selection of two
components: a Data Parser responsible for parsing data received from the data source according
to their specific format (e.g., CSV/XML/JSON), and a Query Engine capable of extracting the
data frame from the parsed data and according to the Data Frame Definition. In this context, we
identify as Query Engine a generic component that can interpret the Flattening Strategy defined
to extract the data frame from the parsed data. The Query Engine can be a SQL query engine in



the case of a relational database, a SPARQL query engine in the case of RDF data, or a more
generic library extracting a data frame from a JSON object.

3.2. Transform

The specification of Data Frame Manipulation considers both the need for combining the
extracted data frame with Other Data Sources and the Data Transformation Needs.

The Data Frame Combination Rules specify how multiple data frames extracted from different
(or the same) data source(s) should be combined to define the combined frame that mapping rules
will target. Other combination rules can be adopted according to relational algebra operations
(e.g., the union of data frames, cartesian product, or join operation).

The Data Transformation Rules specify how to manipulate a set of data in the data frame,
e.g., all the values for a column in the data frame. Generally, a data transformation rule is an
arbitrary function processing a portion of the data frame. In some cases, data transformation
rules may be restricted to functional computations, i.e., without a state or side effects. However,
specific scenarios may require more generic computations (e.g., transformation of the data
frame should keep track of values already processed). It is always possible to decouple data
transformations from the Declarative Mapping Rules definition [28]. Using the FnO ontology
[20]) and RML-FNML, data transformation rules can be declaratively described in RML and
associated with a specific implementation the processor can execute.

The implementation of the Data Frame Manipulation functionality requires the selection of
two components: a Data Frame Combiner capable of executing the combination of one or more
data frames according to the rules specified, and a Transformation Executor capable of applying
the data transformation logic required to the data frame. Data frame combination rules can
be avoided if the combination is applied during the data frame extraction (e.g., performing the
extraction with a join query over multiple input data sources [23]).

The specification of Declarative Mapping Rules is based on Schema Transformation Rules
that define how to process the data frame(s) to obtain the target data format and model. We
believe that the work done by the community in defining fully declarative mapping languages
based on the R2RML approach has the drawback of focusing on the output of RDF triples via
TriplesMap. This approach requires the introduction of several extensions of the syntax to
enable specific types of outputs (cf. Section 2). Moreover, it can be verbose and counter-intuitive
for the final user, e.g., if constant RDF triples should be materialised or if multiple triples
should be generated for a single input. Solutions like YARRRML [37] facilitate the definition of
the mappings, however, they still follow a TriplesMap-based approach. The languages based
on SPARQL benefit from the flexibility provided by the CONSTRUCT clause to facilitate the
user’s definition of the expected target, however, they are also bound to the generation of
an RDF-based output. Finally, it should be noted that several mapping languages for RDF
generation are based on Semantic Web specifications (e.g., RDF, SPARQL, ShEx). A syntax for
the specification of declarative mapping rules towards a generic output can support additional
conversion requirements.

Implementing theMapping Execution functionality requires the identification of a Rule Engine
component that can access data from the extracted and manipulated data frames and produce
the output according to the specified declarative mappings. The Mapping Execution can rely



on additional components. A Mapping Rule Planner determines and optimises the order in
which mapping rules should be executed. A Data Formatter validates the produced output
according to a specific data format and can obtain different representations of the same output
(e.g., pretty-printing, different RDF serialisations).

3.3. Load

TheData Sink Specification defines how to connect (Data Sink Access) and send (Writing Strategy)
the data obtained as a result of the mapping process. As for the Data Source Access, different
configurations may be specified. Furthermore, the definition of an incremental writing strategy
may be required to determine how the output data should be partitioned for writing [30]. Finally,
the result of the mapping process may be split considering different data sinks. The RML Logical
Target7 supports a declarative Data Sink Specification for an output RDF graph.

The implementation of the Data Sink Writing functionality requires the selection of Data Sink
Connector (s), supporting the target data source and the expected interaction in writing data.

4. The mapping-template tool

The mapping-template1 tool provides a solution for implementing generic data and schema
transformations and is designed according to the workflow discussed in Section 3. The mapping-
template is released open-source under an Apache License 2.0. It can be downloaded from
GitHub9 for standalone usage and is also available on Maven Central as a library.

The mapping-template tool is based on the Apache Velocity Engine, a template engine
to dynamically generate a generic output according to a predefined structure. The Velocity
Template Language10 (VTL) allows for the definition of a template that is composed of (i) static
elements that are added to the output as constant strings, (ii) dynamic variables that are bound
at runtime to specific values, (iii) directives that can be used to define a specific logic (e.g., if/else).
A typical use case for templates is rendering web pages according to the data dynamically
retrieved by a user. The mapping-template tool extends the VTL syntax for the definition
of a Mapping Template Language11 (MTL) to specify mapping rules between different data
representations. The definition of mapping rules as templates trades some aspects of a fully
declarative approach, but provides unlimited flexibility in the generated output and facilitates
the definition of mapping rules by users unfamiliar with RDF as discussed in Section 5.

The Data Source Reading and Data Sink Writing functionalities are partially supported via the
MTL to enable the execution via CLI. However, we opted for decoupling these steps to avoid the
need to import several external libraries into the tool. We took this decision assuming that the
mapping-template tool may easily be integrated within existing ETL tools, providing several
production-ready data connectors out-of-the-box. In this direction, we integrated the tool
within the Chimera12 framework to support the declarative definition of composable semantic
transformation pipelines leveraging MTL and the Apache Camel integration framework[38].

9https://github.com/cefriel/mapping-template/releases
10https://velocity.apache.org/engine/2.0/vtl-reference.html
11https://github.com/cefriel/mapping-template/wiki/Mapping-Template-Language-(MTL)
12https://github.com/cefriel/chimera
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The Data Frame Extraction process is standardized by a Reader interface enabling the ex-
traction of a data frame from a generic input data source. The selection of a specific Reader
implementation depends on the Reference Formulation of the data. The Flattening Strategy
should be provided in the template as a parameter of the getDataFrame method exposed by the
Reader. The tool currently implements the Data Frame Extraction for CSV, XML via XQuery[39],
JSON via JsonPath[40], RDF via SPARQL, Relational databases via SQL. Specific Readers are
implemented for each supported Reference Formulation, requiring different configurations to
extract the data frame. For example, the XQuery Reader can process queries over XML inputs to
extract a data frame. The user should specify in the definition of the template the proper query
to extract the required data frames. Multiple data frames can be defined in a single template
from different data sources exploiting different Readers. Additional input data formats or
different Reference Formulation for the formats already supported can be integrated by providing
a dedicated implementation of the Reader interface.

Once a data frame has been obtained, the Data Frame Manipulation and the Declarative Map-
ping Rules can be defined by leveraging the Velocity Template Language. The usage of custom
Java functions in the template for data transformation is possible if a suitable implementation is
provided in the tool configuration. Functions can be applied to the data frame or directly during
the processing of the declarative mapping rules. A set of commonly used functions is made
available by default. The template language provides direct access to the data frames and gives
the user complete control over the definition of their processing. On the one hand, the user can
access the different data frames using the VTL directives (e.g., foreach). On the other hand,
the template-based approach allows for an unconstrained output, not limited to the production
of RDF data. The access to data frames can be optimised by the user defining the mapping
template considering the specific mapping scenario. For example, multiple accesses to a data
frame can be optimised by merging different rules accessing the same data frame to generate
different outputs. Moreover, the tool makes a set of functions available to define and exploit
support data structures for the optimisation of join operations between different data frames.

Finally, the mapping-template tool provides formatting and validation capabilities for spe-
cific output formats, namely for XML and different RDF serialisations. The tool can be easily
extended by implementing the Formatter interface to process additional data formats generated
as an output of the template.

5. Qualitative Evaluation

This section discusses a qualitative evaluation of the mapping-template tool considering the
requirements for declarative mapping languages for RDF knowledge graph construction13

identified in [19]. The list of requirements comprises the set of features made available by
different declarative mapping languages (cm-r*) and the challenges identified by the community
(C*). The evaluation is based on example mapping templates covering the different mapping
scenarios14. The complete set of generated templates can be found in the tool repository15

13https://github.com/oeg-upm/Conceptual-Mapping/tree/main/requirements
14The examples reported in the paper omit the definition of prefixes.
15https://github.com/cefriel/mapping-template/tree/main/examples
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together with instructions on how to run them and the generated output.
The coverage of basic requirements is demonstrated through the definition of templates

for the examples available in the RML documentation16. These templates (rml-csv, rml-xml,
rml-json) consider respectively a CSV, XML and JSON data source as input (cm-r2), define the
data to be processed for each data source (cm-r10), specify how the extracted data should be
dynamically converted to RDF (cm-r8, cm-r11, cm-r12). In Figure 2, the snippet (a) shows the
mappings of the XML example for our tool, and the snippet (b) the corresponding ones in RML.
A mapping template defines the extraction of a data frame using the correct Reader associated
with the considered data format and Reference Formulation. The XMLReader in the example
adopts XQuery to define a Flattening Strategy. The extracted data frame can then be iterated
using the template language VTL to generate the same output RDF triples of the corresponding
RML mappings.

The template language does not constrain the generated output, thus facilitating the definition
of rules for producing valid RDF triples also considering datatypes, language tags, blank nodes
and named graphs (from cm-r16 to cm-r21). The example (csv-multiple-values) addresses
the mapping challenge to dynamically generate language tags (C1 and cm-r12). The same
approach can be applied to generate datatype tags dynamically.

A more complex example (yarrrml-tutorial) from the YARRRML tutorial shows how to
apply a function for data transformation (cm-r15), join data frames from multiple data sources
(cm-r10, cm-r13) and, specify a named graph for the triples (cm-r12). All the functions made
available in the tool’s configuration can be invoked through a mapping template and applied
as nested functions (cm-r25). Using an if directive in VTL, a function can also be used to
conditionally generate a specific output (cm-r22).

The mapping-template tool allows the user to define using VTL a custom strategy to iterate
over the data frames and implement join operations. This approach addresses the mapping
challenges related to join operations (C5 and associated requirements cm-r23, cm-r29, cm-r30)
asking the user to explicitly define how to access and process the extracted data for the definition
of the output. Functions can be used in the template to conditionally determine the processing
of the join operation (cm-r24).

The example rml-star considers a mapping scenario provided in the RML-star documenta-
tion with nested quoted triples generated from a CSV file. In Figure 2, the snippet (c) shows
the mappings for our tool, and the snippet (d) shows the corresponding ones in RML-star. The
example demonstrates how the template approach simplifies the definition of mapping rules
towards a custom output without requiring the user to adopt a different syntax from the one
used to generate plain RDF triples. The flexibility of the generated output also simplifies the
generation of RDF collections and containers (C4 and cm-r18).

The Mapping Template Language does not directly support a declarative Data Source/Sink
Specification (cm-r1, from cm-r2 to cm-r7). However, the integration of the mapping-template
within Chimera enables the usage of the Apache Camel DSL and the available components to
specify heterogeneous conversion pipelines as shown in the Chimera tutorial17. The definition
of iterators in case of specific requirements associated with complex nested data (C2, cm-r14,

16https://rml.io/specs/rml/
17https://github.com/cefriel/chimera-tutorial
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Figure 2: Example mapping templates: (a) conversion from XML to RDF, (c) conversion from CSV to
RDF-star. Snippet (b) contains RML mappings equivalent to (a), and snippet (d) contains RML-star
mappings equivalent to (c).

cm-r27) is delegated to the specific Reader but does not support the generation of nested data
frames.

Finally, the flexibility of the approach based on templates enables the definition of mapping
rules towards a generic output without requiring an extension of the syntax. The example
csv-to-json demonstrates the definition of mapping rules for non-RDF output generating
JSON data from an input CSV data source. Similarly, it is possible to generate a custom output
considering different formats as input. An example template performing a lowering operation
from RDF to CSV is available in the Chimera tutorial17.

The evaluation demonstrates how an approach based on the proposed workflow can (i) cover
the core requirements identified for RDF knowledge graph construction and (ii) generalise the
mapping process towards non-RDF outputs. A table summarising the qualitative evaluation
performed is made available in the repository18.

18https://github.com/cefriel/mapping-template-eval/blob/main/conceptual-mapping-reqs-eval.xlsx
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Figure 3: Results of the quantitative evaluation comparing metrics using the GTFS Madrid Benchmark.

6. Quantitative Evaluation

This section presents a quantitative evaluation19 of the tool demonstrating that the generic
mapping approach proposed does not affect performances and can be comparable with state-of-
the-art mapping processors considering an RDF graph construction task. To test the performance
and scalability of the mapping-template tool, we considered the GTFS-Madrid-Bench [26]. The
benchmark provides a set of (R2)RML mappings and a generator to create input data sources in
different formats and sizes. We considered three data formats (CSV, XML and JSON) and three
scaling factors (1,10,100) comparing the mapping-template tool with the morph-kgc v2.3.120

processors. We adopted a set of RML mappings simplifying the join operation for the GTFS
shapes file [3]. A set of templates implementing the same mapping rules were generated for the
mapping-template tool. In this first set of templates, we defined a join operation between two
data frames as specified by the join condition in RML. An additional set of templates, compared
in the evaluation as mapping-template-nj, is defined to test the performances of the template
approach using optimised mappings without join operations.

We selected morph-kgc for the evaluation considering its state-of-the-art performance and
scalability results [31]. The morph-kgc processor was executed with parallel (morph-kgc-p)
and sequential processing (morph-kgc). We consider the execution time (with a timeout of 24
hours) and the maximum memory used (each processor is run within a Docker container with
a memory limit set at 64GB) as metrics for the evaluation. The experiments were executed on a
virtual machine with 12 Intel(R) Xeon(R) E-2136 CPU @ 3.30GHz, 128 GB RAM and SSD.

Figure 3 reports the metrics registered for each configuration. Each test was executed three
times, and the average metric is reported considering a logarithmic (log10) scale. The results

19Testing configuration and raw results at https://github.com/cefriel/mapping-template-eval
20https://github.com/oeg-upm/morph-kgc
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show that the mapping-template tool completes the task with a lower execution time while
registering similar memory consumption. The morph-kgc with parallel processing ran out of
memory for the input data with scale 100. Interestingly, while the introduction of join conditions
tends to affect the performance of processors based on RML [41, 30], the difference in the metrics
for the mapping-template tool was limited in the performed evaluation. The obtained results
can be motivated considering that the tool benefits from the efficient and optimised execution
of templates provided by the Velocity Engine. However, it is also important to notice that the
MTL allows the user to optimise the mapping rules according to the specific mapping scenario.
For example, the number of data frames extracted from the input data sources can be minimised,
possibly reducing the join operations to be performed. Finally, it should be noted that, even if the
inputs and mappings used for the evaluation do not generate duplicated triples, the morph-kgc
execution time may be penalised by the fact that its implementation inherently guarantees the
removal of duplicated triples before serializing the output.

To compare with additional RML processors and to investigate how the different parameters
in the mappings (e.g., duplicates) affect the overall performance [42] of the mapping-template
tool, we are currently working on a compiler from RML to MTL21.

7. Adoption cases of the mapping-template tool

The mapping-template tool has already been adopted to support different use cases. The
integration within the Chimera framework enables its adoption for production-ready scenarios
considering knowledge conversion among heterogeneous information systems. In particular,
we used the tool to implement an any-to-one mapping approach for interoperability leveraging
a reference ontology as a global conceptual model [38]. Such an approach can adopt (R2)RML
for the lifting towards the reference ontology and the mapping-template tool for the lowering
from RDF to the target representation. However, in our experience with the tool, it became clear
that adopting a single approach for both data transformations can facilitate the definition of the
mappings by external stakeholders. A preliminary feedback from Chimera users suggested a
preference for the approach based on templates, because of developers’ familiarity with similar
technologies. In the EIT Digital SNAP project (https://snap-project.eu), the tool supported the
lowering of transportation data from an RDF representation according to a reference ontology to
the standards mandated by the European Commission in XML format [6]. In the Horizon 2020
SPRINT project (http://sprint-transport.eu/), the tool was used for the dynamic definition of
converters for dataset conversion and service mediation [30] to support data exchanges between
transportation operators. In the Horizon 2020 TANGENT project (https://tangent-h2020.eu/),
the tool was used to implement the project solution for data harmonisation and fusion [43, 38].
The data are retrieved from heterogeneous data services from different stakeholders, lifted
to RDF according to a common suite of ontologies, and then converted to a predefined set
of JSON schemas feeding applications for the dynamic management of multimodal traffic.
Within TANGENT, we also tested the tool for the definition and execution of a set of templates
facilitating the serialisation of a portion of the reference conceptual model from CSV files to
OWL ontologies. In the Horizon Europe SmartEdge project [44], we are further developing the

21https://github.com/cefriel/mapping-template/tree/feat-rml-compiler/rml
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tool to increase its TRL, support the mediation of data exchanges between different IoT nodes
and improve performance and scalability for execution on resource-constrained devices.

8. Conclusions and Future Work

In this paper, we presented a workflow and the related mapping-template1 tool for knowledge
conversion between different data representations. In particular, we extend the focus from
approaches that address only the lifting problem (to RDF) to solutions that address both the
lifting and lowering problems (both to/from RDF), as well as generic conversions between
different data formats and models to support integration requirements among heterogeneous
information systems. Our workflow is soundly based on the literature about declarative RDF
graph construction and brings together different contributions to support the definition of
a generalised declarative mapping process. The tool implements the proposed workflow by
adopting a template-based mapping language to overcome some of the limitations of the state-
of-the-art approaches such as the difficulties in extending and maintaining a fully declarative
specification to define the desired output (e.g., the effort for developers in adapting existing
mapping processors and for the users in learning the new syntax for RML-star [24]). We also
presented a preliminary qualitative and quantitative evaluation: we showed how the proposed
approach can cover the requirements for RDF graph generation and we also analysed the
performance of our implementation on an RDF graph construction task.

The need for the mapping-template tool is motivated by our experience and difficulties in
applying existing solutions to real-world problems in the mobility and industrial markets, in
which we validated our approach. The presented tool is maintained as a company asset by
Cefriel to support its value proposition on KG construction and data interoperability both in
customer projects and research projects. We publicly released the mapping-template with
an open-source license on GitHub, where we also provide a guide to create template-based
mappings and examples considering different mapping scenarios. Furthermore, we integrated
the tool within the Chimera12 framework to support enterprise integration practices and we
provide an end-to-end tutorial implementing a data conversion pipeline. To ease its adoption
by the community and to ensure long-term sustainability, we also released the software tool on
Maven Central.

Our presented resource is of interest for the knowledge graph construction community, but
also for the developers’ community in general, to address data heterogeneity problems. For
an average developer, without a deep understanding of RDF, our template-based approach
appears to be less verbose and simpler than RML-based solutions. As future work, we plan
to perform a user study to compare the Mapping Template Language with other declarative
mapping languages for RDF generation. Moreover, we are working to provide a solution to
enable the execution of RML mappings via our tool to perform a more detailed performance
and scalability evaluation and to spread its adoption among users preferring a fully declarative
approach for mapping rules.
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