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Abstract

We introduce new features to Opacus, a free, open-
source PyTorch library for training deep learning
models with differential privacy. Opacus is de-
signed for simplicity, flexibility, and speed. It pro-
vides a simple and user-friendly API, and enables
researchers and machine learning practitioners to
make a training pipeline private by adding as little
as two lines to their code.

In this paper, we first provide a brief overview
of Opacus, and then reveal the challenges posed
by the prevalence of large language models
(LLMs). To tackle these challenges, we intro-
duce several recently added features including
Fast Gradient and Ghost Clipping, model par-
allelism, parameter-efficient fine-tuning (PEFT),
and mixed precision training.

1. Background and Introduction
Differential privacy (DP) (Dwork et al., 2006) has emerged
as the leading notion of privacy for statistical analyses. It
allows performing complex computations over large datasets
while limiting disclosure of information about individual
data points. Roughly stated, an algorithm that satisfies DP
ensures that no individual sample in a database can have a
significant impact on the output of the algorithm, quantified
by the privacy parameters ε and δ.

Differentially Private Stochastic Gradient Descent (DP-
SGD) was firstly introduced in Abadi et al. (2016). As
a modification of the traditional SGD algorithm, it was de-
signed to ensure differential privacy. Since its inception,
DP-SGD has rapidly become the most widely adopted tech-
nique for training deep learning models while preserving
data privacy.
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Compared to traditional model updating methods such as
SGD, DP-SGD differs in two crucial aspects:

• Per-example gradient clipping: We perform gradient
clipping on each per-sample gradient such that the ℓ2
norm is bounded, ensuring that individual gradients do
not dominate the the size of the update.

• Noise addition: We aggregate clipped per-sample gra-
dients over the mini-batch and add Gaussian noise to
further protect the privacy of data.

However, for efficiency reasons, deep learning frameworks
such as PyTorch or TensorFlow do not expose intermediate
computations, including per-sample gradients; users only
have access to the gradients averaged over a batch.

To address the challenges of training models with differen-
tial privacy, Yousefpour et al. (2021) introduced Opacus,
an open-source library/framework built on top of PyTorch
(with 1.8K stars and 3M downloads). Opacus is designed to
provide a seamless experience for researchers and engineers,
with three core principles in mind:

• Simplicity: Opacus offers a user-friendly API that
allows users to train models with differential privacy
without requiring in-depth knowledge of DP-SGD.

• Flexibility: Opacus supports most of the common
PyTorch modules, which enables rapid prototyping by
users proficient in PyTorch.

• Speed: Opacus seeks to minimize the performance
overhead of DP-SGD by various optimizations and
advanced features.

1.1. Example Usage

The primary interface for using Opacus is the
PrivacyEngine class, which takes in the three
core PyTorch training objects — model, optimizer, and data
loader — and returns differentially private analogues of
these objects. In fact, attaching Opacus to a non-private
training flow can be done with just a few lines of code, as
demonstrated in the following example:
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data_loader = DataLoader()
model = Net()
optimizer = ADAM(model.parameters(), lr)

PrivacyEngine().make_private(
module=model,
optimizer=optimizer,
data_loader=data_loader,
...,
# Omitting less critical parameters

)
# Now it’s business as usual

This simplicity makes it easy to adopt Opacus and start train-
ing differentially private models with minimal disruption to
the existing workflows.

1.2. Challenges with DP-SGD for LLMs

As large language models (LLMs) become increasingly
prevalent, ensuring the privacy of their training data has
become a pressing issue. Research has shown that larger
models are more prone to memorization, as demonstrated
by studies such as Carlini et al. (2021).

One effective approach for addressing this challenge is train-
ing with DP-SGD. However, as model sizes continue to
expand, supporting DP-SGD for these larger models poses
significant infrastructure challenges:

• Memory Constraints: Naively implementing DP-
SGD can lead to a substantial increase in memory cost,
with the extra cost proportional to the batch size and
model size. For example, with a FP32 model size of
100M and a batch size of 128, the extra memory cost
required for DP-SGD is approximately 50 GB (128 ×
100M × 4), which exceeds the memory capacity of an
A100 GPU - 40GB.

To address this issue, we introduced Fast Gradient
and Ghost Clipping in version 1.5.0. By perform-
ing a second backward pass, we significantly reduced
the extra memory requirements of DP-SGD, making
them almost negligible compared to non-private set-
tings. Further details on the technique can be found in
Section 2.1.

• Model Parallelism: Although Distributed Data Paral-
lel (DDP) has been supported in earlier versions of
Opacus, larger models that cannot fit into a single
GPU require model parallelism techniques such as Ten-
sor Parallelism (TP) and Fully Sharded Data Parallel
(FSDP). However, these techniques require additional
work to support due to the unique challenges intro-
duced by per-sample clipping. We discuss our efforts
on FSDP in Section 2.2, which was released in June’25.

Method Memory Overhead Applicability
Opacus (previously) O(BLd2) All layers

Fast Gradient Clipping O(Bd2) All layers
Ghost Clipping O(BT 2) Linear-like layers

Table 1. A comparison of various techniques for per-sample clip-
ping in DP-SGD. For simplicity, we analyze a network containing
L identical linear layers, where d is the size of both input and
output. B is the batch size , and T is the sequence length.

• Throughput: Due to the large size of the model and
stringent computation requirements, it is essential to
support common techniques leveraged in non-private
model training to ensure efficient computation. We
highlight our efforts on Parameter Efficient Fine-tuning
(version 1.5.0) as well as Mixed Precision Training (re-
leased in June 2025). These techniques are discussed
in Section 2.3 and Section 2.4, respectively.

2. Recent Developments and Initiatives
2.1. Fast Gradient and Ghost Clipping

The complexity introduced by DP-SGD is primarily the
requirement for per-sample gradient clipping. Recall that
native PyTorch only computes gradients averaged over a
batch. Consider a simple example of an LLM with L identi-
cal layers stacked together, where both the input and output
embedding sizes are d. For batch size B, a naive imple-
mentation of per-sample gradient clipping would either in-
volve explicitly computing and instantiating the per-sample
gradients in memory, which incurs a memory overhead of
O(BLd2), or performing gradient accumulation, which re-
sults in O(B) sequential gradient computations. Previously,
Opacus used the former method, which restricted its appli-
cability to larger models.

We introduce Fast Gradient Clipping techniques (Lee &
Kifer, 2021; Bu et al., 2022) to Opacus (Ullah et al.,
2024). The key idea behind these techniques is based on
the following observation: suppose per-sample gradient
norms are known, then gradient clipping can be achieved
by backpropagation on a re-weighted loss function ℓ̃, de-
fined as ℓ̃ =

∑
i Riℓi, where ℓi are per-sample losses, and

Ri = min( C
Ci

, 1) are the clipping coefficients computed
from the per-sample gradient norms Ci and clipping upper
bound C.

The above idea may seem circular at first glance, as it ap-
pears to require instantiating per-sample gradients in or-
der to calculate per-sample gradient norms. However, for
widely-used components of neural network architectures,
such as linear layers, it is indeed possible to obtain per-
sample gradient norms in a single backward pass without
the need for instantiating per-sample gradients. This sug-
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gests a workflow that involves two backward passes: the
first to compute per-sample gradient norms and re-weighted
loss ℓ̃, and the second to compute the aggregated (not per-
sample) clipped gradient.

Fast Gradient Clipping (FGC) (Lee & Kifer, 2021). In
FGC, the per-sample gradient norm is calculated one layer
at a time: (a). For each layer, the per-sample gradient is
instantiated and its norm is calculated. (b). The per-sample
gradient is then immediately discarded. (c). The (squared)
per-sample gradient norms of each layer are summed up to
obtain the overall (squared) per-sample gradient norm. By
performing this operation one layer at a time, FGC reduces
the memory overhead from O(BLd2) to O(Bd2).

Ghost Clipping (GC) (Li et al., 2021). Extending the
above, Ghost Clipping uses the fact that for linear layers and
their generalizations, per-sample gradient norms can be cal-
culated directly from the activation gradients, backprops,
and activations, of size B×T ×d each. The per-sample
gradients are the outer product of the two, taking O(BTd2)
time and O(Bd2) space. Ghost clipping instead calculates
the (squared) norm of the gradient as the sample-wise prod-
uct of the (squared) norm of backprops and activations.
This takes O(BTd2) time and O(BT 2) space. If the se-
quence length T is much smaller than the embedding length
d, GC uses even less memory than FGC.

Please refer to Table 1 for a comparison of the three tech-
niques. As an example, for the task of privately fine-tuning
last three layers (100M parameters) of BERT for a text clas-
sification task on a 16GB P100, we observe that the earlier
version of Opacus OOMs on a batch size of 512, where as
Ghost Clipping supports a batch size of upto 1024, same as
that by (non-private) PyTorch.

2.2. Model Parallelisms

As the demand for private training of large-scale models,
such as Large Language Models (LLMs), continues to grow,
it is crucial for Opacus to support both data and model
parallelism techniques.

Previously, Opacus only supported Differentially Private
Distributed Data Parallel (DP-DDP) to enable large-scale
multi-GPU training. While DP-DDP effectively scales
model training across multiple GPUs and nodes, it requires
each GPU to store a copy of the model and optimizer states,
leading to high memory requirements, especially for large
models. This limitation underscores the need for alternative
parallelization techniques, such as Fully Sharded Data Par-
allel (FSDP), which can offer improved memory efficiency
and increased scalability (Zhao et al., 2023).

In the context of training large language models, differ-
ent parallelism strategies are typically employed based on
model size:

• 1D Parallelism: DDP or Fully Sharded Data Parallel
(FSDP) for small-sized models (< 10 billion parame-
ters).

• 2D Parallelism: FSDP combined with Tensor Paral-
lelism (TP) for medium-sized models (10−100 billion
parameters).

• 4D Parallelism: FSDP combined with TP, Pipeline Par-
allelism (PP), and Context Parallelism (CP) for large-
sized models (> 100 billion parameters).

Enabling FSDP is the first step towards achieving 2D and 4D
parallelism with Opacus, paving the way for more efficient
and scalable private training or fine-tuning of medium to
large-scale models.

Setup Parallelism Batch-size Samples per second
AdamW (7.5B) DP-DDP 8 OOM
AdamW (7.5B) FSDP 64 12.58 ± 0.13

SGD (5.1B) DP-DDP 64 9.30± 0.43
SGD (5.1B) FSDP 64 15.37 ± 0.12

Table 2. Full fine-tuning of Llama-3 8B on a synthetic dataset,
maximum sequence length of 512, 1x8 A100 80GB GPUs.

We experiment with full fine-tuning of the Llama-3 8B
model on a synthetic dataset. Table 2 presents the through-
put in terms of samples/inputs processed per second. Cur-
rently, FSDP with Ghost Clipping doesn’t support tied pa-
rameters (embedding layers). We freeze these layers during
fine-tuning which brings the trainable parameters down from
8B → 7.5B. As shown in Table 3, DP-DDP throws OOM
error even with a batch size of one per device. With FSDP,
each device can fit a batch size of 8, enabling full fine-tuning
of Llama-3 8B.

To compare full fine-tuning of FSDP with DP-DDP, we shift
from AdamW optimizer to SGD w/o momentum and reduce
the trainable parameters from 7.5B → 5.1B by freezing
normalization layers’ and gate projection layers’ weights.
This allows DP-DDP to run with a batch-size of 2. In this
setting, we observe that FSDP is 1.65× times faster than
DP-DDP for the same batch-size.

The introduction of FSDP in Opacus (Opacus, 2025b) marks
a significant advancement, offering a scalable and memory-
efficient solution for private training of LLMs. This de-
velopment not only enhances the capability of Opacus to
handle large-scale models but also sets the stage for future
integration of other model parallelism strategies. Looking
ahead, our focus will be on enabling Tensor Parallelism and
2D parallelism for Opacus.

2.3. Parameter-Efficient Fine Tuning

Parameter-efficient fine-tuning (PEFT) has become popu-
lar for reducing the number of trainable parameters, which
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leads to decreased memory usage and enhanced compu-
tational efficiency. The noise introduced by DP-SGD in-
creases with the number of trainable model parameters, thus
creating a larger utility gap between non-private and private
training as the model size grows. Consequently, DP-SGD
has been proved to be most effective in transfer learning
scenarios, where a well-performing model trained on public
data is fine-tuned with DP-SGD on a private dataset.

Techniques such as low-rank adaptation (LoRA) (Hu et al.,
2022) are particularly noteworthy, as they fine-tune only
a small number of additional model parameters, thereby
reducing the number of trainable parameters with minimal
impact on utility. For DP-SGD training, these techniques
are essential to avoid the curse of dimensionality caused by
noise, as well as to improve training efficiency.

We publish a tutorial (Opacus, 2025a) showcasing that
DP-SGD is compatible and can be used together with the
peft library from HuggingFace (HuggingFace, 2025) for
parameter-efficient fine-tuning. This is achieved with no
conceptual changes to the privacy analysis. For the task of
fine-tuning the last few layers of a BERT model on a com-
mon NLP dataset, we show that LoRA fine-tuning with DP-
SGD achieves on par test set accuracy (74.0%) compared
to normal DP-SGD (74.3%), while training 100x fewer pa-
rameters.

2.4. Mixed Precision Training

Mixed precision is the combined use of numerical preci-
sion in a workload. Half-precision (e.g., BF16) operations
compared to single-precision (FP32) operations enable train-
ing larger models, with larger batch sizes, faster operations
and faster data transfers. Mixed precision training has been
successfully used in speeding up training of LLMs and re-
ducing memory utilization, while maintaining on-par utility
compared to full precision (Micikevicius et al., 2018).

At a high level, mixed precision training uses BF16 for the
forward and backward pass and FP32 for weight updates.
Full precision weight updates are necessary for maintaining
utility, as weight updates can at times become extremely
small or large and full precision helps maintain stable opera-
tions (Peng et al., 2023). Some layers, such as normalization
layers, will also perform operations in FP32 to maintain nu-
merical stability.

PyTorch supports mixed precision training through the
torch.amp package (PyTorch, 2025). We enable support
for mixed precision training with Opacus via torch.amp,
which was previously unavailable. We also support low
precision training (e.g., BF16 only). Using either setting
requires only a few extra lines of code from the user side,
which are the same as for non-private training.

We experiment with fine-tuning a pre-trained BERT-base

model: we fine-tune either the last few layers (8M out
of 100M trainable parameters) or fine-tune all layers with
LoRA (500k parameters). We use either FP32 only, BF16
only, or mixed precision. Hyperparameters are the same
across all settings. In Table. 3, we compare the difference
in peak memory and time taken (averaged over 10 steps).
BF16-only training achieves 2x memory improvement and
2x speed-up compared to FP32. Mixed precision training
achieves similar gains in speed but smaller memory im-
provements, due to the storage of full-precision weights.

Table 3. Memory, time, and utility for different precision settings
when fine-tuning BERT with Opacus (batch size = 32).

Fine-tuning setup Precision setting
Peak memory
improvement
over baseline

Time per iteration
improvement
over baseline

Test set accuracy
after 1 epoch

(ε = 2)

Fine-tune
last few layers

High Precision (Baseline) 1.00× 1.00× 0.7287
Mixed Precision 1.41× 2.00× 0.7270
Low Precision 1.99× 2.00× 0.6827

Fine-tune all
layers with LoRA

High Precision (Baseline) 1.00× 1.00× 0.7193
Mixed Precision 1.16× 1.64× 0.7207
Low Precision 1.87× 2.00× 0.7250

In Table 3, we also compare the test-set accuracy after 1
training epoch for the different precision settings. When
fine-tuning the last few layers, mixed precision and FP32
training achieve on par performance, while low precision
training incurs a significant decrease in utility.

With LoRA fine-tuning, the highest accuracy is achieved
with BF16, while mixed and high precision training are
on-par. We hypothesize that low precision training with
DP-SGD performs best when fine-tuning only linear layers,
as in LoRA, but harms utility when other types of layers
are involved, such as normalization layers, which normally
require high precision operations.

Mixed precision or low precision training with Opacus en-
ables training of larger models with larger batch sizes in
memory-constrained settings. Recent foundation models
train at even lower precision such as FP8 (Meta, 2025).
Further research is required to understand the utility perfor-
mance of DP-SGD at more reduced precision settings.

3. Conclusion
In this paper, we have introduced significant advancements
in Opacus, addressing the growing demand for privacy-
preserving techniques, especially with LLMs. Key features
such as Fast Gradient and Ghost Clipping, model paral-
lelism with FSDP, and mixed precision training enhance
the efficiency and scalability of training large models while
maintaining privacy guarantees. Looking ahead, we plan
to incorporate additional parallelism strategies, like Tensor
Parallelism. These efforts ensure that Opacus remains at the
forefront of enabling privacy-preserving machine learning
for the research community.
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