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Abstract

Recent text-to-video (T2V) generation methods have seen significant ad-
vancements. However, the majority of these works focus on producing
short video clips of a single event (i.e., single-scene videos). Meanwhile,
recent large language models (LLMs) have demonstrated their capability
in generating layouts and programs to control downstream visual modules.
This prompts an important question: can we leverage the knowledge em-
bedded in these LLMs for temporally consistent long video generation? In
this paper, we propose VIDEODIRECTORGPT, a novel framework for con-
sistent multi-scene video generation that uses the knowledge of LLMs for
video content planning and grounded video generation. Specifically, given
a single text prompt, we first ask our video planner LLM (GPT-4) to expand
it into a ‘video plan’, which includes the scene descriptions, the entities with
their respective layouts, the background for each scene, and consistency
groupings of the entities. Next, guided by this video plan, our video gen-
erator, named Layout2Vid, has explicit control over spatial layouts and
can maintain temporal consistency of entities across multiple scenes, while
being trained only with image-level annotations. Our experiments demon-
strate that our proposed VIDEODIRECTORGPT framework substantially
improves layout and movement control in both single- and multi-scene
video generation and can generate multi-scene videos with consistency,
while achieving competitive performance with SOTAs in open-domain
single-scene T2V generation. Detailed ablation studies, including dynamic
adjustment of layout control strength with an LLM and video generation
with user-provided images, confirm the effectiveness of each component of
our framework and its future potential.

1 Introduction

Text-to-video (T2V) generation has achieved rapid progress following the success of text-
to-image (T2I) generation. Most works in T2V generation focus on producing short videos
(e.g., 16 frames at 2fps) from the given text prompts (Wang et al., 2023b; He et al., 2022; Ho
et al., 2022; Singer et al., 2023; Zhou et al., 2022). Recent studies on long video generation
(Blattmann et al., 2023b; Yin et al., 2023; Villegas et al., 2023; He et al., 2023) aim at generating
long videos of a few minutes with holistic visual consistency. Although these works could
generate longer videos, the generated videos often display the continuation or repetitive
patterns of a single action (e.g., driving a car) instead of transitions and dynamics of multiple
changing actions/events (e.g., five steps about how to make caraway cakes). Meanwhile,
large language models (LLMs) (Brown et al., 2020; OpenAI, 2023; Touvron et al., 2023a;b;
Chowdhery et al., 2022) have demonstrated their capability in generating layouts and
programs to control visual modules (Dı́dac et al., 2023; Gupta & Kembhavi, 2023), especially
image generation models (Cho et al., 2023b; Feng et al., 2023). This raises an interesting
question: Can we leverage the knowledge embedded in these LLMs for planning consistent
multi-scene video generation?
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Figure 1: VIDEODIRECTORGPT framework. First, we employ GPT-4 as a video planner
to craft a multi-component video plan. Next, we utilize Layout2Vid, a grounded video
generation module, to render multi-scene videos with layout and consistency control.

In this work, we introduce VIDEODIRECTORGPT, a novel framework for consistent multi-
scene video generation. As illustrated in Fig. 1, VIDEODIRECTORGPT decomposes the T2V
generation task into two stages: video planning and video generation. For the first video
planning stage (see Fig. 1 blue part), we employ an LLM to generate a video plan, which
is an overall plot of the video with multiple scenes, each consisting of a text description
of the scene and entity names/layouts, and a background. It also consists of consistency
groupings of specific entities that re-appear across scenes. For the second video generation
stage (see Fig. 1 yellow part), we introduce Layout2Vid, a novel grounded video generation
module that generates multi-scene videos from the video plan. Our framework provides the
following strengths: (1) employing an LLM to write a video plan that guides the generation of
videos with multiple scenes from a single text prompt, (2) layout control in video generation
by only using image-level layout annotations, and (3) generation of visually consistent
entities across multiple scenes.

In the first stage, video planning (Sec. 3.1), we employ an LLM (e.g., GPT-4 (OpenAI, 2023))
as a video planner to generate a video plan, a multi-component video script with multiple
scenes to guide the downstream video synthesis process. Our video plan consists of four
components: (1) multi-scene descriptions, (2) entities (names and their 2D bounding boxes),
(3) background, and (4) consistency groupings (scene indices for each entity indicating
where they should remain visually consistent). We generate the video plan in two steps
by prompting an LLM with different in-context examples. In the first step, we expand a
single text prompt into multi-step scene descriptions with an LLM, where each scene is
described with a text description, a list of entities, and a background (see Fig. 2 blue part
for details). We also prompt the LLM to generate additional information for each entity
(e.g., color, attire, etc.), and group together entities across frames and scenes, which will
help guide consistency during the video generation stage. In the second step, we expand
the detailed layouts of each scene with an LLM by generating the bounding boxes of the
entities per frame, given the list of entities and scene description. This overall ‘video plan’
guides the downstream video generation.

In the second stage, video generation (Sec. 3.2), we introduce Layout2Vid, a grounded video
generation module to render videos based on the generated video plan (see yellow part of
Fig. 2). For the grounded video generation module, we build upon ModelScopeT2V (Wang
et al., 2023b), an off-the-shelf T2V generation model, by freezing its original parameters and
adding spatial/consistency control of entities through a small set of trainable parameters
(13% of total parameters) through the gated-attention module (Li et al., 2023). This enables
our Layout2Vid to be trained solely on layout-annotated images, thus bypassing the need
for expensive training on annotated video datasets. To preserve the identity of entities
across scenes, we use shared representations for the entities within the same consistency
group. We also propose to use a joint image+text embedding as entity grounding conditions
which we find more effective than the existing text-only approaches (Li et al., 2023) in entity
identity preservation (see Appendix H). Overall, our Layout2Vid avoids expensive video-
level training, improves the object layout and movement control, and preserves objects
cross-scene temporal consistency.

We conduct experiments on both single-scene and multi-scene video generation. Experi-
ments show that our VIDEODIRECTORGPT demonstrates better layout skills (object, count,
spatial, scale) and object movement control compared with ModelScopeT2V (Wang et al.,
2023b) as well as more recent video generation models including AnimateDiff (Guo et al.,
2023), I2VGen-XL (Zhang et al., 2023), and SVD (Blattmann et al., 2023a). In addition,

2



Published as a conference paper at COLM 2024

Video 
Plan

A hungry cat is 
finding food

Video Planner
(GPT-4      )

Video Generator
(Layout2Vid)

Prompt

Scene 1

Entities (names + layouts) with Consistency GroupingScene Description Background

A cat is lying down on 
a bed

Bedroom
Frame 1: {‘a fluffy Siamese cat’: [0.25, 0.25, 1.00, 0.70], ‘a plush beige bed’: [0.00, 0.50, 1.00, 1.00]}
Frame 2: {‘a fluffy Siamese cat’: [0.25, 0.25, 1.00, 0.70], ‘a plush beige bed’: [0.00, 0.50, 1.00, 1.00]}
...

Then she gets upScene 2
Frame 1: {‘a fluffy Siamese cat’: [0.55, 0.25, 0.85, 0.55], ‘a plush beige bed’: [0.00, 0.60, 1.00, 1.00]}
Frame 2: {‘a fluffy Siamese cat’: [0.50, 0.30, 0.80, 0.60], ‘a plush beige bed’: [0.00, 0.60, 1.00, 1.00]}
...

Bedroom

She goes to the kitchen 
and eats a snackScene 3

Frame 1: {‘a fluffy Siamese cat’: [0.15, 0.20, 0.40, 0.45], ‘gourmet cat snack’: [0.50, 0.45, 0.80, 0.65]}
Frame 2: {‘a fluffy Siamese cat’: [0.35, 0.30, 0.60, 0.55], ‘gourmet cat snack’: [0.50, 0.45, 0.80, 0.65]}
...

Kitchen

Scene 1 Scene 2 Scene 3

Scene 1

Scene Description

A cat is lying down on 
a bed

Then she gets upScene 2

She goes to the kitchen 
and eats a snackScene 3

Layout + Consistency Grouping

Self-Attn

Gated Self-Attn

Cross-Attn

Visual

Layout

Scene 
Text

Guided 2D AttentionLayout2Vid
a fluffy Siamese cat
Scene: [1, 2, 3]

a plush beige bed
Scene: [1, 2]

gourmet cat snack
Scene: [3]

bedroom
Scene: [1, 2]

kitchen
Scene: [3]

Video

Spatial Conv

Temporal Conv

Spatial Attn

Temporal Attn

Spatial-Temporal Blocks

VideoDirectorGPT

V
id

eo
  P

la
n

n
er

V
id

eo
  G

en
er

at
o

r

Figure 2: VIDEODIRECTORGPT details. 1st stage: we employ the LLM as a video
planner to craft a video plan, which provides an overarching plot for multi-scene videos.
2nd stage: we utilize Layout2Vid, a grounded video generation module, to render videos
based on the video plan. (Sec. 3.2).

VIDEODIRECTORGPT is capable of generating multi-scene videos with visual consistency
across scenes, and competitive with SOTAs on single-scene open-domain T2V generation
(Sec. 5.1 and Sec. 5.2). Detailed ablation studies, including dynamic adjustment of layout
control strength, video plans generated from different LLMs, and video generation with
user-provided images confirm the effectiveness and capacity of our framework (Sec. 5.3 and
Appendix H). Our main contributions can be summarized as follows:

• A new T2V generation framework VIDEODIRECTORGPT with two stages: video content
planning and grounded video generation, which is capable of generating a multi-scene
video from a single text prompt.

• We employ LLMs to generate a multi-component ‘video plan’ with detailed scene descrip-
tions, entity layouts, and entity consistency groupings to guide video generation.

• We introduce Layout2Vid, a novel grounded video generation module, which brings
together image/text-based layout control ability and entity-level temporal consistency.
Our Layout2Vid can be trained efficiently using only image-level layout annotations.

• Empirical results demonstrate that our framework can accurately control object layouts
and movements, and generate temporally consistent multi-scene videos.

2 Related Works

Text-to-video generation. Training a T2V generation model from scratch is computationally
expensive. Recent work often leverages pre-trained T2I generation models such as Stable
Diffusion (Rombach et al., 2022) by fine-tuning them on text-video pairs (Wang et al., 2023b;
Blattmann et al., 2023b). While this warm-start strategy enables high-resolution video
generation, it comes with the limitation of only generating short video clips, as T2I models
lack the ability to maintain consistency through long videos. On the other hand, recent
works on long video generation (Blattmann et al., 2023b; Yin et al., 2023; Villegas et al., 2023;
He et al., 2023) aim at generating long videos of several minutes. However, the generated
videos often display the continuation or repetitive actions instead of transitions of multiple
actions/events. In contrast, our Layout2Vid infuses layout control and multi-scene temporal
consistency into a pretrained T2V generation model via data and parameter-efficient training
while preserving its original visual quality.
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Figure 3: Illustration of Layout2Vid. (a) Training. Our Layout2Vid is efficiently trained on
image-level bounding box annotations. We construct entity grounding tokens with an MLP
that takes text, image, and bounding box embeddings as inputs. (b) Inference. we obtain
image embeddings of entities from their text descriptions with unCLIP Prior. To ensure
temporal consistency, we use the same entity embeddings across scenes. (c) Guided 2D
Attention. We modulate the visual representation with grounding tokens and text tokens.

Bridging text-to-image generation with layouts. To achieve interpretable and controllable
generation, a line of research decomposes the T2I generation task into two stages: text-to-
layout generation, and layout-to-image generation. While early models train the layout
generation module from scratch (Hong et al., 2018; Tan et al., 2019; Li et al., 2019a; Liang et al.,
2022), recent methods employ pretrained LLMs to leverage their knowledge in generating
image layouts from text (Cho et al., 2023b; Feng et al., 2023; Qu et al., 2023). To the best of
our knowledge, our work is the first to utilize LLMs to generate structured video plans from
text, enabling accurate and controllable long video generation.

3 VIDEODIRECTORGPT

3.1 Video Planning: Video Plans with LLMs

Video plan. As illustrated in the blue part of Fig. 2, GPT-4 (OpenAI, 2023) acts as a planner,
providing a detailed video plan to guide the video generation. Our video plan has four
components: (1) multi-scene descriptions: a sentence describing each scene, (2) entities:
names and their 2D bounding boxes, (3) background: text description of the location of each
scene, and (4) consistency groupings: scene indices for each entity indicating where they
should remain visually consistent. The video plan is generated in two steps by prompting
GPT-4 independently. The input prompt template for each step is displayed in Appendix C.

Step 1: Generating multi-scene descriptions, entity names, and consistency groupings.
In the first step, we employ GPT-4 to expand a single text prompt into a multi-scene video
plan. Next, we group entities and backgrounds that appear across different scenes using
an exact match. For instance, if the ‘chef’ appears in scenes 1-4 and ‘oven’ only appears in
scene 1, we form the entity consistency groupings as {chef:[1,2,3,4], oven:[1]}. In the
subsequent video generation stage, we use the shared representations for the same entity
consistency groups to maintain their temporally consistent appearances (see Sec. 3.2).

Step 2: Generating entity layouts for each scene. In the second step, we generate a
list of bounding boxes for the entities in each frame based on the entities and the scene
description. For each scene, we produce layouts for 9 frames, then linearly interpolate to
gather information for denser frames (e.g., 16 frames per scene). In line with VPGen (Cho
et al., 2023b), we adopt the [x0, y0, x1, y1] format for bounding boxes, where each coordinate
is normalized to fall within the range [0,1]. For in-context examples, we present 0.05 as the
minimum unit for the bounding box, equivalent to a 20-bin quantization.
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3.2 Video Generation: Generating Videos from Video Plans with Layout2Vid

Preliminaries. Given a T frame video x ∈ RT×3×H×W with video caption c, we first
uses an autoencoder to encode the video into latents z = E(x) ∈ RT×C×H′×W ′

, where
C = 4 represents the number of latent channels, and H′ = H/8, W ′ = W/8 represent the
spatial dimension of the latents. In Latent diffusion model (LDM) (Rombach et al., 2022), the
forward process is a fixed diffusion process which gradually adds noise to the latent variable
z: q(zt|zt−1) = N(zt;

√
1 − βtzt−1, βt I), where βt ∈ (0, 1) is the variance schedule with

t ∈ {1, ..., T}. The reverse process gradually produces less noisy samples zT−1, zT−2, ..., z0
starting from zT through a learnable denoiser model ϵθ. With t as a timestep uniformly
sampled from {1, ..., T}, the training objective of our Layout2Vid can be expressed as:
minθ LLDM = Ez,ϵ∼N(0,I),t∥ϵ − ϵθ(zt, t, c)∥2

2.

Layout2Vid: Layout-guided T2V generation. We implement Layout2Vid by integrating
layout control capability into ModelScopeT2V (Wang et al., 2023b), a public T2V gener-
ation model based on Stable Diffusion (Rombach et al., 2022). The diffusion UNet in
ModelScopeT2V consists of a series of spatio-temporal blocks, each containing four mod-
ules: spatial convolution, temporal convolution, spatial attention, and temporal attention.
Compared with ModelScopeT2V, our Layout2Vid enables layout-guided video generation
with explicit spatial control over a list of entities represented by their bounding boxes, as
well as visual and text content. We build upon the 2D attention to create the guided 2D
attention (see Fig. 9 in Appendix D). As shown in Fig. 3 (c), the guided 2D attention takes
two conditional inputs to modulate the visual latent representation: (1) grounding tokens,
conditioned with gated self-attention (Li et al., 2023), and (2) text tokens that describe the
current scene, conditioned with cross-attention.

Temporally consistent entity grounding with image+text embeddings. While previous
layout-guided T2I generation models commonly used only the CLIP text embedding for
layout control (Li et al., 2023; Yang et al., 2023), we use the CLIP image embedding in
addition to the CLIP text embedding for entity grounding. We demonstrate in our ablation
studies (see Appendix H) that this method is more effective than using either text-only or
image-only grounding. As depicted below, the grounding token for the ith entity, hi, is a
2-layer MLP which fuses CLIP image embeddings fimg(ei), CLIP text embeddings ftext(ei),
and Fourier features (Mildenhall et al., 2021) of the bounding box li = [x0, y0, x1, y1]. We use
learnable linear projection layers, denoted as Pimg/text, on the visual/text features, which
we found helpful for faster convergence during training.

hi = MLP(Pimg( fimg(ei)), Ptext( ftext(ei)), Fourier(li))

The training and inference procedure of our Layout2Vid are presented in Fig. 3 parts (a) and
(b) respectively. During training, the image embeddings fimg(e) are obtained by encoding
the image crop of the entities with CLIP image encoder. During inference, since all the inputs
are in text format (e.g., from the video plan), we employ Karlo (Lee et al., 2022), a public
implementation of unCLIP Prior (Ramesh et al., 2022) to transform the CLIP text embedding
into its corresponding CLIP image embedding. Moreover, our image embeddings can also
be obtained from user-provided exemplars during inference by simply encode the images
with the CLIP image encoder.

Parameter and data-efficient training. During training, we only update the parameters
of the guided 2D attention (13% of total parameters) to inject layout guidance capabilities
into the pretrained T2V backbone while preserving its original video generation capabil-
ities. Such strategy allows us to efficiently train the model with only image-level layout
annotations, while still equipped with multi-scene temporal consistency via shared entity
grounding tokens. Training and inference details are shown in Appendix D.

4 Experimental Setup

Evaluated models. We compare our VIDEODIRECTORGPT with a total of 9 text/image-to-
video generation models (see Sec. 5.1 and Appendix F for baseline model details).
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Prompts for single-scene video generation. For single-scene videos, we (1) evaluate layout
control via VPEval Skill-based prompts (Cho et al., 2023b), (2) assess object dynamics
through ActionBench-Direction prompts adapted from ActionBench-SSV2 (Wang et al.,
2023c), and (3) examine open-domain video generation using MSR-VTT and UCF-101 (Xu
et al., 2016; Soomro et al., 2012). We introduce ActionBench-Direction prompts by sampling
video captions from ActionBench-SSV2 (Wang et al., 2023c) and balancing the distribution
of movement directions. Prompt preparation details are presented in Appendix F.

Prompts for multi-scene video generation. For multi-scene video generation, we experi-
ment with (1) a list of sentences describing events – ActivityNet Captions (Krishna et al.,
2017) and Coref-SV prompts based on Pororo-SV (Li et al., 2019b), and (2) a single sentence
from which models generate multi-scene videos – HiREST (Zala et al., 2023). Coref-SV is a
new multi-scene text description dataset that we propose to evaluate the visual consistency
of objects across multi-scene videos. Prompt preparation details are given in Appendix F.

Automated evaluation metrics. Following previous works (Hong et al., 2022; Wu et al.,
2022b; Wang et al., 2023b), we use FID (Heusel et al., 2017), FVD (Unterthiner et al., 2019),
and IS (Salimans et al., 2016) scores as video quality metrics, and CLIPSIM (Wu et al., 2021)
score for text-video alignment. Given that CLIP fails to faithfully capture detailed semantics
such as spatial relations, object counts, and actions in videos (Otani et al., 2023; Cho et al.,
2023a;b; Hu et al., 2023), we further propose the use of the following fine-grained metrics:

• VPEval accuracy: we employ it for the evaluation of VPEval Skill-based prompts (object,
count, spatial, scale), which is based on running skill-specific evaluation programs that
execute relevant visual modules (Cho et al., 2023b). Since the VPEval accuracy described
above does not cover temporal information, we propose a metric that takes into account
temporal information as well as spatial layouts for ActionBench-Direction prompts.

• Object movement direction accuracy: we introduce this new metric to evaluate
ActionBench-Direction prompts, which takes both temporal information and spatial
layouts into consideration. Firstly, we assess whether the target objects move in the
direction described in the prompts. The start/end locations of objects are obtained by
detecting objects with GroundingDINO (Liu et al., 2023) on the first/last video frames.
We then evaluate whether the x (for movements left or right) or y (for movements up or
down) coordinates of the objects have changed correctly and assign a binary score of 0
or 1. For instance, given the prompt “pushing a glass from left to right” and a generated
video, we identify a ‘glass’ in both the first and last video frames. We assign a score of 1 if
the x-coordinate of the object increases by the last frame; otherwise, assign a score of 0.

• Multi-scene object temporal consistency: we propose this new metric for the evaluation
of ActivityNet Captions and Coref-SV, which measures the consistency of the visual
appearance of a target object across different scenes. We also introduce a new metric
to measure the consistency of the visual appearance of a target object across different
scenes. Specifically, we first detect the target object using GroundingDINO from the center
frame of each scene video. Then, we extract the CLIP (ViT-B/32) image embedding from
the crop of the detected bounding box. We calculate the multi-scene object consistency
metric by averaging the CLIP image embedding similarities across all adjacent scene
pairs: 1

N ∑N−1
n=1 cos(CLIPimg

n , CLIPimg
n+1), where N is the number of scenes, cos(·, ·) is cosine

similarity, and CLIPimg
n is the CLIP image embedding of the target object in n-th scene.

Human evaluation. We conduct a human evaluation on the multi-scene videos generated
by both our VIDEODIRECTORGPT and ModelScopeT2V on the Coref-SV dataset. Since
we know the target entity and its co-reference pronouns in the Coref-SV prompts, we can
compare the temporal consistency of the target entities across scenes. We evaluate the
human preference between videos from two models in each category of Quality, Text-Video
Alignment, and Object Consistency. See Appendix F for setup details.

Step-by-step error analysis. We conduct an error analysis at each step of our single-sentence
to multi-scene video generation pipeline on the HiREST dataset. We analyze the generated
multi-scene text descriptions, layouts, and entity consistency groupings to evaluate our
video planning stage, and examine the final video to evaluate the video generation stage.
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5 Results and Analysis

5.1 Single-Scene Video Generation

Layout control results (VPEval Skill-based prompts). Table 1 (left) displays the VPE-
val accuracy on the VPEval Skill-based prompts. Our VIDEODIRECTORGPT significantly
outperforms ModelScopeT2V and recent T2V/I2V generation models including AnimateD-
iff (Guo et al., 2023), I2VGen-XL (Zhang et al., 2023), and SVD (Blattmann et al., 2023a) on
all layout control skills. These results suggest that layouts generated by our LLM are highly
accurate and greatly improve the control of object placements during video generation.
Fig. 4 (left) shows an example where our LLM-generated video plan successfully guides
Layout2Vid to accurately place the objects, while ModelScopeT2V fails to generate a ‘pizza’.
In Appendix J, we show additional examples (see Fig. 12) that our video plan can generate
layouts requiring understanding of physics (e.g., gravity, perspectives).

Method VPEval Skill-based ActionBench-Direction

Object Count Spatial Scale Overall Acc. (%) Movement Direction Acc. (%)

ModelScopeT2V 89.8 38.8 18.0 15.8 40.8 30.5
AnimateDiff 96.7 52.7 22.5 15.5 46.8 29.0
I2VGen-XL 96.5 62.0 35.2 23.7 54.3 35.2
SVD 93.1 46.7 29.2 15.0 45.7 30.7

VIDEODIRECTORGPT 97.1 77.4 61.1 47.0 70.6 46.5

Table 1: Evaluation on VPEval Skill-based and ActionBench-Direction prompts.

A pizza is to the left of an elephant

 VideoDirectorGPT
(Ours)

ModelScopeT2V

Frame 1 Frame 16

VPEval
Pushing pear from right to left

ActionBench-Direction

Frame 8 Frame 1 Frame 16Frame 8

Figure 4: Generated examples on VPEval Skill-based and ActionBench-Direction prompts.

Object movement results (ActionBench-Direction). Table 1 (right) shows the performance
on the ActionBench-Direction prompts. For each object, we give prompts that include four
movement directions: ‘left to right’, ‘right to left’, ‘top to bottom’, and ‘bottom to top’.
Therefore, for a random guess, the movement accuracy is 25%. Our VIDEODIRECTORGPT
outperforms ModelScopeT2V and other T2V/I2V models in object movement direction
accuracy by a large margin, demonstrating that our LLM-generated layouts can improve
the accuracy of object dynamics in video generation. Fig. 4 (right) shows that our LLM-
generated video plan guides the Layout2Vid module to correctly locate and move the ‘pear’
in the accurate direction, whereas the ‘pear’ in the ModelScopeT2V video just gets grabbed.

Method MSR-VTT

FVD (↓) FID (↓) CLIPSIM (↑)

Different arch / Training data
NUWA − 47.68 0.2439
CogVideo (Chinese) − 24.78 0.2614
CogVideo (English) 1294 23.59 0.2631
MagicVideo 1290 − −
VideoLDM − − 0.2929
Make-A-Video − 13.17 0.3049

Same video backbone & Test prompts
ModelScopeT2V† 683 12.32 0.2909
VIDEODIRECTORGPT 550 12.22 0.2860

Table 2: Comparison results on MSR-
VTT. ModelScopeT2V†: Our replication
on the same 2990 random test prompts.

Open-domain results. Table 2 presents the
FVD, FID, and CLIPSIM scores on MSR-VTT. It’s
worth noting that our model is built on the pre-
trained ModelScopeT2V backbone. Despite this,
our method demonstrates good improvements
in FVD and competitive scores in FID and CLIP-
SIM. In addition, our method achieves better or
comparable performance to models trained with
larger video data (e.g., Make-A-Video) or with
higher resolution (e.g., VideoLDM). Evaluation
results on UCF-101 are presented in Appendix I,
where we achieve significant improvement in
FVD and similar Inception Score.
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Method ActivityNet Captions Coref-SV HiREST

FVD (↓) FID (↓) Consistency (↑) Consistency (↑) FVD (↓) FID (↓)

ModelScopeT2V 980 18.12 46.0 16.3 1322 23.79
ModelScopeT2V (with GT co-reference; oracle) - - - 37.9 - -
ModelScopeT2V (with prompts from our video plan) - - - - 918 18.96
VIDEODIRECTORGPT (Ours) 805 16.50 64.8 42.8 733 18.54

Table 3: Multi-scene video generation on ActivityNet Captions, Coref-SV, and HiREST.
GT co-reference: replacing co-reference pronouns in Coref-SV with the original object names
(e.g., “his friends” may become “dog’s friends”). Prompts from our video plan: an enhanced
benchmark for ModelScopeT2V using scene descriptions from our video plan.

“How To” Make Caraway Cakes

 VideoDirectorGPT (Ours)ModelScopeT2V

Make Caraway Cakes, step 1/10

Make Caraway Cakes, step 2/10

Make Caraway Cakes, step 5/10

a woman in a green apron preheats a stainless steel oven

a woman in a green apron creams together unsalted
butter and granulated sugar in a large glass bowl
using a hand mixer

a woman in a green apron mixes the ingredients in the
glass mixing bowl until they form a smooth dough...

...

Frame 1 Frame 16Frame 1 Frame 16

Scene 1

Scene 2

Scene 5

...

...

 VideoDirectorGPT (Ours)ModelScopeT2V

mouse is holding a book and makes a
happy face

he is pulling petals off the flower

he is smiling and talking while holding a flower
on his right paw

Frame 1 Frame 16Frame 1 Frame 16

Scene 1

Scene 3

Scene 7

mouse is holding a book and makes a
happy face

he is pulling petals off the flower

he is smiling and talking while holding a flower
on his right paw

...

...

...

...

HiRESTCoref-SV

Figure 5: Generation examples on Coref-SV (left) and HiREST (right).

5.2 Multi-Scene Video Generation

Multiple sentences to multi-scene videos generation (ActivityNet Captions / Coref-SV).
As shown in the left two blocks of Table 3, our VIDEODIRECTORGPT outperforms Mod-
elScopeT2V in visual quality (FVD/FID) and multi-scene object temporal consistency. No-
tably, for Coref-SV, our VIDEODIRECTORGPT achieves higher object consistency than
ModelScopeT2V even with GT co-reference (where pronouns are replaced with their orig-
inal noun counterparts, acting as oracle information; e.g., “she picked up ...” becomes
“cat picked up ...”). As we do not have ground-truth videos for Coref-SV, we only use it
to evaluate consistency when co-references are used across scenes. Fig. 5 (left) shows a
video generation example from Coref-SV, where the LLM-generated video plan can guide
the Layout2Vid module to generate the same mouse across scenes consistently, whereas
ModelScopeT2V generates a hand and a dog instead of a mouse in later scenes.

Single sentences to multi-scene videos generation (HiREST). The right block of Table 3
shows our VIDEODIRECTORGPT achieves better visual quality scores (FVD/FID) than
ModelScopeT2V on the HiREST dataset. Moreover, by comparing with an enhanced Mod-
elScopeT2V benchmark, where videos are generated from each scene description in our
GPT-4-produced video plan, we demonstrate the effectiveness of prompts generated by
GPT-4. However, it still performs worse than our VIDEODIRECTORGPT, also showing
the effectiveness of our Layout2Vid. As shown in Fig. 5 (right), our LLM can generate a
step-by-step video plan from a single prompt and our Layout2Vid can generate consistent
videos following the plan, showing how to make caraway cakes (a British seed cake). In
contrast, ModelScopeT2V repeatedly generates the (visually inconsistent) caraway cake.

5.3 Additional Analysis

Generating videos with custom image exemplars. Our Layout2Vid can obtain CLIP image
embeddings either from user-provided image exemplars or from entity text descriptions via
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Scene 2: a <S> goes to the cream-colored
kitchen and eats a can of gourmet cat snack.

Scene 1: a <S> then gets up from
a plush beige bed

Scene 3: a <S> sits next to a
large floor-to-ceiling window

<S> = “white cat”
Text
Input

Frame 1 Frame 16 Frame 1 Frame 16 Frame 1 Frame 16

<S> = “cat”

Entity
Grounding

Generated Scenes

Image+Text
Input

Figure 6: Video generation with text-only (top) and image+text (bottom) inputs with
VIDEODIRECTORGPT. By giving text or image+text inputs, users can generate images
where the identities of the entities are preserved across multiple scenes.

# Denoising steps with lay-
out guidance (out of 50)

MSR-VTT ActionBench-Direction

FVD (↓) FID (↓) CLIPSIM (↑) Move Direction Acc. (%)

α = 0.1 (5 steps) 550 12.22 0.2860 46.5
α = 0.2 (10 steps) 588 17.25 0.2700 59.8
α = 0.3 (15 steps) 593 17.17 0.2702 57.8
LLM-Dynamic-α (5-15 steps) 523 13.75 0.2790 56.8

Table 4: Ablation of the denoising steps with layout guidance (via guided 2D attentions) in
MSR-VTT and ActionBench-Direction prompts, where α =

# steps with layout guidance
# total steps .

the unCLIP Prior. In Fig. 6, we demonstrate that our Layout2Vid can flexibly take either
text-only or image+text descriptions as input to generate consistent multi-scene videos.

Dynamic layout strength control with GPT-4. The number of denoising steps with layout
guidance α controls layout control strength of Layout2Vid (see Appendix J for more detailed
illustration). Instead of using a static α value, we explore dynamically adjusting it during
the video plan generation by asking LLM how much layout guidance needs to be used for
each prompt. Table 4 compares static α values and dynamic α values (LLM-Dynamic-α),
showing that LLMs help achieve a good balance in the quality-layout trade-off.

Video Planner LLMs: GPT-4, GPT-3.5-turbo, and LLaMA2. We conducted an ablation study
using the open-sourced LLaMA2-7B and LLaMA2-13B models (Touvron et al., 2023b) as well
as GPT-3.5-turbo in the video planning stage on MSR-VTT and ActionBench-Directions. We
evaluated LLaMA2 in both fine-tuned and zero-shot settings. To collect data for fine-tuning
LLaMA2, we randomly sampled 2000 prompts from WebVid-10M (Bain et al., 2021) and
generated layouts with GPT-4. In addition to the visual quality (FID/FVD) and video-
text alignment (CLIPSIM) scores on MSR-VTT and movement direction accuracy score on
ActionBench-Directions, we also report the number of samples whose output layouts can
be successfully parsed (e.g., #Samples). Evaluation setup details are given in Appendix H.
Table 5 shows that zero-shot LLaMA2-13B struggles to generate layouts that can be suc-
cessfully parsed (e.g., only 82 out of 600). It also achieves worse scores on all three metrics
(FID, FVD, and CLIPSIM) on MSR-VTT, as well as the movement direction accuracy on
ActionBench-Directions, which shows that GPT models have stronger in-context learning
skills and can generate more reasonable layouts. On the other hand, all scores can be
improved by fine-tuning on layouts generated by GPT-4. Fine-tuning open-sourced LLMs
can be a future direction worthwhile to explore. Another point to note is that GPT-3.5-turbo
and GPT-4 achieve very similar performance on MSR-VTT, but GPT-3.5-turbo performs
significantly worse than GPT-4 on ActionBench-Directions. This suggests that GPT-3.5-turbo
is less effective at handling prompts requiring strong layout control compared to GPT-4.

Challenging cases. The bounding box-based control of our method poses two main chal-
lenges. Firstly, some objects might not follow the bounding box control well when there are
too many overlapping bounding boxes. For example, in Fig. 5 right, the “hand mixer” and

9



Published as a conference paper at COLM 2024

LLMs
MSR-VTT ActionBench-Directions

FVD (↓) FID (↓) CLIPSIM (↑) #Samples (↑) Movement Direction Acc (%) #Samples (↑)

Fine-tuned
LLaMA2-7B 580 12.69 0.2851 2749 35.8 537
LLaMA2-13B 556 12.40 0.2854 2786 53.3 561

Zero-shot
LLaMA2-13B 573 13.47 0.2792 2236 - 82
GPT-3.5-turbo 558 12.27 0.2852 2990 49.0 600
GPT-4 (default) 550 12.22 0.2860 2990 59.8 600

Table 5: Ablation of video generation with video plans generated from different LLMs on
MSR-VTT and ActionBench-Directions.

“unsalted butter”, which have relatively small bounding box sizes, do not follow the box
control well. Secondly, the control of whether the background is static or moving is usually
determined by the prior knowledge of the video generation model. For example, as shown
in Fig. 13, it’s hard for Layout2Vid to generate a moving bottle with a static background
and a moving boat with a completely static background (see paragraph “Object movement
prompts with different types of objects” in Appendix J.2 for details).

5.4 Human Evaluation
Evaluation category Human Preference (%) ↑

Ours ModelScopeT2V Tie

Quality 50 34 16
Text-Video Alignment 58 36 6
Object Consistency 62 28 10

Table 6: Human preference on multi-scene
videos generated with Coref-SV prompts.

Human preference. We conduct a hu-
man evaluation study on the multi-scene
videos generated by both our VIDEODIREC-
TORGPT and ModelScopeT2V on the Coref-
SV dataset. We show 50 videos to 10 crowd-
annotators from AMT1 to rate each video
(56 annotators in total, 10 annotators per
video) and calculate human preferences for each video with average ratings. Table 6 shows
that the multi-scene videos (with Coref-SV prompts) generated by our VIDEODIRECTORGPT
are preferred by human annotators than ModelScopeT2V videos in all three categories (Qual-
ity, Text-Video Alignment, and Object Consistency).

Step-by-step error analysis. In our error analysis of video planning and generation stages,
we measure 1-5 Likert scale accuracy of four intermediate generation steps: scene descrip-
tions, layouts, consistency groupings, and final video. While the first three planning steps
achieve high scores (≥ 4.52), there is a big score drop in the layout-guided video gener-
ation (4.52 −→ 3.61). This suggests that our VIDEODIRECTORGPT could generate more
accurate videos, once we have access to a stronger T2V backbone than ModelScopeT2V. See
Appendix G for more detailed analysis.

6 Conclusion

In this work, we propose VIDEODIRECTORGPT, a novel framework for consistent multi-
scene video generation, leveraging the knowledge of LLMs for video content planning
and grounded video generation. In the first stage, we employ GPT-4 as a video planner to
craft a video plan, a multi-component script for videos with multiple scenes. In the second
stage, we use Layout2Vid, a grounded video generation module, to generate videos with
layout and consistency control. Experiments demonstrate that our proposed framework
substantially improves object layout and movement control over state-of-the-art methods
on open-domain single-scene video generation, and can generate consistent multi-scene
videos while maintaining visual quality.

1Amazon Mechanical Turk: https://www.mturk.com
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A Reproducibility Statement

Our model is built upon the publicly available code repository from GLIGEN (Li et al.,
2023)2 and ModelScopeT2V (Wang et al., 2023b)3. Please see Sec. 3.2/Appendix D for model
architecture details, Sec. 4/Appendix F.2/Appendix F.3 for dataset details. We provide code
and video samples (video samples.html) in the supplementary material.

B Additional Related Works

Text-to-video generation. The text-to-video (T2V) generation task is to generate videos
from text descriptions. Early T2V generation models (Li et al., 2017; 2019b) used varia-
tional autoencoders (VAE) (Kingma & Welling, 2014) and generative adversarial networks
(GAN) (Goodfellow et al., 2020), while multimodal language models (Hong et al., 2022;
Wu et al., 2022a; Villegas et al., 2023; Maharana et al., 2022; Ge et al., 2022; Wu et al., 2021)
and denoising diffusion models (Ho et al., 2022; Singer et al., 2023; Blattmann et al., 2023b;
Khachatryan et al., 2023; Wang et al., 2023a; Yin et al., 2023) have become popular for recent
works. Since training a T2V generation model from scratch is computationally expensive,
recent work often leverages pre-trained text-to-image (T2I) generation models such as Stable
Diffusion (Rombach et al., 2022) by finetuning them on text-video pairs (Wang et al., 2023b;
Blattmann et al., 2023b). While this warm-start strategy enables high-resolution video
generation, it comes with the limitation of only being able to generate short video clips, as
T2I models lack the ability to maintain consistency through long videos. Recent works on
long video generation (Blattmann et al., 2023b; Yin et al., 2023; Villegas et al., 2023; He et al.,
2023) aim at generating long videos of a few minutes. However, the generated videos often
display the continuation or repetitive patterns of a single action (e.g., driving a car) instead
of transitions and dynamics of multiple changing actions/events (e.g., five steps about how
to bake a cake). In this work, we address this problem of multi-scene video generation
with a two-stage framework: using an LLM (e.g., GPT-4) to generate a structured video
plan (consisting of stepwise scene descriptions, entities and their layouts) and generating
videos using Layout2Vid, a layout-guided text-to-video generation model with consistency
control. Our Layout2Vid infuses layout control and multi-scene temporal consistency into a
pretrained T2V generation model via data and parameter-efficient training, while preserving
its original visual quality.

C Video Planning

C.1 GPT-4 Prompt Templates

In this section, we provide the prompt templates we give to our video planner (Sec. 3.2). The
video plan is generated in two steps by prompting GPT-44 with different in-context examples
(we use 1 and 5 in-context examples for the first and second steps, respectively). In the first
step (see Fig. 7), we ask GPT-4 to expand a single text prompt into a multi-scene video plan.
Each scene comes with a text description, a list of entities, and a background. In the second
step (see Fig. 8), we generate a list of bounding boxes for the entities in each frame based
on the list of entities and the scene description. In line with VPGen (Cho et al., 2023b), we
utilize the [x0, y0, x1, y1] format for bounding boxes, where each coordinate is normalized to
fall within the range [0,1]. For in-context examples, we present 0.05 as the minimum unit
for the bounding box, equivalent to a 20-bin quantization over the [0,1] range.

2GLIGEN: https://github.com/gligen/GLIGEN
3ModelScopeT2V: https://modelscope.cn/models/damo/text-to-video-synthesis/summary,

https://github.com/ExponentialML/Text-To-Video-Finetuning/tree/main
4We employ the gpt-4-0613 version.
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Instructions: 
Given a single text prompt, you need to envision a multi-scene video by generating a sequence of stepwise prompts to describe the text prompt. For 
each step, you also need to generate the set of entities needed and describe the background scene where the video should occur. Related steps should 
maintain similar entities and background scenes. Before you write each stepwise description, you must follow these instructions:
1. Each step prompt must contain only a single motion or action.
2. Each step prompt must include all relevant objects and describe the environment scene.
3. Make sure each step prompt must be easy described by a shot video cilp of 8 seconds at 2fps.
Use the following format: [[step_1: [prompt, entities, background]; step_2: [prompt, entities, background]; … step_n: [prompt, entities, background]]

In-context example: 
Input: Provide stepwise prompts for the text prompt: make butter biscuits
Output: 
Step 1: [Prompt: A chief preheats the oven; Entities: chief, oven; Background: kitchen counter];
Step 2: [Prompt: A chief creams together butter and sugar in a mixing bowl; Entities: chief, mixing bowl, butter, sugar, hand mixer; Background: kitchen]                         
Step 3: [Prompt: A chief beats in eggs into the mixing bowl; Entities: chief, eggs, mixing bowl; Background: kitchen];
  …
                       
Input text: Provide stepwise prompts for the text prompt: [insert single text prompt here] 

Figure 7: Prompt template for the 1st video planning step (scene descriptions and enti-
ties/background generation).

Instructions: 
Assuming the frame size is normalized to the range 0-1, you need to give a possible 8-frame layout with bounding boxes of the listed entities of a given 
scene description. Each object in the image is one rectangle or square box in the layout and size of boxes should be as large as possible. You need to 
generate layouts from the close up camera view of the event. The layout difference between two adjacent frames must be small, considering the small 
interval. You also need to generate a caption that best describes the image for each frame. After generating all frames, add reasoning to your design.
Use format: 
Frame_1: [[object1, [left, top, right, bottom]], [object2, [left, top, right, bottom]], ..., [object_n, [left, top, right, bottom]]], caption:...
Frame_2: [[object1, [left, top, right, bottom]], [object2, [left, top, right, bottom]], ..., [object_n, [left, top, right, bottom]]], caption:...
…
Frame_8: [[object1, [left, top, right, bottom]], [object2, [left, top, right, bottom]], ..., [object_n, [left, top, right, bottom]]], caption:...
Reasoning:...

In-context example: 
Input: Please generate bounding box coordinates for the following entities based on the scene description.
Entities: ['table', 'cat', 'chair']. Scene description: A cat jumps from a chair to a table.
Output: 
Frame_1: [["table", [0.1, 0.6, 0.9, 1.0]], ["cat", [0.4, 0.55, 0.6, 0.6]], ["chair", [0.05, 0.6, 0.4, 1.0]]], caption: A cat is standing on the table, preparing to jump.
Frame_2: [["table", [0.1, 0.6, 0.9, 1.0]], ["cat", [0.45, 0.5, 0.65, 0.55]], ["chair", [0.05, 0.6, 0.4, 1.0]]], caption: The cat has just left the table and is in mid-air.
…
Reasoning: The cat\'s bounding box in Frame 1 is on the table, showing the cat in the take-off position. From Frame 2 to Frame 6, the cat is shown in various 
stages mid-flight, with the cat\'s bounding box moving closer to the chair with each frame. …

Input text: Provide bounding box coordinates for the prompt: [insert entities and scene description here] 

Figure 8: Prompt template for the 2nd video planning step (layout generation).

C.2 API Cost

Using GPT-4 tokenizer, the average input/output token lengths of each step are 2K/1K for
the first step and 6K/1K for the second step. Using GPT-4, it takes 0.12 USD and 0.24 USD
for the inference of the first and second steps, respectively.

D Layout2Vid

D.1 Preliminaries: T2V Generation Backbone

We implement Layout2Vid by injecting layout control capability into ModelScopeT2V (Wang
et al., 2023b), a public text-to-video generation model based on Stable Diffusion (Rombach
et al., 2022). ModelScopeT2V consists of (1) a CLIP ViT-H/14 (Radford et al., 2021) text
encoder, (2) an autoencoder, and (3) a diffusion UNet (Ronneberger et al., 2015; Ho et al.,
2020). Given a T frame video x ∈ RT×3×H×W with video caption c and frame-wise layouts
{e}T

i=1, ModelScopeT2V first uses an autoencoder to encode the video into a latent repre-
sentation z = E(x). The diffusion UNet performs denoising steps in the latent space to
generate videos, conditioned on the CLIP text encoder representation of video captions. The
UNet comprises a series of spatio-temporal blocks, each containing four modules: spatial
convolution, temporal convolution, spatial attention, and temporal attention. Since the
original ModelScopeT2V does not offer control beyond the text input, we build upon the 2D
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Figure 9: Spatio-temporal blocks within the diffusion UNet of Layout2Vid. The spatio-
temporal block comprises four modules: spatial convolution, temporal convolution, spatial
attention, and temporal attention. We adopt settings from ModelScopeT2V, where (N1, N2,
N3, N4) are set to (2, 4, 2, 2). We use “Act” to represent activation layers.

attention module in the spatial attention module to create ‘Guided 2D Attention’, which
allows for spatial control using bounding boxes.

D.2 Layout2Vid Spatio-Temporal Blocks

Fig. 9 illustrates the spatio-temporal blocks within the diffusion UNet of Layout2Vid. The
spatio-temporal block comprises four modules: spatial convolution, temporal convolution,
spatial attention, and temporal attention. Following Li et al. (2023), we build upon the 2D
attention to create the guided 2D attention, which enables layout-guided video generation
with explicit spatial control over a list of entities represented by their bounding boxes, as
well as visual and text content.

D.3 Training and Inference Details

Table 7 contains the model architecture details and training/inference parameter settings
for our Layout2Vid.

Training. The highlight of our Layout2Vid training is that it was conducted solely on
image-level data with bounding box annotations. We trained the MLP layers for grounding
tokens and the gated self-attention layers with the same bounding-box annotated data
used in GLIGEN (Li et al., 2023), which consists of 0.64M images. We train Layout2Vid for
50k steps, which takes only two days with 8 A6000 GPUs (each 48GB memory). All the
remaining modules in the spatio-temporal block (see main paper Fig. 4) are frozen during
training. We illustrate the training and inference procedure of Layout2Vid in main paper
Fig. 3.

Inference. During inference, we use the Karlo implementation of unCLIP Prior to the
entities to convert the texts into their corresponding CLIP image embeddings, and CLIP text
encoder to get their corresponding text embeddings. We use CLIP ViT-L/14 as a backbone
during training to be consistent with Karlo. This helps us to preserve the visual consistency
of the same object by using the same image embedding across scenes. In addition, we
use PLMS Rombach et al. (2021) (based on PNDM Liu et al. (2022)) as our default sampler
following GLIGEN (Li et al., 2023), since we found no consistent improvements for visual
quality and video-text alignment scores when switching to the DDIM (Song et al., 2020)
sampler used in ModelScopeT2V. The comparison of the PLMS and DDIM samplers is
shown in Table 8.

E Human-in-the-Loop Video Plan Editing

One useful property of our VIDEODIRECTORGPT is that it is very flexible to edit video
plans via human-in-the-loop editing. Given an LLM-generated video plan, users can gener-
ate customized content by adding/deleting/replacing the entities, adding/changing the
background, and modifying the bounding box layouts of entities. Figure 10 showcases the
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Architecture Training
z-shape 32 × 32 × 4 # Train steps 50k
Channels 320 Learning rate 5e-5
Depth 2 Batch size per GPU 32
Attention scales 1,0.5,0.25 # GPUs 8
Number of heads 8 GPU-type A6000 (48GB)
Head dim 64 Loss type MSE
Channel multiplier 1.2,4,4 Optimizer AdamW

CA Conditioning Inference
Context dimension 1024 Sampler PLMS
Sequence length 77 # denoising steps 50

Table 7: Hyperparameters for Layout2Vid.

Samplers FVD (↓) FID (↓) CLIPSIM (↑)

DDIM 508 12.52 0.2848
PLMS 550 12.22 0.2860

Table 8: Comparison between PLMS and DDIM sampler on MSR-VTT.

example videos generated from the text prompt “A horse running”, and videos generated
from the video plan modified by users (i.e., changing the object sizes and backgrounds).

frame 1 frame 8 frame 16

frame 1 frame 8 frame 16

Original prompt: “A horse running”

Edit 3: Add “night street” background 

Edit 2: Add “grassland” background 

Edit 1: Make the horse smaller

Human 
Editing

Figure 10: Video generation examples for human-in-the-loop editing. Users can modify
the video plan (e.g., add/delete objects, change the background and entity layouts, etc.) to
generate customized video contents. Given the same text prompt “A horse running”, we
provide visualizations with a smaller horse and different backgrounds (i.e., “night street”
and “grassland”).

F Experiment Setup

We provide additional details on our experiment setups (Sec. 4 in the main paper) below.

F.1 Evaluated Models

We compare our VIDEODIRECTORGPT to 6 popular T2V generation models, NUWA (Wu
et al., 2022b), CogVideo (Hong et al., 2022), VideoLDM (Blattmann et al., 2023b), Mag-
icVideo (Zhou et al., 2022), Make-A-Video (Singer et al., 2023), and ModelScopeT2V (Wang
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et al., 2023b). Since NUWA, VideoLDM, MagicVideo, Make-A-Video, and CogVideo (En-
glish) are not publicly available, we primarily compare our VIDEODIRECTORGPT with
ModelScopeT2V, and present comparisons with the other models on the datasets for which
their papers have provided results. ModelScopeT2V is the closest baseline to our framework
among all these models, because our Layout2Vid utilizes its frozen weights and only trains a
small set of new parameters to add spatial control and temporal consistency across multiple
scenes.

F.2 Prompts for Single-Scene Video Generation

For single-scene video generation, we conduct experiments with VPEval Skill-based prompts
to evaluate layout control (Cho et al., 2023b), ActionBench-Direction prompts to assess object
dynamics (Wang et al., 2023c), and MSR-VTT to cover diverse open-domain scenes (Xu et al.,
2016).

VPEval Skill-based prompts evaluate different object-centric layout control skills in text-
to-image/video generation. We randomly sample 100 prompts for each of the four skills:
Object (generation of a single object), Count (generation of a specific number of objects),
Spatial (generation of two objects with a spatial relation; e.g., left/right/above/below), and
Scale (generation of two objects with a relative scale relation; e.g., bigger/smaller/same).

ActionBench-Direction prompts evaluate the action dynamics (object movement direc-
tions) in video language models. We prepare the prompts by sampling video captions
from ActionBench-SSV2 (Wang et al., 2023c) and balancing the distribution of movement
directions. Concretely, we select captions from the ActionBench-SSV2 validation split that
include phrases like ‘right to left’ or ‘left to right’ (e.g., ‘pushing a glass from left to right’),
which are common phrases describing movement directions in the captions. Then we
augment these prompts by switching the directions to each of four directions: ‘left to right’,
‘right to left’, ‘top to bottom’, and ‘bottom to top’ to create 100 prompts for each direction.
We call the resulting 400 prompts as ActionBench-Direction prompts. These prompts ensure a
balanced distribution of movement directions while maintaining diversity in objects.

MSR-VTT is an open-domain video captioning dataset, which allows us to check if our
Layout2Vid maintains the original visual quality and text-video alignment performance of
the ModelScopeT2V backbone after integration of the layout/movement control capabilities.
The MSR-VTT test set comprises 2,990 videos, each paired with 20 captions. Following
VideoLDM (Blattmann et al., 2023b), we sample one caption from the 20 available captions
for each video and use the 2,990 corresponding generated videos for evaluation.

F.3 Prompts for Multi-Scene Video Generation

For multi-scene video generation, we experiment with two types of input prompts: (1) a list
of sentences describing events – ActivityNet Captions (Krishna et al., 2017) and Coref-SV
prompts based on Pororo-SV (Li et al., 2019b) and (2) a single sentence from which models
generate multi-scene videos – HiREST (Zala et al., 2023).

ActivityNet Captions is a dense-captioning dataset designed for detecting and describing
multiple events in videos using natural language. For the multi-scene video generation
task, we use 165 randomly sampled videos from the validation split and use the event
captions as input for ModelScopeT2V and our VIDEODIRECTORGPT. When calculating
object consistency, we find the subject of the first event caption via spaCy dependency
parser (Honnibal & Montani, 2017) and check its appearance in multiple scenes.

Coref-SV is a new multi-scene text description dataset that we propose to evaluate the
consistency of object appearances across multi-scene videos. We prepare the Coref-SV
prompts by augmenting the Pororo-SV dataset (Li et al., 2019b; Kim et al., 2017), which
consists of multi-scene paragraphs from the “Pororo the Little Penguin” animated series.
To evaluate the temporal consistency of video generation models trained on real-world
videos, we extend its original animation characters (e.g., Pororo) to humans and common
animals and examine their appearance across different scenes. Concretely, we sample 10
episodes, each consisting of multiple scenes (6.2 scenes per episode on average). Then,
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we replace the first appearance of a character with one of the predefined 10 real-world
entities (e.g., person/dog, etc.) and replace the remaining appearances of the character
with pronouns (e.g., he/she/it/etc.). In total, we obtain 100 episodes (=10 episodes × 10
entities) in Coref-SV. In order to generate visually consistent entities, the multi-scene video
generation models would need to address the co-reference of these target entities across
different scenes. We use the final scene descriptions as input for both ModelScopeT2V and
VIDEODIRECTORGPT. When calculating object consistency, we use the selected entity as
the target object.

HiREST provides step annotations for instructional videos paired with diverse ‘How to’
prompts (e.g., a video paired with ‘how to make butter biscuits’ prompt is broken down into
a sequence of short video clips of consecutive step-by-step instructions). For the multi-scene
video generation task, we employ 175 prompts from the test splits, where we only include
the prompts with step annotations, to ensure that it is possible to create multi-scene videos
from the prompts. Note that instead of providing a list of scene description sentences like in
ActivityNet Captions/Coref-SV, we only give the single high-level ‘How to’ prompt and
let the models generate a multi-scene video from it. In VIDEODIRECTORGPT, our LLM
can automatically generate the multi-scene video plan and video from the input prompt.
In contrast, for the ModelScopeT2V baseline, we help the model understand the different
number of scenes to generate by pre-defining the number of scenes N, and independently
generate N videos by appending the suffix “step n/N” to the prompt for n-th scene (e.g.,
“Cook Beet Greens, step 1/10”). To ensure that our VIDEODIRECTORGPT videos and
ModelScopeT2V videos are equal in length, we use the same number of scenes generated
by our LLM during the planning stage for ModelScopeT2V. As mentioned in main paper
Sec. 5.2, we also try an ablation with giving ModelScopeT2V the LLM generated prompts
instead of just “step n/N”.

G Human Evaluation Details

We provide details of our human evaluation and error analysis setups, as well as the error
analysis results described in Sec. 4.

Human evaluation details. We conduct a human evaluation study on the multi-scene
videos generated by both our VIDEODIRECTORGPT and ModelScopeT2V on the Coref-SV
dataset. Since we know the target entity and its co-reference pronouns in the Coref-SV
prompts, we can compare the temporal consistency of the target entities across scenes. We
evaluate the human preference between videos from two models in each category of Quality,
Text-Video Alignment, and Object Consistency:

• Quality: it measures how well the video looks visually.
• Text-Video Alignment: it assesses how accurately the video adheres to the input

sentences.
• Object Consistency: it evaluates how well the target object maintains its visual

consistency across scenes.

We show 50 videos to ten crowd-annotators from AMT5 to rate each video (28 unique
annotators, ten annotators rate each video) and calculate human preferences for each video
with average ratings. All videos are randomly shuffled such that annotators do not know
which model generated each video. To ensure high-quality annotations, we require they
have an AMT Masters, have completed over 1000 HITs, have a greater than 95% approval
rating, and are from one of the United States, Great Britain, Australia, or Canada (as our task
is written in the English language). We pay annotators $0.10 to evaluate a video (roughly
$12-14/hr).

Step-by-step error analysis details. We conduct an error analysis on each step of our
single sentence to multi-scene video generation pipeline for HiREST prompts. We analyze

5Amazon Mechanical Turk: https://www.mturk.com
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the generated multi-scene text descriptions, layouts, and entity/background consistency
groupings to evaluate our video planning stage and the final video to evaluate the video
generation stage.

• Multi-Scene Text Descriptions Accuracy: we measure how well these descriptions
depict the intended scene from the original prompt (e.g., if the original prompt
is “Make buttermilk biscuits” the descriptions should describe the biscuit-making
process and not the process for pancakes).

• Layout Accuracy: we measure how well the generated layouts showcase a scene
for the given multi-scene text description (e.g., the bounding boxes of ingredients
should go into a bowl, pan, etc. instead of randomly moving across the scene).

• Entity/Background Consistency Groupings Accuracy: we measure how well the gener-
ated entities and backgrounds are grouped (e.g., entities/backgrounds that should
look consistent throughout the scenes should be grouped together).

• Final Video Accuracy: we measure how well the generated video for each scene
matches the multi-scene text description (e.g., if the multi-scene text description is
“preheating an oven”, the video should accurately reflect this).

We ask an expert annotator to rank the generations (multi-scene text description, layouts,
etc.) on a Likert scale of 1-5 for 50 prompts/videos. Analyzing the errors at each step
enables us to check which parts are reliable and which parts need improvement. As a
single prompt/video can contain many scenes, to simplify the process for layout and final
video evaluation of a prompt/video, we sub-sample three scene layouts and corresponding
scene videos and average their scores to obtain the “Layout Accuracy” and “Final Video
Accuracy.”

Step-by-step error analysis results. As shown in Table 9, our LLM-guided planning
scores high accuracy on all three components (up to 4.52), whereas the biggest score drop
happens in the layout-guided video generation (4.52 → 3.61). This suggests that our
VIDEODIRECTORGPT could generate even more accurate videos, once we have access to a
stronger T2V backbone than ModelScopeT2V.

Stage 1: Video Planning (with GPT-4) Stage 2: Video Generation (with Layout2Vid)

Multi-scene Text Descriptions (↑) Layouts (↑) Entity/Background Consistency Groupings (↑) Final Video (↑)

4.92 4.69 4.52 3.61

Table 9: Step-wise error analysis of VIDEODIRECTORGPT video generation pipeline on
HiREST prompts. We use a Likert scale (1-5) to rate the accuracy of the generated compo-
nents at each step.

H Ablation Studies

In this section, we provide ablation studies on our design choices, including using dif-
ferent LLMs for video planning, the number of layout-guided denoising steps, different
embeddings for layout groundings, and layout representation formats.

H.1 Video Planner LLMs: GPT-4, GPT-3.5-turbo, and LLaMA2

We conducted an ablation study using the open-sourced LLaMA2-7B and LLaMA2-13B
models (Touvron et al., 2023b) as well as GPT-3.5-turbo in the video planning stage on
MSR-VTT and ActionBench-Directions.

Evaluation settings. In this study, we evaluated LLaMA2 in both fine-tuned and zero-shot
settings. For the zero-shot evaluation, we used the same number of in-context examples
(i.e., 5 examples) for both GPT-3.5-turbo and GPT-4, but only 3 in-context examples for
the LLaMA2 models due to their 4096 token length limits. To collect data for fine-tuning
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LLaMA2, we randomly sampled 2000 prompts from WebVid-10M (Bain et al., 2021) and
generated layouts with GPT-4 using the same prompts as described in our main paper. We
fine-tuned the LLaMA2 models for 1000 steps with a learning rate of 2e-4 and a cosine
scheduler. In addition to the visual quality (FID/FVD) and video-text alignment (CLIPSIM)
scores on MSR-VTT and movement direction accuracy score on ActionBench-Directions, we
also report the number of samples whose output layouts can be successfully parsed (e.g.,
#Samples). We consider the output valid if it contains 9 frames, and each frame includes
at least one object with a bounding box layout. Videos are generated with α = 0.1 for
MSR-VTT and α = 0.2 for ActionBench-Directions.

H.2 Entity Grounding Embeddings: Image v.s. Text

As discussed in Sec. 3.2 in our main paper, we compare using different embeddings for
entity grounding on 1000 randomly sampled MSR-VTT test prompts. As shown in Table 10,
CLIP image embedding is more effective than CLIP text embedding, and using the CLIP
image-text joint embedding yields the best results. Thus, we propose to use the image+text
embeddings for the default configuration.

Entity Grounding MSR-VTT Coref-SV

FVD (↓) FID (↓) CLIPSIM (↑) Consistency (%)

Image Emb. 737 18.38 0.2834 42.6
Text Emb. 875 23.18 0.2534 36.9
Image+Text Emb. (default) 606 14.60 0.2842 42.8

Table 10: Ablation of entity grounding embeddings of our Layout2Vid on MSR-VTT and
Coref-SV.

H.3 Layout Control: Bounding Box v.s. Center Point

In Table 11, we compare different layout representation formats on 1000 randomly sampled
MSR-VTT test prompts. We use image embedding for entity grounding and α = 0.2 for
layout control. Compared with no layout (‘w/o Layout input’) or center point-based layouts
(without object shape, size, or aspect ratio), the bounding box based layout guidance gives
better visual quality (FVD/FID) and text-video alignment (CLIPSIM).

Layout representation FVD (↓) FID (↓) CLIPSIM (↑)

w/o Layout input 639 15.28 0.2777
Center point 816 18.65 0.2707
Bounding box (default) 606 14.60 0.2842

Table 11: Ablation of layout representation of our VIDEODIRECTORGPT on MSR-VTT.

H.4 Trainable Layers: Gated Self-Attention Only v.s. Entire Guided 2D Attention

Training settings. In our Layout2Vid, only the MLP layers for grounding tokens and
the gated self-attention layers are trained, accounting for 13% of the total parameters.
We conducted an ablation study to unfreeze more parameters from the ModelScopeT2V
backbone. Specifically, all layers in the guided 2D attention module, such as self-attention,
gated self-attention, and cross-attention, are made trainable, which constitutes 27% of the
total parameters. Starting from the model trained in our main paper, we further train this
variant with more trainable parameters for 50k steps, keeping all other training hyper-
parameters constant.

Result analysis. As shown in Table 12, unfreezing all parameters in the guided 2D at-
tention module results in significantly worse performance compared to training only the
additional gated self-attention layers. This decline in performance occurs because the tem-
poral attention and temporal convolution layers, which are inactive during our image-data
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Trainable Layers FVD (↓) FID (↓) CLIPSIM (↑)

Entire Guided 2D Attn (GatedSA + SelfAttn + CrossAttn) 1626 70.47 0.2231
GatedSA only (default) 550 12.22 0.2860

Table 12: Comparison of only updating parameters in gated self-attention (GatedSA)
between updating all parameters in guided 2D attention (Entire Guided 2D Attn) of our
VIDEODIRECTORGPT on MSR-VTT.

training, cause misalignment in the spatial and temporal layers during inference when the
temporal layers are activated.

I Additional Experiments

I.1 Comparison on UCF-101

In addition to the MSR-VTT dataset for open-domain single-scene video generation, we also
conduct experiments for the UCF-101 dataset (Soomro et al., 2012). Since ModelScopeT2V
does not report their evaluation results on UCF-101 dataset in their technical report, we use
their publicly released checkpoint and run evaluation on the same 2048 randomly sampled
test prompts as used in our VideoDirectorGPT evaluation. Compared with ModelScopeT2V,
we achieve a significant improvement in FVD (ModelScopeT2V 1093 vs. Ours 748) and
competitive performance in the Inception Score (ModelScopeT2V 19.49 vs. Ours 19.42). In
addition, we notice that ModelScopeT2V is not good at video generation on this UCF-101
dataset, which is also observed in other recent works (He et al., 2023). We could expect our
VideoDirectorGPT to perform better with stronger T2V backbones.

Method UCF-101

FVD (↓) IS (↑)

Different arch / Training data
LVDM 917 −
CogVideo (Chinese) 751 23.55
CogVideo (English) 701 25.27
MagicVideo 699 −
VideoLDM 550 33.45
Make-A-Video 367 33.00

Same video backbone & Test prompts
ModelScopeT2V† 1093 19.49
VIDEODIRECTORGPT 748 19.42

Table 13: Evaluation results on UCF-101. ModelScopeT2V†: Our replication with 2048
randomly sampled test prompts.

J Additional Visualization and Qualitative Examples

J.1 Visualization of Different Layout-Guided Denoising Steps.

Balancing layout control strength with visual quality. During video generation, we use
two-stage denoising in Layout2Vid following Li et al. (2023), where we first use layout-
guidance with Guided 2D attention for α ∗ N steps, and use the denoising steps without
Guided 2D attention for the remaining (1 − α) ∗ N steps, where N is the total number
of denoising steps, and α ∈ [0, 1] is the ratio of layout-guidance denoising steps. In our
additional analysis (see main paper Table 4), we find that a high α generally increases layout
control but could lead to lower visual quality, which is also consistent with the finding in Li
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alpha=0.1

alpha=0.3

alpha=0.7

alpha=1.0

frame 1 frame 8 frame 16 frame 1 frame 8 frame 16

Figure 11: Visualization of objects with different strength of layout control (different α
values). The prompts are “A dog moving from right to left” and “A car moving from left to
right” respectively. Increasing the α value can make the objects better following bounding
box layouts. An α value between 0.1 to 0.3 usually gives videos with best trade-off between
visual quality and layout control.

Frame 1 Frame 8 Frame 16 Frame 1 Frame 8 Frame 16

Figure 12: Generated layouts from prompts that require physical understanding: “A stone
thrown into the sky” (left) and “A car is approaching from a distance” (right).

et al. (2023). By default, we use α = 0.1 and N = 50 denoising steps. We also explore using
the LLM to determine the α value within the range [0, 0.3] during the video plan generation
(see main paper Sec. 5.3 for details).

Visualization and Analysis. Here, we provide visualizations of objects with prompts that
involve explicit layout movements to illustrate the effect of changing the α hyper-parameter.
As can be seen in Fig. 11, a small α value (e.g., 0.1) can provide guidance for object movement,
enabling the Layout2Vid to generate videos that do not strictly adhere to bounding box
layouts. This approach fosters better creativity and diversity in the generated videos, and
enhances visual quality as well as robustness to LLM-produced layouts. On the other hand,
an α value of 0.3 or higher is sufficient to control objects to follow bounding box trajectories.
In conclusion, for prompts requiring explicit movement control, a larger α value typically
results in better performance (as demonstrated by the results from ActionBench-Directions
in Table 4 of our main paper). Meanwhile, for prompts that do not require large movements,
a smaller α value generally leads to improved visual quality (as indicated by the results
from MSR-VTT in Table 4 in the main paper).
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Frame 1 Frame 8 Frame 16 Frame 1 Frame 8 Frame 16 Frame 1 Frame 8 Frame 16

Figure 13: Generated videos from movement prompts with a static object (bottle) and objects
that can naturally move (airplan/boat). We use prompts “A {bottle/airplane/boat} moving
from left to right.”

Figure 14: Multi-scene video generation example from prompt: “A boy playing in sand and
flying kites.”

J.2 Additional Qualitative Examples

Prompts requiring understanding of physical world. Fig. 12 shows that our GPT-4 based
video planner can generate object movements requiring an understanding of the physical
world such as gravity and perspective.

Object movement prompts with different types of objects. In Fig. 13, we show additional
examples for single-scene video generation with prompts involve movements. For static
objects (e.g., a bottle), movement is often depicted via the camera. For objects that can
naturally move (e.g., an airplane and a boat), the videos show the movements of objects.

Scene 2: a <S> goes to the cream-colored
kitchen and eats a can of gourmet cat snack.

Scene 1: a <S> then gets up from
a plush beige bed

Scene 3: a <S> sits next to a
large floor-to-ceiling window

<S> = “white cat”
Text
Input

Image+Text
Input

Frame 1 Frame 16 Frame 1 Frame 16 Frame 1 Frame 16

<S> = “cat”

<S> = “cat”

<S> = “teddy bear”

Entity
Grounding

Generated Scenes

Figure 15: Video generation examples with text-only and image+text inputs. Users
can flexibly provide either text-only or image+text descriptions to place custom entities
when generating videos with VIDEODIRECTORGPT. For both text and image+text based
entity grounding examples, the identities of the provided entities are well preserved across
multiple scenes.
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Generating videos with custom image exemplars. In Fig. 15, we demonstrate that our
Layout2Vid can flexibly take either text-only or image+text descriptions as input to generate
multi-scene videos with good entity consistency.

Multi-scene video generation with human appearance. In Fig. 14, we show an additional
example of multi-scene video generation with a human appearance. Our VIDEODIREC-
TORGPT can well preserve the boy’s appearances across scenes.

VPEval Skill-based. Fig. 16 shows that LLM-generated video plan successfully guides
the Layout2Vid module to accurately place objects in the correct spatial relations and to
generate the correct number of objects. In contrast, ModelScopeT2V fails to generate a
‘pizza’ in the first example and overproduces the number of frisbees in the second example.

A pizza is to the left of an elephant
 VideoDirectorGPT (Ours)ModelScopeT2V

Frame 1 Frame 8 Frame 16Frame 1 Frame 8 Frame 16

Example 1

four frisbees

Example 2

Figure 16: Video generation examples on VPEval Skill-based prompts for spatial and
count skills. Our video plan, with object layouts overlaid, successfully guides the Layout2Vid
module to place objects in the correct spatial relations and to depict the correct number
of objects, whereas ModelScopeT2V fails to generate a ‘pizza’ in the first example and
overproduces the number of frisbees in the second example.

Pushing stuffed animal from left to right
 VideoDirectorGPT (Ours)ModelScopeT2V

Frame 1 Frame 8 Frame 16Frame 1 Frame 8 Frame 16

Pushing pear from right to left

Example 2

Example 1

Figure 17: Video generation examples on ActionBench-Direction prompts. Our video
plan’s object layouts (overlaid) can guide the Layout2Vid module to place and move the
‘stuffed animal’ and ‘pear’ in their correct respective directions, whereas the objects in the
ModelScopeT2V videos stay in the same location or move in random directions.

ActionBench-direction. Fig. 17 shows that our LLM-generated video plan can guide the
Layout2Vid module to place the ‘stuffed animal’ and the ‘pear’ in their correct starting
positions and then move them toward the correct end positions, whereas the objects in the
ModelScopeT2V videos stay in the same location or move in random directions.

Coref-SV. Fig. 18 shows that our video plan guide the Layout2Vid module to generate the
same dog and maintain snow across scenes consistently, whereas ModelScopeT2V generates
different dogs in different scenes and loses the snow after the first scene.
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 VideoDirectorGPT (Ours)ModelScopeT2V

it's snowing outside.

dog is singing and dancing.

its friends are applauding at it. ...

...

Frame 1 Frame 8 Frame 16Frame 1 Frame 8 Frame 16

Scene 1

Scene 2

Scene 4

it's snowing outside.

dog is singing and dancing.

its friends are applauding at it. ...

...

Figure 18: Video generation examples on Coref-SV prompts. Our video plan’s object
layouts (overlaid) can guide the Layout2Vid module to generate the same brown dog and
maintain snow across scenes consistently, whereas ModelScopeT2V generates different dogs
in different scenes and loses the snow after the first scene.

“How To” Make a Strawberry Surprise
 VideoDirectorGPT (Ours)ModelScopeT2V

Make a Stawberry Surprise, step 1/7

Make a Stawberry Surprise, step 6/8

Make a Stawberry Surprise, step 7/8

a young man in a red apron washes ripe red strawberries in a silver sink

a young man in a red apron places a scoop of vanilla ice cream on top of the
smoothie in a tall glass

a young man in a red apron places a strawberry on top of the ice cream for garnishing

Frame 1 Frame 8 Frame 16Frame 1 Frame 8 Frame 16

Scene 1

Scene 6

Scene 7

......

......
Figure 19: Video generation examples HiREST prompts. Our VIDEODIRECTORGPT
generates a detailed video plan that properly expands the original text prompt, ensures
accurate object bounding box locations (overlaid), and maintains consistency of the person
across the scenes. ModelScopeT2V only generates strawberries, without strawberry surprise.

HiREST. Fig. 19 shows that our LLM can generate step-by-step video plan from a single
prompt, and our Layout2Vid can generate consistent videos following the plan. Our
VIDEODIRECTORGPT breaks down the process and generates a complete video showing
how to make a strawberry surprise (a type of dessert consisting of vanilla ice cream and
strawberries). ModelScopeT2V repeatedly generates strawberries.
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K Limitations

While our framework can be beneficial for numerous applications (e.g., user-
controlled/human-in-the-loop video generation/manipulation and data augmentation),
akin to other video generation frameworks, it can also be utilized for potentially harmful
purposes (e.g., creating false information or misleading videos), and thus should be used
with caution in real-world applications (with human supervision, e.g., as described in Ap-
pendix E — human-in-the-loop video plan editing). Also, generating a video plan using
the strongest LLM APIs can be costly, similar to other recent LLM-based frameworks. We
hope that advances in quantization/distillation and open-source models will continue to
lower the inference cost of LLMs. Lastly, our video generation module (Layout2Vid) is
based on the pretrained weights of a specific T2V generation backbone. Therefore, we face
similar limitations to their model, including deviations related to the distribution of training
datasets, imperfect generation quality, and only understanding the English corpus.
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