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Abstract

Pre-trained large vision-language models especially large
language models have shown promising results for language
related tasks like question and answering. Most state-of-the-
art video-language models are built from image-language
models. But videos, unlike images have one more temporal
dimension. With computing resource constrains, how to ef-
ficiently and effectively sample image frames from a video
is the main challenge for video related tasks. With new ad-
vances in LLMs, new challenges emerge for cross-modal
tasks like how to properly ingest visual information from
videos to LLMs and what information to feed to LLMs. In
this work, we propose an Efficient Video-Language Align-
ment (VLAP) network that tackles efficient frame sampling
and cross-modal alignment in one. In our VLAP network,
we design a learnable frame prompter module to sample
the most important frames and introduce new a cross-modal
temporal distillation model to reduce inference computation
cost while keep the temporal information. Meanwhile, we
introduce a Text-Visua-Text molding strategy to best align
across the visual and language modality and leveraging
the pre-trained LLMs. We show through ablation study that
this molding strategy creates best alignment cross modali-
ties. Overall, our VLAP network outperforms state-of-the-art
methods on the video question answering benchmarks and
video captioning benchmark.

1. Introduction

“If a picture worth thousands of words, what is a video
worth?” Video watching is growing into a new social norm.
Statistic shows Youtube has approximately 122 million daily
active users, based all over the world. Visitors spend on aver-
age 19 minutes per day on Youtube. An average of close to
1 million hours of video are streamed by Youtube users each
and every minute. As video data continue to grow through
internet, video information retrieval becomes more and more
demanding. Video data has tremendous capacity to store vast
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Figure 1. [TODO: Overview of Boostrapping Lanuage-Video
Molding.][YS: remove outline, we show here examples of the
visualization of the frame prompter like the chosen frames, and
the distillation.]

variety of useful information. To enable video information
retrieval, automatic video understanding is needed. Com-
pared to images, video understanding is difficult in the one
extra dimension. How to efficiently sample important frames
or learn temporal information from a video with the comput-
ing resource constrain remains the long standing problem
in video understanding research. Cross-modal alignment is
another challenge especially with the advancement in LLM.
How to best leverage LLM for video-language alignment is
another emerging challenge.

Recent advances in large-scale pre-trained language
models [5, 22] have greatly boost the performance in the
vision-language models. Especially for image-language pre-
training [15], many state-of-the-art image-language models
leverage pre-trained LLMs to achieve the best on visual-
language related tasks like image captioning, visual ques-
tion answering and so on. Inherently, many video-language
model build from those pre-trained image-language models.
For those image-based video-language models, they treat
video as a multi-channel images. That strategy works well
for short videos with uniform or random frame sampling.
But for long videos or videos with non-uniform informa-
tion distribution, treating video as a multi-channel images
is very limited. The challenge for sampling frames, infor-
mation localization and efficient training remains even with

1
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Figure 2. [TODO: update the fig][YS: add frame prompter, distillation, cross-modal molding as module to the image, update the font
size, clarify the distillation steps]

bootstrapping from large pre-train image-language models.
Cross visual-language alignment has also gained huge

improvement with Large-language models. However how to
leverage pre-trained powerful LLMs for visual-language is
another challenge in video-language learning. The critical
problem lies in how to transfer video information to the LLM
input domain. Previous work like BLIP-2 [15] transfer visual
information using pre-trained visual-to-text module. More
recently, in InstructBLIP [6], authors propose a QFormer to
fuse the two modality before input to the LLM. For Instruct-
BLIP (image-language model), the cross-modality alignment
happens partially with the QFormer. How to

To address these challenges, we propose a new network
VLAP. Our VLAP model tackles the problem of efficient
video frame sampling and how to best align the two modal-
ities leveraging LLM. Compared against state-of-the-art
video-language models [6, 37], we innovate by proposing
a new frame prompter, a cross-modal temporal distiller to-
gether with a Text-Visual-Text 3-way molding strategy. This
frame prompter learns to pick frames that are most informa-
tive. The cross-modal temporal distiller teaches a smaller
(uses less frames) QFormer for both efficient temporal learn-
ing and reduction in model train/inference cost. Our 3-way
Text-Visual-Text cross-modal molding strategy best lever-
age the pre-trained LLM by feeding both text and visual
information. Our contribution includes:

• a new instruction-aware video frame prompter to
smartly sample important frames together with a cross-
modal temporal distillation for efficient and effective

temporal learning;

• a 3-way fusion strategy to best align vision and lan-
guage leveraging pre-trained LLM;

• perform experiments on our strategy that out-performs
state-of-the-art method on video question answering
and captioning benchmarks.

2. Related Work
Vision-Language Pre-training Vision-Language cross-
modal pre-trainig has a large improvement over the past
couple of years. Different network architectures and pre-
training objectives have been proposed for different down-
stream tasks, including the dual-encoder architecture with
image-text contrastive learning [21], the fusion-encoder ar-
chitecture with image-text matching [16], and unified trans-
former architecture with masked language modeling [24].
These methods along with others, focus on the ability to
find image-text affinity [33], correlation [3], and/or com-
pletion [36], and need to pre-train the model end-to-end.
To address the incompatibility with pre-trained unimodal
models such as LLMs [5], recent works [15] proposed to
train a Q-Former to bridge the domain gap between two
frozen pre-trained models. Inspired by its flexibility, more
downstream tasks and applications have been proposed, in-
cluding instruction-based image generation [27] and image
question-answering [32].

While most of the previous work focus on image-text
alignment, very few have discussed the extension to videos.

2
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Our method is the first to propose video-language pretraining,
which naturally provides more capability to reasoning thanks
to the temporal information provided by the video.

Image-to-Video Transfer Learning Due to the inherent
large computational cost, many recent works have been
leveraging image-to-video models transfer learning. Previ-
ous works such as [2, 4] utilized a pretrained ViT [7] and
aggregate the temporal image feature sequence using trans-
former block for video understanding task. Given the suc-
cess of CLIP [21] in image-language domain, many works
such as [8, 19, 29] make use of a pre-trained CLIP model
and manipulate the cross-modal similarity calculation for
video-language alignment. [18, 20] focus on parameter effi-
cient fine-tuning on videos by inserting a temporal module
into the transformer architecture to integrate the temporal
frame level information while freezing the rest of model. Re-
cent work [37] proposed a language-aware frame localizer
to sample relevant keyframes from videos. It adopt a pre-
trained image-lanaguage model BLIP2 [15] as the frozen
backbone and only the adapter Q-former are trained. In this
paper, we propose a instruction-aware frame prompter and a
distillation module. These helps to bridge the gap between
image-language and video-language learning

3. Method
Our VLAP model aims to tackle the challenges in large

scale Video-Language learning, especially on how to sample
important frames in a video, efficient training and inference,
how to align language and video so as to prepare video
information for pre-trained LLMs.

3.1. Model Architecture

VLAP comprises of a frozen visual encoder Ev, an effi-
cient instruction-aware frame prompter Fp learned from a
teacher-student pattern, a Querying Alignment Transformer
(QA-Former, noted as Q) that extracts question-based visual
information and transfers them into LLMs friendly format, a
frozen large language model (noted as LLM ).

3.2. Instruction-aware Frame Prompter

For video data format information, it’s impractical to
input all frames into visual models for the efficiency consid-
eration and there is lots of redundant information too. And
the widely used uniform/random sampling methods don’t
have any instruction, which may lose important frames for
VQA task and sample frames that are unimportant/irrelevant
to language queries when using fewer frames.

To solve this problem, we propose instruction-aware
Frame Prompter, which can sample language queries re-
lated frames in a teacher-student manner. As shown in Fig. 3,
we represent a raw video as {f1, . . . , ft} from a uniform

Video
Encoder

...

... FC

BxTxNxC

B, seg, T//seg Gumbel
Softmax Mask

Temperature for Gumbel-Softmax from
1 to 0.01 by:

(0.01)^(current_step/total_training_step)

Frame Prompter

Figure 3. Caption.

sampling at frame rate as 32, which contains enough visual
information. First, these raw frames go through the visual
encoder first,

X = {xi|xi = Ev(fi), i ∈ [1, T ]}, (1)

where xi is the visual feature extracted from raw frames
with shape B × T × N × C. B is the batch size, T is the
temporal frames number, N is the patch size, C is the feature
dimension. Then we perform convolution to transform the
dimension for frame selection,

x̂i = W2 ∗ ReLU(LN(W1 ∗Mean(xi))) (2)

where W1 and W2 are the convolutional layer weights, ×
stands for convolution operation. After Mean operation, the
feature shape is B×T ×N . We reshape the feature into B×
S × T/SN , S is the segment number that divides the video
into several segments, we pick one frame in one segment.
After convolution W1, the feature shape is B × S × T/S.
Then the feature will go through Layer Normal layer and
ReLU. Convolution W2 generates the logits x̂i for frames in
a segment which denotes which frame to select.

To make this selection process leanable, we need to guar-
antee all the operations differentiable. Therefore, we apply
Gumbel-Softmax [11] to do the frame selection. Specifically,
we first generate a categorical distribution by using Softmax
in a segment,

π =

{
pi | pi =

exp(xi)∑T/S
j=1 exp(xj)

, i, j ∈ [1, T/S]

}
, (3)

then we draw samples z from the categorical distribution
with class probabilities π,

P = one hot

(
argmax

i
[gi + log πi]

)
(4)

where gi are samples drawn from Gumbel(0, 1). gi =
−log(−logGi) and Gj is sampled from uniform distribu-
tion at range (0,1). To remove the non-differtialble operation

3
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argmax, we use the softmax function as a differentiable
approximation for backpropagation:

p̂i =
exp((log pi + gi)/τ)∑T/S

j=1 exp((log pj + gj)/τ)
, i, j ∈ [1, T/S] (5)

where τ is the temperature hyperparameter.
And we design a student-teacher pattern for the training

to make the student prompter chooses the most informative
frames by optimization objective:

LFp
= MSE(Q(Ev(P ·X)), Q(Ev(X))) (6)

where Q is QA-Former, MSE is mean squared error loss.

3.3. Cross-Modal Alignment

In this section, we explore the cross-modal molding for
LLMs, specially for how to transform visual information
to the right format which is friendly for LLMs inputs. We
propose a TVT (Text-Visual-Text) pattern comprising of
Question (Text), Aligned Question-related Visual Feature
(visual: feature from QA-Former), Visual-2-Text (Text: key
words).

3.3.1 QA-Former: Querying Alignment Transformer

Language and video alignment is very important for video
question answering task. We need to conduct visual informa-
tion transformation so that LLMs can make full use of visual
information for generating answers. BLIP2 [15] proposed
Q-former which is first pretrained with the frozen image
encoder for vision-language representation learning and then
adapted the output of Q-Former as soft visual prompts for
text generation with a frozen LLM. InstructBLIP [6] adds
task-related instruction text tokens as additional input to
encourage the extraction of task-relevant image features.

We go a further step to proposed a QA-Former (Q), which
applies question text as additional input with a student-
teacher leaning paradigm to extract question-relevant video
features. Our student-teacher leaning paradigm can encour-
age our QA-Former to learn more temporal information
within few frames.

For teacher video input X and question input Xt, we first
combine question input Xt with query Xq:

Query = Cat(Et(xt), Xq)), (7)

then query feature Query and video feature Ev(X) will go
through self-attention Self A and cross-attention Cross A:

Xq = FF(Cross A(Self A(Query,Ev(X)))) (8)

FF() is feed forward layers. For student video input P ·X ,

Xs
q = FF(Cross A(Self A(Query,Ev(P ·X)))). (9)

We utilize a decoder to transform the student feature
output, ensuring dimension consistency and recoverability
to the teacher’s feature. Then the optimization objective:

L = MSE(D(Xs
q ), Xq). (10)

Teacher has a wider receptive field than student in terms of
temporal modeling, by learning form the teacher’s feature
and collaborating with frame prompter, student can better
model the temporal information with few frames.

3.3.2 Cross-modal Temporal Distillation

To solve the problem of efficient training and inference, we
propose a new cross-modal distiller in our VLAP network.

3.3.3 Text-Visual-Text Fusion

For LLMs, the best input should be in text format. Most
existing works feed LLMs by representing videos using
continuous feature vectors or discrete text tokens. In our
frame work, we combine them together to grantee most valid
information has been input to LLMs. We input discrete text
tokens coupled with a pretrained contrastive text model to
represent the video information in a text format. [TODO:
add a fig for different molding comparison]

4. Experiment Setup
4.1. Implementation Details

4.2. Benchmark

Video Question and Answering We compare our algo-
rithm with the state-of-the-art (SOTA) methods on Five
VideoQA datasets in terms of different aspects. Causal &
Temporal in NExT-QA and How2QA, Interaction in STAR,
Large scale in TVQA, Prediction in VLEP. Our results
demonstrate that our proposed method can effectively ad-
dress these challenges in video QA task.

NExT-QA [28] is a benchmark for causal and temporal
reasoning in terms of multi-choice VideoQA. It has different
kinds of questions: Causal (Why, How), Temporal (Previ-
ous/Next, Present), and Description (Binary, Location, Count
and Other). It contains a total of 5.4K videos with an average
length of 44s and approximately 52K questions.

STAR [26] is a multi-choice VideoQA benchmark for
Situated Reasoning which contains 22K video clips with an
average length of 12s along with 60K questions. STAR con-
tains four different kinds of questions: Interaction, Sequence,
Prediction, and Feasibility.

How2QA [17] is a a multi-choice VideoQA benchmark
contains 44k QA pairs for 22k 60-second clips selected from
9035 videos. It provides the start and end points for the
relevant moment for each question.

4
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TVQA [13] is a large-scale video QA dataset based on
6 popular TV shows (Friends, The Big Bang Theory, How
I Met Your Mother, House M.D., Grey’s Anatomy, Castle).
It contains 152K questions along with 21k video clips from
460 hours of video. It also provides the start and end points
for the relevant moment for each question.

Video Event Prediction VLEP [14] is a video event
prediction benchmark that requires the model to predict
two future events based on the video premise. It contains
28,726 future event prediction cases from 10,234 diverse TV
Shows and YouTube Lifestyle Vlog video clips. Following
SeViLA [37], we formulate this task as a multi-choice QA.

Video Captioning Flickr30K [35] is obtained by extend-
ing Hodosh et al. [10]’s corpus. Flickr30k dataset contains
31,000 images and 158 915 captions, in which each image
has 5 reference sentences provided by human annotators.
These images cover daily activities, events, and scenes.

Video Moment Retrieval We test our frame prompter’s
ability on localizing important frames on the QVHight-
light [12] dataset.

4.3. Metrics

For video question answering datasets, NExT-QA, STAR,
TVQA, VLEP, and How2QA, we use accuracy of choosing
the right answer and test on the validation dataset. For key
frame detection dataset, QVHighlights, we report the accu-
racy on the hidden test set. For video key frame detection
dataset, QVHighlights, we use mAP over IoU thresholds
[0.5: 0.05: 0.95] as in [37], and R@1 with a positive predic-
tion defined by high IoU (≥0.5 or ≤0.7) with a ground truth
moment. For video captioning, [TODO: TBD]

4.4. Baselines

We evaluate our VLAP against SeViLA [37], BLIP-2 [15],
and InternVideo [25] in fine-tuning scenarios. For SeViLA
and BLIP-2, we use the ViT-G and Flan-T5-XL as the visual
encoder and LLM as in VLAP. Following [37], to adapt
BLIP-2 to video input, we concatenate the visual feature
from Q-former and input to Flan-T5-XL.

5. Results
5.1. Comparison Results on Video QA and Event

Prediction Task

We first evaluate our algorithms on NEXT-QA dataset.
As shown in Table 1, VLAP improves performance over the
state-of-the-art by 1.0% at 4 frames setting and push the
accuracy to reach 75.5 % on this dataset at 32 frames setting.
For different types of questions, we ...

Results on STAR Then we evaluate our algorithms on
STAR dataset. As shown in Table 3, VLAP improves perfor-
mance over the state-of-the-art by 1.6% at 4 frames setting
and achieved new SOTA at 67.9 % on this dataset. For dif-
ferent types of questions, we ...

Results on VLEP To explore the event prediction ability,
we further evaluate our algorithms on VLEP dataset. As
shown in Table ??, VLAP improves performance over the
state-of-the-art by 0.7% at 4 frames setting.

Results on TVQA we also further evaluate our algorithms
on large scale TVQA dataset. As shown in Table ??, VLAP
improves performance over the state-of-the-art by 1.8% at 4
frames setting.

5.2. Comparison Results on Video Captioning Task

5.3. Ablation Study

5.3.1 Components Effectiveness Ablation

We evaluate the effectiveness of each component in our
method, as shown in Table 7.

5.3.2 Instruction-aware Frame Prompter Ablation Re-
sults

We evaluate the effectiveness of frame prompter in our
method, as shown in Table 5.

5.4. Cross-modal Distillation Ablation Results

We evaluate the effectiveness of distillation in our method,
as shown in Table 4.

5.5. Different Frame number Ablation Results

We evaluate the effectiveness of VLAP in term of differ-
ent frames, as shown in Table 6.

6. Conclusion and Future Work
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Method (Frames Number) Temporal Causal Description Average

Just Ask [30] (20) (ICCV2021) 51.4 49.6 63.1 52.3
All-in-One [23] (32) (CVPR2023) 48.6 48.0 63.2 50.6

MIST [9] (32) (CVPR2023) 56.6 54.6 66.9 57.1
HiTeA [34] (16) (Dec 2022) 58.3 62.4 75.6 63.1

InternVideo [25] (8) (Dec 2022) 58.5 62.5 75.8 63.2
BLIP-2 [15] (4) (ICML2023) 67.2 70.3 79.8 71.5
SeViLA [37] (4) (May 2023) 67.7 72.1 82.2 73.4
SeViLA [37] (8) (May 2023) 67.0 73.8 81.8 73.8

VLAP (4) (Ours) 70.1 73.8 82.1 74.4
VLAP (8) (Ours) 71.4 73.6 81.4 74.8
VLAP (16) (Ours) 69.5 74.0 81.7 75.0
VLAP (32) (Ours) 72.3 74.9 82.1 75.5

Table 1. VLAP Results on Next-QA.

Method (Frames Number) Interaction Sequence Prediction Feasibility Average

Flamingo-9B 4-shot [1] (30) (NeurIPs2022) - - - - 42.8
All-in-One [23] (32) (CVPR2023) 47.5 50.8 47.7 44.0 47.5

MIST [9] (32) (CVPR2023) 55.5 54.2 54.2 44.4 51.1
InternVideo [25] (8) (Dec 2022) 62.7 65.6 54.9 51.9 58.7

BLIP-2 [15] (4) (ICML2023) 65.4 69.0 59.7 54.2 62.0
SeViLA [37] (4) (May 2023) 63.7 70.4 63.1 62.4 64.9

VLAP (4) (Ours) 69.3 70.0 63.9 64.3 66.5
VLAP (8) (Ours) 70.6 74.1 66.3 60.6 67.9

Table 2. BLVQA Results on STAR.

Method F # VLEP TVQA

FrozenBiLM [31] (NeurIPs2022) 10 - 57.5
InternVideo [25] (Dec 2022) 8 63.9 57.2

BLIP-2 [15] (ICML2023) 4 67.0 54.5
SeViLA [37] (May 2023) 4 68.9 61.6

VLAP (Ours) 4 69.6 63.4

Table 3. Our VLAP Results on VLEP and TVQA. F # means
frames number.
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Teacher’s Frame number T C D Average

4 frames 71.2 73.0 80.6 73.8
8 frames 71.0 72.9 82.5 74.3

16 frames 70.7 73.4 80.1 73.6
32 frames 70.1 73.8 82.1 74.4

Table 4. VLAP Results on Next-QA. Fewer frame teacher can
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Methods T C D Average
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