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ABSTRACT

Recursive Neural Networks (RvNNs) generalize Recurrent Neural Networks
(RNNs) by allowing sequential composition in a more flexible order, typically,
based on some tree structure. While initially user-annotated tree structures were
used, in due time, several approaches were proposed to automatically induce tree-
structures from raw text to guide the recursive compositions in RvNNs. In this pa-
per, we present an approach called Beam Tree Recursive Cell (or BT-Cell) based
on a simple yet overlooked backpropagation-friendly framework. BT-Cell adapts
beam search easy-first parsing for simulating RvNNs with automatic structure-
induction. Our results show that BT-Cell achieves near-perfect performance on
several aspects of challenging structure-sensitive synthetic tasks like ListOps and
also comparable performance in realistic data to other RvNN-based models. We
further introduce and analyze several extensions of BT-Cell based on relaxations
of the hard top-k operators in beam search. We evaluate the models in different out
of distribution splits in both synthetic and realistic data. Additionally, we identify
a previously unknown failure case for neural models in generalization to unseen
number of arguments in ListOps. Code is in the supplementary.

1 INTRODUCTION

In the space of sequence encoders, Recursive Neural Networks (RvNNs) can be said to lie some-
where in-between Recurrent Neural Networks (RNNs) and Transformers in terms of flexibility.
While vanilla Transformers show phenomenal performance and efficient scalability on a variety of
tasks, it can often struggle in length generalization and systematicity in syntax-sensitive tasks (Tran
et al., 2018; Shen et al., 2019a; Lakretz et al., 2021; Csordás et al., 2022). RvNN-based models, on
the other hand, can often excel on some of the latter kind of tasks (Shen et al., 2019a; Chowdhury &
Caragea, 2021; Liu et al., 2021; Bogin et al., 2021) making them worthy of further study although
they may suffer from limited scalability in their current formulations.

Given an input text, RvNNs (Pollack, 1990; Socher et al., 2010) are designed to build up the repre-
sentation of the whole text by recursively building up the representations of its constituents starting
from the most elementary representations (tokens) in a bottom-up fashion. As such, RvNNs can
model the hierarchical part-whole structures underlying texts. However, originally RvNNs required
access to pre-defined hierarchical constituency-tree structures. Several works (Socher et al., 2011;
Havrylov et al., 2019; Choi et al., 2018; Maillard et al., 2019; Chowdhury & Caragea, 2021) in-
troduced latent-tree RvNNs that sought to move beyond this limitation by making RvNNs able to
learn to automatically determine the structure of composition from any arbitrary downstream task
objective, given just the raw input text.

Among these approaches, Gumbel-Tree models (Choi et al., 2018) are particularly attractive for its
simplicity. It often serves as a standard baseline for latent-tree models. However, Gumbel-Tree mod-
els not only suffer from biased gradients (due to use of Straight-Through Estimation (STE)), but they
also perform poorly on synthetic tasks like ListOps (Nangia & Bowman, 2018) that were specifically
designed to diagnose the capacity of neural models for automatically inducing underlying hierarchi-
cal structures. In this paper, we tackle these issues by introducing the Beam Tree Cell (BT-Cell)
framework that applies beam-search as a simple modification over Gumbel-Tree models. Instead
of greedily selecting the highest scored sub-tree representations like Gumbel-Tree models, BT-Cell
chooses and maintains top-k highest scored sub-tree representations. We show that this simple mod-
ification increases the performance of Gumbel-Tree models in challenging structure sensitive tasks
by several folds. For example, in ListOps, when testing for samples of length 900-1000, a BT-Cell
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based model increases the performance of a comparable Gumbel-Tree model from 37.9% to 86.7%
(see: Table 1). We further explore several variants of BT-Cell. Particularly, we explore ways to re-
place the non-differentiable top-k operators involved in beam search with different alternatives such
as top-k gumbel softmax with STE and a novel strategy of maintaining a convex combination of bot-
tom scoring paths. Our best extension achieves a new state-of-the-art in length generalization and
depth-generalization in structure-sensitive synthetic tasks like ListOps and performs comparably in
realistic data against other latent-tree models.

A few recently proposed latent-tree models simulating RvNNs like LSTM-RL (Havrylov et al.,
2019), Ordered Memory (OM) (Shen et al., 2019a) or CRvNN (Chowdhury & Caragea, 2021) are
also strong contenders to BT-Cell and its extensions on synthetic data. However, unlike BT-Cell,
LSTM-RL relies on expensive reinforcement learning and several sophisticated techniques to stabi-
lize training. Moreover, compared to OM and CRvNN, one distinct advantage of BT-Cell is that it
not just provides the final sequence encoding (representing the whole input text) but also the interme-
diate constituent representations at different levels of hierarchy (representations of all nodes of the
underlying induced trees). Such tree-structured node representations can be useful as inputs to fur-
ther downstream modules like a Transformer (Vaswani et al., 2017) or GNN (Scarselli et al., 2009)
in a full end-to-end setting 1. While CYK-based RvNNs (Maillard et al., 2019) are also promising
and similarly can provide multiple span representations they tend to be much more expensive than
BT-Cell. All these architectural trade-offs among different latent-tree models are discussed in more
details in Appendix E.6.

Besides proposal and evaluation of BT-Cell variants, our paper also serves as a survey of how well
prior proposed latent-tree RvNNs work in structure-sensitive synthetic tasks and out-of-distribution-
splits in natural language tasks, particularly when combined with more powerful recursive cells.
Additionally, as a further contribution, we identify a previously unknown failure case for even the
best performing neural models when it comes to argument generalization in ListOps (Nangia &
Bowman, 2018) - opening up a new challenge for future research.

2 PRELIMINARIES

Problem Formulation: Similar to Choi et al. (2018), throughout this paper, we explore the
use of RvNNs as a sentence encoder. Formally, given a sequence of token embeddings X =
(e1, e2, . . . , en) (where X ∈ IRn×de , ei ∈ IRde , and de is the embedding size), the task of a sen-
tence encoding function E : IRn×de → IRdh is to encode the whole sequence of vectors into a single
vector o = E(X ) (where o ∈ IRdh and dh is the size of the encoded vector). We can use a sentence
encoder for sentence-pair comparison tasks like logical inference or for text classification.

2.1 RECCURENT NEURAL NETWORKS AND RECURSIVE NEURAL NETWORKS

A core component of both RNNs and RvNNs is a recursive cell. In our contexts, the cell function
takes as arguments two vectors (a1 ∈ IRda1 and a2 ∈ IRda2 ) and returns a single vector v =
cell(a1, a2) (where v ∈ IRdv ). cell : IRda1 × IRda2 → IRdv . In our settings, we generally set
da1

= da2
= dv = dh. Given a sequence X , both RNNs and RvNNs sequentially process it through

recursive application of the cell function. For a concrete example, consider a sequence of token
embeddings such as (2 + 4 × 4 + 3) (Assume the symbols 2, 4, + etc. represent transformations
of corresponding embedding vectors ∈ dh). Given any such sequence, RNNs can only follow a
fixed left-to-right order of composition. For the particular aforementioned sequence, an RNN-like
application of the cell function can be expressed as:

o = cell(cell(cell(cell(cell(cell(cell(h0, 2),+), 4),×), 4),+), 3) (1)

Here h0 is some input-independent initial state (“initial hidden state”) set in the model. In contrast
to RNNs, RvNNs can compose the sequence in more flexible orders. For example, one way (among

1There are several works that have used intermediate span representations for better compositional gener-
alization in generalization tasks (Liu et al., 2020; Herzig & Berant, 2021; Bogin et al., 2021; Liu et al., 2021;
Mao et al., 2021). We keep it as a future task to explore whether the span representations returned by BT-Cell
can be used in relevant ways.
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many) that RvNNs could apply the cell function is as follows:

o = cell(cell(cell(cell(2,+), cell(cell(4,×), 4)),+), 3) (2)

Thus, RNNs can be considered as, roughly, a special case of RvNNs where a strict left-to-right
order of composition is enforced. As we can see, by these strategies of recursively reducing two
vectors into a single vector, both RNNs and RvNNs can implement the sentence encoding function
in the form of E . Moreover, the form of application of cell function exhibited by RNNs and RvNNs
can also be said to reflect a tree-structure. For any application of the cell function in the form
v = cell(a1, a2), v can be treated as the representation of the immediate parent node of child nodes
a1 and a2 in a underlying tree.

In Eqn. 2, we find that RvNNs can align the order of composition to PEMDAS whereas RNNs can-
not. Nevertheless, RNNs can still learn to simulate RvNNs by modeling tree-structures implicitly
in their hidden state dimensions (Bowman et al., 2015b). For example, RNNs can learn to hold off
the information related to “2+” until “4× 4” is processed. Their abilities to handle tree-structures is
analogous to how we can use pushdown automation in a recurrent manner through an infinite stack
to detect tree-structured grammar. Still, RNNs can struggle to effectively learn to appropriately
organize information in practice for large sequences. Special inductive biases can be incorporated
to enhance their abilities to handle their internal memory structures (Shen et al., 2019b;a). How-
ever, even then, memories remain bounded in practice and there is a limit to what depth of nested
structures they can model.

More direct approaches to RvNNs, in contrast, can alleviate the above problems and mitigate the
need of sophisticated memory operations to arrange information corresponding to a tree-structure
because they can directly compose according to the underlying structure (Eqn. 2). However, in
the case of RvNNs, we have the problem of first determining the underlying structure to even start
composition. One approach to handle the issue can be to train a separate parser to induce a tree
structure from sequences using gold tree parses. Then we can use the trained parser in RvNNs.
However, this is not ideal. Not all tasks or languages would come with gold trees for training a parser
and a parser trained in one domain may not translate well to another. A potentially better approach
is to jointly learn both the cell function and structure induction from a downstream objective. We
focus on this latter approach. Below we discuss one framework for this approach.

2.2 EASY-FIRST PARSING AND GUMBEL TREE MODELS

Here, we describe an adaptation (Choi et al., 2018) of easy-first parsing (Goldberg & Elhadad, 2010)
for RvNN-based sentence-encoding. The algorithm relies on a scorer function score : IRdh → IR1

that scores parsing decisions. Particularly, if we have v = cell(a1, a2), then score(v) represents the
plausibility of a1 and a2 belonging to the same immediate parent constituent. In practice, similar to
Choi et al. (2018), we keep the scorer as a simple linear transformation: score(v) = Wvv (where
Wv ∈ IR1×dh and v ∈ IRdh ).

Recursive Loop: In this algorithm, at every iteration in a recursive loop, given a sequence of
hidden states (h1, h2, . . . , hn) we consider all possible immediate candidate parent compositions
taking the current states as children: (cell(h1, h2), cell(h2, h3), . . . , cell(hn−1, hn))

2. We then
score each of the candidates with the score function and greedily select the highest scoring can-
didate (i.e. we commit to the “easiest” decision first). For the sake of illustration, assume
score(cell(hi, hi+1)) ≥ score(cell(hj , hj+1)) ∀j ∈ {1, 2, . . . , n}. Thus, following the algo-
rithm the parent candidate cell(hi, hi+1) can be chosen. The parent representation cell(hi, hi+1)
would then replace its immediate children hi and hi+1. Thus, the resulting sequence will become:
(h1, . . . , hi−1, cell(hi, hi+1), hi+2, . . . , hn). Like this, the sequence will be iteratively reduced to
a single element representing the final sentence encoding. The full algorithm is presented in the
Appendix (see Algorithm 1).

One issue here is how to choose the highest scoring candidate. One way to do it is to simply
use an argmax operator but it will not be differentiable. Gumbel-Tree-Cell models (Choi et al.,
2018) address this difficulty by using Straight Through Estimation (STE) (Bengio et al., 2013) with
Gumbel Softmax (Jang et al., 2017; Maddison et al., 2017) instead of argmax. However, STE is

2We focus only on the class of binary projective tree structures. Thus all the candidates are compositions of
two contiguous elements.
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known to cause high bias in gradient estimation. Moreover, as it was previously discovered (Nangia
& Bowman, 2018), and as we independently verify, STE Gumbel-based strategies perform poorly
when tested in structure-sensitive tasks. Instead, to overcome these issues, we present an alternative
of extending argmax with a top-k operator under a beam search strategy.

3 BEAM TREE CELL

Motivation: Gumbel-Tree models, as described, are relatively fast and simple but they are fun-
damentally based on a greedy algorithm for a task where the greedy solution is not guaranteed to
be optimal. On the other hand, adaptation of dynamic programming-based CYK-models (Maillard
et al., 2019) leads to high computational complexity (discussed more in Appendix E.6). A“middle
way” between the two extremes is then to simply extend Gumbel-Tree models with beam-search
to make it less greedy while still being less costly than CYK-parsers (See Appendix E.6)). More-
over, Using beam-search also provides additional opportunity to recover from local errors whereas
a greedy single-path approach (like Gumbel Tree models) will be stuck with any errors made. All
these factors motivate the framework of Beam Tree Cells (BT-Cell).

Implementation: The beam search extension to Gumbel-Tree models is straight-forward and simi-
lar to standard beam search. The method is described more precisely in Appendix A.1 and Algorithm
2. In summary, in BT-Cell, given a beam size k, we maintain a maximum of k hypotheses (or beams)
at each recursion. In any given iteration, each beam constitutes a sequence of hidden states repre-
senting a particular path of composition and an associated score for that beam based on the addition
of log-softmaxed outputs of the score function (as defined in 2.2) over each chosen compositions
for that sequence. At the end of the recursion, we will have k sentence encodings ((o1, o2, . . . , ok)
where oi ∈ IRdh ) and their corresponding scores ((s1, s2, . . . , sk) where si ∈ IR1). The final se-
quence encoding can be then represented as:

∑k
i=1

(
exp(si)·oi∑k
i=1 exp(si)

)
. This aims at computing the

expectation over the k sequence encodings.

3.1 TOP K VARIANTS

As in standard beam search, BT-Cell requires two top-k operators. The first top-k replaces the
straight-through gumbel softmax (simulating top-1) in Gumbel-Tree models. However, selecting
and maintaining k possible choices for every beams in every iteration leads to an exponential in-
crease in the number of total beams. Thus, a second top-k operator is used for pruning the beams to
maintain only a maximum of k beams at the end of each iteration. Now, different variants of BT-Cell
can be established depending on what kind of top-k operator we use.

Plain Top-k: The simplest variant is to simply use the vanilla top-k operator. However, the vanilla
top-k operator is discrete and non-differentiable preventing gradient propagation to non-selected
paths. Despite that this can still work for the following reasons: (1) Gradients can still pass through
the final top k beams and scores. The scorer function can thus learn to increase the scores of better
beams and lower the scores of the worse ones among the final k beams; (2) A rich enough cell func-
tion can be robust to local errors in the structure and learn to adjust for it by organizing information
better in its hidden states. We believe that as a combination of these two factors, plain BT-Cell even
with non-differentiable top-k operators can learn to perform well for structure-sensitive tasks (as we
will empirically observe).

ST-Gumbel Top-k: While non-differentiable top-k operators can work, they still can be a bottleneck
because gradient signals will be received only for k beams in a space of exponential possibilities. To
address this, we replace the plain top-k operator with a STE (Bengio et al., 2013) through Gumbel
top-k (Kool et al., 2019). We refer to this operator as ST-Gumbel Top-k. This serves as a natural
generalization of the original straight-through gumbel softmax from Choi et al. (2018) (where we
had to select only one item) to the top-k context3. However, ST-Gumbel Top-K can exacerbate
the original issues of biased estimation related to straight-through methods (we discuss more in
Appendix D).

3In practice we find it beneficial to only replace the first top-k operator with ST-gumbel Top-k. Replacing
the second top-k operator with ST-Gumbel top-k tends to lead to instability or worse performance.
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Figure 1: Visualization of Top-k Softpath selection from m = 4 beams to top k = 3 beams.

Softpath Top-k: Here, we focus on the second top-k operator that is involved in truncating beams.
As a concrete case, assume we have m beams (sequences and their corresponding scores). The
target for a top-k operator is to keep only the top scoring k beams (where k ≤ m).

Ideally we want to keep the beam representations “sharp” and avoid washed out representations
owing to interpolation (weighted vector averaging) of distinct paths (Drozdov et al., 2020). This can
be achieved by either plain top-k or ST-Gumbel top-k. However, the former prevents propagation of
gradient signals through the bottom m− k beams, and the latter can exacerbate bias (see Appendix
D) as discussed before. Another line of approach is to create a soft permutation matrix P ∈ IRm×m

through a differentiable sorting algorithm such that Pij represents the probability of the ith beam
being the jth highest scoring beam. P can then be used to soflty select the top k beams. However,
running differentiable sorting in a recursive loop can significantly increase computation overheads
and also create more “washed out” representations leading to higher error accumulation (we discuss
more in Appendix E.1). We tackle all these challenges by instead proposing a simple hybrid strategy
to approach top-k selection. We provide a formal description of our proposed strategy below and a
visualization of the process in Figure 1.

Assume we have m beams consisting of m sequences: H = (H1, . . . ,Hm) (Hi ∈ IRn×dh and n
being the sequence length) and m corresponding scores: S = (s1, . . . , sm). First, we simply use the
plain top-k operator to discretely select the top k − 1 beams (instead of k). This allows us to keep
the most promising beams “sharp”:

idx = topk(S,K = k − 1). Top = {(Hi, si) | i ∈ idx} (3)

Second, for the kth beam we instead perform a softmax-based marginalization of the bottom m −
(k− 1) beams. This allows us to still propagate gradients through the bottom scoring beams (unlike
in the pure plain top-k operator):

Bottom = {(Hi, si) | (i /∈ idx) ∧ (i ∈ {1, 2, . . . ,m})} (4)

softpath =

 ∑
(H,s)∈Bottom

(
exp(s) · H∑

(H,s)∈Bottom exp(s)

)
,

∑
(H,s)∈Bottom

(
exp(s) · s∑

(H,s)∈Bottom exp(s)

)
(5)

Finally we add the softpath to the top k− 1 discretely selected beams to get the final set of k beams:
Top ∪ {softpath}. Thus, we get to achieve a “middle way” between plain top-k and differentiable
sorting: partially getting the benefit of sharp representations of the former through discrete top k−1
selection, and partially getting the benefit of gradient propagation of the latter through soft-selection
of the kth beam. In practice, we find it beneficial to switch to plain top-k during inference.

Gumbelpath Top-k: Here, we replace the softmax in the softpath extension (eqn 5) with a straight-
through gumbel softmax making the induced structure discrete during training as well.

4 EXPERIMENTS AND RESULTS

Hyperparameters and other architectural details are in the Appendix H. Next, we discuss the main
models that we compare.
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1. RecurrentGRC: RecurrentGRC is an RNN implemented with the Gated Recursive Cell (GRC)
(Shen et al., 2019a) as the cell function (see Appendix B for description of GRC).

2. RandomTreeGRC: RandomTreeGRC is an RvNN with GRC that randomly chooses parent
compositions at each iteration (based on uniform probabilities).

3. BalancedTreeGRC: BalancedTreeGRC is an RvNN with GRC that enforces a binary balanced
tree structure. Some prior experiments (Shi et al., 2018) have shown strong results just by using
balanced trees like this.

4. GoldTreeGRC: GoldTreeGRC is a GRC-based RvNN with gold tree structures.

5. GumbelTreeLSTM: This is the straight-through Gumbel-tree implementation by Choi et al.
(2018). It uses the LSTM cell (Hochreiter & Schmidhuber, 1997; Tai et al., 2015).

6. GumbelTreeGRC: This is same as GumbelTreeLSTM but with GRC instead of LSTM.

7. BSRP-GRC: Maillard & Clark (2018) proposed a similar approach to ours where they apply
beam search into a shift-reduce parsing framework instead of easy-first-parsing. We adapt that
framework with the GRC cell and call it as BSRP-GRC. More details are provided in Appendix C.

8. CYK-GRC: This is the CYK-based model proposed by Maillard et al. (2019) but with GRC.

9. Ordered Memory: This is a form of memory-augmented RNN simulating certain classes of
RvNN functions as proposed by (Shen et al., 2019a). Ordered Memory also uses GRC.

10. CRvNN: CRvNN is a variant of RvNN with a continuoux relaxation over its structural opera-
tions as proposed by Chowdhury & Caragea (2021). CRvNN also uses GRC. In our implementation,
we ignore some extraneous elements from CRvNN such as transition features and halt penalty which
were deemed to have little effect during ablation.

11. BT-LSTM: Base BT-Cell model with LSTM cell and plain top-k operator.

12. BT-GRC: Base BT-Cell model with GRC and plain top-k operator.

13. Gumbel BT-GRC: BT-Cell model with GRC and ST-Gumbel top-k operator.

14. BT-GRC + Softpath: BT-Cell model with GRC and Softpath top-k operator.

15. BT-GRC + Gumbelpath: BT-Cell model with GRC and Gumbelpath top-k operator.

For experiments with BT-Cell models, we consider beam size 5 as a practical choice which is neither
too big nor too small. However, we also explore beam size 2 for the most promising variants of BT-
Cell to see how far we can get with the minimally costly version of beam search.

4.1 LISTOPS LENGTH GENERALIZATION RESULTS

Dataset Settings: ListOps Nangia & Bowman (2018) is a challenging synthetic task that requires
solving of nested mathematical operations over lists of arguments. We present our results on ListOps
in Table 1. To test for length-generalization performance, we train the models only on sequences
with ≤ 100 lengths (we filter the rest) and test on splits of much larger lengths (eg. 200 − 300 or
900 − 1000) taken from Havrylov et al. (2019). “Near-IID” is the original test set of ListOps (it is
“near” IID and not fully IID because a percentage of the split has > 100 length sequences whereas
such lengths are absent in the training split).

Results: 1. Heuristic Tree Models: As discussed before in §2.1, RNNs has to model tree struc-
tures implicitly in their bounded hidden states and thus can struggle generalizing to unseen struc-
tural depths. This is reflected in the sharp degradation in its length generalization performance.
Unsurprisingly, other heuristic-tree-based models (BalancedTreeGRC or RandomTreeGRC) do not
perform well either in this structure-sensitive task. 2. Gumbel Tree Models: Consistent with prior
work Nangia & Bowman (2018), Gumbel-Tree models fail to perform well in this task; likely, due
to its biased gradient estimation. 3. CYK-GRC: CYK-GRC shows some promise to length gener-
alization but it was too slow to run in higher lengths (see discussion in Appendix E.6). 4. Ordered
Memory (OM): Here, we find OM struggles to generalize to higher unseen lengths. OM’s reliance
of soft sequential updates in a nested loop can lead to higher error accumulation over larger unseen
lengths or depth. 5. CRvNN: Consistent with Chowdhury & Caragea (2021), CRvNN performs
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Model near-IID Length Gen. Argument Gen. LRA
(Lengths) ≤ 1000 200-300 500-600 900-1000 100-1000 100-1000 2000

(Arguments) ≤ 5 ≤ 5 ≤ 5 ≤ 5 10 15 10
With gold trees
GoldTreeGRC 99.95 99.88 99.85 100 80.5 79 78.1

Baselines without gold trees
LSTM-RL* 99.25 — — — — — —
RecurrentGRC 84.05 33.85 20.2 15.1 37.35 30.10 20.7

BalancedTreeGRC 59.4 44.85 43.35 35.70 45.88 45.25 41.95

RandomTreeGRC 70.56 48.70 45.35 37.53 54.8 55.6 49.8

GumbelTreeLSTM 63.08 45.8 42.75 36.8 48.95 49.2 45.35

GumbelTreeGRC 74.89 47.6 43.85 37.9 51.35 50.5 46.1

CYK-GRC 97.87 93.75 — — 60.75 42.45 —
BSRP-GRC 70.34 42.4 33.15 26.3 40.15 35.75 29.65

Ordered Memory 99.88 99.55 92.7 76.9 84.15 75.05 80.1

CRvNN† 99.63 98.5111 97.9511 96.7819 — — —
CRvNN 98.86 95.89 93.15 89.4 57.8 24.35 45.1

Beam Tree Models with beam size 5 (also without gold trees)
BT-LSTM 94.11 85.1 83.5 78.8 67.9 44.25 57.85

BT-GRC 99.39 96.15 92.55 86.7 77.1 63.7 67.3

Gumbel-BT-GRC 96.15 75.35 64.25 55.1 58.65 50.4 50.2

BT-GRC + Softpath 99.92 99.5 99 97.2 76.05 67.9 71.8

BT-GRC + Gumbelpath 99.84 99.45 99.2 99.4 79.25 63 72.85

Beam Tree Models with beam size 2 (also without gold trees)
BT-GRC 94.18 68.2 56.85 50.2 64.45 56.95 55.85

BT-GRC + Softpath 99.69 97.55 95.40 91 75.75 62 66.1

BT-GRC + Gumbelpath 88.56 55.4 51.3 46.1 54.65 52.95 49.55

Table 1: Accuracy on ListOps. * indicates results from Havrylov et al. (2019). † indicates results
from Chowdhury & Caragea (2021). LSTM-RL is the model proposed in Havrylov et al. (2019).
For our models we report the median of 3 runs. Our models were trained on lengths ≤ 100, depth ≤
20, and arguments ≤ 5. We bold the best results and underline the second-best among models that
do not use gold trees. Subscript represents standard deviation. As an example, 901 = 90± 0.1

.

relatively decently at higher lengths. 6. BSRPC-GRC: Surprisingly, despite using a similar frame-
work to BT-Cell, BSRPC-GRC performs quite poorly. We suspect this is because of the limited
gradient signals from its top-k operators coupled with the doubling of recurrent steps (that can cause
gradient issues) due to taking a shift-reduce strategy. Moreover, BSRPC-GRC. unlike BT-Cell, also
lacks the global competition among all parent compositions when making shift/reduce choices. 7.
BT-GRC and BT-LSTM: Here, we find a massive boost over Gumbel-tree baselines even when
using the base models: BT-GRC or BT-LSTM (beam size 5). In the 900-1000 length generalization
split, BT-GRC increases the performance of GumbelTreeGRC from 37.9% to 86.7% - all just by
adding beam search with plain top-k. But as expected, the performance degrades severely when the
beam size is reduced to 2. Note that the recurrent depth for BT-Cell as it pertains to backpropagation
is just the tree depth (not the doubled sequence length as in BSRP-GRC). This may further explain
its superiority to BSRP-GRC. 8. Gumbel BT-GRC: This model does not perform as good. Part of
its issue could be related to, again, the biased estimation due to STE. We also discuss more specific
issues that applies to this model but not Gumbelpath in Appendix D. 9. Softpath and Gumbelpath:
Softpath was specifically designed to counteract the bottleneck of gradient propagation being limited
through only k beams in the base BT-Cell (with plain top-k). The bottleneck is even worse when k
(beam size) is 2 - empirically this is reflected in the poor performance of base BT-GRC with beam
size 2. However, Softpath does what it’s designed to: it counteracts the bottleneck. Empirically,
this is reflected in its much higher performance than base BT-GRC under beam size 2. Where base
BT-GRC gets only 50.2% in the 900− 1000 split, BT-GRC+Softpath gets 91%. BT-GRC+Softpath
has near perfect length generalization with beam size 5. The performance of Gumbelpath is more
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Model SST2 SST5 IMDB
IID IID LG IID Con. Count.

RecurrentGRC 89.440.5 52.191.5 47.453.9 90.941.2 74.8628 82.7219
BalancedTreeGRC 87.833.7 52.356.2 46.373.9 90.710.9 74.9322 83.6115
RandomTreeGRC 89.331 51.781.2 49.831.2 91.681.1 74.9314 82.389.3
GumbelTreeLSTM 88.652.1 52.448 48.436.3 88.396.9 72.2715 80.6713
GumbelTreeGRC 89.225.6 51.678.8 50.36.3 85.1111 70.6321 81.975
CYK-GRC 89.665.8 51.9913 49.143.3 OOM OOM OOM
Ordered Memory 89.461.6 52.302.7 49.688 91.690.5 76.985.8 83.687.8
CRvNN 88.5812 51.7511 49.53 91.471.2 77.8015 85.383.5

Beam Tree Models with beam size 5
BT-LSTM 88.501.1 50.83.5 47.1417 90.771.3 74.257.7 82.243.5
BT-GRC 88.522.9 52.324.7 48.4510 91.291.2 75.0729 82.8623
Gumbel-BT-GRC 88.82.9 51.737.1 49.671.9 86.6211.3 72.2029 83.2728
BT-GRC + Softpath 88.34.7 51.927.2 48.016 90.869.3 75.6821 84.7711
BT-GRC + Gumbelpath 88.673.4 51.774.8 48.1516 88.3918 7239 82.6557

Beam Tree Models with beam size 2
BT-GRC 88.946 52.142.8 50.087.4 91.511.5 75.2123 82.5123
BT-GRC + Softpath 88.524.3 52.24.4 472.5 90.411.8 75.8922 85.4515

BT-GRC + Gumbelpath 89.273.4 52.14 49.437.2 83.2419 63.817 70.424.2

Table 2: Accuracy on SST2, SST5, and IMDB. Con. refers to Contrast test set, and Count. refers
to Counterfactual test set. We report the mean/std of 3. We bold the best resuls and underline the
second-best. Subscript represents standard deviation. As an example, 901 = 90± 0.1

.

mysterious. While it struggles on lower beam, it is on par with Softpath with beam size 5. It appears
higher beam size is necessary to unlock the potential of Gumbelpath.

4.2 LISTOPS ARGUMENT GENERALIZATION RESULTS

Dataset Settings: While length generalization (Havrylov et al., 2019; Chowdhury & Caragea, 2021)
and depth generalization (Csordás et al., 2022) have been tested before for ListOps, the performance
on argument generalization was yet to be considered. In this paper, we also consider what would
happen if we increase the number of arguments in the test set beyond the maximum number en-
countered in the training set. The training set of the original listops data only has ≤ 5 arguments
for each operator. To test for argument generalization we created two new splits - one with 10 ar-
guments per operator and another with 15 arguments per operator. In addition, we also consider the
test set of ListOps from Long Range Arena (LRA) dataset (Tay et al., 2021) which serves as check
for both length generalization (it has sequences of length 2000) and argument generalization (it has
10 arguments per operators) simultaneously. Results in Table 1.

Results: Interestingly, we find all the models perform poorly (< 90%) on argument generalization.
However, with the exception of Ordered Memory (OM), BT-cell models (discounting Gumbel-BT-
GRC) with higher beam size performs much better than any other models (including otherwise
strong contenders like CRvNN). Surprising, OM performs quite well in this split. We do not know
the exact reason, but we can eliminate some reasons. First, we know OM is not performing better
simply due to better parsing because it even surpasses GoldTreeGRC at times. Second, we also
know OM’s performance is not just due to a better recursive cell, since its cell (GRC) is shared by
many other models that do not perform as well. This may suggest that the memory-augmented RNN
style setup in OM is more amenable for argument generalization.

4.3 SEMANTIC ANALYSIS (SST AND IMDB) RESULTS

Dataset Settings: SST (Socher et al., 2013) and IMDB (Maas et al., 2011) are natural language
classification datasets. In the IID splits (standard split) of SST2 and SST5 all the models perform
similarly. To better check for OOD performance, we create a length-generalization (LG) split in
SST5 (we call this the LG split). Particularly, we only keep sequences of length ≤ 15 in the training
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set, we keep sequences of length ≤ 16-29 in the validation set, and we keep all sequences of length
≥ 30 in the test set. For IMDB, besides the IID test set, we also test our models on the contrast set
from Gardner et al. (2020) and the counterfactual test set from Kaushik et al. (2020). We present
our results on these datasets in Table 2.

Results: The results in this natural language tasks is rather mixed and do not provide clear consis-
tent differences among these models. There are, however, some interesting highlights. Similar to
Shi et al. (2018), we found BalancedTreeGRC can perform competitively in most test splits, how-
ever, it performs more poorly than others when it comes to length generalization (SST5 LG split).
CRvNN and OM do particularly well in the OOD splits (contrast set and counterfactual split) of
IMDB, correlating with their better OOD generalization in synthetic data. BT-GRC + Softpath is
also relatively competitive in those splits and better than any other models besides CRvNN and OM.
STE Gumbel-based models tend to pareform particularly worse on IMDB.

5 ADDITIONAL EXPERIMENTS AND ANALYSIS

Synthetic Logical Inference: We present our results on a challenging synthetic logical inference
task (Bowman et al., 2015b) in Appendix E.4. We find that most variants of BT-Cell can perform on
par with prior SOTA models in this task.

ListOps Depth Generalization: We also run experiments to test depth-generalization performance
on ListOps (see Appendix E.2)

Transformers: We experiment briefly with Neural Data Routers (Csordás et al., 2022) which is
a Transformer-based model proven to do well in tasks like ListOps. However, we find that Neural
Data Routers (NDRs), despite their careful inductive biases, still struggle with sample efficiency and
length generalization compared to strong RvNN-based models. We discuss more in Appendix E.3.

Natural Language Inference: We present our results MNLI along with some stress-test splits in
Appendix E.5. We find that BT-Cell variants can improve robustness to some stress test splits of
MNLI compared to most other models.

Parse Tree Analysis: We analyze parsed trees and score distributions in Appendix E.7.

6 RELATED WORKS

Goldberg & Elhadad (2010) proposed the easy-first algorithm for dependency parsing. Ma et al.
(2013) extended it with beam search for parsing tasks. Choi et al. (2018) integrated easy-first-parsing
with an RvNN. Similar to us, Maillard & Clark (2018) used beam search to extend shift-reduce
parsing whereas Drozdov et al. (2020) used beam search to extend CYK-based algorithms. However,
BT-Cell-based models achieve higher accuracy than the former style of models (eg. BSRP-GRC)
and are computationally more efficient than the latter style of models (eg. CYK-GRC) (see Appendix
E.6). Similar to us, Collobert et al. (2019) also use beam search in an end-to-end fashion during
training but in the context of sequence generation. However, none of the above approaches explored
beyond hard top-k operators in beam search. One exception is Xie et al. (2020) where a differentiable
top-k operator is used in beam search for language generation (We compare against Xie et al. (2020)
in Appendix E.1). We provide an extended related works survey in Appendix F.

7 CONCLUSION

Overall, we find all three of Ordered Memory, CRvNN, and BT-Cell are competitive against each
other; none being completely superior in all aspects. BT-Cell with Softpath excels in length gen-
eralization at ListOps and offers moderate performance on argument generalization but hurts at
systematicity (disccussed in Appendix E.4). Ordered Memory excels in argument generalization
while struggling in length generalization. CRvNN performs decently in length generalization but
struggles in argument generalization. CYK-GRC shows some promise too but is several times more
expensive (Appendix E.6) to run while having poor performance in systematicity (Appendix E.4)
and argument generalization. We discuss future works in Appendix G.

9
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Algorithm 1 Easy First Composition
Input: data X = [x1, x2, ....xn]
while True do

if len(X) == 1 then
return X[0]

end if
if len(X) == 2 then

return cell(X[0], X[1])
end if
ChildrenL, ChildrenR ← X[: len(X)− 1], X[1 :]
Parents← [cell(childL, childR) for childL, childR in zip(ChildrenL, ChildrenR]
Scores← [scorer(parent) for parent in Parents]
index← argmax(Scores)
X[index]← Parents[index]
Delete X[index+ 1]

end while

A PSEUDOCODES

We present the pseudocode of the easy first composition in Algorithm 1 and the pseudocode of BT-
cell in Algorithm 2. Note that the algorithms are written as they are for the sake of illustration: in
practice, many of the nested loops are made parallel through batched operations in GPU.

A.1 BEAM TREE CELL ALGORITHM

Here, we briefly describe the algorithm of BT-cell (Algorithm 2) in words. In BT-Cell, instead of
maintaining a single sequence per sample, we maintain some k (initially 1) number of sequences
and their corresponding scores (initialized to 0). k is a hyperparameter defining the beam size.
Each sequence (henceforth, interchangeably referred to as “beam”) is a hypothesis representing a
particular sequence of choices of parents. Thus, each beam represents a different path of composition
(for visualization see Figure 1). At any moment the score represents the log-probability for its
corresponding beam. Now, we describe the steps in each iteration in the recursion of BT-Cell. Step
1: similar to gumbel-tree models, we create all candidate parent compositions for each of the k
beams. Step 2: we score the candidates with the score function (defined in §2.2). Step 3: we
choose top-k highest scoring candidates. We treat the top-k choices as mutually exclusive. Thus,
each of the k beams encounters k branching choices, and are updated into k distinct beams (similar
to before, the children are replaced by the chosen parent). Thus, we get k × k beams. Step 4: we
update the beam scores. The sub-steps involved in the update are described next. Step 4.1: we
apply a log-softmax to the scores of the latest candidates to put the scores into the log-probability
space. Step 4.2: we add the log-softmaxed scores of the latest chosen candidate to the existing
beam score for the corresponding beam where the candidate is chosen. As a result, we will have
k × k beam scores. Step 5: we truncate the k × k beams and beam scores into k beams and their
corresponding k scores to prevent exponential increase of the number of beams. For that, we again
simply use a top-k operator to keep only the highest scored beams.

At the end of the recursion, instead of a single item representing the sequence-encoding, we will
have k beams of items with their k scores. At this point, to get a single item, we do a weighted
summation with the softmaxed scores as the weights as described in §3.

B GATED RECURSIVE CELL (GRC)

The Gated Recursive Cell (GRC) was originally introduced by Shen et al. (2019a) drawing inspira-
tion from the Transformer’s feed-forward networks. In our implementation, we use the same variant
of GRC as was used in Chowdhury & Caragea (2021) where a GELU Hendrycks & Gimpel (2016)
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Algorithm 2 Beam Tree Cell
Input: data X = [x1, x2, ....xn], k (beam size)
BeamX ← [X]
BeamScores← [0]
while True do

if len(BeamX[0]) == 1 then
BeamX ← [beam[0] for beam in BeamX]
break

end if
if len(BeamX[0]) == 2 then

BeamX ← [cell(beam[0], beam[1]) for beam in BeamX]
break

end if
NewBeamX ← []
NewBeamScores← []

for Beam,BeamScore in zip(BeamX,BeamScores) do
Parents← [cell(beam[i], beam[i+ 1]) for i in range(0, len(beam)− 1)]
Scores← log ◦ softmax([scorer(parent) for parent in Parents])
Indices← topk(Scores, k)

for i in range(K) do
newBeam← deepcopy(Beam)
newBeam[Indices[i]]← Parents[Indices[i]]
Delete newBeam[Indices[i] + 1]
NewBeamX.append(newBeam)
newScore← BeamScore+ Scores[indices[i]]
newBeamScores.append(newScore)

end for
end for
Indices← topk(newBeamScores, k)
BeamScores← [newBeamScores[i] for i in Indices]
BeamX ← [newBeamX[i] for i in Indices]

end while
BeamScores← Softmax(BeamScores)
Return sum([score ∗X for score,X in zip(BeanScores,BeamX)])

activation function was used. We present the equations of GRC here:zihi

ci
ui

 = W2 GeLU

(
WCell

1

[
childleft
childright

]
+ b1

)
+ b2 (6)

oi = LN(σ(zi)⊙ childleft + σ(hi)⊙ childright + σ(ci)⊙ ui) (7)

σ is sigmoid; oi is the parent composition ∈ IRdh×1; childleft, childright ∈ IRdh×1; W cell
1 ∈

IRdcell×2·dh ; b1 ∈ IRdcell×1; W2 ∈ IRdh×dcell ; b1 ∈ IRdh×1. We use this same GRC function for
any recursive model (including our implementation of Ordered Memory) that constitutes GRC.

C BSRP-GRC DETAILS

For the decisions about whether to shift or reduce, we use a scorer function similar to that used in
Chowdhury & Caragea (2021). Where Chowdhury & Caragea (2021) use the decision function on
concatenation of local hidden states (n-gram window), we use the decision function on the concate-
nation of last two items in the stack and the next item in the queue. The output is a scalar sigmoid
activated logit score s. We then treat log(s) as the score for reducing in that step, and log(1 − s)
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Model near-IID Length Gen. Argument Gen. LRA
(Lengths) ≤ 1000 200-300 500-600 900-1000 100-1000 100-1000 2000

(Arguments) ≤ 5 ≤ 5 ≤ 5 ≤ 5 10 15 10
BT-GRC+SOFT 69 44 37.1 29.4 39.5 38.6 31.6

Table 3: Accuracy of BT-GRC+SOFT on ListOps. We report the median of 3 runs. The model was
trained on lengths ≤ 100, depth ≤ 20, and arguments ≤ 5.

as the score for shifting in that step. The scores are manipulated appropriately for edge cases (when
there are no next item to shift, or when there are no two items in the stack to reduce). Besides that,
we use the familiar beam search strategy over standard shift-reduce parsing. Finally the beams of
final states are merged through the weighted summation of the states based on the softmaxed scores
of each beam similar to BT-Cell models as described in §3.

D ST-GUMBEL TOP-K ISSUES

Let us use the notation argmaxk(.) to denote the function for selecting the index of the kth highest
value element in a vector or a list. Let us say, we have s as a vector such that si represents the
element at the ith dimension of s. We can now, represent the standard straight-through gumbel
softmax Choi et al. (2018) as follows:

p = softmax(s+G) (8)

(one hot(argmax1(p))− p).detach() + p (9)

Here G is the gumbel noise. This strategy allows the forward propagation to have discrete one hot
values (one hot(argmax1(p))) while backpropagation to propagate through the soft p. However,
this creates a discrepancy between forward propagation and backpropagation that leads to biased
gradient estimation. This problem can be exacerbated in ST-Gumbel Top-k. In this method, instead
of top 1, top k items are selected from p. The straight-through estimation involved in the selection
of some rth item among the top k selections (r ≤ k) can be then expressed as:

(one hot(argmaxr(p))− p).detach() + p (10)

Note that pargmaxr(p) ≤ pargmax1(p). Thus the discrepancy between p and one hot(argmaxr(p)) will
only increase with increasing r. Moreover while originally in ST-Gumbel, when selecting top-1, pi
can be interpreted (in our context) as the probability that si is “top-1” item. But in ST-Gumbel Top-
k, when selecting the top rth, item there is no corresponding interpretation - pi would still indicate
probability for si being the “top-1” item not the probability of si being the “top rth” item. Overall,
we attempted ST-Gumbel Top-k more so because it’s a simple naive extension of plain top-k but
it’s not a particularly principled approach. As such, the poor performance is not that surprising.
A possible extension could be to transform p to some pr for every top rth selection such that pri
do reflect probability for si to be top rth item but that would be non-trivial to do without adding
significant overhead (similar to that caused by differentiable sorting - see Appendix E.6).

E ADDITIONAL EXPERIMENTS AND ANALYSIS

E.1 DIFFERENTIABLE SORTING

Besides the three extensions considered for BT-Cell, another strategy can be to simply use differen-
tiable versions of top-k operators or sorting functions (Adams & Zemel, 2011; Grover et al., 2019;
Cuturi et al., 2019; Xie et al., 2020; Blondel et al., 2020; Petersen et al., 2021; 2022). However, as
we discussed before these methods can lead to issues related to “washing out” of representations due
to using soft permutation matrices leading to higher error accumulation (although temperature can
be used to partially counteract that (Petersen et al., 2021)). Besides that, using these techniques in a
recursive loop can lead to significant overhead and added time complexity. Instead, in this paper, we
mainly aim to show that a simple method, namely, softpath can already bring marked improvement
compared to plain top-k especially in low beam size settings for listops. We keep a more exhaustive
investigation of application of differentiable sorters for beam search as a future work. Nevertheless,
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Model DG Length Gen. Argument Gen. LRA
(Lengths) ≤ 100 200-300 500-600 900-1k 100-1k 100-1k 2K
(Arguments) ≤ 5 ≤ 5 ≤ 5 ≤ 5 10 15 ≤ 10
(Depths) 8-10 ≤ 20 ≤ 20 ≤ 20 ≤ 10 ≤ 10 ≤ 10
With gold trees
GoldTreeGRC 99.95 99.95 99.9 99.8 76.95 77.1 74.55

Baselines without gold trees
CYK-GRC 99.45 99.0 — — 67.8 35.15 —
Ordered Memory 99.95 99.8 99.25 96.4 79.95 77.55 77

CRvNN 99.9 99.4 99.45 98.9 65.7 43.4 65.1

Beam Tree Models with beam size 5 (also without gold trees)
BT-LSTM 98.9 98.5 98.1 97.7 74.75 40.75 65.05

BT-GRC 99.95 99.95 99.95 99.9 75.35 72.05 68.1

BT-GRC + Softpath 99.9 99.6 98.1 97.1 78.1 71.25 75.45

BT-GRC + Gumbelpath 99.9 99.95 99.8 99.7 75.2 72.75 71.8

Beam Tree Models with beam size 2 (also without gold trees)
BT-GRC + Softpath 96.2 95.40 93.8 91.2 64.45 51.95 51.05

Table 4: Accuracy on ListOps-DG. We report the median of 3 runs except in the last block where
we report the mean/std of 10 runs as mentioned. Our models were trained on lengths ≤ 100, depth
≤ 6, and arguments ≤ 5. We bold the best results and underline the second-best among models that
do not use gold trees.

.

we present some preliminary results here. Xie et al. (2020) used an optimal transport-based differ-
entiable top k method in beam decoding for machine translation. Here, we use their method (SOFT
Top-k) and create a new variant of BT-GRC by replacing the softpath with SOFT Top-k. We call
this new variant as BT-GRC + SOFT. We run this model in ListOps with the same dataset settings
as used in Table 1. We report the results in Table 3. As we can see in Table 3, BT-GRC+SOFT
shows very poor performance. This supports our hypothesis that using soft permutation matrix in all
recursive iterations may not be ideal because of increase chances of error accumulation and “wash-
ing out” through interpolations of what would be distinct path representations. In Appendix E.6, we
also demonstrate that using SOFT significantly slows down BT-GRC.

E.2 LISTOPS-DG EXPERIMENT

Dataset Settings: The length generalization experiments in ListOps do not give us an exact per-
spective in depth generalization4 capacities. So there is a question of how models will perform in
unseen depths. To check for this, we create a new ListOps split which we call “ListOps-DG”. For
this split, we create 100, 000 training data with arguments ≤ 5, lengths ≤ 100, and depths ≤ 6. We
create 2000 development data with arguments ≤ 5, lengths ≤ 100, and depths 7. We create 2000
test data with arguments≤ 5, lengths≤ 100, and depths 8-10. In addition, we also still tested on the
same length-generalization splits (which now simultaneously have much higher depths too: ≤ 20),
argument generalization splits, and LRA. The results are presented in Table 4. We only evaluate the
models that were promising (≥ 90% in near IID settings) in the original ListOps split. We report the
median of 3 runs for each model (except in the last block of the table).

Results: Interestingly, we find that base BT-GRC, CRvNN, and Ordered Memory now does much
better in length generalization compared to the original listops split. We think this is because of
the increased data (the training data in the original ListOps is ∼ 75000 after filtering data of length
> 100 whereas here we generated 100, 000 training data). However, while the median of 3 runs in
Ordered Memory is decent, we found one run to have very poor length generalization performance.
To investigate more deeply if Ordered Memory has a particular stability issue, we ran Ordered
Memory for 10 times with diferent seeds, and we find that it frequently fails to learn to generalize
over length. As a baseline, we also ran BT-GRC similarly for 10 runs and found it to be much more
stable. We report the mean and standard deviation of 10 runs of Ordered Memory and BT-GRC

4By depth, we simply mean the maximum number of nested operators in a given sequence in case of ListOps
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Model DG Length Gen. Argument Gen. LRA
(Lengths) ≤ 100 200-300 500-600 900-1k 100-1k 100-1k 2K
(Arguments) ≤ 5 ≤ 5 ≤ 5 ≤ 5 10 15 ≤ 10
(Depths) 8-10 ≤ 20 ≤ 20 ≤ 20 ≤ 10 ≤ 10 ≤ 10
Stability Test: Mean/Std with 10 runs. Beam size 5 for BT-GRC
Ordered Memory 99.940.6 97.5832 78.785197 61.85291 77.6630 69.03107 67.35125
BT-GRC 99.841.5 99.585.8 98.821 97.8539 73.8257 66.21107 66.975102

Table 5: Accuracy on ListOps-DG (Stability test). We report the mean and standard deviation of of
10.. Our models were trained on lengths ≤ 100, depth ≤ 6, and arguments ≤ 5. Subscript represents
standard deviation. As an example, 901 = 90± 0.1

.
Model DG1 Length Gen. Argument Gen. LRA
(Lengths) ≤ 50 200-300 500-600 900-1000 100-1000 100-1000 2000

(Arguments) ≤ 5 ≤ 5 ≤ 5 ≤ 5 10 15 ≤ 10
(Depths) 8-10 ≤ 20 ≤ 20 ≤ 20 ≤ 10 ≤ 10 ≤ 10
After Training on ListOps-DG1
NDR (layer 24) 96.7 48.9 32.85 22.1 65.65 64.6 42.6

NDR (layer 48) 91.75 34.60 24.05 19.7 54.65 52.45 39.95

Model DG2 Length Gen. Argument Gen. LRA
(Lengths) ≤ 100 200-300 500-600 900-1000 100-1000 100-1000 2000

(Arguments) ≤ 5 ≤ 5 ≤ 5 ≤ 5 10 15 ≤ 10
(Depths) 8-10 ≤ 20 ≤ 20 ≤ 20 ≤ 10 ≤ 10 ≤ 10
After Training on ListOps-DG2
NDR (layer 24) 95.6 44.15 30.7 20.3 67.85 58.05 46

NDR (layer 48) 92.65 38.6 29.15 22.1 73.1 64.4 50.4

Table 6: Accuracy on ListOps-DG1 and ListOps-DG2. We report the max of 3 runs. In ListOps-
DG1, NDR was trained on lengths ≤ 50, depth ≤ 6, and arguments ≤ 5. In ListOps-DG1, NDR
was trained on lengths ≤ 100, depth ≤ 6, and arguments ≤ 5. Lyaers denote the layers used during
inference.

.

in Table 5. As can be seen, the mean of BT-GRC is much higher than that of Ordered Memory in
length generalization splits.

E.3 NDR EXPERIMENTS

Dataset Settings: Neural Data Routers (NDR) is a Transformer-based model that was shown to per-
form well in algorithmic tasks including Listops (Csordás et al., 2022). We tried some experiments
with it too. We found NDR to be struggling in the original ListOps splits or the ListOps-DG split.
We noticed that in the paper (Csordás et al., 2022), NDR was trained in a much larger sample size
(∼ 10 times more data than in ListOps-DG) and also on lower sequence lengths (∼ 50). To better
check for the capabilities of NDR, we created two new ListOps split - DG1 and DG2. In DG1, we
set the sequence length to 10-50 in training, development, and testing set. We created 1 million data
for training, and 2000 data for development and testing. Other parameters (number of arguments,
depths etc.) are same as in ListOps-DG split. Split DG2 is the same as ListOps-DG split in terms of
data-generation parameters (i.e it includes length sizes ≤ 100) but with much larger sample size for
the training split (again, 1 million samples same as DG1). We present the results in Table 6.

Results: We find that even when we focus on the best of 3 runs in the table, although NDR general-
izes to slightly higher depths (8-10 from≤ 6) (as reported in (Csordás et al., 2022)), it still struggles
with splits with orders of magnitude higher depths, lengths, and unseen arguments. Following the
suggestions of Csordás et al. (2022), we also increase the number of layers during inference (eg.
upto 48) to handle higher depth sequences but that did not help substantially. Thus, even after expe-
riencing more data, NDR generalizes worse than Ordered Memory, CRvNN, or BT-GRC. Moreover,
NDR requires some prior estimation of the true computation depth of the task for its hyperparameter
setup unlike the other latent-tree models.
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Model Number of Operations
8 9 10 11 12 C

With gold trees
GoldTreeGRC 97.141 96.52 95.292.5 94.219.9 93.677.7 97.411.6

Baselines without gold trees
Transformer* 52 51 51 51 48 51

Universal Transformer* 52 51 51 51 48 51

ON-LSTM* 87 85 81 78 75 60

Self-IRU† 95 93 92 90 88 —
RecurrentGRC 93.046 90.434.9 88.486 86.575.8 80.581.5 83.175.1
BalancedTreeGRC 77.813.6 72.566.6 67.546.4 63.666.6 57.447.6 74.4510
RandomTreeGRC 86.675.1 84.788.2 80.458.2 76.628.5 71.714.7 78.069.7
GumbelTreeLSTM 77.0312 74.626.1 69.551.7 67.948.1 59.9510 78.2011
GumbelTreeGRC 93.4614 91.8919 90.3322 88.4318 85.7024 89.3429
CYK-GRC 96.622.3 96.074.6 94.6711 93.448.8 92.549.3 77.0827
BSRP-GRC 89.3718 85.9230 83.0635 80.6333 74.9142 81.8831
CRvNN 96.93.7 95.992.8 94.512.9 94.485.6 92.7315 89.7958
Ordered Memory 97.51.6 96.741.4 94.952 93.92.2 93.366.2 94.887

Beam Tree Models with beam size 5 (also without gold trees)
BT-LSTM 93.272.5 92.635.3 88.5510 87.858.2 84.5612 73.0212
BT-GRC 96.831 95.992.4 95.042.3 94.293.8 93.362.4 94.1714
Gumbel-BT-GRC 95.568 94.1411 92.7716 91.7121 89.8418 86.5535
BT-GRC + Softpath 97.031.4 96.491.9 95.434.5 94.216.6 93.391.5 78.0443
BT-GRC + Gumbelpath 96.931.2 95.821.5 94.670.6 93.482.9 92.589 83.6347

Beam Tree Models with beam size 2 (also without gold trees)
BT-GRC 96.632.2 95.953.7 95.453.1 93.715.5 93.283.9 86.9738
BT-GRC + Softpath 96.961.1 96.491.2 95.381.8 94.643.4 93.553.3 81.3965
BT-GRC + Gumbelpath 96.481.5 96.024.7 94.717.2 93.947 92.461.1 90.8750

Table 7: Mean accuracy and standard deviaton on the Logical Inference for ≥ 8 number of opera-
tions after training on samples with ≤ 6 operations. We also report results of the systematicity split
C. We bold the best results and underline the second-best for all models without gold trees. * indi-
cates that the results were taken from Shen et al. (2019a) and † indicates results from Zhang et al.
(2021). Our models were run 3 times on different seeds. Subscript represents standard deviation.
As an example, 901 = 90± 0.1

.

E.4 SYNTHETIC LOGICAL INFERENCE RESULTS

Dataset Settings: We also consider the synthetic testbed for detecting logical relations between
sequence pairs as provided by Bowman et al. (2015b). Following Tran et al. (2018), we train the
models on sequences with ≤ 6 operators and test on data with greater number of operators (here,
we check for cases with ≥ 8 operators) to check for capacity to generalize to unseen number of
operators. Similar to Shen et al. (2019a); Chowdhury & Caragea (2021), we also train the model on
the systematicity split C. In this split we remove any sequence matching the pattern ∗(and(not∗))∗
from the training set and put them in the test set to check for systematic generalization.

Results: In Table 7, in terms of operation generalization, our proposed BT-Cell models perform
similarly to prior SOTA models like Ordered Memory (OM) and CRvNN while approximating
GoldTreeGRC for both beam sizes. GRC-based models perform better than comparative LSTM-
based models. Unsurprisingly, following discussions in Appendix D, Gumbel-BT-GRC does not
perform as well. In terms of systematicity (split C), OM and BT-GRC (with beam size 5) perform
similarly (both above 94%) and much better than the other models. Lower beam size extensions
hurts systematicity performance for BT-GRC which is not too surprising given we are limiting the
beam size. Surprisingly, however, softpath/gumbelpath extensions also hurt systematicity. CYK-
GRC shows promise in operator generalization but shows poor systematicity as well. Gumbel-GRC

21



Under review as a conference paper at ICLR 2023

Model M MM Len M Len MM Neg M Neg MM
RecurrentGRC 71.23 71.44 4925 49.524 49.36 50.16
BalancedTreeGRC 71.15 71.41 598 60.75 50.24 50.46
RandomTreeGRC 72.23 72.35 61.423 62.323 51.73 52.77
GumbelTreeGRC 71.27 71.26 57.517 59.612 50.520 51.820
CRvNN 72.24 72.65 6244 63.347 52.86 53.84
Ordered Memory 72.53 732 56.533 57.131 50.97 51.713

Beam Tree Models with beam size 5
BT-GRC 71.62 72.31 64.76 66.45 53.737 54.843

BT-GRC + Softpath 71.71 71.92 65.613 66.79 53.22 54.25
BT-GRC + Gumbelpath 72.13 71.91 66.37 66.914 51.619 52.221

Beam Tree Models with beam size 2
BT-GRC 72.61 72.62 66.65 68.16 53.321 54.424
BT-GRC + Softpath 71.13 71.91 63.717 65.612 51.819 5312
BT-GRC + Gumbelpath 6745 67.845 55.167 56.267 47.842 48.343

Table 8: Mean accuracy and standard deviaton on MNLI. Our models were run 3 times on different
seeds. Subscript represents standard deviation. As an example, 901 = 90± 0.1

.

performs better than fixed tree models (ReccurentGRC or BalancedTreeCell) or RandomTreeCell
but still far from SOTA which is not unexpected given its poor results in ListOps.

E.5 NATURAL LANGUAGE INFERENCE EXPERIMENTS

Dataset Settings: We ran our models on MNLI (Williams et al., 2018) which is a natural language
inference task. We tested our models on the development set of MNLI and use a randomly sampled
subset of 10, 000 data points from the original training set as the development set. Our training setup
is different from Chowdhury & Caragea (2021) and other prior latent tree models which combines
SNLI (Bowman et al., 2015a) and MNLI training sets (we don’t add SNLI data.). We filter sequences
≥ 150 from the training set for efficiency. We also test our models in various stress tests (Naik et al.,
2018). We report the results in Table 8. M denotes matched development set (used as test set) of
MNLI. MM denotes mismatched development set (used as test set) of MNLI. LenM denotes length
matched stress set from (Naik et al., 2018). LenMM denotes length mismatched stress set from
(Naik et al., 2018). NegM denotes negation matched stress set from (Naik et al., 2018). NegMM
denotes negation mismatched stress set from (Naik et al., 2018). Length matched/mismatched stress
sets add to the length of the premise by adding tautologies. Negation matched/mismatched stress sets
add tautologies containing “not” terms which can bias the model to falsely predict contradictions.

Results: Results in Table 8 show BT-GRC variants are not particularly better than the other
models in the standard matched/mismatched sets. However, discounting Gumbelpath (which
tends to break down), even the weakest BT-GRC variants outperform all other models on length
matched/mismatched stress test. BT-GRC (with beam 2 or 5) or BT-GRC with Softpath and beam 5
also tend to do marginally better than other models in negation matched/mismatched test sets. Over-
all most BT-Cell variants show better robustness to stress tests. We ignore testing Gumbel-BT-GRC
because it generally is a bad performer.

Overall, given both the performance here and at IMDB, gumbel-based models (including gumbel-
path) may be better avoided in general (Also consider that GumbelTreeGRC, here, performs worse
than RandomTreeGRC).

E.6 EFFICIENCY ANALYSIS

Settings: In Table 9, we compare the empirical performance of various models in terms of time and
memory. We ran each models on ListOps splits of different sequence lengths (200-250, 500-600,
and 900-1000). Each split contains 100 samples. We ran each model with the batch size of 1. Other
hyperparameters are same as those used for ListOps. Note that we are showing time and memory
consumption during training (not inference). All models are ran in an Nvidia RTX A6000 GPU.
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Sequence Lengths
Model 200− 250 500− 600 900− 1000

Time Memory Time Memory Time Memory
RecurrentGRC 0.2 min 0.02 GB 0.5 min 0.02 GB 1.3 min 0.03 GB
BalancedTreeGRC 0.3 min 0.02 GB 1.2 min 0.03 GB 2.1 min 0.04 GB
RandomTreeGRC 0.4 min 0.33 GB 1.4 min 1.86 GB 3.0 min 5.18 GB
GumbelTreeGRC 0.5 min 0.35 GB 2.1 min 1.95 GB 3.5 min 5.45 GB
CYK-GRC 9.3 min 32.4 GB OOM OOM OOM OOM
BSRP-GRC 2.3 min 0.06 GB 6.1 min 0.19 GB 10.5 min 0.42 GB
Ordered Memory 8.0 min 0.09 GB 20.6 min 0.21 GB 38.2 min 0.35 GB
CRvNN 1.5 min 1.57 GB 4.3 min 12.2 GB 8.0 min 42.79 GB
Beam Tree Models with beam size 5
BT-GRC 1.1 min 1.71 GB 2.6 min 9.82 GB 5.1 min 27.27 GB
BT-GRC + Softpath 1.4 min 2.74 GB 4.0 min 15.5 GB 7.1 min 42.95 GB
BT-GRC + SOFT 5.1 min 2.67 GB 12.6 min 15.4 GB 23.1 min 42.78 GB
Beam Tree Models with beam size 2
BT-GRC 1.1 min 0.68 GB 2.6 min 3.92 GB 5.1 min 10.90 GB
BT-GRC + Softpath 1.4 min 0.88 GB 4.0 min 5.03 GB 7.1 min 14.01 GB

Table 9: Empirical time and memory consumption for various models. Ran on 100 ListOps data of
different sequence lengths wiht batch size 1

.

Discussions:

Assume n denotes the sequence length, d denotes the hidden state dimensions, k denotes the beam
size, and m denotes the number of memory slots (for Ordered Memory).

RecurrentGRC: Recurrent models performs reasonably well. While it need to go through n se-
quential steps but so do most other models. Moreover, computation in each iteration of the sequential
loop is relatively simple - it is just the application of the recursive cell function. The space com-
plexity is also very little because of lack of parallel processing accross the sequence length (it has
to only store the hidden state memory O(d)). Thus the memory consumption stays nearly constant
with increasing sequence length.

BalancedTreeGRC: BalancedTreeGRC is also moderately efficient. It can slightly increase mem-
ory consumption because of more parallelized processing. It composes multiple children in every
step. However, since it cuts off half of the sequence at every step, its outer sequential loop is only
in the order of O(logn). Thus, its memory consumption does not increases as much compared
to GumbelTreeGRC or RandomTreeGRC. While the total sequential steps is much less for Bal-
ancedTreeGRC, it seems that the added overhead from more parallelized processing per iteration
still makes it slightly slower than RecurrentGRC in practice (still it is faster than any other models).
However, there may be room for better code optimization for BalancedTreeCell.

RandomTreeCell and GumbelTreeCell: Both are similar in terms of complexity. Both chooses one
composition at a time requiring them to still go through n seuqntial steps in the outer loop unlike
BalancedTreeGRC. However, unlike RecurrentGRC, in each loop, it has to also parallely compute
all possible parent compositions - this leads to higher space complexity for each iteration O(nd2)
that also scales up with increasing sequence length n and also higher computational overhead per
iteration in the loop. Thus, they run slower than RecurrentGRC and takes much more memory as
well. Nevertheless, in comparison to other latent-tree models these are still relatively fast, simple,
and lightweight.

CYK-GRC: CYK-GRC is the worst offender of all in terms of computational efficiency. Note also
that GRC can itself be relatively expensive cell function because of high dimensional feedforward
networks – adding up overhead compared to classical CYK models. CYK-GRC takes a chart-filling
approach in a dynamic programming style. The number of cells in the filled chart is n2/2. Each
cell in the original CYK algorithm can again have multiple options, however, Maillard et al. (2019)
simplifies this by keeping only one option per cell through attention-based pooling. Even after
that, each cell still has to contain a d dimensional hidden state. This leads to atleast o(n2d) space
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complexity. Moreover, it still has to take n sequential steps in the outer loop to recursively fill up the
chart. At the same time each sequential step is also more expensive than any of the other models.
For filling up any cell it has to compute all valid possible ways to combine pre-computed cell and
then perform an attention pooling. It has to, thus, apply GRC multiple times to all possible ways of
composition from prior chart cells. This step can be, however, parallelized (and we do parallelize it).
Nevertheless, applying GRC in parellel to all possible left-right children pair (from prior computed
chart cells) can still add to memmory consuption and temporal overheads. This reflects in both
extremely high memory consumption and also the slowest speed among all else.

BSRP-GRC: BSRP-GRC is essentially a form of stack augmented RNN. Similar to Recurrent-
GRC, it’s memory consuption is low because of limited parallel processing (although its stack size
grow with each iteration which reflects in sharply rising memory with increasing sequence length
compared to Recurrent GRC). However, it has added expenses in each recurrent iteration due to
additional stack operations and shift/reduce decision computation. In effect this makes the model
quite slow although better than some others. BSRPC-GRC taking a shift-reduce parsing strategy
also need to increase the sequential steps from n to 2n. Although that doesn’t make an asymptotic
difference, it still can further contribute to the empirical slowdown. We use a beam size of 5 for
BSRP-GRC here for better comparison against BT-GRC.

Ordered Memory: Ordered Memory (OM) is also a form of stack augmented RNN and thus, have
similar memory advantages as RecurrentGRC (although overall memory consumption is relative
increased due to storing multiple slots of hidden states). However, the main bottleneck in OM is
time. Precisely, OM utilizes a nested loop. The outerloop is the same n times sequential operation
as RecurrentGRC, but in the in each step of that loop, OM has to again sequentially apply GRC
over the m memory slots. This leads to a O(nm) sequential steps. Thus, we get a heavy hit to time
consumption with OM.

CRvNN: The framework of CRvNN is roughly similar to GumbelTreeGRC. However, instead of
choosing one parent at a time, it can choose multiple parents at a time, that too in a soft manner. But
this comes at a cost. While GumbelTreeGRC can reduce the sequence size with each sequential step,
CRvNN has to still maintain the whole sequence in each step with associated “existential probabil-
ity” for each sequence item. Moreover, computing the composition of contiguous representations
also becomes harder. Since in CRvNNs sequence items exists with some probability, what counts
as the first existing contiguous item is also probabilistic. In effect, CRvNN needs to create a n2

attention matrix (similar to Transformers but based on existential probabilities instead of dot prod-
uct attention) to retrieve neighbor (contiguous) elements to create parent candidates. Furthermore,
in each sequential steps, this n2 attention matrix needs to be applied multiple times - for example,
to get local composition scores for sigmoid modulation and also to retrieve some w local items for
its convolution-based decision function. That can also add significant overhead (although still quite
tame, in terms of temporal overhead, compared to the memory-slot-wise recursion in OM). Thus, in
effect, we get increased memory consumption and time compared to GumbelTreeGRC. At the same
time, however, efficiency analysis for CRvNN is complicated by the fact that it can dynamically halt
early. That is, it does not need to take full n sequential steps unlike any of the other models (besides
BalancedTreeGRC). However, this doesn’t mean CRvNN is guaranteed to take O(logn) sequentials
steps. Ideally, it is intended to take as many sequential steps as is the induced binary tree depth.
Underlying binary tree depths are not necessarily always (or even in average) around O(logn). So
while it can give an increase performance boost, there is not a clear boost asymptotically. More-
over, we found it challenging to evaluate CRvNN fairly. In the 100 samples dataset, CRvNN with
early halting can just induce bad trees (given lack of enough data to be trained well) and halt very
fast (unreflective of realistic performance) but increasing number of samples makes the analysis
more cumbersome overall for all other models. So we instead show the “worst case” performance
of CRvNN. The “worst case” is the case when CRvNN does not halt early; thus, to simulate the
“worst case” we disable early halting. The “worst case” is also still practically relevant and needed
to be considered to set up the hyperparameters (like batch size) properly so that the model does
not run out of memory during training because of the “worst case” induction. With this setup, we
find CRvNN to be in-between in terms of performance. We discuss more about it in comparison to
BT-Cell models in the next section.

BT-GRC: The time complexity of BT-GRC is O(n(knd2 + k3nd)). k (beam size) is technically
a relative small constant and can be ignored in asymptotic analysis (bringing BT-GRC at a similar
complexity level to Gumbel-Tree GRC), but we keep it here for better exposition of the effect of
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beam size (k). Similar to most other models here, BT-GRC has to take an outer sequential steps
of n. In each sequential step, similar to GumbelTreeGRC it has to calculate all parent candidates
which can lead to a complexity of O(nd2), but since now we have to do the same for each of the
k beams we have a multiplicative effect: O(knd2). However, this nd2 computation can be done in
parallel (all parent candidates are computed in parallel in GumbelTreeGRC). Similarly each beams
are independent and can be computed in parallel as well. So in effect the computation cost here is
similar to increasing the batch size of GumbelTreeGRC by k. The term k3nd indicates the selection
costs of k vectors of size d from k2 vectors of size d for a sequence of size n. Again, in practice
this can be also parallelized by creating a k2 permutation matrix and performing a single matrix
multiplication in CUDA. Overall, this doesn’t add as much cost over parent composition.

As we a priori suspected, empirically, we also verified the increased time/memory cost of BT-GRC
in different sequence length to match the effect of increasing the batch size of GumbelTreeGRC by
k. Even though, ultimately, k is a constant, in practice, this can still lead to a significant expense.
This is where small k (example beam 2) can be valuable. As we can see because most computation
through k is parallelized the time is not changed as much in changing from beam size (k) 2 to 5. But
the memory consumption can be significantly decreased with lower beam (k = 2). Thus, BT-Cell
with beam size 2 can be an attractive choice here particularly when it can still perform relatively on
par with bigger beam models on synthetic logical inference and natural language tasks. Also with
softpath and beam size 2, listops performance is still decent.

Another interesting point to note is that BT-GRC does not rely on any n2 matrix as CRvNN. Thus,
we can see that its memory consumption scales better with increasing length than CRvNN. For
example, in sequence length 200-250, CRvNN took slightly less memory than BT-GRC, but in
sequence length 900-1000, CRvNN takes nearly twice as much memory compared to BT-GRC.

However, we wouldn’t claim that CRvNN is strictly worse than BT-GRC in efficiency departments
because CRvNN can be made more efficient by bounding its outer sequential loop and dynamic
halting (but these factors are more tricky to fairly analyze).

BT-GRC + Softpath: Although the forward propagation complexity should be nearly the same for
Softpath, in practice we find that adding Softpath increases both the memory and time significantly
compared to base BT-GRC. We find that this is because of added backpropagation expenses because
of more complicated gradient propagation. We verified this by keep the forward network of Softpath
variant the same and using Pytorch’s detach() function to cut the gradient from Top-K Softpath
selection. This change leads to similar empirical efficiency to base BT-GRC. Nevertheless, despite
the added costs, Softpath is still comparable to CRvNN and much faster than OM, CYk-GRC, SOFT
top-k, and BSRP-GRC. Moreover, Softpath with beam size 2 still remains an attractive option with
further lowered memory consumption.

BT-GRC + SOFT: As we already claimed before using differentiable sorting algorithm (SOFT
Top-k) (Xie et al., 2020) in a recursive loop can bring significant overhead and slowdown. We show
it empirically in Table 9. Replacing Softpath with SOFT Top-k can increase the time taken by around
3× compared to BT-GRC+Softpath.

E.7 PARSE TREE ANALYSIS

In this section, we analyze the induced structures of BT-Cell models. Note, however, although in-
duced structures can provide some insights to the model, we can draw limited conclusions from
them. First, if we take a stance similar to Choi et al. (2018) in considering it suitable to allow
different kinds of structures to be induced as appropriate for a specific task then it’s not clear how
structures should be evaluated by themselves (besides just the donwstream task evaluations). Sec-
ond, the extracted structures may not completely reflect what the models may implicitly induce
because the recursive cell can override some of the parser decisions (given how there is evidence
that even simple RNNs Bowman et al. (2015b) can implicitly model different tree structures within
its hidden states to an extent even when its explicit structure always conform to the left-to-right or-
der of composition). Third, even if the extracted structure perfectly reflects what the model induces,
another side of the story is the recursive cell itself and how it utilizes the structure for language un-
derstanding. This part of the story can still remain unclear because of the blackbox-nature of neural
nets. Nevertheless, extractive structures may still provide some rough idea of the inner workings of
BT-Cell variants.
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Score Parsed Structures
BT-GRC (beam size 5)

0.42 ((i (did not)) (((like a) (single minute)) ((of this) film)))
0.40 (((i (did not)) ((like a) (single minute))) ((of this) film))
0.20 ((i (did not)) (((like a) ((single minute) of)) (this film)))
0.40 ((i (shot an)) ((elephant in) (my pajamas)))
0.21 (((i shot) (an elephant)) ((in my) pajamas))
0.19 (((i shot) (an elephant)) (in (my pajamas)))
0.19 ((i shot) ((an elephant) ((in my) pajamas)))
0.40 ((john saw) ((a man) (with binoculars)))
0.40 (((john saw) (a man)) (with binoculars))
0.20 ((john (saw a)) ((man with) binoculars))
0.61 (((roger (dodger is)) (one (of the))) (((most compelling) (variations of)) (this theme)))
0.40 (((roger (dodger is)) ((one (of the)) (most compelling))) ((variations of) (this theme)))

BT-GRC (beam size 2)
0.50 ((i ((did not) like)) (((a single) minute) ((of this) film)))
0.50 ((i (((did not) like) (a single))) ((minute of) (this film)))
0.50 ((i (shot an)) ((elephant in) (my pajamas)))
0.50 ((i ((shot an) elephant)) ((in my) pajamas))
0, 51 ((john (saw a)) ((man with) binoculars))
0.49 (john (((saw a) man) (with binoculars)))
1.0 ((roger ((dodger is) one)) ((((of the) most) (compelling variations)) ((of this) theme)))

Table 10: Parsed Structures of BT-GRC trained on MNLI. Each block represents different beams.
.

In Table 10, we show the parsed structures of some iconic sentences by BT-GRC after it is trained
on MNLI. We report all beams and their corresponding scores. Note, although beam search ensures
that the sequence of parsing actions for each beam is unique, different sequences of parsing action
can still lead to the same structure. Thus, some beams end up being duplicates. In such cases, for
the sake of more concise presentation, we collapse the duplicates into a single beam and add up their
corresponding scores. This is why we can note in Table 10 that we sometimes have fewer induced
structures than the beam size.

At a rough glance, we can see that the different induced structures roughly correspond to human
intuitions. One interesting appeal for beam search is that it can more explicitly account for ambigu-
ous interpretations corresponding to ambiguous structures. For example, “i shot an elephant in my
pajamas” is ambiguous with respect to whether it is the elephant who is in the shooter’s pajamas,
or if it is the shooter who is in the pajamas. The induced structure (beam size 5 model in Table 10)
(((i shot) (an elephant)) ((in my) pajamas)) corresponds better to the latter interpretation whereas
((i shot) ((an elephant) ((in my) pajamas))) corresponds better to the former interpretation (because
“an elephant” is first composed with “in my pajamas”).

Similar to above, “john saw a man with binoculars” is also ambiguous. Its interpretation is ambigu-
ous with respect to whether it is John who is seeing through binoculars, or whether it is the man
who just possesses the binoculars. Here, again, we can find (beam size 5 model in Table 10) that the
induced structure (((john saw) (a man)) (with binoculars) corresponds better to the former interpre-
tation whereas ((john saw) ((a man) (with binoculars))) corresponds better to the latter. Generally,
we find the score distributions to have a high entropy. A future consideration would be whether we
should add an auxiliary objective to minimize entropy.

In Table 11, we show the parsed structures of the same sentences by BT-GRC+Softpath after it is
trained on MNLI, and in Table 12, we show the same for BT-GRC+Gumbelpath. Most of the points
above applies here for Softpath and Gumbelpath as well. Interestingly, Softpath and Gumbelpath
seemed to have a relatively lower entropy distribution - that is most evident in beam size 2. We
also note that Gumbelpath structures are of a similar quality despite having much lower empirical
performance in MNLI.
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Score Parsed Structures
BT-GRC + Softpath (beam size 5)

0.42 (((i did) (not like)) (((a single) minute) ((of this) film)))
0.20 ((((i did) not) ((like a) single)) ((minute of) (this film)))
0.19 ((((i did) (not like)) ((a single) minute)) ((of this) film))
0.19 (((i (did not)) ((like a) single)) ((minute of) (this film)))
0.41 (((i shot) an) ((elephant in) (my pajamas)))
0.21 (((i shot) (an elephant)) ((in my) pajamas))
0.19 ((i (shot an)) ((elephant in) (my pajamas)))
0.19 ((((i shot) an) (elephant in)) (my pajamas))
0.21 ((john (saw a)) ((man with) binoculars))
0.20 (((john saw) (a man)) (with binoculars))
0.20 ((john saw) ((a man) (with binoculars)))
0.19 ((john ((saw a) man)) (with binoculars))
0.40 (((roger dodger) (is one)) ((((of the) most) (compelling variations)) ((of this) theme)))
0.21 (((roger (dodger is)) ((one of) the)) (((most compelling) variations) ((of this) theme)))
0.20 ((((roger dodger) (is one)) ((of the) most)) ((compelling variations) ((of this) theme)))
0.19 ((roger (dodger is)) ((((one of) the) ((most compelling) variations)) ((of this) theme)))

BT-GRC + Softpath (beam size 2)
0.57 ((i ((did not) like)) (((a single) minute) ((of this) film)))
0.43 ((i ((did not) like)) (((a single) (minute of)) (this film)))
0.54 ((i ((shot an) elephant)) ((in my) pajamas))
0.46 ((i (shot an)) ((elephant in) (my pajamas)))
0.55 ((john (saw a)) ((man with) binoculars))
0.45 ((john ((saw a) man)) (with binoculars))
0.53 ((roger ((dodger is) one)) ((((of the) most) (compelling variations)) ((of this) theme)))
0.47 (((roger ((dodger is) one)) ((of the) most)) ((compelling variations) ((of this) theme)))

Table 11: Parsed Structures of BT-GRC + Softpath trained on MNLI. Each block represents different
beams.

.

We found the structures induced by BT-Cell variants after training on SST5 or IMDB to be more
ill-formed. This may indicate that sentiment classification does not provide a strong enough signal
for parsing or rather, exact induction of structures are not as necessary (Iyyer et al., 2015). We show
the parsings of these models after training on IMDB and SST datasets in a text file included in the
supplementary.

F EXTENDED RELATED WORKS

Initially RvNN Pollack (1990); Socher et al. (2010) was used with user-annotated tree-structured
data. Some explored use of heuristic trees such as balanced trees for RvNN-like settings
(Munkhdalai & Yu, 2017; Shi et al., 2018). In due time, several approaches were introduced for
dynamically inducing structures from data for RvNN-style processing. This includes the greedy
easy-first framework using children-reconstruction loss (Socher et al., 2011) or gumbel softmax
(Choi et al., 2018), RL-based frameworks (Havrylov et al., 2019), CYK-based framework (Le &
Zuidema, 2015; Maillard et al., 2019; Drozdov et al., 2019; Hu et al., 2021), shift-reduce parsing
or memory-augmented or stack-augmented RNN frameworks (Grefenstette et al., 2015; Bowman
et al., 2016; Yogatama et al., 2017; Maillard & Clark, 2018; Shen et al., 2019a; DuSell & Chi-
ang, 2020; 2022), and soft-recursion-based frameworks (Chowdhury & Caragea, 2021; Zhang et al.,
2021). Besides RvNNs, other approaches range from adding information-ordering biases to hidden
states in RNNs (Shen et al., 2019b) or even adding additional structural or recursive constraints to
Transformers (Wang et al., 2019; Nguyen et al., 2020; Fei et al., 2020; Shen et al., 2021; Csordás
et al., 2022).
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Score Parsed Structures
BT-GRC + Gumbelpath (beam size 5)

0.42 (((i (did not)) (like a)) ((single (minute of)) (this film)))
0.38 (((i did) ((not like) (a single))) ((minute (of this)) film))
0.20 (((i did) ((not like) (a single))) ((minute (of this)) film))
0.43 ((i (shot an)) ((elephant in) (my pajamas)))
0.20 (((i shot) (an elephant)) ((in my) pajamas))
0.19 (((i shot) (an (elephant in))) (my pajamas))
0.18 (((i (shot an)) (elephant in)) (my pajamas))
0.39 (((john saw) (a man)) (with binoculars))
0.39 ((john saw) ((a man) (with binoculars)))
0.21 ((john (saw a)) ((man with) binoculars))
0.41 (((roger (dodger is)) (one (of the))) ((most (compelling variations)) ((of this) theme)))
0.21 (((roger dodger) (is one)) (((of the) (most (compelling variations))) ((of this) theme)))
0.20 (((roger dodger) ((is one) (of the))) ((most (compelling variations)) ((of this) theme)))
0.19 (((roger (dodger is)) ((one (of the)) (most (compelling variations)))) ((of this) theme))

BT-GRC + Gumbelpath (beam size 2)
0.58 (((((i did) (not like)) (a single)) (minute (of this))) film)
0.42 (((((i did) (not like)) (a single)) (minute of)) (this film))
0.64 (((i (shot an)) (elephant (in my))) pajamas)
0.36 (((i (shot an)) (elephant in)) (my pajamas))
0.53 ((john (saw a)) (man (with binoculars)))
0.47 (((john (saw a)) (man with)) binoculars)
0.51 (((((roger dodger) (is one)) (of the)) (most (compelling variations))) (of (this theme)))
0.49 ((((((roger dodger) (is one)) (of the)) (most (compelling variations))) (of this)) theme)

Table 12: Parsed Structures of BT-GRC + Gumbelpath trained on MNLI. Each block represents
different beams.

.

G LIMITATIONS AND FUTURE WORKS

The ideal future direction would be to extend to methods which generalize better in all aspects while
maintaining computational efficiency and at the same time having a more flexible architecture for
handling more free structures like non-projective trees or directed acyclic graphs and also richer
classes of languages (DuSell & Chiang, 2022; Del’etang et al., 2022). Another direction to explore
would be to linearize the recursion particularly taking inspiration from state space models (Gu et al.,
2022) to make these models more scalable.

H HYPERPARAMETERS

For all recursive/recurrent models, we use a linear layer followed by layer normalization for initial
leaf transformation before starting the recursive loop (similar to Shen et al. (2019a); Chowdhury &
Caragea (2021)). Overall we use the same boilerplate classifier architecture for classification and the
same boilerplate sentnece-pair siamese architecture for logical inference as Chowdhury & Caragea
(2021) over our different encoders. In practice, for BT-Cell, we use a stochastic top-k through
gumbel perturbation similar to Kool et al. (2019). However, we find deterministic selection to work
similarly.

In terms of the optimizer, hidden size, and other hyperparameters besides dropout, we use the same
ones as used by (Chowdhury & Caragea, 2021) for all models for corresponding datasets; for number
of memory slots and other ordered memory specific parameters we use the same ones as used by
(Shen et al., 2019a). For BSRP-Cell we use a beam size of 8 (we also tried with 5 but results
were similar or slightly worse). We use a dropout rate of 0.1 for logical inference for all models
(tuned on the validation set using grid search among [0.1, 0.2, 0.3, 0.4] with 5 epochs per run using
BalancedTreeCell for GRC-based models and GumbelTreeLSTM for LSTM based models). We
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use dropouts in the same places as used in (Chowdhury & Caragea, 2021). We then use the same
chosen dropouts for ListOps. We tune the dropouts for SST in the same way (but with a maximum
epoch of 20 per trial) on SST5 using RecurrentGRC for GRC-models, and Gumbel-Tree-LSTM for
LSTM models. After tuning, for GRC-based models in SST5, we found a dropout rate of 0.4 for
input/output dropout layers, and 0.2 for the dropout layer in the cell function. We found a dropout
of 0.3 for LSTM-based models in SST5. and We share the hyperparameters of SST5 with SST2 and
IMDB. For MNLI, we used similar settings as Chowdhury & Caragea (2021).

For NDR experiments, we use the same hyperparameters as used for ListOps by Csordás et al.
(2022). The hyperparameters will also be available in code.

All codes are run in a single RTX A6000 GPU.
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