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ABSTRACT

While traditional iterative federated learning (FL) is often limited by various fac-
tors, such as massive communication overhead, higher risk of being attacked, and
fault tolerance requirements, an emerging and promising solution is to conduct FL
with a single communication round, termed one-shot FL. However, a lack of con-
tinuous communication leads to the serious performance degradation of current
FL frameworks, especially training with statistical heterogeneity, i.e., Non-IID.
The primary objective of this paper is to develop an effective and efficient one-
shot FL framework to better deal with statistical heterogeneity. To achieve this,
we first revisit the influence of statistical heterogeneity on model optimization
and observe that conventional mechanism (i.e., training from scratch and param-
eter averaging) is inadvisable for one-shot FL due to the problem of client drift.
Based on this observation, we propose a novel one-shot FL framework, namely
FedTC. Different from existing methods, FedTC divides the model into backbone
and head, deploying them separately on the client and server sides. Specifically,
our approach does not directly train the whole model on biased local datasets
from scratch, but only learns a detached head through unbiased class prototypes
estimated by the pre-trained backbone. Moreover, we integrate the feature outlier
filtering strategy and adapter into our FedTC to further improve its performance.
Extensive experiments demonstrate that FedTC can significantly outperform sev-
eral state-of-the-art one-shot FL approaches with extremely low communication
and computation costs.

1 INTRODUCTION

Federated learning (FL) (Li et al., 2020b; McMahan et al., 2017; Yang et al., 2019) collaboratively
trains a global model through information exchange between clients and the central server without
compromising individual privacy. It has recently gained increasing attention from the community
as a powerful tool for distributed learning, particularly in privacy-sensitive scenarios like health-
care (Feng et al., 2022; Liu et al., 2021; Karargyris et al., 2023). Nevertheless, the traditional FL
paradigm requires numerous rounds of continuous communication, leading to substantial commu-
nication overhead and a high risk of being vulnerable to attacks. Additionally, it imposes high
requirements on communication conditions and fault tolerance.

One-shot FL (Guha et al., 2019) is an emerging concept aimed at addressing the aforementioned
challenges by communicating in just one round. However, data coming from discrete clients are
inevitably diverse (i.e., Non-IID) (Zhao et al., 2018) in real-world applications, e.g., label distri-
bution skew (Li et al., 2022). The substantial statistical heterogeneity arising from variations in
underlying distributions among clients leads to a divergence in local optimization, known as client
drift (Karimireddy et al., 2020). To tackle this issue, previous studies have introduced a range of
techniques, e.g., regularization (Li et al., 2020c; 2021b), distillation (Lee et al., 2022; Yao et al.,
2021), and normalization (Wang et al., 2020), aiming at revising the processes of local training and
parameter averaging of FedAvg. However, their performance may significantly deteriorate if we
simply decrease the number of communication round to one. The underlying reason for the degra-
dation is that these techniques heavily rely on multiple rounds of communication to gradually train
and tune the models. Therefore, the issue of statistical heterogeneity is a fundamental challenge in
one-shot FL.
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Existing one-shot FL methods can be roughly divided into two categories: ensemble-based (Su
et al., 2023; Diao et al., 2023; Guha et al., 2019) and distillation-based (Li et al., 2020a; Lin et al.,
2020; Zhang et al., 2022). The former one directly ensembles the output of local models as the final
prediction, while the latter one requires an additional distillation step on the server side. Both of
them share some practical limitations. On the one hand, neither of them has addressed the problem
of client drift, and instead directly utilizes biased local models for voting or distillation, which is
a sub-optimal solution. On the other hand, the existing ensemble-based/distillation-based methods
unavoidably increase the computational overhead and may raise some demanding requirements like
additional datasets. In addition, they still require training procedures on the client side, which may
be difficult to implement on edge devices, i.e., Edge AI (Lim et al., 2020; Nguyen et al., 2021). In
fact, the clients in FL are usually edge devices, such as mobile phones and wearable devices with
limited computational capacity. This motivates us to develop an efficient framework to implement
one-shot FL.

In this work, we first conduct an in-depth analysis of the impact of statistical heterogeneity on the
backbone and head of the model, which are responsible for feature extraction and model predictions,
respectively. From the analysis, we have obtained two important observations: ❶ Training model
from scratch will lead to significant drift on the backbone and head. ❷ Averaging the parameters
of local models trained from one-shot FL is infeasible due to serious client drift. Based on the
analysis, we propose a novel one-shot Federated learning framework with Training-free Clients,
namely FedTC, to effectively address the client drift problem in a single round.

FedTC is a divide-and-conquer framework, which decomposes the client drift problem into two
sub-problems, i.e., backbone drift and head drift. To tackle the issue of backbone drift, our FedTC
utilizes pre-trained weights to initialize the backbone and conducts the forward process to estimate
the class prototypes. Without model updates on biased datasets, the proposed FedTC thoroughly
addresses backbone drift. Then, the prototypes from each client are collected to create an unbiased
prototype dataset, which is used to train a detached head on the server side. Such a strategy can
effectively address the issue of head drift. However, there still exists a gap between the pre-trained
dataset and the real-world dataset. To bridge this gap, our FedTC adds an adapter to the head to
learn domain-specific knowledge from prototypes on the server. On the client side, a feature outlier
filtering strategy is utilized to remove outliers effectively. Extensive experiments on five benchmarks
demonstrate that the proposed FedTC significantly improves accuracy compared to existing one-shot
FL approaches under various data heterogeneity settings, and dramatically reduces communication
and computation costs in the meantime. Furthermore, our method excludes the training on the client
side, which increases its potential for the deployment in Edge AI applications.

2 RELATED WORK

One-shot Federated Learning. While iterative federated learning methods (McMahan et al., 2017;
Li et al., 2021b; 2022; 2020c; Karimireddy et al., 2020; Wang et al., 2020; Lee et al., 2022) have
achieved success, they are still constrained by the significant communication and computation costs
due to multiple rounds of training. One-shot FL presents a promising solution to this issue, ini-
tially proposed by (Guha et al., 2019). The objective is to accomplish efficient federated learning
within a single round. However, due to the presence of statistical heterogeneity, i.e., Non-IID data,
in real-world applications, a straightforward way that changing the number of rounds to one for
iterative FL methods would result in considerably deteriorated model performance. Consequently,
addressing statistical heterogeneity in one-shot FL has emerged as an important research direction.
To handle this challenge, researchers distill the biased knowledge (Lin et al., 2020; Li et al., 2020a;
Zhang et al., 2022) of local models to the global model or directly ensemble them to make the final
prediction (Guha et al., 2019; Diao et al., 2023; Su et al., 2023). However, they did not address
the model bias but instead circumvented the impact of model bias through distillation or ensemble,
which is a sub-optimal solution. In contrast to these methods, our approach effectively deals with
the detrimental effects of client drift by simultaneously addressing issues stemming from both the
backbone and the head aspects of the model.

Pre-trained Foundation Model. As model parameters and available data continue to grow, the
utilization of foundational models such as ViT (Dosovitskiy et al., 2020), BERT (Devlin et al.,
2018), and GPT-4 (OpenAI, 2023), which have been pre-trained on large datasets to capture abun-
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Figure 1: Analysis of the impact of statistical heterogeneity on both backbone and head. We illus-
trate the CKA (Kornblith et al., 2019) score between two different local models versus local epochs
on (a) CIFAR-10 and (b) CIFAR-100 (Krizhevsky et al., 2009) under various non-IID settings. (c)
The test accuracy (%) comparison between centralized learning and FedAvg-v.

dant knowledge, has become a valuable approach for enhancing downstream tasks like object de-
tection (Joseph et al., 2021; Dai et al., 2021), semantic segmentation (Xu et al., 2022), and visual
question answering (Li et al., 2023). The success of this strategy has also garnered attention in the
field of FL. Leveraging pre-trained models presents the opportunity to significantly reduce the com-
munication and computational costs associated with training larger models (Tian et al., 2022; Hamer
et al., 2020). Furthermore, some researchers (Chen et al., 2023a; Tan et al., 2022b) have attempted to
incorporate pre-trained models to alleviate model bias caused by statistical heterogeneity in iterative
FL. However, we surprisingly find that little attention is paid to how to effectively apply pre-trained
models in one-shot FL.

Prototype Learning. A prototype is defined as the mean feature vector within a class, subtly en-
capsulating the notion of clustering. It is a popular and effective method widely used in various
tasks (Gao et al., 2021b; Yang et al., 2018; Li et al., 2021a; Deng et al., 2021) to perceive class-
specific information. In iterative federated learning, prototype learning has been introduced in vari-
ous studies as a form of regulation to guide local training (Huang et al., 2023; Tan et al., 2022b;a).
However, it may not be directly applicable to one-shot federated learning scenarios.

3 METHODOLOGY

3.1 PRELIMINARY: ONE-SHOT FEDERATED LEARNING

Assuming a federation consists of K clients and a single trusted server assigned for communication.
Each individual client, denoted as Ck (k ∈ [K]), possesses its own private dataset Dk, which
comprises a set of nk training instances {Xk

i ,Y
k
i }nk

i=1, where X representing the images and Y ∈
V representing the corresponding labels; V is the label space of the whole federation. Note that
the distribution of these local datasets is skewed. Besides, each client has a deep neural network
f(wk

B,w
k
H) ≜ B(wk

B) ◦ H(wk
H), where B : X → Z is the backbone to extract features Z from

images, and H : Z → Y is the head to make predictions. The primary objective of one-shot FL is
to achieve the optimal global model parameters w∗

B ◦w∗
H within a single communication round.

3.2 MOTIVATION

Data heterogeneity poses a fundamental challenge in FL, particularly with the constraints of the one-
shot setting. Most traditional FL methods adhere to the parameter averaging mechanism of FedAvg
in the server. However, such a mechanism may lead to a global model with significantly low accu-
racy on clients under the one-shot setting. To this end, we undertake a comprehensive analysis of
how data heterogeneity impacts the optimization of models. Particularly, we disassemble the model
into its backbone and head components, thus enabling an isolated investigation. In previous studies,
these constituents (i.e., backbone and head) have been treated as an indivisible whole. However, they
may exhibit varying behaviors concerning data heterogeneity, due to their distinct responsibilities.
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Figure 2: Illustration of FedTC. (a) Overview of the proposed method. (b) The detail of prototype
generation in client-side execution. On the client side, we first utilize the fixed pre-trained backbone
to infer latent features per category (coloured by different colours), with outliers being filtered out
through the similarity between them and the dataset-level prototype. The carefully selected features
are used to calculate batch-level prototypes according to Eq.(4), which will be transferred to the
server. On the server side, we aggregate the prototypes from the clients and employ them to train
the head. Besides, we leverage an adapter to further mitigate the domain shift between pre-trained
and real-world datasets. Zoom in for details.

We commenced by initializing the local models with an identical pre-trained backbone for FedAvg.
Subsequently, we visualized the discrepancy versus local epochs in the backbones between the two
clients on CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). This visualization, as depicted
in Fig. 1(a) and (b), was conducted using the Linear CKA (Kornblith et al., 2019), which serves
as an indicator of the similarity in feature representations. As shown, updating local models on
biased datasets results in significant representation differences, and is more pronounced as data
heterogeneity increases, i.e., backbone drift. Hence, the global backbones obtained from averaged
parameters of local backbones have terrible feature representation ability. In this regard, we argue
that freezing the backbone is a better choice, even when a potential domain shift exists between
pre-training and real datasets. This is because the primary factor leading to model degradation is
client drift caused by statistical heterogeneity.

In order to delve deeper into the impact of statistical heterogeneity on the head, we constructed a
variant of FedAvg, namely FedAvg-v, which has a frozen and pre-trained backbone and conducts
parameter averaging only on the local heads. We compare it with the centralized learning method,
i.e., changing the number of clients to 1 for FedAvg-v. Illustrated in Fig. 1(c), a substantial gap
emerges between these two approaches and increases as larger heterogeneity. This indicates that
statistical heterogeneity leads to biased local heads, causing a notable degradation in performance,
i.e., head drift. Therefore, we further argue that the parameter averaging mechanism is infeasible
in one-shot FL, even when only applied to the head, which consists of a relatively small number of
parameters. Motivated by prototype learning, a recently popular solution in FL (Tan et al., 2022a;b;
Huang et al., 2023), we proposed a detached head in the server which trained on unbiased prototypes
to address the head drift.

3.3 FEDTC

In this section, we proposed a novel one-shot FL framework named FedTC based on the above
insights. To address the drift in both the backbone and head, FedTC proposes a separate network
architecture that a frozen and pre-trained backbone on the client side and a trainable head on the
server side. Additionally, it incorporates a feature outlier filtering strategy and an adapter to mitigate
the domain shift between the pre-trained dataset and the real-world dataset. We present the overview
of FedTC in Fig. 2 and detailed algorithm in Appendix A.1. The subsequent parts elaborate on the
details of our proposed method.
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3.3.1 CLIENT-SIDE EXECUTION

Different from previous work, there is no training procedure in the client of FedTC, instead of
leveraging the pre-trained backbone to estimate the class prototypes of images. Specifically, for
each image Xk

i ∈ RC×H×W from local dataset Dk, with spatial size (H ×W ) and C channels, we
can get the latent feature vector Zk

i = Bk(wB,X
k
i ),∈ RL by feeding it into the backbone, where

L is the dimension of the feature vector and wB is the pre-trained parameters.

Feature Outlier Filtering. Due to the domain shift between the pre-trained and real-world datasets,
it is inevitable that the latent features {Zk

i }n
k

i=1 contains the outliers, thereby decreasing the quality
of prototypes. To tackle this issue, we propose a filtering strategy based on the ranking of scores,
quantified by the distance between features and the class center. Firstly, we can estimate the center
of the class v belongs to Ck by dataset-level prototype P k

v as follows:

P k
v =

1

nk
v

nk
v∑

i=1

Zk
v,i, P k

v ∈ RL, where 0 < nk
v ≤ nk and v ∈ V . (1)

Then, we utilize the prototype as the anchor and measure the distance between each latent feature
and the anchor by cosine similarity:

ϕk
v = [ϕk

v,1, . . . , ϕ
k
v,i, . . . , ϕ

k
v,nk

v
], ϕk

v,i =
Zk

v,i · P k
v
T∥∥Zk

v,i

∥∥× ∥P k
v ∥

. (2)

The similarity score ϕk
v ∈ Rnk

v signifies the distance between each latent feature and the dataset-level
prototype within the samples belonging to class v. As outliers typically exhibit a greater separation
from the anchor, we can effectively identify and filter them out based on the ranking of similarity
score:

Z̃k
v = {Zk

v,i}i∈Q, and Q = I(top(ϕk
v , α)), α ∈ (0, 1], (3)

where top refers to selecting the top αnk
v features with the highest similarity scores and I denotes

the operation of accessing their indices Q.

Prototypes Estimation. After filtering out the feature outliers for each class, we can estimate the
batch-level prototypes within a random B mini-batch latent features, which can be described as
follows:

P̃ k
v = [. . . , P̃ k

v,j , . . .], P̃ k
v,j =

1

B
EBj∼Q

∑
i∈Bj

Z̃k
v,i, and 0 < j ≤ αnk

v

B
. (4)

Prototypes from all classes within the clients are transmitted to the server for training.

3.3.2 SERVER-SIDE EXECUTION

On the server side, we gather all the local prototypes to construct a prototype dataset D̃ =

{P̃v, v}v∈V , where P̃v = {P̃ k
v }k∈Kv

and Kv denotes the indices of the client who has class v sam-
ples. These prototypes contain specific knowledge for each class, which contributes to learning the
decision boundary and subsequently making accurate classifications. Notably, in contrast to the local
datasets, the prototype dataset is unbiased as it aggregates prototypes from all classes. Consequently,
a model trained on this dataset will remain unaffected by statistical heterogeneity. However, owing
to domain shift, the pre-trained backbone may possess a limited representation capacity in the prac-
tical dataset, resulting in the head not being able to effectively recognize different classes. Although
fine-tuning the backbone directly on local datasets might seem like an option, it could compromise
the rich knowledge acquired from the extensive dataset and lead to backbone drift. Inspired by the
visual adapters (Chen et al., 2023b; Wu et al., 2023; Chen et al., 2022; Gao et al., 2021a), a recent and
noteworthy technique has demonstrated the capability to strike a harmonious equilibrium between
acquiring domain-specific knowledge and retaining the extensive knowledge embedded in the pre-
trained model. We incorporate this technique to tackle the aforementioned challenge. The adapter in
FedTC has a similar architecture to the projector in FedPCL (Tan et al., 2022b), containing multiple
continuous FC-Relu-Norm operations, as the detailed structure is provided in Appendix A.2. One
difference is that FedPCL introduced its projector to align the feature dimensions from different net-
works. Another significant distinction lies in FedPCL putting the projector into local models, which
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is applicable in iterative federated learning but impractical in one-shot FL due to backbone drift. In
contrast, we introduced the adapter ahead of the detached head in the server to enable the acqui-
sition of domain-specific knowledge from prototypes. This helps the head to learn better decision
boundaries for different classes. The loss function can be described as:

L =
∑

(P̃i,vi)∈D̃

lce(G(wG ,H(wH, P̃i)), vi), (5)

where G is the adapter with the parameter wG and lce is the cross entropy loss function.

3.3.3 PRIVACY SECURITY

Transmitting prototypes is a common practice in FL (Tan et al., 2022b;a; Huang et al., 2023), as
prototypes are statistical-level information of class that does not contain the privacy of individual
samples. In Appendix C, we provide a comprehensive analysis of the privacy security for prototypes,
which was missing in prior works. The analysis results demonstrated that our approach ensures
privacy preservation and adheres to the rules of FL.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct extensive experiments on five widely-used benchmarks: MNIST (LeCun
et al., 1998), Fasion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009) and Mini-ImageNet (Vinyals et al., 2016; Dong et al., 2022). Follow-
ing the previous work (Diao et al., 2023), we divided the data into 10 clients with an activity ratio of
1 by two different Non-IID partition strategies:

• Sharding (McMahan et al., 2017; Diao et al., 2023): For datasets with fewer classes (e.g.,
10 for MNIST, Fashion-MNIST, and CIFAR-10), we randomly assigned δ ∈ {1, 2, 3}
classes to each client, ensuring an equal sample count for every class.

• LDA (Li et al., 2021b; Diao et al., 2023; Zhang et al., 2022): We employ the Latent
Dirichlet Allocation (LDA) strategy to partition the data among each client. In this ap-
proach, each local dataset is sampled from the Dirichlet distribution Dir(β), where a larger
β ∈ {0.01, 0.1, 0.5} corresponds to smaller data heterogeneity.

Baselines. We compared our method with several state-of-the-art one-shot federated learning meth-
ods. This comparison included two distillation-based methods, i.e., FedDF (Lin et al., 2020) and
DENSE (Zhang et al., 2022), as well as one ensemble-based approach, i.e., FedOV (Diao et al.,
2023). Additionally, we included several typical iterative FL methods such as FedAvg (McMahan
et al., 2017), FedProx (Li et al., 2020c), and MOON (Li et al., 2021b) as baselines. To ensure
fairness, we executed these comparisons within a single round. The performance is quantified using
the top-1 accuracy.

Network Architectures. We utilize the ResNet-50 (He et al., 2016) architecture with pre-
trained weights from CLIP (Radford et al., 2021) for CIFAR-10, CIFAR-100, and Mini-ImageNet.
For MNIST and Fashion-MNIST, we employ the ResNet-50 weights pre-trained from the Ima-
geNet (Deng et al., 2009) dataset. For a fair comparison, all methods employ the aforementioned
network architecture, and the adapter is also integrated. However, we were surprised to find that
some methods exhibited a lack of robustness concerning the network structure. Therefore, we in-
clude the additional version of all baselines that utilize a SimpleCNN (Diao et al., 2023; Zhang et al.,
2022) network in their paper.

Implementation Details. We implemented all methods using PyTorch and conducted the training
on a single RTX 3090 GPU with 24GB of memory. Consistent with the setting in FedOV (Diao
et al., 2023), we employed the SGD optimizer with a learning rate of 0.001 and a batch size of 64.
For the local training phase of all baseline methods, we set the local epoch to 200. Similarly, the
training at the server was carried out for 200 epochs. Our hyper-parameters α and B are set to 0.99
and 5 as default. Due to the page limitation, we present the additional details and results of our
experiments in Appendix B.
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Table 1: Test accuracy (%) of all approaches on MNIST, Fashion-MNIST, CIFAR-10, CIFAR-
100, and Mini-ImageNet under two different non-IID settins. The best results are marked in bold.

Non-IID Partition Strategy: Sharding

Method Model MNIST Fasion-MNIST CIFAR-10

δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3

FedAvg
SimpleCNN 10.10 16.70 29.80 13.10 23.10 26.10 10.50 11.10 15.70
ResNet-50 11.35 10.28 9.82 9.93 10.00 10.00 10.00 10.00 10.00

FedProx
SimpleCNN 10.10 12.70 29.90 13.20 23.20 26.80 10.60 10.90 15.90
ResNet-50 7.38 8.96 10.09 9.27 10.00 10.00 10.67 10.00 10.00

MOON
SimpleCNN 10.09 10.98 23.68 10.00 14.13 23.55 9.97 17.16 12.01
ResNet-50 10.30 8.55 11.35 9.55 10.00 8.97 11.35 10.00 10.00

FedDF
SimpleCNN 11.40 53.10 71.40 12.10 37.00 46.70 10.20 18.80 27.50
ResNet-50 9.76 34.60 50.99 10.36 24.38 41.63 9.92 22.24 27.43

DENSE
SimpleCNN 22.40 12.86 19.67 17.77 31.99 15.34 16.18 24.07 25.21
ResNet-50 10.65 29.26 37.03 11.49 15.23 28.38 11.47 16.67 24.36

FedOV
SimpleCNN 79.30 64.20 83.70 73.30 61.70 73.80 40.00 42.00 55.60
ResNet-50 78.69 70.56 86.99 66.28 71.70 75.51 36.25 50.84 52.50

FedTC ResNet-50 91.59 91.65 91.05 81.90 81.74 81.62 84.42 84.55 84.26

Non-IID Partition Strategy : LDA

Method Model CIFAR-10 CIFAR-100 Mini-ImageNet

β = 0.01 β = 0.1 β = 0.5 β = 0.01 β = 0.1 β = 0.5 β = 0.01 β = 0.1 β = 0.5

FedAvg
SimpleCNN 10.03 10.40 18.40 1.95 4.21 6.89 1.89 3.27 6.55
ResNet-50 10.00 10.00 10.00 1.00 1.00 1.00 1.00 1.00 1.00

FedProx
SimpleCNN 10.02 11.10 18.70 1.76 4.00 7.09 1.77 2.85 5.97
ResNet-50 10.00 10.02 10.00 1.00 1.00 1.02 1.09 0.98 0.84

MOON
SimpleCNN 10.09 17.68 20.41 1.85 4.06 6.78 1.79 3.12 6.22
ResNet-50 10.00 10.00 10.00 1.00 1.00 1.00 0.79 1.04 1.00

FedDF
SimpleCNN 12.46 26.30 35.30 16.23 20.50 22.40 4.85 5.45 6.03
ResNet-50 10.26 42.31 51.67 7.38 12.79 15.13 2.45 1.85 2.99

DENSE
SimpleCNN 10.00 46.53 54.35 12.09 18.69 29.86 5.20 5.16 10.58
ResNet-50 10.18 39.18 48.13 1.0 1.72 4.26 1.20 1.00 1.03

FedOV
SimpleCNN 46.66 61.70 65.70 22.13 29.29 31.20 13.32 14.36 12.74
ResNet-50 34.44 70.60 78.30 33.88 43.93 44.56 31.42 40.79 48.10

FedTC ResNet-50 84.06 84.69 84.55 59.69 59.38 60.42 73.75 73.50 74.87

4.2 MAIN RESULTS

In Tab. 1, we present the overall result of the accuracy comparison on five benchmarks, i.e., MINST,
Fasion-MNIST, CIFAR-10, CIFAR-100, and Mini-ImageNet, under two Non-IID partition strate-
gies, i.e., sharding and LDA. From the results, we can obtain various important conclusions.

❶ Traditional iterative FL methods obtain terrible accuracy in one-shot setting. Due to their
reliance on multiple rounds of communication, they exhibit a substantial disparity when compared
with state-of-the-art one-shot FL methods. For instance, compared with FedOV, FedAvg yields a
drop as large as 59.9% on CIFAR-10 and 37.67% on CIFRA-100 under β = 0.5. Furthermore,
they even exhibit decreased accuracy with a deeper network, such as ResNet-50. This is due to the
fact that deeper networks encompass a larger number of model parameters, rendering them more
vulnerable to the influence of statistical heterogeneity.

❷ FedTC yields consistent and solid improvements over competing methods. As illustrated in
Tab. 1, FedTC consistently exhibits superior performance compared to various baselines, including
several state-of-the-art one-shot FL methods, across all settings. Notably, when considering the
setting β = 0.05, our approach showcases substantial improvements over FedOV, reaching up to
15.86% on CIFAR-100 and 26.77% on Mini-ImageNet. These improvements become even more
significant with higher levels of statistical heterogeneity. Moreover, in comparison with other worse
one-shot FL baselines like FedDF and DENSE, the improvements in the accuracy of our method
are even more remarkable. The above results greatly demonstrate that our method can effectively
address the statistical heterogeneity in one-shot FL.
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Table 2: Ablation studies of FedTC on CIFAR-10 and CIFAR-100. We build up three baselines to
provide more insights about our method, where Fro.Backbone is to freeze the pre-trained backbone,
and Det.Head is the detached head.

Method Fro.Backbone Adapter Det.Head CIFAR-10 CIFAR-100

β = 0.01 β = 0.1 β = 0.5 β = 0.01 β = 0.1 β = 0.5

M1 ✓ ✓ 12.57 30.84 31.73 6.76 2.38 9.10
M2 ✓ ✓ 16.00 15.54 17.85 2.00 2.23 2.43
M3 ✓ ✓ 76.09 76.16 76.15 39.47 38.58 37.20

FedTC ✓ ✓ ✓ 84.06 84.24 84.55 59.69 59.38 60.42

(a) (b) (c)

Figure 3: The results of hyper-parameter analysis on CIFAR-10 with β = 0.1. We illustrate the
(a) test accuracy (%) and (b) communication costs versus the batch size B of prototype estimation.
(c) The test accuracy (%) versus the ratio of filtering, i.e., 1− α.

❸ FedTC achieves stable performance under different heterogeneity settings. Thanks to the in-
genious design of our method, FedTC still has a stable performance though the heterogeneity of
datasets is higher. In contrast, other methods yield a noticeable decrease in performance under high
levels of heterogeneity. On CIFAR-10, FedOV gets a drop as 43.86% as changing β from 0.5 to
0.01, and the performance of DENSE is also decreased from 54.35% to 10.00%. This indicates
that FedTC is a comprehensive solution to address heterogeneity since it effectively tackles both the
backbone drift and head drift.

4.3 ABLATION STUDY

Comparing with Variants. For a deep understanding of our method, we build up three new base-
lines by combining different components: (1) M1: The adapter and head are trained on local
datasets and then averaged on the server side, i.e., FedAvg-v with adapter and set round to 1. (2)
M2: FedTC with the backbone that fine-tunes the pre-trained model on local datasets through Fe-
dAvg. (3) M3: FedTC without adapter. We provide the results of comparison on CIFAR-10 and
CIFAR-100 in Tab. 2. Apparently, the results of M1 and M2 demonstrate that training on local
datasets will lead to significant drift in both the backbone and head. Averaging such biased models
will result in substantial performance degradation. For example, M1 and M2 yield a drop in ac-
curacy from 84.55% to 17.85% and 31.73% on CIFAR-10 with β = 0.5, respectively. The above
results further demonstrate the conclusions as stated in §3.2. By comparing M3 with FedTC, we can
see that the adapter greatly improves the accuracy through learning the domain-specific information.

Hyper-parameter Analysis. FedTC involves only two hyper-parameters, i.e., the ratio α of pre-
served features and the batch size B to estimate the batch-level prototypes. As depicted in Fig. 3(a)
and (b), larger B can yield a drop in accuracy but decrease the communication costs since it re-
duces the number of prototypes. Fewer prototypes provide limited class-relevant information for the
head and adapter, thereby degrading the performance. From Fig. 3(c), we see that it is important to
choose an appropriate α. Smaller α may filter out normal features while larger α may fail to filter
out outliers.
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4.4 COMPLEXITY ANALYSIS

Table 3: Efficiency comparison on
CIFAR-10 with 10 clients and ResNet-
50, where # Com.cost is the total com-
munication cost of all clients and #
Train.time represents the training time
of per epoch.

Method # Com.cost # Train.time
FedAvg 380.48 M 8.05 s
FedProx 380.48 M 9.26 s
MOON 380.48 M 10.51 s
FedDF 380.48 M 8.44 s
DENSE 380.48 M 8.10 s
FedOV 380.48 M 9.34 s
FedTC 8.75 M 0.42 s

Communication Cost. We present the communication
cost of all methods with 10 clients and ResNet-50 in
Tab. 3. The communication cost is the total of all clients
and we only calculate the cost of transferring from client
to server, ignoring the cost of downloading the pre-trained
model from the public website. Consequently, the com-
munication cost is attributed to model parameters for all
methods except FedTC, where our method incurs the
communication cost from the prototypes. The prototype
is a RL vector and L is 1024, which is significantly
smaller compared with the size of model parameters.
From the table, we can see that the prototypes transmitted
by all clients together amount to only 8.75 (MB), far less
than the model parameters as large as 380.48 (MB). Such
minimal communication overhead offers a significant ad-
vantage to our method in real-world applications.

Computation and Training Cost. FedTC involves only
a small amount of server training, i.e., a lightweight head and adapter, and forward inference without
gradient computation on the client side, thus incurring relatively small computation costs. In con-
trast, other methods require heavyweight training for the whole model on the client side, and DENSE
and FedDF even require extensive server-side training and computation for distillation. Except for
the cost of local training, the ensemble-based method, i.e., FedOV, leverages all local models to pre-
dict the result for each image, incurring substantial computational costs. In Tab. 3, we compare the
training time per epoch for all methods. Notably, the training time is counted in server training for
our method, whereas for other methods, it is counted in client training. Obviously, the training time
of our method is only 0.42 s per epoch, significantly less than other methods, which demonstrates
the lower computation cost of our server-side training.

4.5 VARYING BACKBONE ARCHITECTURES

Table 4: Result of FedTC with varying ar-
chitectures on CIFAR-10 with β = 0.5. #
Par.cost and # Pro.cost are the communi-
cation cost of transmitting parameters and
prototypes, respectively, which is a total of
10 clients.
Architecture # Par.cost # Pro.cost Acc(%)
ResNet-50 380.48 M 8.75 M 84.55
ResNet-101 546.60 M 4.37 M 87.86
ViT-B/16 832.00 M 4.37 M 94.06
ViT-L/14 2191.40 M 6.56 M 97.10

FedTC provides a favourable solution for training
large models, a fundamental challenge in FL. In
Tab. 4, we present the experimental results of us-
ing larger pre-trained models as backbones. Clearly,
larger models possess better feature representation
capabilities, which is beneficial to obtaining class-
related information from client data, thereby improv-
ing the classification accuracy of the detached head.
For example, the performance of FedTC yields a sig-
nificant improvement from 84.55% to 97.10% with
ViT-L/14. Besides, FedTC greatly reduces communi-
cation overhead by transmitting prototypes, e.g., the
communication cost of using ViT-L/14 is 6.56 M,
only 0.29% of the cost of transmitting parameters. The above results indicate that FedTC can
be effectively applied to large models, even when deployed on edge devices.

5 CONCLUSION

In this work, we focus on addressing statistical heterogeneity in one-shot FL, yielding a novel one-
shot FL framework, FedTC. Based on the comprehensive analysis, we utilize a fixed pre-trained
backbone to capture class-relevant information by class prototypes. The prototypes are further used
to train a detached head on the server side. By using prototypes as a bridge, we cleverly trans-
form biased client-side training into unbiased server-side training. Moreover, we introduce a feature
outliers filtering strategy and adapter to further improve the performance of our method. Exten-
sive experiments demonstrate the outstanding performance of our method. Due to extremely low
communication and computation costs, FedTC can be perfectly deployed in edge devices.
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This appendix provides more details, additional experiments, and privacy analysis for our paper,
which is organized as follows:

• §A shows the algorithm of FedTC and details of the adapter.

• §B presents the additional experimental details and results.

• §C provides a comprehensive analysis of the privacy security of our proposed method.

A MORE DETAILS OF OUR APPROACH

A.1 DETAILED ALGORITHM

In Alg. 1, we illustrate the detailed procedure of FedTC. Before the training procedure of the server,
each client employs the pre-trained backbone to perform forward inference, generating latent fea-
tures for input images. Subsequently, we introduce a feature outlier filtering strategy to eliminate
outliers from the set of latent features, based on similarity ranking. After that, the client estimates
the batch-level prototypes and transmits them to the server. Notably, the backbone remains frozen,
and there is no training procedure carried out on the client side. On the server side, we utilize
these prototypes to train both the adapter and head. The adapter can further acquire domain-specific
knowledge, thereby mitigating domain shifts between the pre-trained and real-world datasets.

Algorithm 1: FedTC

Input: K local datasets: {Dk}Kk=1, epochs E, learning rate, η, Pre-trained backbone wB
Output: w∗

G , w∗
H

1 Client-side Execution:
2 for client k = 1, 2, ...,K parallelly do
3 for (Xk

i ,Y
k
i ) ∼ Dk do

4 Zk
i = Bk(wB,X

k
i )

5 end
6 for v ∼ V do
7 P k

v = 1
nk
v

∑nk
v

i=1 Z
k
v,i

8 ϕk
v = {ϕk

v,i}
nk
v

i=1, ϕ
k
v,i =

Zk
v,i·P

k
v

T

∥Zk
v,i∥×∥P k

v ∥

9 Z̃k
v = {Zk

v,i}i∈Q, Q = I(top(ϕk
v , α))

10 P̃ k
v,j =

1
BEBj∼Q

∑
i∈Bj

Z̃k
v,i

11 P̃ k
v = {. . . , P̃ k

v,j , . . .}
12 Transmit P̃ k

v to server.
13 end
14 end

15 Server-side Execution:
// Client-side Execution first.

16 Collect prototypes P̃ k
v from clients .

// Construct prototype dataset.

17 D̃ = {P̃v, v}v∈V , P̃v = {P̃ k
v }k∈Kv

18 Initialize w0
G ,w

0
H

19 for epoch e = 1, 2, ..., E do
20 L = 0

21 for (P̃i, vi) ∼ D̃ do
22 L+ = lce(G(wG ,H(wH, P̃i)), vi)
23 end
24 we

G ,w
e
H = (we−1

G ◦we−1
H )− η∇L

25 end
26 Select w∗

G , w∗
H.

27 Return w∗
G , w∗

H.

A.2 DETAIL OF ADAPTER

We provide the detailed structure of the adapter in Tab. 5. The adapter comprises two fully connected
(FC) layers, with ReLU and normalization operations inserted between FC layers. Normalize is
implemented using torch.nn.functional.normalize. The adapter is lightweight yet highly effective in
mitigating domain shifts, thereby substantially enhancing performance. Following the adapter, we
use a linear classifier as the head to make predictions.

B ADDITIONAL EXPERIMENTS

B.1 FURTHER DETAILS

In this Appendix, we show more details of our experiments in §4.
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Table 5: Detailed structure of the adapter and head. The adapter is a lightweight module, con-
sisting of two fully connected layers (FC). We list parameters with a sequence of input and output
dimensions.

Layer Details
Adapter.Layer1 FC(L, 1024), ReLU, Normalize

Adapter.Layer2 FC(1024, 512), ReLU, Normalize

Head FC(512, num class)

Dataset Details. First, we illustrate the detailed information of five datasets in Tab. 6. All meth-
ods utilize the same data processing, but there are some differences in data processing between
SimpleCNN and ResNet. The data processing of SimpleCNN is from (Diao et al., 2023) while
the pre-trained ResNet employs the same data process of the pre-trained procedure. Besides, for
MNIST and Fashion-MNIST, the 1-channel images are transformed into 3-channel images by trans-
forms.Grayscale before inputting into ResNet.

Hyper-parameters of Baselines. There are some important hyper-parameters involved in compared
baselines. For example, MOON and FedProx have a hyper-parameter µ to control the contribution
of additional regulation loss. The µ of FedProx is tuned from {0.0001, 0.001, 0.01, 0.1} and em-
pirically set to 0.001. For MOON, the µ is set to 1 and the temperature hyper-parameter is 0.5.
Following FedOV (Diao et al., 2023), we utilize half of the test set as the proxy dataset for knowl-
edge distillation of FedDF and evaluate the student model on another half of the test set. The
hyper-parameters of FedOV and DENSE are set according to the description in their papers.

Table 6: Detailed information of using datasets.
Property MNIST Fasion-MNIST CIFAR-10 CIFAR-100 MINI-ImageNet

# of train samples 60000 60000 50000 50000 50000
# of test samples 10000 10000 10000 10000 10000

# of classes 10 10 10 100 100
Image size (28, 28, 1) (28, 28, 1) (32, 32, 3) (32, 32, 3) (84, 84, 3)

B.2 SCALABILITY

To explore the scalability of FedTC, we evaluate the one-shot FL methods with different numbers
of clients on CIFAR-10 and present the variation of test accuracy in Fig. 4. As shown in the figure,
our method still yields the best accuracy when increasing the number of clients. More importantly,
our approach has achieved quite stable performance under varying numbers of clients, which reveals
that FedTC can be well deployed in a large federation.

(a) (b) (c) 

Figure 4: Test accuracy (%) versus the number of clients on CIFAR-10 with different settings.
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(a) CIFAR-10 (b) CIFAR-100

Figure 5: Test accuracy (%) comparison among FedAvg-V, FedTC and centralized learning on
CIFAR-10 and CIFAR-100 with various settings.

B.3 EFFECTIVENESS OF FEDTC FOR HEAD DRIFT

To further analyze the effectiveness of FedTC for head drift, we compared FedTC with FedAvg-V
and the centralized learning method in §3.2. As depicted in the Fig. 5, FedTC yields significant
improvements over FedAvg-V. Such a result suggests that parameter averaging mechanisms can
still introduce significant bias even after undergoing multiple rounds of training. This bias can
impact the overall performance of global updates, even when only a small number of parameters are
being updated. In contrast, our detached head is not affected by statistical heterogeneity since it is
updated on unbiased prototypes, thereby yielding a much higher global accuracy. Both centralized
methods and FedTC utilize a pre-trained backbone while only updating the head. Therefore, the
performance degradation of FedTC compared to centralized training is attributed to the compression
of information by prototypes.

B.4 ANALYSIS OF FEATURE OUTLIER FILTERING

To provide more insights about the feature outlier filtering strategy, we randomly select a client
and use the T-SNE (Van der Maaten & Hinton, 2008) to visualize the latent features in Fig. 6,
where the feature outliers are marked with ⋆ and ⋆. We can observe that the similarity measurement
mechanism enables us to detect outliers, which are located on the boundary of the feature space. By
filtering out them, we can enhance the quality of prototypes, enabling the head to learn more precise
class-relevant information.

Figure 6: T-SNE (Van der Maaten & Hinton, 2008) visualization of latent features on CIFAR-10
with δ = 2, where • and • are features of two classes, ⋆ and ⋆ are corresponding feature outliers.
The α is set to 0.98.
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Figure 7: The results of source-to-source reconstruction attack on CIFAR-10. Top: original
images. Mid: reconstructed images from the individual feature. Bottom: reconstructed images from
the prototype.

Figure 8: The results of source-to-target reconstruction attack on CIFAR-10. Top: original
images. Mid: reconstructed images from the individual feature. Bottom: reconstructed images from
the prototype.

C PRIVACY ANALYSIS

C.1 EXPERIMENTS OF RECONSTRUCTION ATTACK

Although prototype learning is widely employed in federated learning, there remains a lack of in-
depth investigations into the privacy-security aspects of prototype transfer. In this section, we con-
duct an exploratory experiment through the feature reconstruction attack, a type of white-box attack,
to evaluate the privacy security of prototypes. We first assume there exists a malicious client (i.e.,
denoted as source) in the federation who wants to capture the privacy of the target client. Further-
more, we have relaxed a condition where the source client can access the prototypes of the target
client, even though this is impossible in our method, which strictly employs one-way transmission
of prototypes between clients and a trusted server. This is different from existing works (Tan et al.,
2022b;a; Huang et al., 2023), which share prototypes among different clients, thereby increasing the
risk of being captured by malicious clients. After defining this scenario, we train an auto-encoder
at the source client. The auto-encoder incorporates a learnable decoder after the fixed pre-trained
backbone to reconstruct the latent features back into the original image. We utilize the well-trained
auto-encoder to infer original images from the features and prototypes.

The results of the source-to-source attack and source-to-target attack are presented in Fig. 7 and 8,
respectively. We can observe that the reconstructed images from individual features in the source-
to-source reconstruction attack have similar semantic information to the original images, but the
source-to-target attack does not. The above result indicates that transferring features is insecure
when clients share similar data distributions. However, in terms of prototypes, the reconstructed
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Table 7: Test accuracy (%) of FedTC with privacy-preserving techniques on CIFAR-10.

Methods Add Noise to Noise Type CIFAR-10

β = 0.01 β = 0.1 β = 0.5

FedOV - - 34.44 70.60 78.30

FedTC Prototype

Laplace(s = 0.05, p = 0.1) 75.04 75.02 75.63
Gaussian(s = 0.05, p = 0.1) 77.77 77.52 76.97
Laplace(s = 0.05, p = 0.05) 75.37 75.18 76.08

Gaussian(s = 0.05, p = 0.05) 78.08 77.68 77.19

FedTC Image

Laplace(s = 0.2, p = 0.1) 73.35 76.08 75.48
Gaussian(s = 0.2, p = 0.1) 73.35 76.08 75.48
Laplace(s = 0.2, p = 0.05) 76.58 73.69 76.39

Gaussian(s = 0.2, p = 0.05) 76.58 73.69 76.39

(a) Original (b) Gaussian (c) Laplace

p
=

0
.1

p
=

0
.0

5

s=0.1 s=0.2 s=0.3 s=0.1 s=0.2 s=0.3

p
=

0
.1

p
=

0
.0

5

p
=

0
.1

p
=

0
.0

5

s=0.1 s=0.2 s=0.3 s=0.1 s=0.2 s=0.3

p
=

0
.1

p
=

0
.0

5

Figure 9: Illustration of (a) original images, (b) images with Gaussian noise, (c) images with
Laplace noise on CIFAR-10.

images do not contain any semantic information in both the source-to-source attack and source-to-
target attack. This demonstrated that we cannot obtain user privacy from the prototypes.

C.2 COMBING WITH DIFFERENTIAL PRIVACY

We can incorporate FedTC with privacy-preserving techniques to further enhance privacy protection.
Similar to FedPCL (Tan et al., 2022b), we added varying levels of noise ϵ ∼ (0, s) into prototypes
and original images, respectively.

t̃ = t× (1− p) + ϵ, (6)
Where t represents the images or prototypes, p ∈ (0, 1) is the perturbation coefficient of the noise
and s ∈ (0, 1) is the standard deviation of the noise. From Tab. 7, we observed that FedTC still
achieves a high level of accuracy with different noise. Besides, we surprisingly find that FedTC
yields consistent performance despite the addition of different types of noise to the images, i.e.,
Laplace and Gaussian. This shows that FedTC is robust to the type of noise when adding image-
level noise. In Fig. 9, we show the original images and images with various noises. It can be
observed that the added noise in Tab. 7 effectively preserves user privacy.
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