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Abstract

Quantization plays a crucial role in enabling001
the efficient deployment of large language mod-002
els (LLMs) on memory-constrained hardware,003
significantly reducing memory usage and com-004
putational costs. However, extreme low-bit005
quantization methods often impair essential ca-006
pabilities such as complex reasoning, memory007
retention, and adherence to instructions. In this008
work, we systematically evaluate state-of-the-009
art quantization techniques on tasks involving010
chain-of-thought reasoning, instruction follow-011
ing, and multi-agent simulations. Additionally,012
we investigate partial and stochastic 1-bit quan-013
tization, i.e., binarization strategies that aim014
to preserve key reasoning capabilities, achiev-015
ing a balance between model compression and016
performance retention. To evaluate the effec-017
tiveness of low-bit LLMs in advanced scenarios018
like multi-agent simulations, we curated two019
novel datasets for multi-agent doctor-patient020
simulation, USMLE and NHS, to overcome021
the challenge of data scarcity in the domain of022
medical simulation and reasoning. Our exper-023
iments on LLaMA, LLaMA-3.1, LLaMA-3.2024
and LLaMA-3.3, as well as a reasoning-centric025
benchmark, demonstrate the potential of quan-026
tized models in maintaining functional integrity027
under extreme compression. The code for our028
work will be publicly available.029

1 Introduction030

Large Language Models (LLMs) have transformed031

the landscape of artificial intelligence, unlocking032

new possibilities in natural language understand-033

ing and complex reasoning (Huang and Chang,034

2022). Their ability to process vast amounts of data035

and generate human-like responses has made them036

indispensable across various domains, from auto-037

mated assistants to scientific discovery. However,038

their immense size comes at a cost—LLMs require039

substantial computational resources and memory040

capacity, making real-world deployment challeng-041
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Figure 1: Impact of quantization and binarization on ac-
curacy, memory, and perplexity. The main graph shows
accuracy dropping below 4-bit, mitigated by binariza-
tion. The top-right bar graph highlights memory savings
with minimal accuracy loss, while the bottom-right scat-
ter plot shows severe degradation at 2-bit, with partial
binarization preserving accuracy and low perplexity.

ing, particularly on resource-constrained devices 042

(Alizadeh et al., 2023). 043

Quantization reduces LLM storage and compu- 044

tation, enabling deployment on lower-end hard- 045

ware while maintaining performance (Lin et al., 046

2024). However, it degrades accuracy, particularly 047

in reasoning, memory retention, and instruction- 048

following (Jin et al., 2024), raising the question: 049

how can we improve efficiency without sac- 050

rificing core capabilities? A key concern is 051

preserving emergent abilities, such as in-context 052

learning (ICL), chain-of-thought reasoning (CoT), 053

instruction-following (IF), multi-agent collabora- 054

tion, and agentic simulation. While prior work ex- 055

amines quantization’s general effects (Huang et al., 056

2024), its impact on emergent behaviors under ex- 057

treme compression remains underexplored, neces- 058

sitating a systematic evaluation of how quantized 059

models retain or lose these abilities. Recent ad- 060

vancements in extreme quantization, including Ze- 061

roQuant (Yao et al., 2022a), GPTQ (Frantar et al., 062
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2022a), and Partial Binarization (Yuan et al.), im-063

prove memory efficiency by reducing model size064

while preserving functionality. However, studies065

(Liu et al., 2023a; Wei et al., 2022a; Li et al., 2024;066

Dong et al., 2023) indicate that extreme low-bit067

quantization degrades memory retention, complex068

reasoning, and instruction-following, especially un-069

der aggressive compression. Addressing these lim-070

itations requires new strategies to mitigate perfor-071

mance loss.072

In this work, We investigate the impact of quan-073

tization (See Figure 1) on the emergent abilities of074

LLMs, both in general reasoning tasks and domain-075

specific applications requiring complex reasoning076

and multi-agent interaction, such as medical sim-077

ulations. While quantization enhances efficiency,078

its effect on instruction-following and reasoning079

capabilities remains underexplored, particularly in080

high-stakes applications. To address this gap, we081

curated two novel datasets (employing USMLE082

(Jin et al., 2020a) and NHS (National Health Ser-083

vice (NHS))) designed to systematically evaluate084

LLM performance in multi-agent medical reason-085

ing, providing a benchmark for assessing robust-086

ness and generalization under extremely low-bit087

LLMs.088

The main contributions of this work are summa-089

rized as follows:090

1. We designed a multi-agent evaluation frame-091

work and curated a simulated medical dataset092

of over 13,000 cases to assess reasoning, mem-093

ory retention, and instruction-following ca-094

pabilities in quantized LLMs under extreme095

compression.096

2. We analyze a hybrid approach – partial bina-097

rization – where only a subset of weights is098

binarized, while the remaining—critical for099

reasoning—are maintained at higher preci-100

sion. This addresses the main limitation of101

uniform low-bit quantization in retaining com-102

plex reasoning skills. Additionally, we also103

implement a strategy for non-uniform partial104

binarization where the ratio of binarization105

varies across layers. We analyze this strat-106

egy to study the contribution of shallow and107

deeper layers in maintaining aformentioned108

abilities under partial binarazation.109

3. We conducted extensive experiments on quan-110

tized LLMs, analyzing structured reasoning,111

performance trade-offs, and efficiency gains 112

in extreme quantization settings. 113

2 Related Work 114

2.1 Quantization of Large Language Models 115

Quantization compresses large language models 116

(LLMs) by reducing numerical precision, en- 117

abling deployment on resource-constrained hard- 118

ware. Methods like ZeroQuant (Yao et al., 2022b), 119

GPTQ (Frantar et al., 2022b), XTC (Wu et al., 120

2022), BitNet (Wang et al., 2023), and T-MAC 121

(Wei et al., 2024) reduce model size and computa- 122

tional overhead, making LLMs viable on lower-end 123

GPUs and CPUs. However, aggressive quanti- 124

zation degrades reasoning accuracy, memory 125

retention, and instruction-following, limiting ef- 126

fectiveness in complex tasks. 127

Existing methods mitigate these trade-offs but 128

remain insufficient for reasoning-intensive appli- 129

cations. GPTQ maintains general functionality at 130

3- or 4-bit precision but struggles with complex 131

reasoning (Frantar et al., 2022b). BitNet (Wang 132

et al., 2023) optimizes memory but lacks activation 133

quantization, limiting efficiency. T-MAC improves 134

matrix computation but sacrifices precision (Wei 135

et al., 2024). ZeroQuant enhances post-training 136

quantization but suffers in extreme settings like 137

INT4, especially for generative tasks (Yao et al., 138

2022b). These limitations highlight the need for 139

new quantization strategies that balance extreme 140

compression with robust reasoning performance. 141

2.2 Emergent Abilities in Quantized LLMs 142

Scaling LLMs unlocks emergent abilities like 143

in-context learning (ICL), chain-of-thought rea- 144

soning (CoT), instruction-following (IF), multi- 145

agent coordination, and agentic simulation (Wei 146

et al., 2022b), essential for complex reasoning and 147

decision-making. 148

Quantization disrupts these abilities, affecting 149

structured reasoning and multi-agent communica- 150

tion (Wei et al., 2022b), yet its impact remains 151

underexplored. Existing research focuses on sim- 152

ple benchmarks, lacking systematic evaluation of 153

high-level reasoning. To address this, we explore 154

partial binarization to retain reasoning structures 155

under extreme compression. 156

2.3 Binarization Techniques 157

Binarization improves efficiency but degrades ac- 158

curacy, particularly in reasoning tasks. Partial bi- 159
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Figure 2: Our pipeline evaluates and optimizes LLMs under extreme low-bit quantization. It consists of post-training
quantization, quantization-aware training, and binarization, extending to partial, stochastic, and non-uniform layer-
based strategies. Fine-tuning is applied via pre- and post-quantization adaptation using LoRA for improved learning.
The evaluation phase examines key emergent abilities, including in-context learning, chain-of-thought reasoning,
instruction following, text generation fluency, and memory retention. A multi-agent doctor-patient simulation (DPS)
assesses diagnostic reasoning, extending to multi-doctor collaboration for complex cases.

narization addresses this by retaining key weights160

in full precision while binarizing others. (Bamba161

et al., 2024) optimized this balance, improving rea-162

soning accuracy, while (Shang et al., 2023) intro-163

duced PB-LLM to selectively preserve critical pa-164

rameters. Stochastic quantization reduces bias but165

lacks adaptation for structured reasoning (Jin et al.,166

2024). Our framework integrates partial binariza-167

tion with structured quantization to retain emergent168

abilities while maximizing efficiency.169

3 Methodology170

Our approach systematically evaluates quantization171

strategies for large language models (LLMs) while172

preserving their reasoning capabilities. Figure 2173

outlines our pipeline, which consists of three main174

stages: quantization, fine-tuning, and evaluation.175

First, LLMs are quantized using various techniques176

to reduce memory consumption and improve ef-177

ficiency. Next, fine-tuning strategies are applied178

to mitigate accuracy loss introduced by lower-bit179

representations. Finally, we assess the impact of180

quantization on emergent abilities using a multi-181

agent simulation framework.182

3.1 Preliminary and Analysis183

Quantization of Large Language Models. Quan-184

tization reduces numerical precision to lower mem-185

ory and computational costs (Foundation, 2024;186

Frantar et al., 2022b), but aggressive quantization 187

can degrade reasoning performance. To mitigate 188

this, we employ post-training quantization (PTQ) 189

and quantization-aware fine-tuning. 190

PTQ applies quantization to trained models us- 191

ing a small calibration dataset to minimize preci- 192

sion loss. GPTQ achieves state-of-the-art results 193

through layer-wise reconstruction (Frantar et al., 194

2022a), preserving accuracy. 195

Quantization-aware fine-tuning restores lost ca- 196

pabilities by retraining after quantization. Pre- 197

quantization fine-tuning improves performance in 198

higher-bit models but is less effective for extreme 199

quantization. Post-quantization fine-tuning opti- 200

mizes quantized parameters, leveraging low-rank 201

adaptation (LoRA) for efficient tuning on large 202

models. 203

Preserving Reasoning Capabilities in Quantized 204

Models. Preserving emergent abilities in quantized 205

LLMs is key to maintaining reasoning. In-context 206

learning enables zero-shot and few-shot adaptation 207

but weakens under aggressive quantization, reduc- 208

ing long-range dependency retention. Chain-of- 209

thought reasoning, crucial for tasks like math and 210

medical diagnosis, is disrupted by lower-bit quanti- 211

zation, requiring fine-tuning. Instruction following, 212

essential for structured tasks, suffers from token 213

distortion, demanding targeted optimization. 214

Sensitivity of Model Components to Quantiza- 215
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Figure 3: Percentage Distribution of Diagnostic Categories.

tion. Different components of LLMs exhibit vary-216

ing sensitivity to quantization. Feedforward net-217

works (FFN) are particularly prone to degradation218

under extreme quantization, especially at 2-bit pre-219

cision, where reduced numerical representation220

affects inference stability. The presence of out-221

lier activations—where specific feature dimensions222

hold disproportionately high values—also plays a223

crucial role. Standard quantization often fails to224

preserve these values, leading to information loss.225

To address this, we explore selective quantization226

strategies that retain high-precision representations227

for critical dimensions while binarizing less essen-228

tial components.229

3.2 Partial Binarization: A Hybrid Precision230

Approach231

Partial binarization (PB-LLM) offers a compro-232

mise between full quantization and precision re-233

tention by selectively applying binarization to spe-234

cific model components. Instead of binarizing all235

weights, PB-LLM retains high-precision parame-236

ters critical for structured reasoning. This approach237

follows a hybrid representation:238

w ≈ α · wb (1)239

where wb ∈ {−1,+1} are the binarized weights,240

and α is a scaling factor computed as:241

α =
∥w∥1
n

(2)242

where ∥w∥1 represents the L1-norm of the full-243

precision weights and n is the number of weights.244

Activations are binarized using a sign function:245

ab = Sign(a) =

{
+1 if a ≥ 0

−1 otherwise
(3)246

Gradient computation is handled via the Straight-247

Through Estimator (STE), ensuring gradients flow248

through binarized layers without significant loss of 249

training signal. 250

3.3 Stochastic Binarization for Robustness 251

Stochastic binarization introduces controlled ran- 252

domness into the quantization process, improving 253

robustness by preventing systematic errors from 254

fixed threshold binarization. Each weight is bina- 255

rized probabilistically: 256

wb =

{
+1 with probability σ(w)

−1 otherwise
(4) 257

where σ(w) is a clipped hard sigmoid function: 258

σ(w) = max(0,min(1,
w + 1

2
)) (5) 259

The same stochastic approach is applied to activa- 260

tions, reducing information loss while improving 261

the stability of extreme quantization settings. 262

3.4 Multi-Agent Simulation for Evaluating 263

Quantized Models 264

We developed a multi-agent simulation framework 265

inspired by AgentClinic (Schmidgall et al., 2024) 266

to assess the reasoning capabilities of quantized 267

models in clinical decision-making. The system 268

includes four agents: doctor, patient, measurement, 269

and moderator. The doctor agent gathers patient 270

history, requests diagnostic tests, and formulates 271

diagnoses. The patient agent provides symptom 272

descriptions and medical history, while the mea- 273

surement agent supplies multimodal test results. 274

The moderator agent evaluates diagnostic accuracy 275

by comparing predictions against ground truth. 276

To enhance diagnostic reliability, we imple- 277

mented a multi-agent debate framework where mul- 278

tiple doctor agents engage in iterative discussions. 279

A majority voting mechanism determines the fi- 280

nal diagnosis, ensuring robust clinical reasoning 281

despite quantization constraints. 282
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based on the given prompts, and returns a structured response. Post-processing steps ensure data cleanliness and
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3.5 Dataset Pipeline for Medical Reasoning283

We developed an automated pipeline (Figure 4)284

that transforms raw medical data into structured,285

instruction-driven reasoning datasets for evaluating286

quantized models in medical diagnosis.287

Two datasets were curated from primary sources.288

The first dataset was scraped from NHS UK, cover-289

ing 923 distinct diseases. The second dataset con-290

sists of medical case studies from the United States291

Medical Licensing Examination (USMLE), with292

a standard version containing 1,273 cases and an293

extended version comprising 10,178 cases. These294

datasets provide clinically relevant benchmarks for295

evaluating LLMs in medical reasoning tasks. Fig-296

ure 3 presents the distribution of diagnoses across297

the Extended USMLE, USMLE, and NHS datasets,298

categorized into key medical fields.299

The data structuring module organizes raw med-300

ical information into a structured format for model301

training. Using OpenAI, it extracts key compo-302

nents, including task objectives, patient demograph-303

ics, symptoms, physical examination findings, di-304

agnostic test results, and expected diagnoses. The305

post-processing module refines the dataset by fil-306

tering irrelevant information, filling missing data307

with a generative AI model, and conducting man-308

ual reviews to ensure accuracy. The final dataset is309

stored for analysis and fine-tuning.310

4 Experiments311

4.1 Experimental Setup312

We begin with the unquantized LLaMa 3 (Touvron313

et al., 2023), LlaMA 3.1 (Grattafiori et al., 2024),314

LLaMA LLaMA 3.21 and LLaMA 3.31 family315

models and progressively apply each quantization316

1https://github.com/meta-llama/llama-models/
blob/main/models/

method. We ensure a fair comparison by keeping 317

all hyperparameters, training settings, and evalu- 318

ation protocols consistent across experiments. In 319

the training process of our quantized network, we 320

commence with a pretrained model for initializa- 321

tion. The optimization of the model is facilitated 322

through the AdamW optimizer (Loshchilov and 323

Hutter, 2019), applied with zero weight decay. We 324

assign a batch size of 1 to each GPU and imple- 325

ment a learning rate of 2e-5, adhering to a cosine 326

learning rate decay strategy. All experiments in this 327

study were conducted on 4 NVIDIA A100 40GB 328

GPUs and 1 NVIDIA A100 80GB GPUs, ensur- 329

ing a consistent and high-performance computing 330

environment for evaluating quantized LLMs. 331

4.2 Datasets and Benchmarks 332

To evaluate the impact of quantization on logical 333

inference and decision-making, we utilize a diverse 334

set of reasoning benchmarks: MMLU (Hendrycks 335

et al., 2021) to assess performance across multiple 336

domains, including STEM, humanities, and social 337

sciences. BBH (Suzgun et al., 2022) to evaluate 338

complex reasoning abilities that require deep log- 339

ical deduction. GSM8K (Cobbe et al., 2021) to 340

measure CoT reasoning (Kim et al., 2023) in math- 341

ematical problem-solving. AlpacaFarm (Dubois 342

et al., 2024) tests instruction-following capabilities 343

through preference-based evaluations. WikiText 344

(Merity et al., 2016) evaluates language modeling 345

performance using perplexity metrics. For medical 346

reasoning multi-agent simulation, we used MedQA 347

(Jin et al., 2020b) and our curated USMLE and 348

NHS datasets. 349

4.3 Quantization and Binarization Strategies 350

We apply GPTQ (Frantar et al., 2022b), Bitsand- 351

bytes (Foundation, 2024), ZeroQuant (Yao et al., 352
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Doctor: Were you present during the delivery?

Patient: No, I wasn't present during the delivery but the hospital
staff told me that delivery was very quick and that my mom was
trying to do the best she could. I did not receive any prenatal
care, or as little as possible.

Measurement: RESULTS: Chest Radiograph Findings: Fine
reticular granulation with ground glass appearance on both
lungs. Blood Gases: pH: 7.30 (slightly acidic), PaCO2: 50 mmHg
(elevated), PaO2: 60 mmHg (reduced), HCO3-: 24 mEq/L.
NORMAL READINGS.

System agent: Correct answer: Respiratory Distress Syndrome
Scenario 30: Diagnosis was CORRECT (45%).

Doctor: REQUEST TEST: Heart Rate and Blood Pressure Check.

.......

Patient: I'm still having trouble feeding. I try to suckle but I get
tired quickly and have to stop. I feel like I'm taking a lot of effort
to breathe so I'm not sure if I can feed much now. I'm still very
weak.

Doctor: It's okay, I understand that you're still feeling weak, the fatigue
and breathing difficulties are normal due to the condition you are
suffering from. We will monitor your oxygen saturation levels closely
to ensure your body is getting enough oxygen. Have you been able to
feed at all since the treatments started or are you still having trouble?

.......

DIAGNOSIS READY: Respiratory Distress Syndrome (RDS).

Figure 5: Multi-Agent Interaction in Medical Diagno-
sis Simulation: This figure illustrates the Doctor Agent
collecting symptoms and history from the Patient Agent
while requesting test results from the Measurement
Agent. Using structured reasoning, the Doctor Agent
formulates a diagnosis. The system employs LLaMA
3.3 70B 4-bit quantized for realistic doctor-patient inter-
actions and diagnostic assessment.

2022b), and PB-LLM (Yuan et al., 2024) for ef-353

ficient quantization. For binarization, we explore354

Binary-0.5, non-uniform binarization, and stochas-355

tic partial binarization (Bamba et al., 2023) to bal-356

ance compression with reasoning performance.357

Pre-Quantization Fine-Tuning Before apply-358

ing quantization, fine-tuning is leveraged to opti-359

mize model performance, ensuring robustness in360

ICL, CoT reasoning, and IF. Following best prac-361

tices from prior studies, LLaMA models are fine-362

tuned on the Alpaca dataset (for instruction tuning)363

and CoT-annotated datasets (for logical reasoning).364

Additionally, LoRA-based parameter-efficient fine-365

tuning (Hu et al., 2021) is explored to maintain366

adaptability without significantly increasing com-367

putational costs.368

Post-Quantization Fine-Tuning To counteract369

performance degradation caused by quantization,370

a specialized fine-tuning framework is introduced371

for post-quantized LLaMA models. This allows di-372

rect optimization of 2-bit larger models on a single373

A100 GPU (Liu et al., 2023b), achieving better per-374

formance than a 16-bit LLaMA-c13B in MMLU375

(5-shot evaluation). Inspired by QAT (Ashkboos376

et al., 2024) and parameter-efficient tuning meth- 377

ods (Hu et al., 2021), the approach modifies LoRA 378

to incorporate GPTQ-generated quantized weights, 379

drastically reducing memory overhead. The bigger 380

models like LLaMa 3.3 70B model at 2-bit pre- 381

cision requires only 23.2 GiB, making it a highly 382

efficient fine-tuning strategy for extreme low-bit 383

LLM quantization. 384

4.4 Performance on Reasoning Tasks 385

To assess the impact of quantization on reasoning 386

abilities, we evaluate LLaMA models across multi- 387

ple benchmarks, as detailed in Tables 1, 2, 3. Our 388

analysis highlights how extreme quantization af- 389

fects logical inference, structured reasoning, and 390

memory retention. 391

Overall Performance Trends: Table 1 presents 392

the zero-shot and few-shot accuracy of LLaMA-7B 393

and LLaMA 3.1 8B at different quantization levels. 394

While 16-bit and 8-bit models maintain strong rea- 395

soning performance, accuracy drops significantly 396

below 4-bit, especially in MMLU and BBH bench- 397

marks. Notably, partial binarization (PB-LLM) 398

preserves performance better than uniform 4-bit 399

or 2-bit quantization, demonstrating its ability to 400

balance compression and accuracy. 401

Chain-of-Thought and Commonsense Reason- 402

ing: Table 3 shows the performance across differ- 403

ent reasoning categories. For arithmetic reason- 404

ing (GSM8K), accuracy remains stable under 4-bit 405

quantization but collapses at 2-bit. Commonsense 406

reasoning (HellaSwag) follows a similar trend, with 407

PB-LLM outperforming standard 4-bit models due 408

to selective precision retention. Multi-hop reason- 409

ing, which requires combining multiple facts, suf- 410

fers the most under aggressive quantization, rein- 411

forcing the need for fine-tuning. 412

Instruction-Tuned Models and Prompt-Level Ac- 413

curacy: Table 2 further examines performance on 414

an instruction-following dataset. Instruction-tuned 415

models perform significantly better than non-tuned 416

models, with 50% binarization retaining more ac- 417

curacy than full quantization methods like GPTQ- 418

INT4. This suggests that partial binarization miti- 419

gates degradation in structured reasoning. 420

Overall, our findings emphasize that while ex- 421

treme quantization reduces memory and computa- 422

tional costs, it comes at the expense of logical co- 423

herence. However, PB-LLM effectively preserves 424

reasoning abilities, making it a promising approach 425

for deploying LLMs in resource-constrained envi- 426

ronments. 427
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Table 1: Zero-shot and few-shot performance comparison of LLaMA-7B and LLaMA 3.1 8B across different
precisions, including 10% partial binarization (4-bit setting) on various reasoning benchmarks.

Models Precision MMLU BBH GSM8K WikiText Mem.
0-shot 5-shot 0-shot 3-shot (PPL) (GiB)

LLaMA-7B 16-bit 30.9 36.8 18.4 32.1 13.9 5.7 14.0
8-bit 29.8 35.5 17.6 32.7 14.7 5.7 7.8
4-bit 32.5 35.8 19.9 32.2 13.8 5.8 4.8
2-bit 3.7 5.5 1.8 4.0 0.0 3939.1 3.1

LLaMA 3.1 8B 4-bit 37.0 38.2 20.8 37.8 15.2 5.0 5.2
2-bit 2.3 3.8 0.4 2.7 1.5 2968.0 3.7

LLaMA 3.1 8B (PB 10%) 4-bit 29.2 35.2 17.3 31.0 13.1 5.7 13.9

Table 2: Zero-shot performance on ifeval (Zhou et al.,
2023) dataset using LLaMA 3.1 8B with various bina-
rization ratios. The metric compares instance-level and
prompt-level accuracy in both loose and strict criteria.

Precision Instance-Level Acc. Prompt-Level Acc.
(Loose) (Strict) (Loose) (Strict)

Non-Instruction-Tuned Models

Binarization-30% 21.43 21.30 19.24±1.51 18.50±1.10
Binarization-20% 21.10 19.90 10.17±1.30 8.69±1.21
Binarization-10% 18.47 17.75 10.54±1.32 9.80±1.28

Instruction-Tuned Models

GPTQ-Binarization-50% 59.83 56.71 47.13±2.15 44.36±2.10
bnb-4-bit 61.03 57.19 46.77±2.15 42.14±2.12
GPTQ-INT4 57.43 54.20 44.77±2.14 40.48±2.11
GPTQ-16-bit 60.55 57.19 46.77±2.15 42.51±2.13

Table 3: Reasoning Breakdown Across Task Types for
LLaMA-7B under different quantization settings. Arith-
metic is evaluated on GSM8K, commonsense on Hel-
laSwag, and multi-hop on an internal QA dataset.

Model Precision Arithmetic
(GSM8K)

Commonsense
(HellaSwag)

Multi-Hop
QA

LLaMA-7B 16-bit 13.9 69.2 48.5
LLaMA-7B 4-bit 13.8 66.0 46.2
LLaMA-7B PB (4-bit, 10%) 13.1 67.8 47.1
LLaMA-7B 2-bit 0.0 10.5 2.2

4.5 Multi-Agent Simulation428

We evaluate quantized models in a multi-agent clin-429

ical simulation where a Doctor Agent interacts with430

a Patient Agent and requests diagnostic tests from a431

Measurement Agent. This setup assesses reasoning432

retention under quantization.433

Table 4 presents the accuracy comparison of var-434

ious models across simulated and non-simulated435

medical environments. Figure 5 shows a sam-436

ple simulation of the Multi-Agent simulation437

The non-simulated environment, representing real-438

world medical decision-making scenarios, shows439

the highest accuracy of 73.2%, achieved by the440

LLaMA 3.1 (70B) model. In contrast, within the441

simulated environment, performance varies signifi-442

cantly across models. Among full-precision mod-443

els, GPT-4 Turbo achieves the best accuracy at444

53.4%, followed by Mixtral 7B*8B and GPT-4 445

Vision Preview, scoring 37.6% and 35.7%, respec- 446

tively. The smaller LLaMA models (3B, 3.2B, and 447

2 (70B)) demonstrate notably lower performance, 448

with accuracy ranging from 4.3% to 8.5%. 449

Furthermore, when applying quantization tech- 450

niques, such as Binary 4-bit and GPTQ 4-bit, accu- 451

racy slightly improves compared to some smaller 452

full-precision models. Specifically, the LLaMA 453

3.1 (70B) model in Binary 4-bit format reaches 454

20.8%, whereas GPTQ 4-bit quantization yields a 455

higher accuracy of 26.3%. These results suggest 456

that precision reduction impacts accuracy but can 457

still maintain competitive performance depending 458

on the model and task requirements. 459

Table 5 shows that lower-bit models struggle 460

with diagnostic accuracy due to information loss, 461

particularly at 2-bit precision. Partial binarization 462

mitigates this by preserving critical reasoning path- 463

ways, with PB-LLM at 4-bit performing compara- 464

bly to 8-bit models.

Table 4: Performance of Different Models in Simulated
(agentic) and Non-Simulated (direct QnA) Medical En-
vironments. “Accuracy (%)” is based on correct diag-
nostic or management decisions.

Precision Model Accuracy (%)

Non-Simulated Environment

Full LLaMA 3.1 (70B) 73.0

Simulated Environment

Full

GPT-4 Turbo 53.4
GPT-4 Vision Preview 35.6
Mixtral 7B×8B 37.6
LLaMA 3.2 (3B) 5.8
LLaMA 3.0 (3B) 4.4
LLaMA 2 (70B) 8.5

Binary 4-bit LLaMA 3.1 70B 20.8
GPTQ 4-bit LLaMA 3.1 70B 26.2

465
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Table 5: Multi-Agent Simulation Performance on Medi-
cal Reasoning Datasets for LLaMA 3.3 70B.

Model Quantization MedQA NHS USMLE USMLE ext.

LLaMA 3.3 70B 16-bit (FP16) 58.5 60.2 56.9 55.4
LLaMA 3.3 70B 8-bit 56.3 58.5 54.8 53.9
LLaMA 3.3 70B 4-bit (GPTQ) 53.9 55.2 51.5 59.8
LLaMA 3.3 70B 4-bit (PB-LLM) 55.8 57.4 53.2 52.1
LLaMA 3.3 70B 2-bit 6.2 9.5 9.1 7.8

4.6 Ablation Studies466

Multi-agent Collaboration for Final Disease Di-467

agnosis: To evaluate the effectiveness of multi-468

agent collaboration in the end of the question an-469

swering, we analyze diagnostic accuracy under dif-470

ferent levels of agent interaction. Table 6 summa-471

rizes the performance improvements from single-472

agent diagnosis to collaborative decision-making473

with structured debate and voting.474

Table 6: This experiment evaluates the effectiveness of
multi-agent collaboration in enhancing diagnostic accu-
racy when using LLaMA 3.3 70B with 4-bit PB-LLM
binarization. The results demonstrate that despite ag-
gressive quantization, PB-LLM preserves logical reason-
ing abilities, enabling reliable disease diagnosis through
structured agent interactions.

Collaboration Level MedQA(%) NHS(%) USMLE (%)

Single Doctor Agent 55.8 57.5 52.1
Two Doctors (Majority Vote) 56.1 57.8 53.4
Multi-Doctor (n=5) 58.4 62.7 58.2
Multi-Doctor (n=5) + Feedback 59.0 65.9 61.1

Impact of varying binarized layers in LlaMA475

Table 7 provides insights into the effect of varying476

binarization levels on model perplexity. It demon-477

strates that retaining full-precision weights in deep478

layers is crucial for preserving structured reason-479

ing. A balanced binarization ratio (e.g., 50–60%)480

ensures stability, while excessive binarization (e.g.,481

80%) significantly degrades performance. The re-482

sults highlight the effectiveness of non-uniform bi-483

narization strategies, where deeper layers maintain484

more precision to support long-range dependen-485

cies, improving efficiency without compromising486

coherence.487

Table 8 extends this analysis to stochastic par-488

tial binarization. Unlike deterministic binarization,489

stochastic methods introduce variability but do not490

yield significant improvements in perplexity. While491

lower binarization levels maintain model stability,492

increasing binarization beyond 60% drastically im-493

pacts performance. These findings reinforce the494

necessity of adaptive quantization strategies, en-495

suring optimal trade-offs between efficiency and496

Table 7: Effective PB Quantization Results: Impact of
varying binarized layers on perplexity and improvement.
“# Deep Layers” refers to the number of last layers ex-
cluded from binarization.

Effective
% Binar.

# Deep
Layers % Binarization Perplexity %↑

Shallow
Layers

Deep
Layers

50% – – – 18.71 –
50% 4 48% 55% 18.57 0.75%
50% 2 48% 60% 18.59 0.65%

60% – – – 24.12 –
60% 4 56.60% 70% 22.19 8%
60% 2 57% 80% 22.76 5.60%

70% – – – 45.90 –
70% 4 63% 90% 33.47 27.10%
70% 2 69% 80% 45.62 0.60%

80% – – – 84.33 –
80% 4 76.60% 90% 82.24 2.40%
80% 2 78.50% 90% 79.15 6.14%

Table 8: Uniform and Non-Uniform Stochastic Par-
tial Binarization of LLaMA-3.2-1B model in a Post-
Training Quantization Framework. The columns with
‘–’ mean that each layer l ∈ {1, 2...L} was stochasti-
cally partially binarized with the binarization percentage
shown in the first column. Other columns show when
shallow layers (L-4 or L-2) and deep layers (4 or 2) are
binarized at different rates.

Effective
Binarization (%)

Deep
Layers

Shallow
Layers (%)

Deep
Layers (%)

Perplexity

50%
– – – 43.72
4 48 55 40.61
2 48 60 42.37

60%
– – – 150.47
4 56.60 70 156.75
2 57 80 174.89

70%
– – – 1114.24
4 63 90 1529.14
2 69 80 1118.32

80%
– – – 45849.47
4 76.60 90 123991.02
2 78.50 90 40236.45

reasoning capabilities. 497

5 Conclusion 498

We have conducted a comprehensive study on the 499

reasoning capabilities of post-training quantized 500

large language models. Our results indicate that 501

while extreme quantization can degrade perfor- 502

mance on complex reasoning tasks, a hybrid preci- 503

sion strategy like partial binarization can maintain 504

a surprising amount of these emergent abilities. Fu- 505

ture work will explore more dynamic quantization 506

strategies and extend the reasoning-centric dataset 507

to other complex modalities and multi-step reason- 508

ing domains. 509
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6 Limitations510

Quantization at extremely low bit-widths (e.g., 2-511

bit) results in severe performance degradation due512

to the loss of representational capacity, affecting513

both logical consistency and reasoning accuracy.514

While PB-LLM mitigates this to some extent by515

improving weight binarization, it does not fully516

restore model precision, particularly in complex517

inference tasks. Multi-agent simulations face lim-518

itations in adaptive reasoning due to the rigid na-519

ture of scripted interactions, failing to capture real-520

world uncertainty and variability in doctor-patient521

dialogues. Generalization remains a critical issue522

for quantized models, as reduced precision leads523

to brittleness across diverse reasoning benchmarks,524

making them unreliable in complex, unseen scenar-525

ios. Additionally, existing binarization techniques526

optimize for efficiency at the cost of accuracy, lack-527

ing a universal approach to balance computational528

constraints with robust performance.529
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A Summary of Experiments 708

Table A9 presents an overview of the experiments 709

conducted, including quantization techniques, rea- 710

soning tasks, multi-agent medical simulations, and 711

ablation studies. 712
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Table A9: Summary of Experiments Conducted and Models Used.

Experiment Objective Models Used

Quantization Evalu-
ation

Comparison of GPTQ, bitsand-
bytes, ZeroQuant, PB-LLM.

LLaMA-7B (16, 8, 4, 2-bit),
LLaMA-3.1 8B, LLaMA-3.2 (3B),
LLaMA-2 (70B)

Reasoning Tasks Evaluation of CoT reasoning,
ICL, Multi-agent Simulation.

LLaMA-7B, LLaMA-3.1 8B,
GPT-4 Turbo, Mixtral 7B, GPT-4
Vision

Benchmarks Used Datasets: GSM8K, MMLU,
BBH, WikiText.

LLaMA-7B, LLaMA-3.1 8B,
GPT-4 Turbo, Mixtral 7B

Multi-Agent Simu-
lation

Doctor-patient interactions,
USMLE/NHS datasets.

LLaMA-3.1 8B, LLaMA-3.2 (3B),
GPT-4 Turbo

Ablation Studies Binarization ratios, quantization
backends, task complexity.

LLaMA-7B, LLaMA-3.1 8B,
LLaMA-3.2 (3B), LLaMA-2
(70B)

B Performance on Reasoning713

Benchmarks714

Table A10 provides accuracy results for reason-715

ing tasks: BoolQ, PIQA, HellaSwag, Winogrande,716

ARC-Easy, ARC-Challenge, and OpenBookQA.717

Task Accuracy (%) ± Std.

BoolQ 37.83 ± 0.85
PIQA 49.51 ± 1.17
HellaSwag 25.04 ± 0.43
Winogrande 49.57 ± 1.41
ARC-Easy 25.08 ± 0.89
ARC-Challenge 22.70 ± 1.22
OpenBookQA 27.60 ± 2.00

Mean 33.90

Table A10: Accuracy (%) and standard deviation for
reasoning benchmarks using LLaMA.
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