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ABSTRACT

Learning positional information of nodes in a graph is important for link predic-
tion tasks. We propose a simple representation of positional information using
a set of representative nodes called landmarks. The position of a node is rep-
resented as a vector of its distances to the landmarks, where the landmarks are
selected from the nodes with high degree centrality. We justify this selection strat-
egy by analyzing well-known models of random graphs, and deriving closed-form
bounds on the average path lengths involving landmarks. In a model for scale-free
networks, we show that the distances to landmarks provide asymptotically accu-
rate information on inter-node shortest distances. Our result is consistent with
small-world phenomenon, i.e., landmarks can provide short paths between nodes
as hubs. We apply theoretical insights to practical networks, and propose Cluster
and Landmark Attributes-iNfused graph neural networks (CLAN). CLAN com-
bines graph clustering and landmark selection, in which the graph is partitioned
into densely connected clusters, and local nodes with the maximum degree is se-
lected as landmarks. In addition, CLAN encodes the distances to landmarks us-
ing cluster-specific embedding in order to extract locality among the nodes in the
common cluster. Experiments demonstrate that CLAN achieves state-of-the-art
performances on various datasets in terms of HIT@K, MRR, and AUC. The im-
provement in those metrics averaged over datasets ranges from 8.6% to 35.2%
relative to previous GNN-based methods.

1 INTRODUCTION

Graph Neural Networks are foundational methods for various graph related tasks such as node clas-
sification Kipf & Welling (2017); Veličković et al. (2018), link prediction Adamic & Adar (2003);
Kipf & Welling (2016); Zhang & Chen (2018), graph classification Xu et al. (2019), and graph
clustering Parés et al. (2017). In this paper, we focus on the task of link prediction using GNNs.

Message passing GNNs Gilmer et al. (2017); Kipf & Welling (2017); Hamilton et al. (2017);
Veličković et al. (2018) have been successful in learning structural node representations through
neighborhood aggregation. Recent approaches have proposed to incorporate distance attributes in
the embeddings. SEAL Zhang & Chen (2018) proposed to learn from subgraph structures by extract-
ing enclosing subgraphs, and computing relative distances associated with target nodes. DE-GNN Li
et al. (2020) proposed to compute and aggregate distances from target node sets whose represen-
tation are to be learned. While the distance attributes in both works are utilized as node labels,
Position-aware GNN (P-GNN) proposed by You et al. (2019) computes low-dimensional embed-
ding of distance information to reference points called anchor nodes. Through the aggregation over
anchor nodes, P-GNN is shown to effectively capture position of nodes in the graph. Especially in
the link prediction, positional information between nodes is important, since two nodes which are
close to each other tend to have a high probability of link formation You et al. (2019).

In this paper, we propose a simple and effective method of representing positional information of
nodes. We select a set of representative nodes called landmarks. Each node computes the distances
to the landmarks, and uses the vector of these distances to represent its position in the network. The
question is, how do we select the landmarks, and how many of them, so that the distance vector
is a good representation? A natural choice for a landmark is the node with high degree where the
degree of node is often used as a measure of importance or centrality. In network models with the
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property of preferential attachment (PA) Barabási & Albert (1999), nodes with very high degrees,
called hubs, are likely to appear. Preferential attachment is a process such that, if a new node joins
the graph, it is more likely to connect to nodes with higher degrees. Thus the degree of hubs tends
to be big and has power-law distribution, and the network exhibits scale-free property Barabási &
Albert (1999). Such hubs are abundant in social/citation networks and World Wide Web.

In this paper, we provide a theoretical justification of degree-based landmark selection for a well-
known class of random graphs Erdős et al. (1960); Barabási & Albert (1999); Fronczak et al. (2004).
By analyzing the average distances in random networks with preferential attachment, we show that
the strategy of choosing high-degree nodes as landmarks is asymptotically optimal in the following
sense. We compare the average distance between two nodes and the distances of detour via land-
marks. We show that, the minimum distances among the detour via landmarks is asymptotically
equal to the shortest path distance. This proves that the hub-type landmarks offer short paths to
nodes in networks with preferential attachment, manifesting small-world phenomenon for scale-free
networks Barabási & Albert (1999). We show that the optimality is achieved even with a small
number of landmarks relative to network size. By contrast, we show that in other models where big
hubs are absent, the distance reduction can be achieved by selecting higher number of landmarks.

Motivated by the theory, we propose Cluster and Landmark Attributes-iNfused Graph Neural Net-
works (CLAN). Instead of simply choosing nodes with the highest degree as landmarks, CLAN first
partitions graph into clusters which are locally dense, and appoints the node with the highest degree
in the cluster as the landmark. Our intention is to bridge gap between theory and practice: hubs
may not be present in practical networks, thus it is important to distribute the landmarks evenly over
the network so that nodes can access nearby/local landmarks. CLAN also adopts cluster-specific
embedding, which uses encoders specific to local clusters in order to capture graph structures and
attributes specific to clusters. We perform experiments on various datasets, and show that CLAN
achieves the state-of-the-art performance in most cases. In particular, CLAN outperforms baseline
methods on dense and/or large graphs, demonstrating its effectiveness and robustness.

Our contributions are summarized as follows: 1) we propose CLAN, a simple and effective method
for representing nodes’ positional information using landmarks combined with graph clustering; 2)
we derive closed-form bounds on average distances of paths via landmarks for well-known ran-
dom networks; 3) we conduct extensive experiments on a variety of datasets, and show that CLAN
outperforms existing methods in most cases.

2 ANALYSIS OF RANDOM GRAPHS WITH LANDMARKS

2.1 NOTATION

We consider undirected graph G = (V,E) where V and E ⊆ V × V denote the set of vertices and
edges, respectively. Let N denote the number of nodes in the graph, or N = |V |. A ∈ RN×N

denotes the adjacency matrix of G. For nodes u, v ∈ V , d(v, u) denotes the geodesic (shortest-path)
distance between v and u. The node attributes are defined as X = {x1, ..., xN} where xi ∈ Rn

denotes the feature vector of node i. We consider methods of embedding node feature X into latent
space Z = {z1, ..., zV }, zi ∈ Rm. We study the node-pair-level task y(zv, zu) of predicting the link
probability between node embedding zv and zu.

2.2 REPRESENTATION OF DISTANCES USING LANDMARKS

The distances between nodes can provide a complete description of the graph structure. For example,
a connected and undirected graph can be represented by a finite metric space with its vertex set
and the inter-node geodesic distances. Compact representations of distance information have been
actively studied, e.g., the seminal work by Bourgain (1985) proposed the embedding of a metric
space on low-dimensional Euclidean spaces with a small factor of error in distances.

We consider a representation of distance information using K representative nodes called landmarks
denoted by λ1, · · · , λK . For node v, we define K-dimensional vector of distances to landmarks:

D(v) := (d(v, λ1), d(v, λ2), · · · , d(v, λK)) (1)
We propose to encode D(·) as part of node attributes into the node embedding. Note D(·) provides
an approximate description of the position of the node in the graph. Moreover, finding shortest
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paths for all pairs of nodes for a complete description requires high computational complexity, up to
O(N3). Instead, each node only needs to compute the distances only to K landmarks.

The key question is, how much information D(·) has on the inter-node distances in the graph. From
triangle inequality, we have that

d(u, v) ≤ min
i=1,...,K

[d(u, λi) + d(λi, v)] (2)

Eq. 2 states that the detour via landmarks, i.e., from u to λi to v, is longer than d(u, v), but the
shortest detour, or the minimum component of D(u) + D(v), may provide a good estimate of
d(u, v). The key design questions are: how to select “good” landmarks, and how many of them?
In the following sections, we analyze well-known random graph models, derive the average path
lengths associated with landmarks, and glean design insights from the analysis.

2.3 PATH LENGTHS VIA LANDMARKS IN RANDOM NETWORKS

The framework by Fronczak et al. (2004) provides a useful tool for analyzing path lengths for a
wide range of classes of random networks. The asymptotic expressions for average path lengths in
various random networks were derived. Following the framework, the probability of the existence
of an edge for node i and j is defined as

qij =
hihj

β
(3)

where β is some constant depending on the network model. hi is tag information of node i, and
is called the hidden variable Boguná & Pastor-Satorras (2003). h is related to the connectivity or
degree of the node, as will be specified according to the underlying model. From the continuum
approximation Albert & Barabási (2002), h is regarded as continuous random variable (RV) with
distribution ρ(·). Below we denote the mean of RVs by ⟨·⟩, whereas ⟨·⟩Q denotes the expectation
with respect to some distribution Q.

Theorem 1 Let Lij denote the random variable representing the minimum path length from node i
to j among the detour via K(N) landmarks. The landmarks are chosen i.i.d. according to distribu-
tion Q. Asymptotically in N , we have that

P (Lij > s) = exp

[
− hihj

βN⟨h2⟩
· ⟨h2⟩QK(N) · (s− 1)

(
⟨h2⟩N

β

)s−1
]
, s = 1, 2, · · · (4)

In Eq. 4, the design parameters are ⟨h2⟩Q and K(N) which are related to what kind of landmarks
are chosen, and how many of them, respectively. Next, we bound the average of the minimum path
length among the detours via landmarks.

Theorem 2 Assume K(N) = o(N) and K(N) → ∞ as N → ∞. The mean of the minimum path
length among the detour via landmarks, denoted by l̄, is bounded above as,

l̄ ≤
−2⟨log h⟩ − log

(
⟨h2⟩QK(N)

)
+ log(Nβ⟨h2⟩) + log log

(
N⟨h2⟩

β

)
− γ

logN + log⟨h2⟩ − log β
+

1

2
(5)

where γ ≈ 0.5772 is the Euler’s constant.

The assumption K(N) = o(N) implies that the number of landmarks are chosen to be not too
large compared to N . The proofs of Theorem 1 and 2 are based on the framework by Fronczak
et al. (2004), and are provided in the Appendix A. We apply the results to some well-known random
graph models.

2.4 ERDŐS-RÉNYI MODEL

The Erdős-Rényi (ER) model is a classical random graph in which every node pair is connected with
a common probability. We have that

β = ⟨k⟩N, ρ(h) = δ(h− ⟨k⟩). (6)
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where ⟨k⟩ denotes the mean degree of nodes. By applying Eq. 6 to Eq. 3, we have qij = ⟨k⟩/N ,
i.e., the edge probability is constant. The node degree follows the Poisson distribution with mean
⟨k⟩ for large N . Assume ⟨k⟩ is a finite constant. From Eq. 5, the mean of the minimum of path
length via landmarks in ER network, denoted by l̄ER, is bounded above as

l̄ER ≤ 2 logN − logK(N)

log⟨k⟩
(7)

asymptotically in N . From Fronczak et al. (2004), the average length of the shortest paths without
landmarks, denoted by l̄∗ER, is given by

l̄∗ER =
logN

log⟨k⟩
(8)

We observe that, by comparing Eq. 7 and 8, the detour via landmarks incurs the overhead of at most
factor 2. This is because nodes in ER graphs appear homogeneous, and thus the path length to and
from landmarks are on average similar to the inter-node distance. Thus the distance of a detour will
be twice the direct distance. The cost can be reduced by using a large number of landmarks, say
K(N) = N1−ε for some ε ∈ (0, 1). Then

l̄ER ≤ (1 + ε) logN

log⟨k⟩
= (1 + ε) · l̄∗ER (9)

For example, selecting
√
N landmarks guarantees a 1.5 factor approximation of the optimal distance.

By making ε close to 0, then we get arbitrarily close to the shortest path distance.

Discussion. Due to having Poisson distribution, the degrees in ER graphs are highly concentrated
on mean ⟨k⟩. There seldom are nodes with very large degrees, i.e., most nodes look alike. Thus
the design question should be on how many rather than on what kind of landmarks. We benefit
from choosing a large number of landmarks, e.g., K(N) = N1−ε. There however is a tradeoff: the
computational overhead of managing K(N)-dimensional vector D(v) will be high.

2.5 BARABÁSI-ALBERT (BA) MODEL

The Barabási-Albert (BA) model is a simple random graph with preferential attachment. The BA
model is characterized by continuous growth over time with preferential attachment. Initially there
are m nodes, and new nodes arrive to the network over time. The preferential attachment in BA
networks is such that, the probability of the connection of the existing node to the newly arriving
node is proportional to its degree. In Boguná & Pastor-Satorras (2003), it is shown that

qij =
m

2

1
√
titj

where ti is the time of arrival of node i. Thus we have hi = 1/
√
ti which gives β = m

2 . It was
shown in Boguná & Pastor-Satorras (2003) that the probability of a newly arriving node connecting
to node i is proportional to hi. Thus, the degree of nodes with large hi is likely to be high. The
asymptotic expression of the distribution of hidden variables was derived in Fronczak et al. (2004)

ρ(h) =
2

N
h−3, h ∈

[
1√
N

, 1

]
.

By applying ρ(·) to Eq. 5, we get the following bound on the average path length with landmarks
denoted by l̄BA:

l̄BA ≤
logN − log(

〈
h2⟩QK(N)

)
+ log logN + log log logN + log [2 log(m/2)/m]

log logN + log(m/2)
+

1

2
(10)

We show that, unlike ER graphs, there exists a landmark selection strategy which achieves the
asymptotically optimal distance, despite using a small number of landmarks relative to the network
size.

Selecting Landmarks with Large h. We consider distribution of landmark selection:

Q(t) = ρ(t|h ≥ 1√
M(N)

) = ρ(t) · 1

(
t ∈

[
1√

M(N)
, 1

])/
P

(
h ∈

[
1√

M(N)
, 1

])
(11)
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where M(N) = g(N) · K(N) for some slowly increasing function g(N), say g(N) = logN .
Importantly, distribution Q(·) implies that, we select landmarks from M(N) nodes with highest
values of h. Specifically K(N) landmarks are chosen at random from a pool of M(N) = g(N) ·
K(N) nodes with the largest h. Then we get

l̄BA ≤ logN − log log(g(N)K(N)) + log g(N) + log logN + log log logN

log logN
(12)

where we assume m = O(1), and drop the related terms as well as the constant from Eq. 10. The
derivation of Eq. 12 is provided in Appendix A.3. The numerator of Eq. 12 is ≈ logN for large N .
The average distance in BA networks is given by Cohen & Havlin (2003); Fronczak et al. (2004)

l̄∗BA =
logN

log logN

Thus, l̄BA is asymptotically equal to l̄∗BA. This implies that, the shortest detour via landmarks has the
same length on average as the shortest direct path in the asymptotic sense.

Discussion. The node degree in BA networks is known to follow power-law distribution, which
predicts the presence of big hubs. The inter-node distance can be drastically reduced due to the
presence of hubs, which is known as small-world phenomenon Barabási & Albert (1999). In con-
clusion, the shortest path between two nodes are well-approximated by the detour via landmarks
chosen from high-degree nodes. Notably, this is achieved even without large number of landmarks,
say we let K(N) = logN in Eq. 12. Finally note that, the landmark selection strategy can affect
the performance bound. Suppose landmarks are selected at random. Then ⟨h2⟩Q = ⟨h2⟩, and

l̄BA ≤ 2 logN − log(K(N)) + log log logN

log logN

where the results are similar to the ER model, e.g., 2-factor approximation, etc.

2.6 DESIGN INSIGHTS FROM THEORY

The key design parameters in our method are ⟨h2⟩Q and K(N) in Eq. 5.

Landmark Selection and Graph Clustering. In order to make ⟨h2⟩Q large, one may choose
landmarks with as large h, e.g., high-degree nodes, as possible. In practice, however, such high-
degree nodes may not always provide short paths, unlike scale-free networks. Suppose all the hubs
are located at one end of the network. The nodes at the other end of the network have to make a long
detour via landmarks, even in order to reach nodes in local neighborhoods.

In order to better capture local graph structures, we propose to partition the network into clusters
such that the nodes within a cluster tend to be densely connected, i.e., close to one another. Then
we pick the node with the highest degree within each cluster as the landmark, as suggested by
the analysis. Each landmark represents the associated cluster, and the distance between two nodes
in remote clusters can be captured by distance between respective landmarks. Also, the distances
within the cluster can be estimated by the distances to the local landmark. We empirically find that
such combination of clustering and landmark selection yields improved results.

Number of Landmarks. Although large number of landmarks K(N) appears preferable, our anal-
ysis show that K(N) does not drastically reduce distances, unless K(N) is very large, e.g., N1−ϵ.
A large number of landmarks can severely hamper the scalability. Thus, we will use only a moderate
number of landmarks, and empirically find that setting K(N) = logN suffices to yield good results.

3 PROPOSED METHOD

Below we describe Cluster and Landmark Attributes-iNfused GNN (CLAN). CLAN consists of
graph clustering, landmark selection, distance computation, and cluster-specific embedding.

3.1 GRAPH CLUSTERING

We partition the graph into K-disjoint clusters C1, · · · , CK ⊆ V using FluidC graph clustering
algorithm proposed in Parés et al. (2017). FluidC initially selects K random central nodes, assigns
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Figure 1: Overview of CLAN when K = 3. First, CLAN partitions the graph into K-clusters.
Second, CLAN selects the highest-degree node as a landmark in each cluster and computes distances
among selected nodes and other nodes to concatenate distance vectors with node features. Third,
CLAN utilizes cluster-specific embeddings to extract structure and attributes of local clusters.

each node to C1, · · · , CK , and iteratively assigns nodes to clusters according to the following rule.
Node u is assigned to cluster Ck∗(u) such that

k∗(u) = argmax
k=1,...,K

|{u,N (u)} ∩ Ck|
|Ck|

(13)

where N (u) denotes the neighbors of u. This assignment rule prefers community candidates of
small sizes (denominator), which results in well-balanced cluster sizes. The rule also prefers com-
munities already containing many neighbors of u (numerator), which makes clusters locally dense.
As a result, FluidC generates densely-connected cohesive clusters of relatively even sizes.

In addition, FluidC is highly scalable as compared to existing algorithms Parés et al. (2017). FluidC
adopts an efficient propagation method, and has the time complexity linear in |E|. Moreover, in
FluidC, one can specify the number of clusters to be detected. This is important, because the number
of clusters or K is a hyperparameter in our method. As mentioned in Section 2.6, we let K = logN .

3.2 LANDMARK SELECTION AND APPROXIMATED DISTANCES

For each cluster, we select the node with the highest degree as the landmark.

λk = Hub(Ck) (14)

where λk denotes the landmark of cluster Ck, and Hub(Ck) denotes the highest-degree node in clus-
ter Ck. For each node, we compute the distances to landmarks λ1, · · · , λK to yield K-dimensional
vector of distances. Since G may not be a connected graph, we define the following:

d̂(v, λk) =

{
d(v, λk), if a path exists from v to λk,
dmax + 1, otherwise.

(15)

where dmax is defined as follows. For each node v, we compute the distances to the landmarks
within the connected component containing v and set dmax to the maximum among all the computed
distances. Finally, the distance vector of node v, denoted by D̂(v) is given by

D̂(v) = (d̂(v, λ1), d̂(v, λ2)..., d̂(v, λK)) (16)
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3.3 CLUSTER-SPECIFIC EMBEDDING

We will combine node features and D̂(v) to compute the node embeddings. Specifically, for node
v, feature xv and D̂(v) are concatenated and input to an encoder. We propose cluster-specific em-
bedding as follows. The embedding of a node in a cluster is computed by the encoder specific to the
cluster. Since there are K clusters, we use K separate encoders, one for each cluster.

The motivation behind cluster-specific embedding is as follows. If nodes u and v are closely located,
D̂(u) and D̂(v) will look similar. Thus, if an encoder is used to embed D̂(·) of nodes sampled from
a small region, the variation in D̂(·) will be relatively small. The encoder will be relatively easier to
train because its input data has lower variability, as compared to the case where a single encoder is
used to embed D̂(·) sampled from the entire graph. In addition, using a separate encoder per local
region may facilitate capturing attributes specific to the local graph structure, which is important for
link prediction tasks. The proposed heuristics use one encoder per local cluster.

We encode the node attributes as

zv = fk(xv ⊕ D̂(v)), xv ∈ Ck, (17)

where xv is the input node features, and ⊕ denotes concatenation. fk denotes the encoder associated
with the cluster Ck. We use a simple Multi-Layer Perceptron (MLP) for fk. The output embedding
is input to the GNN layers as follows:

hl
v = GNN(hl−1

v ,A), h0
v = zv, l = 1, 2, · · · . (18)

where hl
v denotes hidden embedding vector of l-th layer of the GNN.

3.4 COMPLEXITY ANALYSIS

Firstly we consider the time complexity of computing D̂(v) for all v ∈ V . There are logN land-
marks, and for each landmark, computing the distances from all v ∈ V to the landmark requires
O(|E|+N logN) using Fibonacci heap. Thus the overall complexity is O(|E| logN +N log2 N).
The computation of D̂(v) is done once, and thus can be considered as a preprocessing step.

Next, cluster-specific embedding uses MLP with input dimension of (n + logN) or the length of
xv ⊕ D̂(v). There are a total of logN MLPs, which adds to the space complexity of our model. The
resulting model seems to have a manageable size, and in our experiments, the overall size of MLPs
is up to 1.6M parameters in the worst case. The size overhead can be reduced by letting the multiple
clusters share a single MLP, although it was unnecessary in our experiments.

The complexity of the rest of training phase depends on the type of GNN used in the last embedding
step, where we use GCN as the default implementation. Overall, the computational complexity of
CLAN is reasonable, and our experiments shows that CLAN handles large or dense graphs well.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. Experiments were conducted on 7 datasets widely used for evaluating link prediction.
For experiments on small graphs, we used PubMed, Cora, Citeseer, and Facebook. For experiments
on dense or large graphs, we chose DDI, COLLAB, and CITATION2 provided by OGB Hu et al.
(2020). Detailed statistics and metrics are illustrated in Table 5 in Appendix C.
Baseline models. We compared CLAN with a heuristic method (AA) Adamic & Adar (2003),
Matrix Factorization (MF) Koren et al. (2009), Node2Vec Grover & Leskovec (2016), GCN Kipf
& Welling (2017), GraphSAGE Hamilton et al. (2017), GAT Veličković et al. (2018), P-GNN You
et al. (2019), and plug-in type approaches such as JKNet Xu et al. (2018b), SEAL Zhang & Chen
(2018), GCN+DE Li et al. (2020), LGLP Cai et al. (2021), and LRGA Puny et al. (2021). All
methods except for AA and GAE are computed by the same decoder, which is a 2-layer MLP. For a
fair comparison, we only use GCN in all plug-in type approaches such as SEAL, GCN+DE, GAE,
JKNet, GCN+LRGA, and CLAN. We set GCN+DE and GCN+LRGA as the same environment
proposed by Zhang et al. (2021).
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Baselines Avg. (H.M.) CITATION2 COLLAB DDI PubMed Cora Citeseer Facebook
Adamic Adar 65.74 (50.65) 76.12 ± 0.00 53.00 ± 0.00 18.61 ± 0.00 66.89 ± 0.00 77.22 ± 0.00 68.94 ± 0.00 99.41 ± 0.00

MF 54.06 (42.65) 53.08 ± 4.19 38.74 ± 0.30 17.92 ± 3.57 58.18 ± 0.01 51.14 ± 0.01 50.54 ± 0.01 98.80 ± 0.00
Node2Vec 64.01 (51.17) 53.47 ± 0.12 41.36 ± 0.69 21.95 ± 1.58 80.32 ± 0.29 84.49 ± 0.49 80.00 ± 0.68 86.49 ± 4.32

GCN (GAE) 76.35 (66.67) 84.74 ± 0.21 44.14 ± 1.45 37.07 ± 5.07 95.80 ± 0.13 88.68 ± 0.40 85.35 ± 0.60 98.66 ± 0.04
GCN (MLP) 75.05 (66.43) 84.79 ± 0.24 44.29 ± 1.88 39.31 ± 4.87 95.83 ± 0.80 90.25 ± 0.53 71.47 ± 1.40 99.43 ± 0.02
GraphSAGE 78.51 (71.48) 82.64 ± 0.01 48.62 ± 0.87 44.82 ± 7.32 96.58 ± 0.11 90.24 ± 0.34 87.37 ± 1.39 99.29 ± 0.01

GAT - OOM 44.14 ± 5.95 29.53 ± 5.58 85.55 ± 0.23 82.59 ± 0.14 87.29 ± 0.11 99.37 ± 0.00
JKNet - OOM 48.84 ± 0.83 57.98 ± 7.68 96.58 ± 0.23 89.05 ± 0.67 88.58 ± 1.78 99.43 ± 0.02
P-GNN - OOM OOM 1.14 ± 0.25 87.22 ± 0.51 85.92 ± 0.33 90.25 ± 0.42 93.13 ± 0.21

GCN+DE 72.48 (60.04) 60.30 ± 0.61 53.44 ± 0.29 26.63 ± 6.82 95.42 ± 0.08 89.51 ± 0.12 86.49 ± 0.11 99.38 ± 0.02
GCN+LRGA 78.42 (74.47) 65.05 ± 0.22 52.21 ± 0.72 62.30 ± 9.12 93.53 ± 0.25 88.83 ± 0.01 87.59 ± 0.03 99.42 ± 0.05

LGLP - OOM OOM OOM OOM 91.30 ± 0.05 89.41 ± 0.13 98.51 ± 0.02
SEAL 77.08 (62.88) 85.26 ± 0.98 53.72 ± 0.95 26.25 ± 8.00 95.86 ± 0.28 92.55 ± 0.50 85.82 ± 0.44 99.60 ± 0.02
CLAN 84.50 (80.83) 85.64 ± 0.48 54.47 ± 0.75 67.02 ± 6.85 96.62 ± 0.21 93.25 ± 0.15 95.02 ± 0.13 99.53 ± 0.00

Table 1: Link prediction results on various datasets. All baselines and our method were evaluated for
10 repetitions. Bold denotes the best performance. We used a single NVIDIA RTX 3090 with 24GB
memory on all datasets except CITATION2 and A100 GPU with 40GB memory on CITATION2.
OOM indicates ‘out-of-memory’. For SEAL and GCN+DE, we trained 2% of training data and
evaluated 1% of both validation and test set respectively on CITATION2. We also trained 15% of
training data but evaluated all of the validation and test sets on COLLAB. Both implementations
have followed the guideline on the official GitHub of SEAL-OGB. ‘Avg.’ denotes the average of
performance metrics, and ‘H.M’ indicates their harmonic mean. (-) means that we do not report the
average and harmonic mean due to OOM.

Evaluation metrics. Link prediction was evaluated based on the ranking performance of positive
edges in the test data over negative ones. For COLLAB and DDI, we ranked all positive and negative
edges in the test data, and computed the ratio of positive edges which are ranked in top-k. We
did not utilize validation edges for computing node embeddings when we predicted test edges on
COLLAB. In CITATION2, we computed all positive and negative edges, and calculated the reverse
of the mean rank of positive edges. However, due to high complexity when evaluating SEAL, we
only trained 2% of training set edges and evaluated 1% of validation and test set edges respectively,
as recommended in the official GitHub of SEAL. For Cora, Citeseer, PubMed, and Facebook, we
utilized Area Under ROC Curve (AUC). If applicable, we calculated the average and the harmonic
mean of the measurements. The harmonic mean severely penalizes the model for very low scores,
thus is a useful indicator of robustness.
Hyperparameters. We used GCN as our base GNN encoder. In the ablation study in Appendix
B, we provide the performance with different encoders such as GraphSAGE or GAT. MLP is used
in both cluster-specific embeddings and decoders, except GAE. CLAN does not use edge weights.
In training our model, we used learning rates of 0.0005–0.001, batch size of 65,536, and the Adam
optimizer Kingma & Ba (2015). Detailed hyperparameters are provided in Appendix D.

4.2 RESULTS

Experimental results are summarized in Table 1. CLAN outperformed the baselines on most
datasets. CLAN achieved large performance gains over GAE combined with GCN on all datasets,
which are 80.8% on DDI, 11.3% on Citeseer, 23.4% on COLLAB, 5.2% on Cora, and 1.1% on CI-
TATION2. CLAN showed superior performance over SEAL, achieving gains of 155% on DDI, and
10.7% on Citeseer. We compare CLAN with other distance-based methods. Compared to GCN+DE
which encodes distances from a target node set whose representations are to be learned, or to P-GNN
which uses distances to random anchor sets, CLAN achieved higher performance gains by a large
margin. The results show that approximate inter-node distances via landmarks can be effective for
representing positional information of nodes.

GAT, JKNet, LGLP, and P-GNN suffered from out-of-memory (OOM) on large graphs such as
CITATION2 and COLLAB, due to the high memory usage from storing a large number of shortest
paths, attention weights, or aggregation of hidden embedding vectors, etc. SEAL performed poorly
on DDI which is a highly dense graph. Since the nodes of DDI have a large number of neighbors,
the enclosing subgraphs are both very dense and large, and the model struggles with learning local
structural representations. By contrast, CLAN achieved the best performance on DDI, demonstrating
its effectiveness on densely connected graphs as well.
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Finally, we computed the average and harmonic means of measurements except for the methods
with OOM problems. Although the averages are taken over heterogeneous metrics, and thus the
values do not represent specific performance metrics, they are presented for comparison purposes.
In summary, CLAN achieved the best average and harmonic mean of performance measurements
on the entire datasets, demonstrating both its effectiveness and robustness.

Ablation Study. Ablation study on the components of our method: graph clustering, landmark
selection, and cluster specific embedding, is provided in Appendix B.

5 RELATED WORK

Graph Neural Networks. GNN methods Kipf & Welling (2017); Hamilton et al. (2017); Veličković
et al. (2018); Xu et al. (2018a;b) extract node features and perform neighborhood aggregation to
compute node embeddings. Such node representation methods provide inductive bias for repre-
senting graphs, and can be applied to various graph-related downstream tasks. The aforementioned
methods utilize the message-passing architecture Gilmer et al. (2017).

Link Prediction. Katz (1953); Adamic & Adar (2003); Zhou et al. (2009) proposed link predic-
tion heuristics using manually designed formulas. Liben-Nowell & Kleinberg (2003) extensively
conducted empirical studies on various heuristics, and Sarkar et al. (2011) provided their theoreti-
cal justification. Kipf & Welling (2016) proposed graph auto-encoder which reconstructs adjacency
matrices combined with GNNs. Zhang & Chen (2018) proposed structural link representation by
extracting enclosing subgraphs and learning structural patterns of those subgraphs. The authors
demonstrated that higher-order heuristics can be approximately represented by lower-order enclos-
ing subgraphs thanks to γ-decaying heuristic. Cai & Ji (2020) proposed the approach of multi-scale
link learning, which learns enclosing subgraphs at various scales. Cai et al. (2021) proposed the line
graph transformation prior to GNN layers for link prediction. Pan et al. (2022) proposed a link pre-
diction method by learning subgraph structure based on random walks. Zhao et al. (2022) proposed
counterfactual learning framework for link prediction to learn causal relationships between nodes.

Distance and Position based GNN models. You et al. (2019) proposed position-aware GNN (P-
GNN) based on distances for injecting positional information into node embeddings. P-GNN fo-
cuses on realizing Bourgain’s embedding Bourgain (1985) guided by Linial’s method Linial et al.
(1995), and performs message computation and aggregation based on distances to random subset
of nodes. By contrast, we judiciously select representative nodes (landmarks) in combination with
graph clustering, and use the associated distances as input attributes to nodes. Li et al. (2020) pro-
posed distance encoding for node labels and theoretical analysis regarding the expressive power
of GNN. Zhang et al. (2021) analyzed the effects of various node labeling tricks using distances.
However, these two methods do not utilize distances as positional information.

Networks with Landmarks. Ng & Zhang (2002) proposed to estimate inter-node distances using
detours via landmarks for Internet systems. Kleinberg et al. (2004) analyzed the theory of approx-
imating distances between nodes utilizing landmarks. However, they consider randomly selected
landmarks, where we also consider the distance under a judicious selection strategy. Potamias et al.
(2009) proposed to use vectors of distances to landmarks to estimate inter-node distances.However,
the work did not provide theoretical analysis on the distances under the detour via landmarks.

6 CONCLUSION

We proposed to use landmark-based distance vectors to capture nodes’ positional information for
link prediction. We provided theoretical analysis of the average distances of detours via landmarks
for well-known random graphs. From the analysis, we obtained design guidelines on the type and
number of landmarks to be selected, and proposed CLAN which effectively infuses cluster and
landmark attributes for the link prediction on real-world graphs. CLAN achieved state-of-the-art
performance as compared to existing methods on various graph datasets of diverse sizes and den-
sities. A limitation of our work is that, CLAN performs the positional node embeddings through
transductive learning, because it learns from the preprocessed graph attributes. Thus, it is hard to
apply CLAN to inductive learning tasks. In the future, we plan to study various topological attributes
for link prediction, and propose to combine these attributes with inductive learning methods.
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A PROOFS

A.1 PROOF OF THEOREM 1.

We follow the proof technique in Fronczak et al. (2004), and briefly describe their technique. We
first state a key lemma from Fronczak et al. (2004):

Lemma 1 If A1, · · · , An are mutually independent events and their probabilities fulfill relations
∀iP (Ai) ≤ ε,

P (∪n
k=1Ak) = 1− exp

(
−

n∑
k=1

P (Ak)

)
−R

where 0 ≤ R <
∑n+1

j=0 (nε)
j
/j!− (1 + ε)

n.

where it can be shown that R vanishes in the limit n → ∞. The authors estimate the probability

1− exp

− N∑
v1=1

· · ·
N∑

vs−1=1

qiv1qv1v2 · · · qvs−1j

 (19)

where qij is defined in Eq. 3. This represents the probability that there is at least one walk (i.e.,
revisiting a node is allowed) from i to j in s steps by applying Lemma 1. An event Ak in the lemma
corresponds to a walk starting at i ends at j, and the expression in Eq. 19 counts all the possible
paths and sums up the probability. This expression is asymptotically accurate: although the same
edge may participate between different Ak’s and induce correlation, it is argued in Fronczak et al.
(2004) that the fraction of such correlations vanishes when s ≪ N .

We extend the arguments to the walks visiting a given landmark. Consider node i, j ∈ V and
landmark λ ∈ V . Consider the collection of walks of length s which visits λ during the walk. Let
pλij(s) denote the probability that the length of path between i and j via λ is less than or equal to s

for s = 1, 2, · · · . Using Lemma 1, pλij(s) is given by

pλij(s) = 1−exp

−


N∑
v1=1

· · ·
N∑

vs−1=1

qiv1
qv1v2 · · · qvs−1j −

N∑
v1=1
v1 ̸=λ

· · ·
N∑

vs−1=1
vs−1 ̸=λ

qiv1
qv1v2 · · · qvs−1j




where qij is defined in Eq. 3, and the error in pλij(s) vanishes as N → ∞ from the lemma. The
expression in the bracket considers all the walks from i to j in s steps, and visiting λ at least once
during the walk. We have

N∑
v1=1

· · ·
N∑

vs−1=1

qiv1qv1v2 · · · qvs−1j = hihj

(
N⟨h2⟩

)s−1

βs

whereas
N∑

v1=1
v1 ̸=λ

· · ·
N∑

vs−1=1
vs−1 ̸=λ

qiv1
qv1v2

· · · qvs−1j = hihj

(
N⟨h2⟩ − h2

λ

)s−1

βs

Thus the subtraction in the bracket is given by

hihj

βs

[(
N⟨h2⟩

)s−1 −
(
N⟨h2⟩ − h2

λ

)s−1
]
=

hihj

βs

(
N⟨h2⟩

)s−1

[
1−

(
1− h2

λ

N⟨h2⟩

)s−1
]

≈ hihj

βs

(
N⟨h2⟩

)s−1
(s− 1)

h2
λ

N⟨h2⟩

=
hihjh

2
λ

βN⟨h2⟩
(s− 1)

(
N⟨h2⟩

β

)s−1
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Let random variable Lij(λ) denote the path length visiting landmark λ, and

Fλ(s) := P (Lij(λ) > s).

We have that

Fλ(s) = exp

[
− hihjh

2
λ

βN⟨h2⟩
(s− 1)

(
⟨h2⟩N

β

)s−1
]
, s = 1, 2, · · ·

Consider the minimum distance among the routes via landmarks λk, k = 1, · · · ,K(N) where the
landmarks are chosen i.i.d. from distribution ∼ Q. Let L denote the minimum distance among the
routes visiting the landmarks. Then Lij := min[Lij(λ1), Lij(λ2), · · · , Lij(λK(N))] where

P (Lij > s) = P (min[Lij(λ1), Lij(λ2), · · · , Lij(λK(N))] > s)

= P (Lij(λ1) > s,Lij(λ2) > s, · · · , Lij(λK(N)) > s)

=

K(N)∏
k=1

P (Lij(λk) > s)

= exp

− hihj

βN⟨h2⟩

K(N)∑
k=1

h2
λk

 (s− 1)

(
⟨h2⟩N

β

)s−1


= exp

− hihj

βN⟨h2⟩
K(N) · 1

K(N)

K(N)∑
k=1

h2
λk

 (s− 1)

(
⟨h2⟩N

β

)s−1


= exp

[
− hihj

βN⟨h2⟩
K(N) · ⟨h2⟩Q · (s− 1)

(
⟨h2⟩N

β

)s−1
]

where ⟨·⟩Q denotes the expectation of the hidden variables of landmarks chosen according to ∼ Q
assuming K(N) is sufficiently large.

A.2 PROOF OF THEOREM 2.

Let Lij be the mean of the minimum path length among the detour via landmarks from i to j. We
have that

lij =

∞∑
s=1

P (Lij > s) =

∞∑
s=0

exp

[
− hihj

βN⟨h2⟩
· ⟨h2⟩QK(N) · s

(
⟨h2⟩N

β

)s]
We utilize the Poisson summation formula:

lij =
1

2
f(0) +

∫ ∞

0

f(t) dt+ 2

∞∑
n=1

∫ ∞

0

f(t) cos(2πnt) dt (20)

where

f(t) = exp
[
−atbt

]
, (21)

a := ⟨h2⟩QK(N) · hihj

βN⟨h2⟩
, (22)

b :=
⟨h2⟩N

β
(23)

Firstly we have f(0) = 1. Next, we evaluate the second term of Eq. 20:∫ ∞

0

exp
(
−atbt

)
dt =

∫ ∞

0

exp
(
−atet log b

)
dt = (log b)−1

∫ ∞

0

exp

(
− a

log b
tet
)
dt (24)

Let u = tet, then we have

dt =
du

u+ eW (u)

14



Under review as a conference paper at ICLR 2023

where W (·) is the Lambert W function which is the inverse of tet for t ≥ 0. Thus Eq. 24 is equal
to

(log b)−1

∫ ∞

0

exp
(
− a

log bu
)

u+ eW (u)
du

Since W (u) ≥ 0 for u ≥ 0, Eq. 24 is bounded above by

(log b)−1

∫ ∞

0

exp
(
− a

log bu
)

u+ 1
du = (log b)−1 exp

(
a

log b

)∫ ∞

1

exp
(
− a

log bu
)

u
du (25)

= − exp

(
a

log b

) Ei
(
− a

log b

)
log b

(26)

where Ei(·) denotes the exponential integral. Consider the assumption of the theorem:
K(N) = o(N), (27)

i.e., the number of landmarks is not too large compared to N . Under this assumption, one can verify
that a/ log b is at most o(N)/N which tends to 0 as N → ∞. Thus the exponential term of Eq. 26
can be approximated to 1. Moreover,

−
Ei
(
− a

log b

)
log b

=
−γ − log a+ log log b

log b
(28)

=
− log(hihj)− log

(
⟨h2⟩QK(N)

)
+ log(Nβ⟨h2⟩) + log log

(
N⟨h2⟩

β

)
− γ

logN + log⟨h2⟩ − log β
(29)

In Eq. 28, we used

−Ei

(
− a

log b

)
≈ −γ − log

(
a

log b

)
where the error term vanishes because a/ log b is small, and γ ≈ 0.5772 is the Euler’s constant.

Finally, similar to the derivation in Appendix B of Fronczak et al. (2004), one can show that the last
term of Eq. 20 vanishes, by using generalized mean value theorem. By averaging Eq. 29 over all
i, j ∈ V , we get

l̄ ≤
−2⟨log h⟩ − log

(
⟨h2⟩QK(N)

)
+ log(Nβ⟨h2⟩) + log log

(
N⟨h2⟩

β

)
− γ

logN + log⟨h2⟩ − log β
+

1

2
(30)

from Eq. 20.

A.3 DERIVATION OF EQ. 12

From Eq. 11, we have that

⟨h2⟩Q =

〈
h21

(
h ∈

[
1√

M(N)
, 1

])〉
P

(
h ∈

[
1√

M(N)
, 1

])
We have

P

(
h ∈

[
1√

M(N)
, 1

])
=

∫ 1

1√
M(N)

ρ(h) dh =
2

N

∫ 1

h= 1√
M(N)

h−3 dh ≈ M(N)

N

and〈
h21

(
h ∈

[
1√

M(N)
, 1

])〉
=

∫ 1

h= 1√
M(N)

h2ρ(h) dh =
2

N

∫ 1

h= 1√
M(N)

h−1 dh ≈ logM(N)

N

Thus, we have

⟨h2⟩Q =
logM(N)

M(N)

Applying the result to Eq. 10, and using M(N) = g(N)K(N), we obtain Eq. 12.
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B ABLATION STUDY

We present an ablation study to investigate the advantages of components of CLAN. Table B show
the performance on OGB-DDI and OGB-COLLAB where

• “Distance Vector” column indicates the usage of the vector of distances to landmarks,

• “Cluster specific Embeddings” column indicates the usage of cluster-specific MLPs for
encoding node attributes.

We observe that, by adding either of the components “Distance Vector” and “Cluster-specific Em-
bedding” of CLAN, the prediction performance is improved. As a result, CLAN obtained 70.5%
higher performance on OGB-DDI, and 23.0% better performance on OGB-COLLAB than basic
GCN.

Distance Vectors Cluster-specific Embeddings DDI (HIT@20) COLLAB (HIT@50)
✗ ✗ 39.31 ± 4.87 44.29 ± 1.88
✔ ✗ 46.86 ± 9.91 53.31 ± 0.60
✗ ✔ 54.00 ± 8.90 52.34 ± 0.39
✔ ✔ 67.02 ± 6.85 54.47 ± 0.75

Table 2: Ablation study on OGB-DDI and OGB-COLLAB.

In Table 3, we investigate the effects of graph clustering and landmark selection.

• In “Graph Clustering” column, ‘Random’ means that the graph is randomly partitioned,
and ‘FluidC’ means that the graph clustering is done using FluidC algorithm.

• In “Landmark Selection” column, ‘Random’ means that landmarks is randomly selected,
and ‘Hub’ means that the node with largest degree within the cluster is selected as the
landmark.

The results show that, only performing a proper selection of landmarks, or only performing a proper
graph clustering is not effective. The performance is significantly improved only if graph clustering
and landmark selection are properly combined. One possible interpretation is that, FluidC is the
density-based propagation algorithm, and thus the resulting clusters are locally dense and are likely
to include nodes with high degrees which may be chosen as a “good” landmark. Thus, we conclude
that graph clustering and landmark selection have synergistic effect on the performance.

Graph Clustering Landmark selection HIT@20
Random Random 59.15 ± 7.68
FluidC Random 59.01 ± 6.38

Random Hub 60.97 ± 8.36
FluidC Hub 67.02 ± 6.85

Table 3: Ablation study with graph clustering and landmark selection strategies on OGB-DDI.

In addition, we experimented with CLAN combined with three different GNN encoders. Table 4
shows that, CLAN generally enhances the performance of various types of GNNs.

Dataset CLAN w/ GraphSAGE CLAN w/ GAT CLAN w/ GCN
PubMed 96.47 (−0.11) ± 0.29 91.42 (+5.87) ± 0.24 96.62 (+0.79) ± 0.21

Cora 92.68 (+2.44) ± 0.16 89.22 (+6.63) ± 0.15 93.25 (+3.00) ± 0.15
Citeseer 94.32 (+6.95) ± 0.15 93.26 (+5.97) ± 0.12 95.02 (+4.77) ± 0.13

Facebook 99.41 (+0.12) ± 0.01 98.76 (−0.53) ± 0.00 99.53 (+0.10) ± 0.00

Table 4: Ablation study on GNN types for CLAN. + denotes the performance gain over the default
encoder for each GNN, i.e., without CLAN.
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C DATASETS

Dataset # Nodes # Edges #Edges
#Nodes Avg. node deg Density Split ratio Metric

Cora 2,708 7,986 2.95 5.9 0.0021% 70/10/20 AUC
Citeseer 3,327 7,879 2.36 4.7 0.0014% 70/10/20 AUC
PubMed 19,717 64,041 3.25 6.5 0.00033% 70/10/20 AUC
Facebook 4,039 88,234 21.85 43.7 0.0108% 70/10/20 AUC
OGB-DDI 4,267 1,334,889 312.84 500.5 14.67% 80/10/10 Hits@20

OGB-CITATION2 2,927,963 30,561,187 10.81 20.7 0.00036% 98/1/1 MRR
OGB-COLLAB 235,868 1,285,465 5.41 8.2 0.0046% 92/4/4 Hits@50

Table 5: Dataset statistics.

D HYPERPARAMETERS

Hyperparameter Value
Encoder of all plug-in methods GCN

Batch size 65,536
Learning rate 0.001, 0.0005

Hidden dimension 256
Number of GNN layers 2, 3

Number of Decoder layers 2, 3
max hop of GCN+DE 3

Negative sampling Uniformly Random sampling
Dropout 0.2, 0.5

Negative sample rate 1
JKNet mode Concatenation

Activation function ReLU (GNNs), LeakyReLU (fk)
Cluster-specific embedding layer MLP

Loss function BCE Loss
Use edge weights False (only binary edge weights)

The number of landmarks log(# nodes)
Optimizer Adam

Table 6: Detailed hyperparameters. We easily reproduced and experimented thanks to Fey &
Lenssen (2019); Hu et al. (2020); Zhang et al. (2021).

E NODE CENTRALITY

For each cluster, the most “central” node should be selected as the landmark. We have used Degree
centrality in this paper; however, there are other types of centrality such as Betweenness and Close-
ness. Betweenness centrality is a measure of how often a given node is included in the shortest paths
between node pairs. Closeness centrality is the reciprocal of the sum-length of shortest paths to the
other nodes.

Table 7 shows the experimental results comparing Degree, Betweenness and Closeness centralities.
The results show that the performances are similar among the centralities. Thus, all the centralities
are effective measures for identifying “important” nodes. Degree centrality, however, was slightly
better than the other choices.

More importantly, Betweenness and Closeness centralities require full information on inter-node
distances, which incurs high computational overhead. In Table 7, we excluded datasets CITATION2
and COLLAB which are too large graphs to compute Betweenness and Closeness centralities. Scal-
ability is crucial for link prediction methods. Thus we conclude that, from the perspective of scala-
bility and performance, Degree centrality is the best choice.
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Centrality DDI PubMed Cora Citeseer Facebook
Degree 67.02 ± 6.85 96.62 ± 0.21 93.25 ± 0.15 94.75 ± 0.13 99.53 ± 0.00

Betweeness 66.41± 6.77 96.36± 0.19 92.69± 0.12 94.44± 0.08 99.32± 0.00
Closeness 65.56± 6.65 95.92± 0.20 92.43± 0.10 94.65± 0.12 99.35± 0.00

Table 7: Link prediction results from landmark selection with different centrality.

F (1 + ϵ)-BOUND FOR REAL-WORLD GRAPHS

In Sec. 2.4, we proved that the average path length via landmarks is bounded above by (1+ ϵ) times
the average distance in ER graphs, if the number of landmarks is N1−ϵ: see Eq. 9. Below we
provide experimental results to check the bound for real-world graphs.

Table 8 shows the average path length via randomly selected landmarks measured from benchmark
datasets. The number of landmarks is N1−ϵ with ϵ = 0.3, 0.5, and 0.8. Interestingly, the average
path length indeed does not exceed (1 + ϵ)-factor of the actual distance in all cases.

Our interpretation is that, the factor of (1 + ϵ) for ER graphs may serve as a conservative bound for
real-world graphs. In ER graphs, every node has a similar degree, and thus it is unlikely to choose
landmarks that provide short paths like hubs. By contrast, in real-world graphs, the variance of
node degree can be higher. Thus, there are chances that several high-degree nodes are selected as
landmarks, which can reduce the detour distances.

# of landmarks COLLAB DDI PubMed Cora Citeseer Facebook 1+ϵ
N0.3 9.01 (117%) 4.53 (145%) 11.90 (163%) 11.41 (157%) 14.99 (144%) 7.26 (136%) 170%

N0.5(
√
N) 8.79 (115%) 3.90 (125%) 10.31 (141%) 9.61 (132%) 13.04 (126%) 6.76 (127%) 150%

N0.8 7.92 (104%) 3.44 (110%) 8.31 (114%) 8.03 (110%) 10.93 (105%) 5.77 (108%) 120%
actual distances 7.64 (100%) 3.12 (100%) 7.29 (100%) 7.27 (100%) 10.38 (100%) 5.32 (100%) 100%

Table 8: Comparison of average path lengths via landmarks and actual distances in benchmark
datasets.

G NUMBER OF MODEL PARAMETERS

We compare the numbers of parameters in the models. The number of parameters changes with
the size of graph datasets. We chose the DDI dataset, since all the models, including CLAN, have
the largest parameter count for the DDI dataset. Table 9 shows the parameter count for CLAN
and baseline models. We observe that CLAN has the largest number of parameters. The number,
however, can be lowered by reducing the number of cluster-specific encoders as follows.

CLAN GCN+LRGA LGLP P-GNN GCN+DE GraphSAGE
# parameters 1,812,672 1,229,537 894,721 462,854 519,425 262,656

Table 9: Comparison of the number of parameters.

Table 10 shows the performance by varying the number of clusters per encoder. For example, if the
number of clusters per encoder is 2, every two clusters share one encoder. Thus, the total number of
cluster-specific encoders is halved.

The results show that, we achieve better performance with more encoders. However, the best tradeoff
is achieved when the number of clusters per encoder is 2. Compared to the default model, the
performance decreases only slightly, but the number of parameters is reduced by 46%. In this case,
the number of parameters is less than GCN+LRGA, and is on par with LGLP.
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# clusters
per encoder # parameters DDI COLLAB PubMed Cora Citeseer Facebook

1 (default) 1,812,672 67.02 ± 6.85 54.47 ± 0.75 96.62 ± 0.21 93.25 ± 0.15 95.02 ± 0.13 99.53 ± 0.00
2 973,152 66.71 ± 6.62 53.71 ± 0.57 96.02 ± 0.11 93.02 ± 0.14 94.92 ± 0.03 99.41 ± 0.00
4 553,392 54.44 ± 4.31 53.70 ± 0.60 94.06 ± 0.13 87.16 ± 0.04 93.21 ± 0.08 99.31 ± 0.00

Table 10: Performance with different numbers of cluster-specific encoders.

19


	Introduction
	Analysis of Random Graphs with Landmarks
	Notation
	Representation of Distances using Landmarks
	Path lengths via Landmarks in random networks 
	Erdős-Rényi Model
	Barabási-Albert (BA) Model
	Design Insights from Theory

	Proposed Method
	Graph Clustering
	Landmark selection and Approximated Distances
	Cluster-specific Embedding
	Complexity Analysis

	Experiments
	Experimental setting
	Results

	Related Work
	Conclusion
	Proofs
	Proof of Theorem 1.
	Proof of Theorem 2.
	Derivation of Eq. 12

	Ablation study
	Datasets
	Hyperparameters
	Node Centrality
	(1+)-Bound for Real-world Graphs
	Number of Model Parameters

