Quantized LLLM Reasoning: A Comprehensive Study of Post-Training
Quantization in LLMs

Anonymous ACL submission

Abstract

Quantization plays a crucial role in enabling
the efficient deployment of large language mod-
els (LLMs) on memory-constrained hardware,
significantly reducing memory usage and com-
putational costs. However, extreme low-bit
quantization methods often impair essential ca-
pabilities such as complex reasoning, memory
retention, and adherence to instructions. In this
work, we systematically evaluate state-of-the-
art quantization techniques on tasks involving
chain-of-thought reasoning, instruction follow-
ing, and multi-agent simulations. Additionally,
we investigate partial and stochastic 1-bit quan-
tization, i.e., binarization strategies that aim
to preserve key reasoning capabilities, achiev-
ing a balance between model compression and
performance retention. To evaluate the effec-
tiveness of low-bit LLMs in advanced scenarios
like multi-agent simulations, we curated two
novel datasets for multi-agent doctor-patient
simulation, USMLE and NHS, to overcome
the challenge of data scarcity in the domain of
medical simulation and reasoning. Our exper-
iments on LLaMA, LLaMA-3.1, LLaMA-3.2
and LLaMA-3.3, as well as a reasoning-centric
benchmark, demonstrate the potential of quan-
tized models in maintaining functional integrity
under extreme compression. The code for our
work will be publicly available.

1 Introduction

Large Language Models (LLMs) have transformed
the landscape of artificial intelligence, unlocking
new possibilities in natural language understand-
ing and complex reasoning (Huang and Chang,
2022). Their ability to process vast amounts of data
and generate human-like responses has made them
indispensable across various domains, from auto-
mated assistants to scientific discovery. However,
their immense size comes at a cost—LLMs require
substantial computational resources and memory
capacity, making real-world deployment challeng-
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Figure 1: Impact of quantization and binarization on ac-
curacy, memory, and perplexity. The main graph shows
accuracy dropping below 4-bit, mitigated by binariza-
tion. The top-right bar graph highlights memory savings
with minimal accuracy loss, while the bottom-right scat-
ter plot shows severe degradation at 2-bit, with partial
binarization preserving accuracy and low perplexity.

ing, particularly on resource-constrained devices
(Alizadeh et al., 2023).

Quantization reduces LLM storage and compu-
tation, enabling deployment on lower-end hard-
ware while maintaining performance (Lin et al.,
2024). However, it degrades accuracy, particularly
in reasoning, memory retention, and instruction-
following (Jin et al., 2024), raising the question:
how can we improve efficiency without sac-
rificing core capabilities? A key concern is
preserving emergent abilities, such as in-context
learning (ICL), chain-of-thought reasoning (CoT),
instruction-following (IF), multi-agent collabora-
tion, and agentic simulation. While prior work ex-
amines quantization’s general effects (Huang et al.,
2024), its impact on emergent behaviors under ex-
treme compression remains underexplored, neces-
sitating a systematic evaluation of how quantized
models retain or lose these abilities. Recent ad-
vancements in extreme quantization, including Ze-
roQuant (Yao et al., 2022a), GPTQ (Frantar et al.,



2022a), and Partial Binarization (Yuan et al.), im-
prove memory efficiency by reducing model size
while preserving functionality. However, studies
(Liu et al., 2023a; Wei et al., 2022a; Li et al., 2024,
Dong et al., 2023) indicate that extreme low-bit
quantization degrades memory retention, complex
reasoning, and instruction-following, especially un-
der aggressive compression. Addressing these lim-
itations requires new strategies to mitigate perfor-
mance loss.

In this work, We investigate the impact of quan-
tization (See Figure 1) on the emergent abilities of
LLMs, both in general reasoning tasks and domain-
specific applications requiring complex reasoning
and multi-agent interaction, such as medical sim-
ulations. While quantization enhances efficiency,
its effect on instruction-following and reasoning
capabilities remains underexplored, particularly in
high-stakes applications. To address this gap, we
curated two novel datasets (employing USMLE
(Jin et al., 2020a) and NHS (National Health Ser-
vice (NHS))) designed to systematically evaluate
LLM performance in multi-agent medical reason-
ing, providing a benchmark for assessing robust-
ness and generalization under extremely low-bit
LLMs.

The main contributions of this work are summa-
rized as follows:

1. We designed a multi-agent evaluation frame-
work and curated a simulated medical dataset
of over 13,000 cases to assess reasoning, mem-
ory retention, and instruction-following ca-
pabilities in quantized LLMs under extreme
compression.

2. We analyze a hybrid approach — partial bina-
rization — where only a subset of weights is
binarized, while the remaining—critical for
reasoning—are maintained at higher preci-
sion. This addresses the main limitation of
uniform low-bit quantization in retaining com-
plex reasoning skills. Additionally, we also
implement a strategy for non-uniform partial
binarization where the ratio of binarization
varies across layers. We analyze this strat-
egy to study the contribution of shallow and
deeper layers in maintaining aformentioned
abilities under partial binarazation.

3. We conducted extensive experiments on quan-
tized LLMs, analyzing structured reasoning,

performance trade-offs, and efficiency gains
in extreme quantization settings.

2 Related Work
2.1 Quantization of Large Language Models

Quantization compresses large language models
(LLMs) by reducing numerical precision, en-
abling deployment on resource-constrained hard-
ware. Methods like ZeroQuant (Yao et al., 2022b),
GPTQ (Frantar et al., 2022b), XTC (Wu et al.,
2022), BitNet (Wang et al., 2023), and T-MAC
(Wei et al., 2024) reduce model size and computa-
tional overhead, making LLMs viable on lower-end
GPUs and CPUs. However, aggressive quanti-
zation degrades reasoning accuracy, memory
retention, and instruction-following, limiting ef-
fectiveness in complex tasks.

Existing methods mitigate these trade-offs but
remain insufficient for reasoning-intensive appli-
cations. GPTQ maintains general functionality at
3- or 4-bit precision but struggles with complex
reasoning (Frantar et al., 2022b). BitNet (Wang
et al., 2023) optimizes memory but lacks activation
quantization, limiting efficiency. T-MAC improves
matrix computation but sacrifices precision (Wei
et al., 2024). ZeroQuant enhances post-training
quantization but suffers in extreme settings like
INT4, especially for generative tasks (Yao et al.,
2022b). These limitations highlight the need for
new quantization strategies that balance extreme
compression with robust reasoning performance.

2.2 Emergent Abilities in Quantized LLMs

Scaling LLMs unlocks emergent abilities like
in-context learning (ICL), chain-of-thought rea-
soning (CoT), instruction-following (IF), multi-
agent coordination, and agentic simulation (Wei
et al., 2022b), essential for complex reasoning and
decision-making.

Quantization disrupts these abilities, affecting
structured reasoning and multi-agent communica-
tion (Wei et al., 2022b), yet its impact remains
underexplored. Existing research focuses on sim-
ple benchmarks, lacking systematic evaluation of
high-level reasoning. To address this, we explore
partial binarization to retain reasoning structures
under extreme compression.

2.3 Binarization Techniques

Binarization improves efficiency but degrades ac-
curacy, particularly in reasoning tasks. Partial bi-
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Figure 2: Our pipeline evaluates and optimizes LLMs under extreme low-bit quantization. It consists of post-training
quantization, quantization-aware training, and binarization, extending to partial, stochastic, and non-uniform layer-
based strategies. Fine-tuning is applied via pre- and post-quantization adaptation using LoRA for improved learning.
The evaluation phase examines key emergent abilities, including in-context learning, chain-of-thought reasoning,
instruction following, text generation fluency, and memory retention. A multi-agent doctor-patient simulation (DPS)
assesses diagnostic reasoning, extending to multi-doctor collaboration for complex cases.

narization addresses this by retaining key weights
in full precision while binarizing others. (Bamba
et al., 2024) optimized this balance, improving rea-
soning accuracy, while (Shang et al., 2023) intro-
duced PB-LLM to selectively preserve critical pa-
rameters. Stochastic quantization reduces bias but
lacks adaptation for structured reasoning (Jin et al.,
2024). Our framework integrates partial binariza-
tion with structured quantization to retain emergent
abilities while maximizing efficiency.

3 Methodology

Our approach systematically evaluates quantization
strategies for large language models (LLMs) while
preserving their reasoning capabilities. Figure 2
outlines our pipeline, which consists of three main
stages: quantization, fine-tuning, and evaluation.
First, LLMs are quantized using various techniques
to reduce memory consumption and improve ef-
ficiency. Next, fine-tuning strategies are applied
to mitigate accuracy loss introduced by lower-bit
representations. Finally, we assess the impact of
quantization on emergent abilities using a multi-
agent simulation framework.

3.1 Preliminary and Analysis

Quantization of Large Language Models. Quan-
tization reduces numerical precision to lower mem-
ory and computational costs (Foundation, 2024;

Frantar et al., 2022b), but aggressive quantization
can degrade reasoning performance. To mitigate
this, we employ post-training quantization (PTQ)
and quantization-aware fine-tuning.

PTQ applies quantization to trained models us-
ing a small calibration dataset to minimize preci-
sion loss. GPTQ achieves state-of-the-art results
through layer-wise reconstruction (Frantar et al.,
2022a), preserving accuracy.

Quantization-aware fine-tuning restores lost ca-

pabilities by retraining after quantization. Pre-
quantization fine-tuning improves performance in
higher-bit models but is less effective for extreme
quantization. Post-quantization fine-tuning opti-
mizes quantized parameters, leveraging low-rank
adaptation (LoRA) for efficient tuning on large
models.
Preserving Reasoning Capabilities in Quantized
Models. Preserving emergent abilities in quantized
LLM:s is key to maintaining reasoning. In-context
learning enables zero-shot and few-shot adaptation
but weakens under aggressive quantization, reduc-
ing long-range dependency retention. Chain-of-
thought reasoning, crucial for tasks like math and
medical diagnosis, is disrupted by lower-bit quanti-
zation, requiring fine-tuning. Instruction following,
essential for structured tasks, suffers from token
distortion, demanding targeted optimization.

Sensitivity of Model Components to Quantiza-
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Figure 3: Percentage Distribution of Diagnostic Categories.

tion. Different components of LLMs exhibit vary-
ing sensitivity to quantization. Feedforward net-
works (FFN) are particularly prone to degradation
under extreme quantization, especially at 2-bit pre-
cision, where reduced numerical representation
affects inference stability. The presence of out-
lier activations—where specific feature dimensions
hold disproportionately high values—also plays a
crucial role. Standard quantization often fails to
preserve these values, leading to information loss.
To address this, we explore selective quantization
strategies that retain high-precision representations
for critical dimensions while binarizing less essen-
tial components.

3.2 Partial Binarization: A Hybrid Precision
Approach

Partial binarization (PB-LLM) offers a compro-
mise between full quantization and precision re-
tention by selectively applying binarization to spe-
cific model components. Instead of binarizing all
weights, PB-LLM retains high-precision parame-
ters critical for structured reasoning. This approach
follows a hybrid representation:

w R Q- Wy (D

where w, € {—1,+1} are the binarized weights,
and « is a scaling factor computed as:

Il
n
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where ||w||; represents the L1-norm of the full-
precision weights and n is the number of weights.
Activations are binarized using a sign function:

+1 ifa>0
ap = Sign(a) = B 3
’ en(a) —1 otherwise ©)
Gradient computation is handled via the Straight-
Through Estimator (STE), ensuring gradients flow

through binarized layers without significant loss of
training signal.

3.3 Stochastic Binarization for Robustness

Stochastic binarization introduces controlled ran-
domness into the quantization process, improving
robustness by preventing systematic errors from
fixed threshold binarization. Each weight is bina-
rized probabilistically:

+1 with probability o(w)

wp = 4
b —1 otherwise @

where o (w) is a clipped hard sigmoid function:

1
o(w) = max(0, min(1, %)) 5)
The same stochastic approach is applied to activa-
tions, reducing information loss while improving
the stability of extreme quantization settings.

3.4 Multi-Agent Simulation for Evaluating
Quantized Models

We developed a multi-agent simulation framework
inspired by AgentClinic (Schmidgall et al., 2024)
to assess the reasoning capabilities of quantized
models in clinical decision-making. The system
includes four agents: doctor, patient, measurement,
and moderator. The doctor agent gathers patient
history, requests diagnostic tests, and formulates
diagnoses. The patient agent provides symptom
descriptions and medical history, while the mea-
surement agent supplies multimodal test results.
The moderator agent evaluates diagnostic accuracy
by comparing predictions against ground truth.

To enhance diagnostic reliability, we imple-
mented a multi-agent debate framework where mul-
tiple doctor agents engage in iterative discussions.
A majority voting mechanism determines the fi-
nal diagnosis, ensuring robust clinical reasoning
despite quantization constraints.
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3.5 Dataset Pipeline for Medical Reasoning

We developed an automated pipeline (Figure 4)
that transforms raw medical data into structured,
instruction-driven reasoning datasets for evaluating
quantized models in medical diagnosis.

Two datasets were curated from primary sources.
The first dataset was scraped from NHS UK, cover-
ing 923 distinct diseases. The second dataset con-
sists of medical case studies from the United States
Medical Licensing Examination (USMLE), with
a standard version containing 1,273 cases and an
extended version comprising 10,178 cases. These
datasets provide clinically relevant benchmarks for
evaluating LLMs in medical reasoning tasks. Fig-
ure 3 presents the distribution of diagnoses across
the Extended USMLE, USMLE, and NHS datasets,
categorized into key medical fields.

The data structuring module organizes raw med-
ical information into a structured format for model
training. Using OpenAl, it extracts key compo-
nents, including task objectives, patient demograph-
ics, symptoms, physical examination findings, di-
agnostic test results, and expected diagnoses. The
post-processing module refines the dataset by fil-
tering irrelevant information, filling missing data
with a generative Al model, and conducting man-
ual reviews to ensure accuracy. The final dataset is
stored for analysis and fine-tuning.

4 Experiments

4.1 Experimental Setup

We begin with the unquantized LLaMa 3 (Touvron
et al., 2023), L1IaMA 3.1 (Grattafiori et al., 2024),
LLaMA LLaMA 3.2' and LLaMA 3.3' family
models and progressively apply each quantization

1h'ctps ://github.com/meta-1lama/llama-models/
blob/main/models/

method. We ensure a fair comparison by keeping
all hyperparameters, training settings, and evalu-
ation protocols consistent across experiments. In
the training process of our quantized network, we
commence with a pretrained model for initializa-
tion. The optimization of the model is facilitated
through the AdamW optimizer (Loshchilov and
Hutter, 2019), applied with zero weight decay. We
assign a batch size of 1 to each GPU and imple-
ment a learning rate of 2e-5, adhering to a cosine
learning rate decay strategy. All experiments in this
study were conducted on 4 NVIDIA A100 40GB
GPUs and 1 NVIDIA A100 80GB GPUs, ensur-
ing a consistent and high-performance computing
environment for evaluating quantized LLMs.

4.2 Datasets and Benchmarks

To evaluate the impact of quantization on logical
inference and decision-making, we utilize a diverse
set of reasoning benchmarks: MMLU (Hendrycks
et al., 2021) to assess performance across multiple
domains, including STEM, humanities, and social
sciences. BBH (Suzgun et al., 2022) to evaluate
complex reasoning abilities that require deep log-
ical deduction. GSMS8K (Cobbe et al., 2021) to
measure CoT reasoning (Kim et al., 2023) in math-
ematical problem-solving. AlpacaFarm (Dubois
et al., 2024) tests instruction-following capabilities
through preference-based evaluations. WikiText
(Merity et al., 2016) evaluates language modeling
performance using perplexity metrics. For medical
reasoning multi-agent simulation, we used MedQA
(Jin et al., 2020b) and our curated USMLE and
NHS datasets.

4.3 Quantization and Binarization Strategies

We apply GPTQ (Frantar et al., 2022b), Bitsand-
bytes (Foundation, 2024), ZeroQuant (Yao et al.,
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Doctor: Were you present during the delivery?

Patient: No, | wasn't present during the delivery but the hospital
staff told me that delivery was very quick and that my mom was
trying to do the best she could. | did not receive any prenatal
care, or as little as possible.

Doctor: REQUEST TEST: Heart Rate and Blood Pressure Check.

Measurement: RESULTS: Chest Radiograph Findings: Fine
reticular granulation with ground glass appearance on both
lungs. Blood Gases: pH: 7.30 (slightly acidic), PaC0O2: 50 mmHg
(elevated), Pa02: 60 mmHg (reduced), HCO3-: 24 mEq/L.
NORMAL READINGS.

Doctor: It's okay, | understand that you're still feeling weak, the fatigue
and breathing difficulties are normal due to the condition you are
suffering from. We will monitor your oxygen saturation levels closely
to ensure your body is getting enough oxygen. Have you been able to
feed at all since the treatments started or are you still having trouble?

Patient: I'm still having trouble feeding. | try to suckle but | get
tired quickly and have to stop. | feel like I'm taking a lot of effort
to breathe so I'm not sure if | can feed much now. I'm still very
weak.

DIAGNOSIS READY: Respiratory Distress Syndrome (RDS).

System agent: Correct answer: Respiratory Distress Syndrome
Scenario 30: Diagnosis was CORRECT (45%).

Figure 5: Multi-Agent Interaction in Medical Diagno-
sis Simulation: This figure illustrates the Doctor Agent
collecting symptoms and history from the Patient Agent
while requesting test results from the Measurement
Agent. Using structured reasoning, the Doctor Agent
formulates a diagnosis. The system employs LLaMA
3.3 70B 4-bit quantized for realistic doctor-patient inter-
actions and diagnostic assessment.

2022b), and PB-LLM (Yuan et al., 2024) for ef-
ficient quantization. For binarization, we explore
Binary-0.5, non-uniform binarization, and stochas-
tic partial binarization (Bamba et al., 2023) to bal-
ance compression with reasoning performance.

Pre-Quantization Fine-Tuning Before apply-
ing quantization, fine-tuning is leveraged to opti-
mize model performance, ensuring robustness in
ICL, CoT reasoning, and IF. Following best prac-
tices from prior studies, LLaMA models are fine-
tuned on the Alpaca dataset (for instruction tuning)
and CoT-annotated datasets (for logical reasoning).
Additionally, LoRA-based parameter-efficient fine-
tuning (Hu et al., 2021) is explored to maintain
adaptability without significantly increasing com-
putational costs.

Post-Quantization Fine-Tuning To counteract
performance degradation caused by quantization,
a specialized fine-tuning framework is introduced
for post-quantized LLaMA models. This allows di-
rect optimization of 2-bit larger models on a single
A100 GPU (Liu et al., 2023b), achieving better per-
formance than a 16-bit LLaMA-c13B in MMLU
(5-shot evaluation). Inspired by QAT (Ashkboos

et al., 2024) and parameter-efficient tuning meth-
ods (Hu et al., 2021), the approach modifies LoRA
to incorporate GPTQ-generated quantized weights,
drastically reducing memory overhead. The bigger
models like LL.aMa 3.3 70B model at 2-bit pre-
cision requires only 23.2 GiB, making it a highly
efficient fine-tuning strategy for extreme low-bit
LLM quantization.

4.4 Performance on Reasoning Tasks

To assess the impact of quantization on reasoning
abilities, we evaluate LLaMA models across multi-
ple benchmarks, as detailed in Tables 1, 2, 3. Our
analysis highlights how extreme quantization af-
fects logical inference, structured reasoning, and
memory retention.

Overall Performance Trends: Table 1 presents
the zero-shot and few-shot accuracy of LLaMA-7B
and LLaMA 3.1 8B at different quantization levels.
While 16-bit and 8-bit models maintain strong rea-
soning performance, accuracy drops significantly
below 4-bit, especially in MMLU and BBH bench-
marks. Notably, partial binarization (PB-LLM)
preserves performance better than uniform 4-bit
or 2-bit quantization, demonstrating its ability to
balance compression and accuracy.

Chain-of-Thought and Commonsense Reason-
ing: Table 3 shows the performance across differ-
ent reasoning categories. For arithmetic reason-
ing (GSMS8K), accuracy remains stable under 4-bit
quantization but collapses at 2-bit. Commonsense
reasoning (HellaSwag) follows a similar trend, with
PB-LLM outperforming standard 4-bit models due
to selective precision retention. Multi-hop reason-
ing, which requires combining multiple facts, suf-
fers the most under aggressive quantization, rein-
forcing the need for fine-tuning.

Instruction-Tuned Models and Prompt-Level Ac-
curacy: Table 2 further examines performance on
an instruction-following dataset. Instruction-tuned
models perform significantly better than non-tuned
models, with 50% binarization retaining more ac-
curacy than full quantization methods like GPTQ-
INT4. This suggests that partial binarization miti-
gates degradation in structured reasoning.

Overall, our findings emphasize that while ex-
treme quantization reduces memory and computa-
tional costs, it comes at the expense of logical co-
herence. However, PB-LLM effectively preserves
reasoning abilities, making it a promising approach
for deploying LLMs in resource-constrained envi-
ronments.



Table 1: Zero-shot and few-shot performance comparison of LLaMA-7B and LLaMA 3.1 8B across different

precisions, including 10% partial binarization (4-bit setting) on various reasoning benchmarks.

Models Precision MMLU BBH GSMS8K WikiText Mem.
0-shot 5-shot 0-shot 3-shot (PPL) (GiB)
LLaMA-7B 16-bit 309 36.8 184 32.1 13.9 5.7 14.0
8-bit 298 355 176 327 14.7 5.7 7.8
4-bit 32,5 358 199 322 13.8 5.8 4.8
2-bit 3.7 5.5 1.8 4.0 0.0 3939.1 3.1
LLaMA 3.1 8B 4-bit 37.0 382 208 37.8 15.2 5.0 5.2
2-bit 2.3 3.8 04 2.7 1.5 2968.0 3.7
LLaMA 3.1 8B (PB 10%) 4-bit 29.2 352 173 31.0 13.1 5.7 13.9

Table 2: Zero-shot performance on ifeval (Zhou et al.,
2023) dataset using LLaMA 3.1 8B with various bina-
rization ratios. The metric compares instance-level and
prompt-level accuracy in both loose and strict criteria.

Instance-Level Acc.
(Loose)  (Strict)

Precision Prompt-Level Acc.

(Loose) (Strict)

Non-Instruction-Tuned Models

Binarization-30% 21.43 21.30 19.244+1.51 18.50%+1.10
Binarization-20% 21.10 19.90 10.17+£1.30 8.69+1.21
Binarization-10% 18.47 17.75 10.54+1.32 9.80£1.28

Instruction-Tuned Models

GPTQ-Binarization-50% 59.83 56.71 47.13£2.15 44.36£2.10
bnb-4-bit 61.03 57.19 46.77£2.15 42.14+£2.12
GPTQ-INT4 57.43 54.20 44.77+2.14 40.48+2.11
GPTQ-16-bit 60.55 57.19 46.77+£2.15 42.51+2.13

Table 3: Reasoning Breakdown Across Task Types for
LLaMA-7B under different quantization settings. Arith-
metic is evaluated on GSM8K, commonsense on Hel-
laSwag, and multi-hop on an internal QA dataset.

Arithmetic Commonsense Multi-Hop

Model Precision

(GSMS8K) (HellaSwag) QA
LLaMA-7B 16-bit 139 69.2 48.5
LLaMA-7B 4-bit 13.8 66.0 46.2
LLaMA-7B PB (4-bit, 10%) 13.1 67.8 471
LLaMA-7B 2-bit 0.0 10.5 2.2

4.5 Multi-Agent Simulation

We evaluate quantized models in a multi-agent clin-
ical simulation where a Doctor Agent interacts with
a Patient Agent and requests diagnostic tests from a
Measurement Agent. This setup assesses reasoning
retention under quantization.

Table 4 presents the accuracy comparison of var-
ious models across simulated and non-simulated
medical environments. Figure 5 shows a sam-
ple simulation of the Multi-Agent simulation
The non-simulated environment, representing real-
world medical decision-making scenarios, shows
the highest accuracy of 73.2%, achieved by the
LLaMA 3.1 (70B) model. In contrast, within the
simulated environment, performance varies signifi-
cantly across models. Among full-precision mod-
els, GPT-4 Turbo achieves the best accuracy at

53.4%, followed by Mixtral 7B*8B and GPT-4
Vision Preview, scoring 37.6% and 35.7%, respec-
tively. The smaller LLaMA models (3B, 3.2B, and
2 (70B)) demonstrate notably lower performance,
with accuracy ranging from 4.3% to 8.5%.

Furthermore, when applying quantization tech-
niques, such as Binary 4-bit and GPTQ 4-bit, accu-
racy slightly improves compared to some smaller
full-precision models. Specifically, the LLaMA
3.1 (70B) model in Binary 4-bit format reaches
20.8%, whereas GPTQ 4-bit quantization yields a
higher accuracy of 26.3%. These results suggest
that precision reduction impacts accuracy but can
still maintain competitive performance depending
on the model and task requirements.

Table 5 shows that lower-bit models struggle
with diagnostic accuracy due to information loss,
particularly at 2-bit precision. Partial binarization
mitigates this by preserving critical reasoning path-
ways, with PB-LLM at 4-bit performing compara-
bly to 8-bit models.

Table 4: Performance of Different Models in Simulated
(agentic) and Non-Simulated (direct QnA) Medical En-
vironments. “Accuracy (%)’ is based on correct diag-
nostic or management decisions.

Precision Model Accuracy (%)

Non-Simulated Environment

Full LLaMA 3.1 (70B) 73.0
Simulated Environment

GPT-4 Turbo 53.4

GPT-4 Vision Preview 35.6

Full Mixtral 7B x 8B 37.6

4 LLaMA 3.2 (3B) 5.8

LLaMA 3.0 (3B) 4.4

LLaMA 2 (70B) 8.5

Binary 4-bit LLaMA 3.1 70B 20.8

GPTQ 4-bit LLaMA 3.1 70B 26.2




Table 5: Multi-Agent Simulation Performance on Medi-
cal Reasoning Datasets for LLaMA 3.3 70B.

Model Quantization MedQA NHS USMLE USMLE ext.
LLaMA 3.370B  16-bit (FP16) 58.5 60.2 56.9 55.4
LLaMA 3.3 70B 8-bit 56.3 58.5 54.8 539
LLaMA 3370B  4-bit (GPTQ) 53.9 55.2 51.5 59.8
LLaMA 3.3 70B  4-bit (PB-LLM) 55.8 57.4 532 52.1
LLaMA 3.3 70B 2-bit 6.2 9.5 9.1 7.8

4.6 Ablation Studies

Multi-agent Collaboration for Final Disease Di-
agnosis: To evaluate the effectiveness of multi-
agent collaboration in the end of the question an-
swering, we analyze diagnostic accuracy under dif-
ferent levels of agent interaction. Table 6 summa-
rizes the performance improvements from single-
agent diagnosis to collaborative decision-making
with structured debate and voting.

Table 6: This experiment evaluates the effectiveness of
multi-agent collaboration in enhancing diagnostic accu-
racy when using LLaMA 3.3 70B with 4-bit PB-LLM
binarization. The results demonstrate that despite ag-
gressive quantization, PB-LLM preserves logical reason-
ing abilities, enabling reliable disease diagnosis through
structured agent interactions.

Collaboration Level MedQA(%) NHS(%) USMLE (%)
Single Doctor Agent 55.8 57.5 52.1
Two Doctors (Majority Vote) 56.1 57.8 534
Multi-Doctor (n=5) 584 62.7 582
Multi-Doctor (n=5) + Feedback 59.0 65.9 61.1

Impact of varying binarized layers in LlaMA
Table 7 provides insights into the effect of varying
binarization levels on model perplexity. It demon-
strates that retaining full-precision weights in deep
layers is crucial for preserving structured reason-
ing. A balanced binarization ratio (e.g., 50-60%)
ensures stability, while excessive binarization (e.g.,
80%) significantly degrades performance. The re-
sults highlight the effectiveness of non-uniform bi-
narization strategies, where deeper layers maintain
more precision to support long-range dependen-
cies, improving efficiency without compromising
coherence.

Table 8 extends this analysis to stochastic par-
tial binarization. Unlike deterministic binarization,
stochastic methods introduce variability but do not
yield significant improvements in perplexity. While
lower binarization levels maintain model stability,
increasing binarization beyond 60% drastically im-
pacts performance. These findings reinforce the
necessity of adaptive quantization strategies, en-
suring optimal trade-offs between efficiency and

Table 7: Effective PB Quantization Results: Impact of
varying binarized layers on perplexity and improvement.
“# Deep Layers” refers to the number of last layers ex-
cluded from binarization.

Effective # Deep e e . .
% Binar. Layers % Binarization  Perplexity %1
Shallow  Deep
Layers Layers
50% - - - 18.71 -
50% 4 48% 55% 18.57 0.75%
50% 2 48% 60% 18.59 0.65%
60% - - - 24.12 -
60% 4 56.60%  70% 22.19 8%
60% 2 57% 80% 22.76 5.60%
70% - - - 45.90 -
70% 4 63% 90% 33.47 27.10%
70% 2 69% 80% 45.62 0.60%
80% - - - 84.33 -
80% 4 76.60%  90% 82.24 2.40%
80% 2 78.50%  90% 79.15 6.14%

Table 8: Uniform and Non-Uniform Stochastic Par-
tial Binarization of LLaMA-3.2-1B model in a Post-
Training Quantization Framework. The columns with
‘~" mean that each layer [ € {1,2...L} was stochasti-
cally partially binarized with the binarization percentage
shown in the first column. Other columns show when
shallow layers (L-4 or L-2) and deep layers (4 or 2) are
binarized at different rates.

Effective Deep Shallow Deep Perplexit
Binarization (%) Layers Layers (%) Layers (%) erpiexity
- - - 43.72
50% 4 48 55 40.61
2 48 60 42.37
- - - 150.47
60% 4 56.60 70 156.75
2 57 80 174.89
_ - - 1114.24
70% 4 63 90 1529.14
2 69 80 1118.32
- - - 45849.47
80% 4 76.60 90 123991.02
2 78.50 90 40236.45

reasoning capabilities.

5 Conclusion

We have conducted a comprehensive study on the
reasoning capabilities of post-training quantized
large language models. Our results indicate that
while extreme quantization can degrade perfor-
mance on complex reasoning tasks, a hybrid preci-
sion strategy like partial binarization can maintain
a surprising amount of these emergent abilities. Fu-
ture work will explore more dynamic quantization
strategies and extend the reasoning-centric dataset
to other complex modalities and multi-step reason-
ing domains.



6 Limitations

Quantization at extremely low bit-widths (e.g., 2-
bit) results in severe performance degradation due
to the loss of representational capacity, affecting
both logical consistency and reasoning accuracy.
While PB-LLM mitigates this to some extent by
improving weight binarization, it does not fully
restore model precision, particularly in complex
inference tasks. Multi-agent simulations face lim-
itations in adaptive reasoning due to the rigid na-
ture of scripted interactions, failing to capture real-
world uncertainty and variability in doctor-patient
dialogues. Generalization remains a critical issue
for quantized models, as reduced precision leads
to brittleness across diverse reasoning benchmarks,
making them unreliable in complex, unseen scenar-
ios. Additionally, existing binarization techniques
optimize for efficiency at the cost of accuracy, lack-
ing a universal approach to balance computational
constraints with robust performance.
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Appendix
A Summary of Experiments

Table A9 presents an overview of the experiments
conducted, including quantization techniques, rea-
soning tasks, multi-agent medical simulations, and
ablation studies.
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Table A9: Summary of Experiments Conducted and Models Used.

Experiment

Objective

Models Used

Quantization Evalu-
ation

Reasoning Tasks

Benchmarks Used

Multi-Agent Simu-
lation
Ablation Studies

Comparison of GPTQ, bitsand-
bytes, ZeroQuant, PB-LLM.

Evaluation of CoT reasoning,
ICL, Multi-agent Simulation.

Datasets: GSMSK,
BBH, WikiText.
Doctor-patient interactions,
USMLE/NHS datasets.
Binarization ratios, quantization
backends, task complexity.

MMLU,

LLaMA-7B (16, 8, 4, 2-bit),
LLaMA-3.1 8B, LLaMA-3.2 (3B),
LLaMA-2 (70B)

LLaMA-7B, LLaMA-3.1 8B,
GPT-4 Turbo, Mixtral 7B, GPT-4
Vision

LLaMA-7B, LLaMA-3.1
GPT-4 Turbo, Mixtral 7B
LLaMA-3.1 8B, LLaMA-3.2 (3B),
GPT-4 Turbo

LLaMA-7B, LLaMA-3.1 8B,
LLaMA-3.2 (3B), LLaMA-2
(70B)

8B,

B Performance on Reasoning

Benchmarks

Table A10 provides accuracy

results for reason-

ing tasks: BoolQ, PIQA, HellaSwag, Winogrande,
ARC-Easy, ARC-Challenge, and OpenBookQA.

Task Accuracy (%) + Std.
BoolQ 37.83 +0.85
PIQA 49.51 £1.17
HellaSwag 25.04 £ 043
Winogrande 49.57 + 1.41
ARC-Easy 25.08 £0.89
ARC-Challenge 22770 +£1.22
OpenBookQA 27.60 £ 2.00
Mean 33.90

Table A10: Accuracy (%) and standard deviation for
reasoning benchmarks using LLaMA.
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