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Abstract

Knowledge transfer between multi-omic single-cell data aims to effectively transfer
cell types from scRNA-seq data to unannotated scATAC-seq data. Several ap-
proaches aim to reduce the heterogeneity of multi-omic data while maintaining the
discriminability of cell types with extensive annotated data. However, in reality, the
cost of collecting both a large amount of labeled scRNA-seq data and scATAC-seq
data is expensive. Therefore, this paper explores a practical yet underexplored
problem of knowledge transfer across multi-omic single-cell data under cell type
scarcity. To address this problem, we propose a semi-supervised knowledge transfer
framework named Dual label scArcity elimiNation with Cross-omic multi-samplE
Mixup (DANCE). To overcome the label scarcity in scRNA-seq data, we generate
pseudo-labels based on optimal transport and merge them into the labeled scRNA-
seq data. Moreover, we adopt a divide-and-conquer strategy which divides the
scATAC-seq data into source-like and target-specific data. For source-like samples,
we employ consistency regularization with random perturbations while for target-
specific samples, we select a few candidate labels and progressively eliminate
incorrect cell types from the label set for additional supervision. Next, we gener-
ate virtual scRNA-seq samples with multi-sample Mixup based on the class-wise
similarity to reduce cell heterogeneity. Extensive experiments on many bench-
mark datasets suggest the superiority of our DANCE over a series of state-of-the-art
methods. Code is available at https://github.com/zfkarl/DANCE.

1 Introduction

In the realm of biology and medicine, many experimental methods [18, 25, 53, 51, 54, 63] using
high-throughput sequencing technologies have emerged and characterize diverse properties of single
cells. The predominant techniques are single-cell RNA-sequencing (scRNA-seq) [55, 88, 49] and
single-cell ATAC-sequencing (scATAC-seq) [15, 75] for understanding complicated organisms and
tissues at the single cell level. Specifically, scATAC-seq is an epigenomic profiling method designed
to assess chromatin accessibility and provides an additional layer of information that complements
scRNA-seq, enhancing the ability to comprehend epigenetic heterogeneity within complex tissues.
However, identifying the cell types of scATAC-seq data is challenging because of the high sparsity,
large dimensionality, and increasing scale of scATAC-seq data. Considering the lack of cell type
annotations for scATAC-seq data, several methods [38, 36, 72] have been proposed to transfer cell
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types from fully-labeled scRNA-seq data to scATAC-seq data2. Among these methods, scJoint [38]
introduces a scalable transfer learning framework that successfully incorporates atlas-scale scRNA-
seq with scATAC-seq data based on kNN techniques. scBridge [36] integrates multi-omic data
heterogeneously by identifying reliable scATAC-seq cells with smaller omic differences in comparison
to scRNA-seq cells. scNCL [72] employs prior domain knowledge along with contrastive learning to
address the challenge of heterogeneous features from different modalities.

Despite significant progress made by the aforementioned approaches, their success relies on a
substantial amount of annotated scRNA-seq data. In reality, annotating both scRNA-seq data
and scATAC-seq data is expensive and challenging. Therefore, this study explores a practical yet
unexplored problem of knowledge transfer across multi-omic single-cell data under label scarcity
in both scRNA-seq data and scATAC-seq data. In this study, only a small fraction of scRNA-seq
data with cell types annotated, while a significant portion of both scRNA-seq data and scATAC-seq
data lack annotations. In contrast to previous works assuming abundant labeled scRNA-seq data, this
setting aligns more closely with practical scenarios.

Addressing this realistic problem requires the consideration of two crucial aspects. Firstly, how to
learn representations with distinct cell type discriminability under label scarcity in both scRNA-seq
data and scATAC-seq data? Learning representations with good discriminability relies on a large
amount of annotated data, yet collecting labeled data is extremely costly and difficult. Therefore, it
poses a significant challenge in situations where both scRNA-seq data and scATAC-seq data lack a
substantial amount of labels. Secondly, how to reduce cell heterogeneity between different omic data
while maintaining cell type discriminability? Another challenge is how to reduce the heterogeneous
gap between different omic data, which is crucial for cell type transfer. Additionally, while reducing
cell heterogeneity, there is a high likelihood of compromising cell type discriminability. Even worse,
this becomes significantly more challenging under label scarcity.

To answer these questions, we propose a semi-supervised knowledge transfer framework termed
Dual label scArcity elimiNation with Cross-omic Multi-samplE Mixup (DANCE). Since the class
distribution of the whole scRNA-seq data is unattainable, we start by injecting semantic knowledge
using labeled source scRNA-seq data, and then generate pseudo-labels based on optimal transport (OT)
for unlabeled scRNA-seq data. Afterward, the unlabeled scRNA-seq data, along with pseudo-labels,
are incorporated into the labeled set. For unlabeled target scATAC-seq data, due to the heterogeneous
gap, we adopt a divide-and-conquer strategy, which separates the whole data into source-like data
and target-specific data. For source-like samples, we employ consistency regularization to force the
model to make consistent predictions after random perturbations. For target-specific samples, we
select ambiguous labels and then filter the incorrect labels, which can guide the optimization in a
soft manner. To mitigate the heterogeneous gap, we propose to generate virtual scRNA-seq samples
by multi-sample Mixup according to class-wise similarity and then we perform a sample-to-sample
alignment strategy. The effectiveness of DANCE is validated by adopting a series of benchmark datasets
and conducting comprehensive experiments in comparison to various state-of-the-art approaches.

To summarize, the main contribution of this paper includes: (1) New Problem. We study a realistic yet
underexplored problem of knowledge transfer across multi-omic single-cell data under label scarcity
in both scRNA-seq and scATAC-seq data. This problem holds significant implications for reducing
the annotation cost of single-cell data. (2) Novel Methodology. We propose a semi-supervised
framework named DANCE for this problem. DANCE introduces OT-based dataset expansion and a
divide-and-conquer strategy for dual label scarcity elimination. Additionally, DANCE employs an
effective alignment strategy of cross-omic multi-sample Mixup to reduce cell heterogeneity. (3)
Comprehensive Experiments. Through extensive experiments with different settings on various
benchmark datasets, we demonstrate the superiority of DANCE against many state-of-the-art methods.

2 Related Work

2.1 Multi-omic single-cell Data Integration

The integration of multi-omic single-cell data constitutes a fundamental challenge in elucidating
biological processes. Multi-omic single-cell data affords a multitude of perspectives on cellular
functions, thereby augmenting our understanding of biology. Some approaches [69, 44, 59, 37,

2We use scATAC-seq as an example and there could be other biological layers.
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Figure 1: An overview of DANCE. We first utilize labeled scRNA-seq samples to inject semantics
and expand the scRNA-seq dataset by OT-based pseudo-labeling. Then we employ consistency
regularization and ambiguous set learning for source-like and target-specific scATAC-seq samples. In
addition, we perform cross-omic multi-sample Mixup to reduce cell heterogeneity.

30, 61, 2] opt for denoising, batch correction, and integrating single-cell data across numerous
experiments, encompassing transcriptomic data and scATAC-seq data. Nevertheless, the simple
application of these methodologies to multi-omic data integration poses computational challenges
and frequently yields unsatisfactory results, given the considerable differences in dimensions and
sparsity levels among different modalities. Moving a step closer, methodologies such as scAI [25]
and MOFA+ [3] utilize factor analysis and joint clustering to concurrently measure multi-omic data
within the same cell. Nevertheless, these methods require pairwise data format, and executing paired
measurements presents technical challenges and involves high costs. Therefore, another series of
approaches have been proposed to measure multi-omic data from different cells, including manifold
alignment [63, 1, 39], matrix factorization [18, 64, 84], correlation-based methods [5, 54], and neural
network approaches [38, 36, 72]. Recent approaches often map multi-omic data into low-dimensional
spaces through shared auto-encoders [21, 66, 56, 20], and Graph Neural Networks (GNNs) encoders
[65, 60, 40], which focus on knowledge transfer across multi-omic data. For instance, scBridge [36]
maps multi-omic single-cell data into a shared embedding space and mines reliable samples for dataset
expansion, thereby merging the scATAC-seq and scRNA-seq data into the same dataset. GLUE [8]
combines a knowledge-based graph and adversarial alignment to explore regulatory interaction across
various omic layers. scCLIP [68] introduces a contrastive learning approach to integrate multi-omic
single-cell data. It aligns the representations of pairwise multi-omic single-cell data without the
usage of cell type labels. Despite their significant strides in integrating heterogeneous cells, all these
methods overlook a practical challenge in reality, i.e., the difficulty of annotating both scRNA-seq
data and scATAC-seq data. Therefore, there is an urgent need for an approach that can effectively
alleviate label scarcity in knowledge transfer across multi-omic single-cell data.

2.2 Semi-supervised Learning

To tackle the label scarcity issue in reality, semi-supervised learning has been widely studied with
various applications, such as image classification [46, 23, 7, 6], semantic segmentation [48, 14],
and object detection [24, 80]. Recent studies on semi-supervised learning include consistency
regularization approaches [46, 52, 67] and pseudo-labeling approaches [6, 7, 23, 79]. Consistency
regularization usually first introduces random perturbations from various sources, including data
input [67], network parameters [47], and deep features [28]. By encouraging the model to make
consistent predictions under these perturbations, it can still learn good representations even under
resource constraints. Pseudo-labeling typically assigns pseudo-labels to unlabeled samples using a
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neural network. It often comes with some special techniques, such as dynamic thresholding [78, 33]
and curriculum learning [29, 22, 10]. Then those pseudo-labels together with their corresponding
samples are added to the dataset for future use. Besides the advanced approaches in computer vision,
other related areas such as node classification [13, 62] and reinforcement learning [87] also benefit
from semi-supervised learning. However, to the best of our knowledge, there exists no previous
work to study the problem of semi-supervised knowledge transfer across multi-omic single-cell data.
Therefore, we provide a semi-supervised framework termed DANCE to promote the understanding of
semi-supervised learning in the field of bioinformatics.

3 Problem Definition

In our problem, we have two datasets D(s) and D(t), which denote the source scRNA-seq dataset
and the target scATAC-seq dataset, respectively. In the semi-supervised setting, the scRNA-seq
dataset D(s) is separated into two parts, the labeled dataset D(s),l and the unlabeled dataset D(s),u,
where D(s),l = {(x(s),l

i , y
(s),l
i )}N l

i=1 consists of N l scRNA-seq samples x(s),l
i and the corresponding

labels y(s),li , and D(s),u = {(x(s),u
i )}Nu

i=1 includes Nu unlabeled scRNA-seq samples x(s),u
i . The

target scATAC-seq dataset with the size N t is denoted as D(t) = {(x(t)
i )}Nt

i=1 , which includes
N t scATAC-seq samples x(t)

i . We focus on the closed-set setting, thus both scRNA-seq data and
scATAC-seq data are assumed to share the same set of C cell types. A shared encoder F (·) is
adopted to map both the scRNA-seq samples and scATAC-seq samples into the embedding space.
Following the encoder, we utilize a classifier H(·) to convert representations into softmax predictions
corresponding to different cell types. The representations and predictions are denoted as zi = F (xi)
and pi = softmax(H(zi)), respectively. It should be noted that only a small portion of the scRNA-
seq data is labeled, and a significant number of both scRNA-seq samples and scATAC-seq samples
lack cell type annotations. We aim to transfer the semantic information related to different cell types
from D(s) to D(t), which has two expectations: (1) The cell representations of scRNA-seq data and
scATAC-seq data are mapped into a shared common embedding space with the similarity structure
preserved. (2) The cell type annotations on scATAC-seq data are accurate after label transfer.

4 The Proposed Approach

4.1 Framework Overview

This paper investigates the problem of semi-supervised knowledge transfer across multi-omic single-
cell data. We employ a shared encoder and classifier for heterogeneous scRNA-seq data and scATAC-
seq data. The labeled scRNA-seq data are utilized to inject the semantic knowledge. To overcome
label scarcity in source scRNA-seq data, we generate pseudo labels based on optimal transport and
merge them into the labeled set. To address label scarcity in target scATAC-seq data, we perform
consistency regularization for source-like samples and learn from ambiguous labels for target-specific
samples. To reduce the cell heterogeneity, we generate virtual scRNA-seq samples through cross-omic
multi-sample Mixup and align the heterogeneous multi-omic data. The overview of the proposed
framework is illustrated in Figure 1, and each component will be elaborated in the next sections.

4.2 Optimal Transport-based Dataset Expansion for Source scRNA-seq Data

The first obstacle is the label scarcity in scRNA-seq data. Recently, pseudo-labeling is a commonly
used technique in semi-supervised learning [52, 78] and domain adaptation [83, 31] problems, which
usually operate at the sample level [52, 83] by assigning the label with the highest confidence to each
sample. However, this sample-level prediction-based pseudo-labeling strategy could be biased to easy
classes, leading to biased and suboptimal results. To tackle this, we incorporate optimal transport
(OT) [12, 9, 11] into the pseudo-labeling process, which is capable of taking into account prior cell
type distributions from a global view to reduce potential noise in pseudo-labeling.

Here we first recall the knowledge of OT. OT is a constrained optimization problem designed to
discover the optimal coupling matrix Q for mapping one probability distribution to another, with
the goal of minimizing the overall cost. To represent the cost of transporting data from γ and η,
we introduce a cost matrix C ∈ R|γ|×|η|, where |γ| and |η| denote the dimension of γ and η,
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respectively. By applying the Sinkhorn algorithm [17] to minimize the Sinkhorn distance, we can
obtain the optimal coupling matrix Q:

min
Q∈

∏
(γ,η)

∑
CijQij +

1

σ
(−Qij logQij), (1)

where
∏
(γ,η) =

{
Q ∈ R|γ|×|η|

+ | Q1|η| = γ,Q⊤1|γ| = η
}

and σ is set to 10 empirically.

To employ OT for pseudo-labeling, we begin by training the encoder and classifier on labeled scRNA-
seq data, enabling the injection of semantic knowledge into the model. Similar to traditional cell type
annotation problems [16, 77], we leverage a small number of labeled scRNA-seq data and minimize
the cross-entropy between the classifier’s output and the cell type labels:

LS =
∑

x
(s),l
i ∈D(s),l

CE(p
(s),l
i , y

(s),l
i ), (2)

where p
(s),l
i represents the predicted distribution of x(s),l

i .

Then, we aim to transfer the semantic information from labeled scRNA-seq samples to unlabeled
ones. In particular, a mini-batch of B unlabeled samples is fed to our neural network to generate
the prediction matrix P ∈ RB×C , which could be biased to easy classes and thus inaccurate. To
tackle this, we learn an optimal coupling matrix that should obey prior cell type distributions from
a global view. Since we do not have prior information, we adopt a uniform distribution as in the
polytope

∏
( 1
B1B ,

1
C1C), where 1B and 1C indicate two vector of ones with dimensions of B and

C, respectively. In addition, the optimal Q should be close to P . Therefore, we define the cost matrix
C as −logP , and Eqn. 1 can be reformulated as:

min
Q∈

∏
( 1
B 1B , 1

C 1C)

∑
ij

−logPijQij +
1

σ
(−Qij logQij). (3)

The coupling matrix Q obtained by optimizing Eqn. 3 can be used to generate pseudo-labels for
unlabeled scRNA-seq data. Formally, the pseudo-labels can be defined as:

ŷ
(s),u
i = argmaxjQij . (4)

Then the unlabeled scRNA-seq samples and their corresponding pseudo-labels would be added to the
labeled scRNA-seq dataset:

D(s),l ← ∪N
u

i=1{(x
(s),u
i , ŷ

(s),u
i )} ∪ D(s),l. (5)

Leveraging OT-based pseudo-labeling for dataset expansion can effectively mitigate label scarcity in
scRNA-seq data. On the one hand, we employ labeled scRNA-seq data for semantic injection using
Eqn. 2, obtaining high-quality pseudo-labels. On the other hand, with the dataset expanded during
the current iteration, more information is available for Eqn. 2 in the subsequent iteration. This leads
to generating more reliable pseudo-labels in the following iterations. Through continuous iterative
training, we can progressively enhance both the scale and quality of the scRNA-seq dataset. Next, we
theoretically support the superiority of OT-based dataset expansion. See proof in Appendix A.
Theorem 4.1. Let Pn = 1

BP be the normalized version of P . Then after our optimal transport-based
dataset expansion, we have

(1) For any ε > 0 and large enough σ, we have CE(Pn,P ) + ε ≥ CE(Q,P ) + CP , where

CP =
∑C

j=1

(
1
B

∑B
i=1 pij −

1
C

)
·
(

1
B

∑B
i=1− log pij

)
and CE(Q,P ) =

∑
i,j CE(Qij ,Pij).

(2) Let L = (lij)B×C denote the soft-version of true cell labels, where lij =
max

{
1{cell i belongs to class j}, δ

}
and δ > 0. Suppose 0 < Cmin ≤ lij/Pij ≤ Cmax for all

1 ≤ i ≤ B and 1 ≤ j ≤ C. Then, CE(Pn,L) + ε + CL ≥ CE(Q,L) + CP , where
CL = logCmax − logCmin.

Remarks. CP characterizes how far Pn is from
∏
( 1
B1B ,

1
C1C). If the mini-batch was uniformly

sampled across cell-types, then 1
B

∑B
i=1 pij should be close to 1

C . Thus, CP will be close to zero.
Moreover, for those hard classes, pij’s are close to 1

C , hence both 1
B

∑B
i=1 pij and

∑B
i=1− log pij

will not be too large. Hence, on the whole, CP can be relatively small, which demonstrates that our
optimization has the potential to achieve the desired distribution.
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4.3 Divide and Conquer for Target scATAC-seq Data

Through OT-based pseudo-labeling, we effectively address the label scarcity issue in scRNA-seq
data. However, due to the heterogeneous gap, it would not be optimal when employing a similar
approach for scATAC-seq data. Here, to tackle label scarcity in scATAC-seq data, we adopt a divide-
and-conquer learning strategy, which first divides the scATAC-seq data into source-like data and
target-specific data and then utilizes separate approaches for optimization.

In particular, by comparing the confidence of the predictions and a threshold, we divide scATAC-seq
data into two parts DSL and DTS :

DSL = {xi ∈ D(t)|max
c

p
(t)
i [c] > τ},DTS = D(t)/SSL, (6)

where p
(t)
i is the predicted distribution of x(t)

i . The threshold τ is used to control the size of two
groups and set to 0.9 according to previous works [52, 36]. These source-like samples are more
likely to have accurate pseudo-labels with high confidence using the pre-trained model. In contrast,
target-specific data are far away from source data distribution and thus the predictions could be noisy.
Therefore, we utilize separate strategies for these two parts.
Learning from Source-like Data. For these source-like samples, we utilize consistency regulariza-
tion to provide supervision [4, 32, 50, 52, 85]. Here, we add random perturbations (e.g., Gaussian
noise) to data, and then force the network to make consistent predictions for both original and
perturbed scATAC-seq samples. In particular, we can use ŷi = argmax(pi) to obtain the pseudo-
label of the original scATAC-seq sample. After that, we can get the prediction p̃i of the perturbed
scATAC-seq sample. Thus, the supervised loss can be formulated as:

LSL = − 1

|DSL|

|DSL|∑
i=1

C∑
c=1

ŷi
clog(p̃c

i ), (7)

where |DSL| represents the number of unlabeled scATAC-seq samples in DSL. In this way, we
combine pseudo-labeling with consistency learning to learn from source-like scATAC-seq samples.
Learning from Target-specific scATAC-seq Data. However, due to cell heterogeneity between
scRNA-seq and scATAC-seq data, many scATAC-seq samples would be far away from the source
modality. They are difficult to predict with low confidence scores [71, 85]. To tackle this challenge,
we introduce a soft way to learn from their ambiguous label sets instead of pseudo-labels. Here, for
each target-specific scATAC-seq sample, we first select the top-k classes with the highest probabilities
to make up the ambiguous label set and then introduce a soft supervised loss for reliable guidance.

To be specific, we first recall the predicted distribution pi for each sample xi in DTS . The negative
cell types are removed with a significant difference from the cell type with the highest probability. In
formulation, the removed labels should satisfy the following conditions:

max
c

pi[c]− pi[j] ≥ µ, (8)

where the threshold µ is initially set to 1e− 3 and gradually decreases during the training process.
The left labels make up the candidate label set:

Yi = {c ∈ Topk(pi)|max
c

pi[c]− pi[j] < µ}. (9)

Then, we employ a soft supervision loss to provide reliable guidance for target-specific samples:

LTS = − 1

DTS

DTS∑
i=1

k∑
j=1

αij1j∈Yi log(pi[j]), (10)

αij =

pi[j]/
∑
j∈Yi

pi[j], j ∈ Yi,

0, otherwise.

, (11)

where |DTS | denotes the number of target-specific samples. The weight αij can allow the model to
pay more attention to potential correct cell types with high probabilities.

Next, we provide the theoretical underpinnings to show that the quality of the soft labels from the
candidate label set is higher than that of hard labels. The proof can be found in Appendix A.
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Theorem 4.2. Suppose we randomly draw n samples (X1, . . . , Xn) from two classes {0, 1}, where
the proportion of class 1 is p. Further, suppose we can only observe a flawed version of these
class labels Z = (Z1, . . . , Zn) with error rate β > 0. That is, P(Zi ̸= Xi) = β. Under loss
L(p, z) =

∑n
i=1 zi log p+ (n−

∑n
i=1 zi) log(1− p), consider two estimates of p:

(1) phard = Argmin
p

L(p,Z).

(2) ptsoft = Argmin
p

L(p, tZ + (1− t)(1−Z)), where t ∈ (0, 1).

Then, there exists t0 ∈ (0, 1) such that for all t ∈ (t0, 1), we have E ∥ptsoft − p∥2 ≤ E ∥phard − p∥2 .

Remarks. In Eqn. 10, if we take pi[1] = p,pi[0] = 1 − p, and αij = t if j = Zi, then the
estimation under Eqn. 10 will degenerate to ptsoft.

4.4 Cross-omic Multi-sample Mixup for Cell Heterogeneity Reduction

Despite the proposed techniques in addressing the label scarcity problem, reducing the heterogeneous
gap between scRNA-seq data and scATAC-seq data remains an additional challenge. To tackle this
challenge, previous works [27, 19, 35, 34, 70] propose many strategies for cross-modal alignment.
However, these strategies have two major prerequisites. On the one hand, strategies based on
centroid learning [27, 19] require accurate label information from both source and target modalities to
aggregate samples of the same class. On the other hand, strategies based on cross-modal contrastive
learning [35, 34, 82] require pairwise information. Neither of these prerequisites is applicable to
our problem, as pairwise information is difficult to acquire in single-cell data, and the majority of
annotation information is missing. Towards this end, we propose a sample-to-sample alignment
strategy termed cross-omic multi-sample Mixup [81, 58, 86, 73], which first calculates the class-wise
similarity and then mixes the scRNA-seq samples in the hidden space for cross-omic alignment.

In particular, we transform the intrinsic distribution of the source scRNA-seq samples to align
with scATAC-seq samples in the hidden space. Since we cannot get accurate pairwise information,
we calculate the similarity between scRNA-seq samples and scATAC-seq samples and generate
virtual samples instead. Note that the weights of the classifier are considered as prototypes that
contain representative information of different cell types. We first form a weight matrix W =
[w1,w2, · · · ,wC ]

T ∈ RC×D, where D denotes the hidden dimension of the embeddings. Then, the
class-wise similarity can be determined using cosine distance:

Sij = cos(pT
i W,pT

j W) = |pT
i W| ⋆ |pT

j W|T , (12)

where | · | represents the L2 normalization. For a batch of B(s) scRNA-seq samples and a batch of
B(t) scATAC-seq samples, we can obtain a similarity matrix SB ∈ RB(s)×B(t)

using Eqn. 12. For
the sake of simplicity, we let B(s) = B(t) = B, and the similarity matrix within a mini-batch can
be formulated as SB ∈ RB×B . Afterwards, we employ the softmax function to convert S into the
weight matrixM for Mixup, which corresponds to the probability of sharing the same semantics:

M = softmax(S), (13)

where Mi collects the weights of B scATAC-seq samples corresponding to the i-th scRNA-seq
sample. Then, we can fuse the scRNA-seq samples into a virtual sample through Mixup:

zm,s
i =

B∑
j=1

Mij · zs
j . (14)

After getting the fused scRNA-seq samples, we can perform a sample-to-sample alignment strategy.
The loss function can be formulated as:

LA =
1

B

B∑
i=1

||zm,s
i − zt

i ||2. (15)
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Table 1: Quantitative comparisons (in %) with state-of-the-art approaches with various label ratios.
Bold numbers indicate beset results, and underlined numbers indicate second-beset results.

Label Ratio Low Mid High Low Mid High Low Mid High Low Mid High

Data snRNA_10X_v3_A-ATAC snRNA_10X_v3_A-snmC snRNA_10X_v2-ATAC snRNA_10X_v2-snmC

DAN [42] 20.56 20.13 20.33 44.20 46.55 53.72 27.50 29.14 30.47 54.33 55.08 49.95
CDAN [43] 23.46 21.29 21.84 20.38 26.00 27.76 27.67 22.71 21.51 39.08 32.97 38.08
MCC [26] 24.34 32.39 40.84 20.40 48.69 44.59 24.57 31.45 33.03 31.22 36.77 40.20
FixMatch [52] 24.38 33.45 41.60 20.42 44.58 41.98 24.93 31.61 33.04 31.66 36.60 41.32
scJoint [38] 17.58 19.52 18.86 23.46 24.27 21.86 19.39 18.51 17.78 21.48 24.43 22.11
scNCL [72] 22.62 21.21 22.92 27.16 59.78 60.07 21.98 28.11 30.19 59.65 67.47 68.89
scBridge [36] 25.57 38.50 41.86 21.64 32.74 35.71 19.39 16.29 42.36 12.70 20.85 38.48
Ours 50.23 51.02 51.42 75.72 78.67 80.12 50.83 52.90 54.79 60.12 72.24 78.04
Data snRNA_SMARTer-ATAC snRNA_SMARTer-snmC scRNA_SMARTer-ATAC scRNA_SMARTer-snmC

DAN [42] 22.02 27.07 28.06 48.28 55.93 57.67 21.23 20.02 20.31 41.96 54.31 52.39
CDAN [43] 20.99 28.65 30.07 33.87 35.37 51.19 22.05 21.50 21.58 34.66 42.43 38.70
MCC [26] 20.99 23.41 24.09 34.37 52.46 55.38 21.73 21.30 21.54 32.09 50.35 49.24
FixMatch [52] 21.25 24.23 24.88 33.80 52.05 54.78 22.07 21.77 22.32 31.55 49.98 49.38
scJoint [38] 11.05 13.25 15.89 22.88 18.84 20.21 19.62 18.63 17.77 23.94 23.09 23.28
scNCL [72] 19.89 20.07 20.05 49.68 69.50 73.39 19.93 19.91 19.71 45.28 62.55 62.69
scBridge [36] 26.44 36.34 42.00 36.01 39.75 36.15 28.32 29.69 32.13 13.13 26.58 30.08
Ours 47.43 52.78 54.95 52.31 70.18 77.94 46.40 48.19 49.92 51.56 77.37 78.62

Figure 2: Qualitative comparisons (in %) on CITE-ASAP with different label ratios.

4.5 Summarization

In practice, we first warm up the network through labeled scRNA-seq data, and then conduct the
training process in an end-to-end manner. The total loss function can be summarized as:

L = LS + LSL + λLTS + LA, (16)

where λ is a coefficient and set to 0.1 empirically.

The step-by-step training algorithm of our DANCE is summarized in Appendix B.

5 Experiment

5.1 Experimental Settings

Datasets. To validate the effectiveness of the proposed DANCE, we conduct extensive experiments
on several benchmark multi-omic single-cell datasets, with a brief introduction as follows: Mouse
Atlas Data [74]. The multi-omics data can be accessed from the Tabula Muris mouse data3, along
with the quantitative gene activity score matrix. In practice, the dataset is divided into multiple
subsets based on the various sources of multi-omics data. CITE-ASAP PBMC Data [45]. It is
derived from both control and stimulated conditions. CITE-seq encompasses both antibody-derived
tag (ADT) matrices and gene expression matrices, while ASAP-seq allows us to access the ADT
matrices and the chromatin accessibility matrices simultaneously. In this research, we extract the gene
expression matrices of CITE-seq and the chromatin accessibility matrices of ASAP-seq to construct
the scRNA-seq and scATAC-seq datasets. The statistics of these datasets can be seen in Appendix D.

Baselines. Various approaches are adopted for performance comparisons, including three domain
adaptation methods (DAN [42], CDAN [43], and MCC [26]), one semi-supervised learning method
(FixMatch [52]), and three latest multi-omic single-cell data integration methods (scJoint [38], scNCL
[72], and scBridge [36]). A brief introduction of these approaches is provided in Appendix E.

3https://tabula-muris.ds.czbiohub.org/
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Table 2: Ablation studies (in %) of DANCE in different settings. Bold numbers indicate beset results.
Dataset snRNA_10X_v3_A-ATAC snRNA_10X_v3_A-snmC scRNA_10X_v2-ATAC scRNA_10X_v2-snmC

Label Ratio Low Mid High Low Mid High Low Mid High Low Mid High

DANCE w/o OP 31.87 38.55 40.86 55.60 61.89 67.69 33.74 38.31 44.56 51.66 59.57 64.18
DANCE w/o SL 48.10 49.09 49.94 70.04 76.61 79.00 49.98 52.56 54.75 74.08 79.33 79.89
DANCE w/o TS 48.62 49.01 49.95 73.85 77.22 78.91 49.74 53.07 55.26 73.99 79.88 80.85
DANCE w/o CM 44.80 45.63 45.69 55.91 59.92 68.79 46.75 48.01 49.97 70.81 76.34 78.02
Full Model 50.23 51.02 51.42 75.72 78.67 80.12 52.02 54.38 56.30 75.23 81.38 81.76

scNCL Ours

(a) Parameter Sensitivity (b) t-SNE (c) A-distance

Figure 3: (a) The parameter sensitivity with respect to k and λ on scRNA_SMARTer-ATAC with
various label ratios. (b) The t-SNE visualization of two modalities (scRNA_10X_v2: red, ATAC:
blue) with high label ratio. (c) The A-distance comparison with different label ratios.

5.2 Experimental Results

Performance Comparison. To assess the performance of various knowledge transfer methods, we
conduct comprehensive quantitative experiments (Table 1) and qualitative experiments (Figure 2).
From the results, several conclusions can be drawn: Firstly, consistent results from both quantita-
tive and qualitative experiments reveal that DANCE significantly surpasses existing state-of-the-art
approaches. We attribute this to the factor that existing methods often only address the issue of label
scarcity in the target scATAC-seq data, overlooking the label scarcity issue in the source scRNA-
seq data. Consequently, when cell type annotations in scRNA-seq data are limited, not only does
the discriminability of representations suffer, but also the heterogeneous gap cannot be effectively
eliminated. DANCE excels in three main aspects. Firstly, it utilizes OT-based pseudo-labeling to
augment the scRNA-seq dataset, effectively alleviating label scarcity in scRNA-seq data. Secondly,
for scATAC-seq data, we employ a divide-and-conquer strategy with consistency regularization
and ambiguous set learning for two subsets of samples, addressing label scarcity in scATAC-seq
data. Additionally, our proposed cross-omic multi-sample Mixup mitigates cell heterogeneity in a
sample-to-sample manner. By combining these aspects, DANCE significantly outperforms previous
approaches by a large margin. Additionally, existing methods are data-hungry, heavily relying on cell
type annotations. Therefore, when the number of labels decreases, the performance drops rapidly.
In contrast, DANCE is data-efficient, capable of achieving excellent performance with fewer labels.
Consequently, the performance decline due to label reduction is less pronounced, thanks to our pro-
posed dual label scarcity elimination strategy. Due to the potential class imbalance issue in single-cell
data, simply increasing the number of labels may not improve performance for some methods. For
example, on the snRNA_SMARTer-snmC dataset, scBridge [36] achieves a performance of 36.15%
under high label ratio, which is not better than that of 39.75% under mid label ratio. In contrast, our
OT-based pseudo-labeling approach considers distributing pseudo-labels in a one-to-many manner,
effectively preventing biased predictions. Therefore, on all datasets, increasing the number of labels
leads to corresponding performance improvements for our DANCE.

Ablation Study. As depicted in Table 2, we conduct comprehensive experiments on different
model variants to explore the contributions of each proposed module. DANCE w/o OP represents
DANCE without the proposed OT-based pseudo-labeling. DANCE w/o SL denotes DANCE without the
consistency regularization for source-like samples. DANCE w/o TS indicates DANCE without the
ambiguous set learning for target-specific samples. DANCE w/o CM signifies DANCE without the
cross-omic multi-sample Mixup. From the results, it can be observed that the performance of DANCE
w/o OP significantly decreases. This indicates that OT-based pseudo-labeling effectively alleviates the
label scarcity issue in scRNA-seq data by generating pseudo-labels for source scRNA-seq data and
augmenting the scRNA-seq dataset. Additionally, the slight decrease in performance of DANCE w/o SL
suggests that for heterogeneous scATAC-seq data, applying consistency regularization to source-like
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samples can further enhance model performance. Similarly, the minor decrease in performance of
DANCE w/o TS suggests that target-specific samples should not be simply discarded as in previous
methods. For these samples, collecting potentially correct cell types and removing them can provide
weak supervision, thereby aiding performance improvement. Furthermore, the significant decrease in
performance of DANCE w/o CM underscores the severity of the cell heterogeneity issue. Our proposed
cross-omic multi-sample Mixup effectively eliminates the heterogeneous gap by generating mixed
source scRNA-seq samples that simulate the distribution of target scATAC-seq data and aligning the
two modalities. Thus, the effectiveness of all proposed modules is sufficiently validated.

Sensitivity Analysis. In Figure 3 (a), we analyze the sensitivity of two crucial hyper-parameters k
and λ on scRNA_SMARTer-ATAC. Firstly, we fix the other parameters to investigate the sensitivity
of the model to different values of k. Here, k denotes the size of the partial label set and is used to
control the number of potential correct cell types. As k varies within the range {2, 3, 4, 5, 6, 7}, the
model’s performance initially increases before gradually stabilizing. Considering all three scenarios,
the optimal performance is achieved at k = 4 or k = 5. Next, with other parameters fixed, we
analyze the sensitivity of the coefficient λ of LTS in Eqn. 10. Since LTS provides additional weak
supervision by removing incorrect cell types, it typically requires a small coefficient. We change
the value of λ within the range {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Similarly, the model’s performance
firstly increases and then decreases, with better performance observed at λ = 0.1.

t-SNE Visualization. In Figure 3 (b), we make the t-SNE [57] visualization to assess the heteroge-
neous gap of representations learned by scNCL [72] and our DANCE on scRNA_10X_v2-ATAC. Note
that the higher overlap degree between the red and blue parts reflects the lower cell heterogeneity
between scRNA-seq and scATAC-seq data. It can be observed that there is almost no overlap between
the representations of scNCL [72], indicating that it does not address the issue of cell heterogeneity.
In contrast, the representations of our DANCE exhibit a high degree of overlap, indicating that our
approach effectively mitigates cell heterogeneity even in the presence of label scarcity.

A-distance Comparison. In Figure 3 (c), we compare the A-distance on scRNA_10X_v2-ATAC
with various label ratios. The A-distance is calculated by employing a model and testing its ability to
distinguish between the two modalities. Therefore, a low A-distance indicates a small heterogeneous
gap. The A-distance is defined as: distA = 2(1 − 2ϵ), where ϵ is the test error. When ϵ = 0, the
upper bound of distA is 2. This indicates that there is a significant heterogeneous gap between
the two modalities, and the model can easily differentiate between them. From the results, it can
be observed that the A-distance of FixMatch [52] and scNCL [72] consistently remains close to 2,
indicating a significant heterogeneity between scRNA-seq data and scATAC-seq data. In contrast,
DANCE successfully reduces cell heterogeneity, resulting in a significant decrease in the A-distance.

6 Conclusion

In this paper, we focus on a realistic yet underexplored problem of knowledge transfer across multi-
omic single-cell data under label scarcity in both scRNA-seq and scATAC-seq data, and propose a
semi-supervised framework termed DANCE for this problem. Specifically, DANCE operates dual label
scarcity elimination by OT-based dataset expansion for scRNA-seq data and a divide-and-conquer
strategy for scATAC-seq data. DANCE further introduces a sample-to-sample alignment strategy of
cross-omic multi-sample Mixup to reduce cell heterogeneity. Extensive experiments on various
datasets verify the superiority of DANCE in comparison to many state-of-the-art approaches.

Broader Impacts and Limitations. This study addresses the challenge of knowledge transfer
across multi-omic single-cell data, which has significant potential for advancing biological research
by reducing annotation costs in both source and target biological data. However, it is important
to acknowledge that this work represents an initial exploration of this field and may have certain
limitations. For instance, our method may not perform optimally in complex real-world scenarios,
including open-set knowledge transfer and knowledge transfer under label noise. Additionally, this
study primarily focuses on static scenarios, while there are complex dynamic applications, such as
single-cell RNA velocity inference, that require further investigation. In future research, our goal is to
address these challenges and expand our approach to encompass more generalized scenarios. To the
best of our knowledge, no potential negative impacts resulting from our work have been identified.
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A Proof of Theorem

Proof of Theorem 4.1. (1) Let P̂ be the projection of Pn onto
∏
( 1
B1B ,

1
C1C). Further, let Q̂ be a

solution of the Kantorovitch’s problem

min
Q∈

∏
( 1
B 1B , 1

C 1C)

∑
i,j

−Qij logPij . (17)

Then, by definition, we have 〈
P̂ ,− logP

〉
≥

〈
Q̂,− logP

〉
, (18)

where ⟨·, ·⟩ is the standard matrix inner product. From definition, we know that P̂ is the solution of

min
P̂

1

2

∥∥∥P̂ − Pn

∥∥∥2
F

s.t. P̂1C =
1

B
1B , P̂ T1B =

1

C
1C . (19)

Using Lagrange multiplier, we know that

P̂ = Pn − 1Bβ
T , (20)

where β = (β1, . . . , βC)
T and βj =

1
B

(
1
B

∑B
i=1 pij −

1
C

)
. Therefore,〈

Pn − P̂ ,− logP
〉
= CP . (21)

Further, using standard OT theory, we know that as σ → ∞, Q converges to the solution of the
problem in Eqn. 17 with maximal entropy, Q∞. Therefore, for large enough σ, we know that

∥Q−Q∞∥F ≤ ε/ ∥− logP ∥F . (22)

So, using Cauchy’s inequality, we have

|⟨Q−Q∞,− logP ⟩| ≤ ε. (23)

Combining Eqn. 18-23 and take Q̂ = Q∞ in Eqn. 18, we get

⟨Pn,− logP ⟩ ≥ ⟨Q,− logP ⟩+ CP − ε. (24)

Therefore, we have
CE(Pn,P ) + ε ≥ CE(Q,P ) + CP . (25)

(2) For simplicity, we denote L
P := (Lij/Pij)B×C . Then, we have〈

Pn −Q,− log
L

P

〉
=

1

B

∑
Pij ·

(
− log

Lij

Pij

)
−

∑
Qij ·

(
− log

Lij

Pij

)
≥ logCmin − logCmax. (26)

Hence,
⟨Pn,− logL⟩ ≥ ⟨Q,− logL⟩+ CP − ε− CL. (27)

Proof of Theorem 4.2. From the definition, we know that

phard =
1

n

n∑
i=1

Zi, p
t
soft =

1

n

n∑
i=1

{tZi + (1− t)(1− Zi)} . (28)

Therefore, Ephard = EZ1 = p+β−2pβ, Var(phard) = Var(Z1)/n, Eptsoft = (1−t)+(2t−1)EZ1,
and Var(ptsoft) = (2t− 1)2Var(Z1)/n. Hence, we have

E ∥phard − p∥2 = (EZ1 − p)2 +
Var(Z1)

n
,

E
∥∥ptsoft − p

∥∥2 = {(1− t) + (2t− 1)EZ1 − p}2 + (2t− 1)2Var(Z1)

n
. (29)
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Define
f(t) = E ∥phard − p∥2 − E

∥∥ptsoft − p
∥∥2 . (30)

Then, from definition, we know that f(1) = 0. Further, we know

f ′(t) = −2 {(1− t) + (2t− 1)EZ1 − p} · (2EZ1 − 1) + (4− 8t)
Var(Z1)

n

= −
{
2(1− 2EZ1)

2 +
8Var(Z1)

n

}
t+

{
4Var(Z1)

n
+ 2(1− 2EZ1)(1− EZ1 − p)

}
.

(31)

Since 2(1− 2EZ1)
2 + 8Var(Z1)

n > 0, we know that there exists

t0 =
4Var(Z1)

n + 2(1− 2EZ1)(1− EZ1 − p)

2(1− 2EZ1)2 +
8Var(Z1)

n

=
4Var(Z1)

n + 2(1− 2p)2(1 + 2β)(1− β)
8Var(Z1)

n + 2(1− 2p)2(1 + 2β)2
∈ (0, 1), (32)

such that f ′(t) < 0 when t ∈ (c0, 1). So, f(t) ≥ f(1) = 0 for t ∈ (t0, 1). Hence,

E
∥∥ptsoft − p

∥∥2 ≤ E ∥phard − p∥2 . (33)

B Algorithms

The step-by-step training algorithm of our DANCE is summarized in Algorithm 1. The model can get
extra supervision from target-specific scATAC-seq data by removing the incorrect types from the
candidate label set, the algorithm is provided in Algorithm 2.

Algorithm 1 Training Algorithm of DANCE

Require: The training datasets D(s),l, D(s),u and D(t).
Ensure: The network parameters in H(F (·));

1: Warm up the network using D(s),l;
2: repeat
3: Update the pseudo-labels using Eqn. 3 and Eqn. 4;
4: Expanding D(s) using Eqn. 5;
5: for t = 1, 2, · · · , T do
6: Sample a mini-batch from the training datasets;
7: Generate the predictions for both scRNA-seq data and scATAC-seq data by propagating the

network;
8: Calculate the final loss using Eqn. 16;
9: Update the parameters of the network using backpropagation;

10: end for
11: until convergence

C Implementation Details

All the baselines are re-implemented on NVIDIA Tesla A100 40G GPUs using PyTorch according
to the original settings in the corresponding papers to ensure a fair comparison. A two-layer MLP
with an embedding dimension of 64 is employed as the encoder, and another two-layer MLP is
adopted as the classifier. For all the baselines and our DANCE, we first warm up the model with labeled
scRNA-seq data for 30 epochs and then train the model for another 30 epochs with a batch size of 32.
Three settings with different label ratios (low: 1%, mid: 5%, high: 10%) are set up for experiments
on each dataset to validate the sensitivity of these methods to the number of labels. We opt for SGD
as the default optimizer with a learning rate of 3e− 3 and a weight decay of 1e− 3.
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Algorithm 2 Algorithm of Learning from Target-specific scATAC-seq Data
Require: Target-specific scATAC-seq dataset DTS ; Threshold µ; The number of classes k.
Ensure: The network parameters in H(F (·));

repeat
for t = 1, 2, · · · , T do

Sample a mini-batch of BTS samples from DTS ;
Generate the softmax predictions for scRNA-seq data by propagating the network;
Select the top-k classes from the predictions to form BTC label sets;
for i = 1, 2, · · · , BTC do

for yji ∈ Yi do
if Eqn. 8 is satisfied then

Removing cell type yji from Yi;
end if

end for
end for
Providing extra guidance by loss Eqn. 10;
Decrease the threshold µ;

end for
until convergence

D Introduction of Datasets

We summarize the dataset information included in experiments in Table 3:

Table 3: The statistics of the multi-omic single-cell datasets used to conduct experiments.

Dataset Source Data Type Source Data Size Target Data Type Target Data Size Number of Cell Types Sequence Length

Mouse Atlas Data

snRNA_10X_v3_A 4017 ATAC 7962 18 18603
snRNA_10X_v2 7652 ATAC 7962 18 18603

snRNA_SMARTer 6171 ATAC 7962 18 18603
scRNA_10X_v2 12264 ATAC 7962 18 18603

scRNA_SMARTer 6288 ATAC 7962 17 18603
snRNA_10X_v3_A 4017 snmC 9633 18 18603

snRNA_10X_v2 7652 snmC 9633 18 18603
snRNA_SMARTer 6171 snmC 9633 18 18603
scRNA_10X_v2 12264 snmC 9633 18 18603

scRNA_SMARTer 6288 snmC 9633 17 18603

CITE-ASAP PBMC Data scRNA part in CITE 4644 scATAC part in ASAP 4502 7 17441

E Introduction of Baselines

Here we provide a brief introduction of the compared baseline methods as follows:

• DAN [42] is a deep neural network (DNN) based method for domain adaptation, which adapts the
layers and the corresponding task-specific features in a layer-wise manner.

• CDAN [43] incorporates the discriminative information of the predictions from the classifier with
adversarial learning for domain adaptation.

• MCC [26] is a strong domain adaptation method that achieves fast convergence speed without the
explicit use of domain alignment.

• FixMatch [52] is a strong semi-supervised learning approach that hybrids pseudo-labeling and
consistency regularization for self-training.

• scJoint [38] is a multi-omic single-cell data integration method based on transfer learning and
semi-supervised learning, which effectively transfers labels through kNN on joint embedding space.

• scNCL [72] is a transfer learning framework that preserves the intrinsic structure of scATAC-seq
data and employs contrastive learning to facilitate the transfer of cell types.

• scBridge [36] integrates multi-omic single-cell data in a heterogeneous manner by mining reliable
cross-modal samples and expanding the single-cell dataset.
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F Further Discussion

F.1 Comparison with Classic Pseudo-labeling

Classic PL OT-based PL

Prototype of Class A

Prototype of Class B

Sample belongs to Class A

Sample belongs to Class B

Figure 4: An illustration of classic pseudo-labeling
and our OT-based pseudo-labeling.

As depicted in Figure 4, classic pseudo-labeling
[52] assigns the category label with the highest
confidence as the pseudo-label, establishing a
one-to-one correspondence between a sample
and a category label. This approach overlooks
the potential connections between the sample
distribution and the class distribution, especially
in cases of class imbalance. In contrast, our pro-
posed OT-based pseudo-labeling aligns multiple
samples with a category center through the cou-
pling matrix Q and the cost matrix−logP . This
approach considers the connections between the
sample and class distribution, effectively ad-
dressing the issue of potential biased predictions in scRNA-seq data.

F.2 Advantages of Divide and Conquer for Target scATAC-seq Data

Pseudo

Label

Original 
scATAC-seq 

Encoder Classifier

Encoder

���

Classifier

Share Weights Share Weights

Noise-augmented 
scATAC-seq 

Figure 5: An illustration of consistency regularization for
source-like scATAC-seq samples.

Different from traditional approaches
[52, 78] that directly discard the
target-specific samples, we utilize
these samples to provide weak su-
pervision for the model (algorithm
can be found in Algorithm 2). By
progressively removing the incorrect
cell types, the model gets extra guid-
ance from these samples. Incorpo-
rating consistency regularization for
source-like samples (Figure 5) and in-
correct cell types removal for target-
specific samples, the entire scATAC-
seq dataset D(t) = DSL ∪ DTC is
fully explored, contributing to the semi-supervised knowledge transfer process.

F.3 Advantages of Cross-omic Multi-sample Mixup

scRNA-seq Encoder Classifier

Encoder Classifier

Share Weights Share Weights

scATAC-seq 

Similarity Matrix

Weight Matrix

Scale

Mixup

Alignment

Cross-omic Multi-sample Mixup

Figure 6: An illustration of cross-omic multi-sample Mixup.

Different from previous alignment
strategies that rely on labels from
scATAC-seq data or paired labels, our
proposed cross-omic multi-sample
Mixup reconstructs class-wise sim-
ilarity through the weights of clas-
sifiers (Figure 6). It then fuses
scRNA-seq samples by incorporating
semantic information from scATAC-
seq data. Without the need for la-
bels from scATAC-seq data or pair-
wise labels, we transform the distribu-
tion of scRNA-seq samples to align
with scATAC-seq data. This makes
our alignment strategy more flexible and convenient. Considering the high cost of annotating single-
cell data, our alignment strategy is more suitable for the problem of semi-supervised knowledge
transfer across multi-omic single-cell data.
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Figure 7: Qualitative comparisons (in %) with state-of-the-art approaches on additional datasets with
different label ratios.

FixMatch scBridge scNCL Ours

FixMatch scBridge scNCL Ours

Figure 8: The t-SNE visualization of two modalities (scRNA_10X_v2: red, ATAC: blue) (the first
row) and different cell types (the second row) with high label ratio.

F.4 Further Sensitivity Analysis

In addition to these parameters, we also investigate the two empirical hyper-parameters: σ and τ .
From the results in Table 4 and Table 5, we can observe that the performance is not sensitive to the
choice of σ when we change σ from 5 to 20, so we empirically set its value to 10. We also vary the
value of τ with the range of {0.8, 0.85, 0.9, 0.95}. The results below indicate that the method is not
sensitive to τ in the interval [0.8, 0.95]. Therefore, we set τ to 0.9 as the default.

Table 4: Sensitivity analysis of σ.

Dataset 5 10 15 20

CITE-ASAP 47.01 47.45 47.32 47.14
snRNA_10X_v3_A-ATAC 51.16 51.42 51.08 51.17

We progressively remove the incorrect cell types for additional supervision. However, how to define
an incorrect cell type may be a point of interest. To answer this question, We have included a
sensitivity analysis of the threshold µ by varying it in {0.0005, 0.001, 0.0015, 0.002}. The results
in Table 6 indicate that a threshold of 1e− 3 brings good performance with significant differences.
In particular, after the softmax operation, the sum of the confidences for all cell types equals 1 with
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scBridge scNCLFixMatch Ours

scBridge scNCLFixMatch Ours

Figure 9: The t-SNE visualization of two modalities (scRNA_10X_v2: red, snmC: blue) (the first
row) and different cell types (the second row) with high label ratio.

Figure 10: Comparisons of the A-distance between source scRNA-seq data and target scATAC-seq
data with various label ratios.

more than 10 cell types. In this context, the confidence scores are quite small and a difference of
1e− 3 indicates a sufficient difference.

F.5 Further Comparison of the A-distance

Besides scRNA_10X_v2-ATAC, we further compare the A-distance on 3 more datasets, including
scRNA_10X_v2-snmC, snRNA_10X_v2-ATAC, and snRNA_10X_v2-snmC in Figure 10. The
results are consistent with the analysis in Section 5.2, which validates the robustness of our approach
in reducing cell heterogeneity.

F.6 Additional Qualitative Results

We showcase additional qualitative experimental results on two more datasets in Figure 7. It can still
be observed that our DANCE achieves the best performance. From the results, we can obtain consistent
conclusions as previously mentioned in Section 5.2.

F.7 Additional t-SNE Visualization

In Figure 8 and Figure 9, we make the t-SNE visualization comparison with more baseline methods.
From the results in the first row, it can be found that there is almost no overlap degree in FixMatch
[52] and scNCL [72]. There are slight overlaps in scBridge [36], but the heterogeneous gap remains
large when certain parts of labels are missing. Compared with these methods, our DANCE achieves the
largest overlap degree since it effectively reduces cell heterogeneity. In the second row, each different
color represents a different cell type. It can be seen that, in the case of label scarcity, our DANCE still
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Table 5: Sensitivity analysis of τ .

Dataset 0.8 0.85 0.9 0.95

CITE-ASAP 46.98 47.06 47.45 47.33
snRNA_10X_v3_A-ATAC 50.54 51.15 51.42 50.87

Table 6: Sensitivity analysis of µ.

Dataset 5e-4 1e-3 1.5e-3 2e-3

CITE-ASAP 46.58 47.45 47.40 47.02
snRNA_10X_v3_A-ATAC 50.07 51.42 51.14 51.03

maintains good cell discriminability compared to the other three methods. This indicates that DANCE
effectively transfers cell type knowledge from scRNA-seq data to scATAC-seq data.

Table 7: Ablation on OT strategy for target single-cell data.

Label Ratio Low Mid High

w/ OT for scATAC-seq 34.90 36.87 39.34
w/o OT for scATAC-seq (Ours) 45.36 46.38 47.45

F.8 Optimal Transport Strategy for Target Single-cell Data

Despite the effectiveness of OT-based dataset expansion for source scRNA-seq data, due to the
presence of cellular heterogeneity, directly applying this strategy to target single-cell data may not
be effective. We have added a model variant w/ OT for scATAC-seq to support our point. The
compared results on CITE-ASAP dataset are shown in Table 7. We can find that our full model
outperforms w/ OT for scATAC-seq, which validates the OT strategy may not be the optimal choice
given the significant cellular heterogeneity inherent in scATAC-seq data. This is why we introduce
the divide-and-conquer strategy for target samples.

Table 8: Comparison of pseudo-labeling accuracy (%).

Label Ratio Low Mid High

unlabeled scRNA-seq data 78.85 79.17 80.13
source-like scATAC-seq data 77.12 78.04 78.56

F.9 Effectiveness of Divide-and-conquer Strategy

An interesting question is whether the initial prediction’s reliance on the divide-and-conquer strategy
has been accurately labeled. To explore this issue, we have included a comparison of pseudo-labeling
accuracy between unlabeled scRNA-seq data and source-like scATAC-seq data in Table 8. The results
for the snRNA_SMARTer-snmC dataset are presented below. From the findings, it is evident that the
accuracy of the source-like scATAC-seq data closely aligns with that of unlabeled scRNA-seq data,
confirming the effectiveness of our approach.

Table 9: Performance comparison when transferring cell types in the opposite direction.

Label Ratio Low Mid High

scJoint 28.14 45.40 49.59
scBridge 32.24 51.55 53.62
scNCL 36.46 51.01 52.73
Ours 70.33 70.78 72.89
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F.10 Cell Type Transfer in the Opposite Direction

Even though mainstream algorithms focus on transferring cell type knowledge from scRNA-seq to
scATAC-seq data, we are interested in exploring the possibility of cell type transfer in the opposite
direction, namely from scATAC-seq to scRNA-seq. We have conducted an experiment that performs
this reverse cell type transfer on the CITE-ASAP dataset. The results presented in Table 9 confirm
the effectiveness of our method in this reverse direction.

Table 10: Efficiency Comparison.

Method Memory Cost Training Time/Epoch Acc (%)

scJoint 0.7GB 30s 22.07
scBridge 1.4GB 4s 23.38
scNCL 1.0GB 70s 22.53
Ours 1.4GB 30s 46.40

F.11 Computation Cost

The comparison of computation costs is also a point of interest. We have included a comparison of
memory and time in Table 10, and it is evident that our method offers a competitive computation cost.
Specifically, the performance of scNCL is significantly inferior to ours (our performance improvement
exceeds 105.9%), while our memory cost sees only a slight increase with even less training time.

Table 11: Performance comparison with two additional domain adaptation methods.

Dataset CI-AS CI-AS CI-AS sn-AT sn-AT sn-AT

Label Ratio Low Mid High Low Mid High
SLA 32.05 36.99 41.74 35.36 37.48 42.41
COT 31.44 35.86 39.01 35.73 36.79 43.85
Seurat 38.71 41.76 43.25 33.46 39.78 45.09
Harmony 39.03 39.99 44.06 32.17 39.94 44.56
Ours 45.36 46.38 47.45 50.23 51.02 51.42

F.12 Further Comparison with More Baselines

To benchmark our DANCE against more baseline methods, we have included SLA [76], COT [41],
Seurat [54], and Harmony [30] on different datasets for performance comparison. The results shown
in Table 11 demonstrate the effectiveness of the proposed DANCE.

Table 12: Performance on full MouseAtlas data.

Label Ratio Low Mid High

scJoint 62.36 67.75 70.02
scBridge 64.99 69.86 71.44
scNCL 61.50 69.04 71.17
Ours 70.64 72.21 72.58

F.13 Performance on Full MouseAtlas Data

To evaluate the performance under different batches, we have included the experimental results on
the full MouseAtlas dataset. Specifically, we collect different batches of the MouseAtlas dataset and
remove some of the batches. The results in Table 12 indicate that our approach still outperforms other
methods, showing the potential of DANCE in batch effect correction.
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Table 13: Performance on real-world scenarios.

Labeled scRNA-seq Data CITE CITE snRNA_10X_v3_A snRNA_SMARTer

Unlabeled scRNA-seq Data snRNA_10X_v3_A snRNA_SMARTer CITE CITE

scATAC-seq Data ASAP ASAP ASAP ASAP

scJoint 86.59 87.27 75.94 76.53
scBridge 88.01 89.24 78.99 77.60
scNCL 86.24 88.28 75.80 75.42
Ours 93.37 92.48 84.88 83.79

F.14 Real-world Cases

In real-world scenarios, the proposed DANCE can transfer cell types from multiple-source scRNA-seq
data to target scATAC-seq data. We have included experiments to transfer cell type knowledge from a
labeled scRNA-seq dataset and an unlabeled scRNA-seq dataset to scATAC-seq data. The results in
Table 13 indicate that our approach is superior to other methods in practical scenarios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contributions are summarized in the introduction section, and the
paper’s scope is introduced in the abstract section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations part is discussed in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The proofs of the theorems are provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details are provided in the appendix and the anonymous
code link is provided in the abstract section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

27



Answer: [Yes]
Justification: The anonymous code link is provided in the abstract section and the data link
is provided in the experimental settings section.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The implementation details are provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Note that previous studies in this field have not included error bars in their
experiments, and we follow this for uniformity. We reimplement all the baselines according
to the corresponding papers and fix the seeds to ensure a fair comparison.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All the experiments are conducted on NVIDIA Tesla A100 40G GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We sincerely read the ethics guidelines and obey this rule.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The discussion about the broader impacts is provided in the conclusion section
and appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the creators of assets are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets are well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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