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Abstract

Foundation models—Deep Networks (DNs) able to solve numerous downstream
task without requiring to be retrained—have made enormous strides in the recent
years. Thus far, progress has mostly been measured in terms of average perfor-
mance on mostly curated datasets. Yet, a large number of end-users are concerned
with sensitive applications for which an assessment of the foundation model’s
confidence is required. To that end, we propose LevyScore-a simple, fast sample-
wise confidence score for any pretrained foundation model using joint-embeddings.
LevyScore is theoretically sound as it captured the deviation of an embedding
from its pretraining density. Yet, LevyScore does not require knowledge of the
pretraining data nor having access to any downstream dataset. Instead it is built
from a core principle of Joint Embeddings: producing Gaussian embeddings. Our
experiments demonstrate that LevyScore provides an effective mechanism for fil-
tering samples according to the foundation model’s confidence. Across probes and
datasets, it consistently improves the accuracy—coverage tradeoff, achieving state-
of-the-art performance. By selectively discarding uncertain predictions, LevyScore
offers a simple, principled, and practical tool for deploying foundation models in
high-stakes applications.

1 Introduction

For decades, machine learning systems took the form of probabilistic models [3, 12]. Whether
generative or discriminative, they offered the option to get an estimate of the model’s confidence
in the current input and prediction [5]. However, that paradigm drifted away leading to today’s
state-of-the-art systems being entirely trained without offering such scoring mechanisms [8].

For a wide range of applications, such scoring is not necessary, as the model is designed to produce
a prediction regardless of its confidence [9]. More advanced pipelines may leverage a mixture of
experts to aggregate multiple systems synergistically [10, 4]. However, there exist several applications
that require such confidence prediction, as sometimes, not making a prediction is better than making
arandom one [13, 19].

The common approach today is to take a pretrained foundation model, estimate the density of its
embeddings on a dataset, and then rely on this external estimator to measure the model’s confidence
[6]. However, the outcome is highly sensitive to the choice of estimator, the dataset used for fitting,
hyperparameters, efc [16]. Additionally, most density estimators incur significant computational
costs. For instance, Gaussian Mixture Models require restrictive covariance assumptions to avoid
cubic complexity in the dimension, or kernel methods scale quadratically with the size of the training
set.
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Contribution. To address this limitation, we propose LevyScore, a training-free method inspired
by Lévy’s concentration theorem. The approach builds on the fact that joint-embedding foundation
models are trained to produce Gaussian embeddings: scoring confidence then reduces to comparing
a sample’s embedding against the Gaussian distribution it should follow. LevyScore models the
embedding space with a Chi-distribution, making its computation depends only on the norm of
each embedding. Our experiments show that LevyScore serves as an cheap and effective filtering
mechanism. We hope that our very first step in estimating foundation models’ confidence will open
numerous avenues to easy the deployment of those models in sensitive applications.

2 LevyScore: Training-Free Confidence Score for Foundation Models

2.1 Norms as a Cheap Sample-Wise Statistic

Most Joint-Embedding Predictive Architectures (JEPA) [14] are trained with two main objectives: (i)
predictive invariance, ensuring that different “views” of the same input produce similar embeddings,
and (ii) representation diversity, preventing collapse to trivial solutions [11]. These two principles
are typically captured by the following loss:
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where a:%l), a:g) are two stochastic views of the same input generated by G, and dist is a distance
function (e.g., £2). For image encoders, G typically consists of two different data augmentations. The
diversity (anti-collapse) term plays a crucial role, as it ensures that embeddings do not collapse to a

single point, but instead spread out in a manner consistent with a Gaussian distribution [17, 2].

This JEPA training implicitly enforces that the embedding distribution be spherically invariant—and
in particular Gaussian or Uniform on the surface of the hypersphere as the dimension grows to infinity.
In fact, this can be seen both for contrastive learning [18], for non contrastive teacher-student methods
[15]. As a direct consequence, the embedding norms are expected to follow a Chi-distribution with
degrees of freedom equal to the embedding dimension.

This property is central to our work. When attempting to design a sample-wise confidence score, one
faces a fundamental limitation. Given only a single embedding, it is impossible to assess whether
the overall distribution is isotropic or Gaussian. However, the norm of the embedding remains a
meaningful and testable statistic.

Proposition 1. Given only one sample, it is not possible to test for spherical invariance. Consequently,
the embedding norm is the only statistic that can be exploited for sample-wise confidence estimation.

This result highlights why norms are the natural building block for a confidence metric. Unlike
distributional properties (like the distribution moments) that require many samples to estimate, the
norm of an individual embedding already carries information about its compatibility with the expected
Gaussian geometry. A sample whose norm lies in the high-density region of the Chi-distribution is
consistent with the embedding space geometry. In contrast, samples with unusually small or large
norms deviate from this structure, suggesting that the model’s predictions could be unreliable.

Motivated by this observation, we define our proposed metric, LevyScore, as follows:
LevyScore = log PdfChig (|| z|2), )

where PdfChix denotes the probability density of a Chi-distribution with K (the embedding dimen-
sion) degrees of freedom. Intuitively, LevyScore assigns higher values to embeddings whose norm
lies near the mode of the Chi-distribution, and lower values otherwise. Since it requires no training
and depends only on the /5 norm of each embedding, LevyScore offers an efficient and theoretically
grounded alternative to density estimators that must operate over the full embedding space.

2.2 LevyScore in Practice: Norms Reveal Prediction Reliability

To demonstrate the practical utility of LevyScore, we examine how the distributions of embedding
norms differ between correct and misclassified samples. In fig. 1, we observe a clear distributional
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Figure 1: Left: Histograms of embedding norms on ImageNet-100 (Top: train set, Bottom: validation set) using
a ResNet-18 backbone trained with SimCLR. Correctly classified samples concentrate around higher LevyScore
values, while misclassified samples shift toward lower values, showing that the norm carries discriminative
confidence information.Right:ROC curves of LevyScore for ImageNet-100 (Top: train set, Bottom: validation
set) with a SimCLR backbone shown across training epochs. As embeddings improve, the separation between
correct and misclassified samples increases, leading to steadily higher AUC values.

shift: misclassified samples tend to concentrate in regions with lower LevyScore values, while the
correct ones cluster around higher values. This indicates that the embedding norm alone carries
information about whether a sample aligns with the model’s learned representation.

Further, fig. 1 tracks the evolution of ROC curves throughout training. As the embeddings improve,
the separation between the norm distributions of correct and incorrect predictions becomes more
pronounced, yielding higher AUC scores. These results suggest that LevyScore can act as an effective
rejection criterion: Top-scoring embeddings reveal the model’s most accurate predictions.

2.3 LevyScore: Controlling Accuracy and Filter Tradeoffs

A common procedure for leveraging representations from Joint Embedding Architectures (JEA) is
to train a linear classifier (or linear probe) on top of the learned embeddings [1]. While these pre-
trained encoders typically yield more robust representations than those obtained via purely supervised
learning [7], in certain applications, the reliability of the probe’s predictions is critical (e.g., medical
imaging, defense, or other high-stakes settings). In this section, we demonstrate how LevyScore can
provide a principled mechanism for improving reliability in such scenarios.

As shown in fig. 2, using LevyScore (or equivalently, the embedding norm) as a rejection threshold on
ImageNet-100 predictions enables explicit control over the tradeoff between accuracy and coverage,
cf. table 1. Increasing the threshold improves the likelihood that retained predictions are correct,
effectively calibrating the model’s confidence.

To further validate this claim, we evaluate LevyScore-based filtering across different probe types. In
particular, we compare its effect when applied to a k-NN probe versus a linear classifier on top of the
same encoder embeddings, as shown in fig. 3. In both cases, we observe a consistent phenomenon:
filtering samples by LevyScore systematically improves the accuracy of the retained set, confirming
its effectiveness as a confidence-aware selection criterion. Additional experiments in the appendix
(figs. 4 to 6) further demonstrate that this behavior holds across datasets, probe configurations, and
self-supervised learning methods.
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Figure 2: Top-1 accuracy of a linear probe on ImageNet-100 with a SimCLR backbone, Top: train; Bottom
validation. Increasing the LevyScore threshold improves accuracy by rejecting uncertain samples, though overly
large thresholds reduce coverage and degrade validation accuracy.

l|z]l2 | Train | Val logp(2) Train | Val
0-10 | 65532 | 1994 -1250 —-1000 | 389 0
10-20 | 48677 | 2672 -1000 —-750 | 68808 | 2128
20-30 | 1320 | 316 -750 —-500 | 46315 | 2830
30-40 10 34 -500 - -250 27 42

Table 1: Samples per bin for ImNet-100. Left: ||z||2 bins (size = 10). Right: log p(z) bins (size = 250).

1001 7 = k-nn (k=10)

—— linear probe

Figure 3: Comparison of k-NN (k=10)
and linear probes on ImageNet-100 valida-
tion embeddings from a SimCLR-trained
ResNet-18. Both probes show similar ac-
curacy—coverage improvements when filter-
ing with LevyScore, indicating robustness
across probe types.
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3 Conclusion

We introduced LevyScore, a cheap, fast, and principled sample-wise confidence score for pretrained
joint-embedding models. By leveraging the assumed Gaussian geometry achieved by joint-embedding
training, LevyScore reduces confidence estimation to a simple function of the embedding norm. This
provides substantial advantages over traditional density estimators: it is training-free, computationally
efficient, and does not require access to downstream data. Our experiments across ImageNet-100 and
CIFAR-10 demonstrate that LevyScore effectively separates correctly classified from misclassified
samples, tracks improvements in embedding quality during training, and systematically enhances
accuracy—coverage tradeoffs across both linear and non-parametric probes. These findings highlight
LevyScore as a lightweight yet robust criterion for filtering uncertain predictions.

Limitations and Future Work. While promising, LevyScore has so far been evaluated primarily
on vision encoders trained with SImCLR and at relatively modest scales. Future work will extend
our study to larger-scale foundation models, multimodal encoders, and out-of-distribution detection
settings. Another important direction is exploring how LevyScore can be integrated into training or
inference pipelines to actively improve calibration and reliability in high-stakes applications.
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A Additional Experiments
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Figure 4: Effect of neighborhood size k in k-NN probes on validation embeddings using a SimCLR-
pretrained backbone. Left: ImageNet-100; Right: CIFAR-10. Smaller k£ values (e.g., 10) yield
higher peak accuracy in both datasets. Top-1 accuracy is shown versus the rejection threshold for
embedding norm (|| z||2) and log-density (log p(z)). Across both datasets, LevyScore filtering remains
effective for different k, illustrating the robustness of norm-based confidence metrics.
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Figure 5: Top-1 accuracy on ImageNet-100 validation set (SimCLR backbone) as a function of
LevyScore threshold across training epochs. As training progresses, embeddings improve and higher
thresholds lead to more reliable predictions, yielding better accuracy—coverage tradeoffs. Extremely
large thresholds eventually reject too many samples, reducing coverage and lowering accuracy.
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Figure 6: ROC curves of LevyScore on ImageNet-100 (Top: taining, Bottom: validation set) across
multiple self-supervised learning methods. Stronger SSL methods (e.g., BYOL, VICReg) yield
better separation, confirming that LevyScore tracks embedding quality across approaches. The
only exception is the non-JEA method Masked Auto-Encoder (MAE), which does not benefit from
LevyScore, likely due to its different embedding geometry.
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