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ABSTRACT

Test set contamination, wherein test data from a benchmark ends up in a newer model’s
training set, is a well-documented obstacle for fair LLM evaluation and can quickly ren-
der benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new
prompts and evaluations from human or LLM judges; however, these can introduce sig-
nificant biases, and break down when scoring hard questions. In this work, we introduce
a new benchmark for LLMs designed to be resistant to both test set contamination and
the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the
first benchmark that (1) contains frequently-updated questions from recent information
sources, (2) scores answers automatically according to objective ground-truth values,
and (3) contains a wide variety of challenging tasks, spanning math, coding, reason-
ing, language, instruction following, and data analysis. To achieve this, LiveBench
contains questions that are based on recently-released math competitions, arXiv papers,
news articles, and datasets, and it contains harder, contamination-limited versions of
tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We eval-
uate many prominent closed-source models, as well as dozens of open-source models
ranging from 0.5B to 405B in size. LiveBench is difficult, with top models achieving
below 70% accuracy. We release all questions, code, and model answers. Questions are
added and updated on a monthly basis, and we release new tasks and harder versions of
tasks over time so that LiveBench can distinguish between the capabilities of LLMs as
they improve in the future. We welcome community engagement and collaboration for
expanding the benchmark tasks and models.

1 INTRODUCTION

In recent years, as large language models (LLMs) have risen in prominence, it has become increasingly
clear that traditional machine learning benchmark frameworks are no longer sufficient to evaluate
new models. Benchmarks are typically published on the internet, and most modern LLMs include
large swaths of the internet in their training data. If the LLM has seen the questions of a benchmark
during training, its performance on that benchmark will be artificially inflated (referred to as “test set
contamination”) (Roberts et al., 2024; Dong et al., 2024; Deng et al., 2023; Golchin & Surdeanu,
2023b), hence making many LLM benchmarks unreliable. Recent evidence of test set contamination
includes the observation that LLMs’ performance on Codeforces plummet after the training cutoff
date of the LLM (Roberts et al., 2024; Jain et al., 2024), and before the cutoff date, performance is
highly correlated with the number of times the problem appears on GitHub (Roberts et al., 2024).
Similarly, a recent hand-crafted variant of the established math dataset, GSM8K, shows evidence that
several models have overfit to this benchmark (Zhang et al., 2024; Cobbe et al., 2021).

To lessen dataset contamination, benchmarks using LLM or human prompting and judging have
become increasingly popular (Jain et al., 2024; Chiang et al., 2024; Zheng et al., 2024; Li et al.,
2024). However, using these techniques comes with significant downsides. While LLM judges have
multiple advantages, such as their speed and ability to evaluate open-ended questions, they are prone
to making mistakes and can have several biases (Li et al., 2024). Furthermore, LLMs often favor their
own answers over other LLMs, and LLMs favor more verbose answers (Li et al., 2024; Dubois et al.,
2024; Li et al., 2023b). Additionally, using humans to provide evaluations of LLMs can inject biases
such as formatting of the output and the tone of the writing (Chiang et al., 2024). Using humans to
generate questions also presents limitations. Human participants might not ask diverse questions, may
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Figure 1: Left: results on LiveBench for all models, showing 95% bootstrap confidence intervals.
Right: a radar plot for select models across LiveBench’s six categories demonstrating the that
ordering of top models varies between each category.

favor certain topics that do not probe a model’s general capabilities, or may construct their prompts
poorly (Zheng et al., 2024).

In this work, we introduce a framework for benchmarking LLMs designed to minimize both test
set contamination and the pitfalls of LLM judging and human crowdsourcing. We use this frame-
work to create LiveBench, the first benchmark with these three desiderata: (1) LiveBench
contains frequently-updated questions based on recent information sources; (2) LiveBench is
scored automatically according to the objective ground truth without the use of an LLM judge; and
(3) LiveBench questions are drawn from a diverse set of six categories. We ensure (2) by only
including questions that have an objectively correct answer. LiveBench questions are difficult: no
current model achieves higher than 70% accuracy. Questions are added and updated on a monthly
basis, and we release new tasks and harder versions of tasks over time so that LiveBench can
distinguish among the capabilities of LLMs as they improve in the future.

Overview of tasks. LiveBench currently consists of 18 tasks across 6 categories: math, coding,
reasoning, language, instruction following, and data analysis. Each task falls into one of two types:
(1) tasks which use an information source for their questions, e.g., data analysis questions based
on recent Kaggle datasets, or fixing typos in recent arXiv abstracts; and (2) tasks which are more
challenging or diverse versions of existing benchmark tasks, e.g., from Big-Bench Hard (Suzgun
et al., 2023) or IFEval (Zhou et al., 2023a). The categories and tasks included in LiveBench are:

• Math: modified questions based on high school math competitions from the past 11 months, as
well as harder versions of AMPS questions (Hendrycks et al., 2021)

• Coding: code generation questions from recent Leetcode and AtCoder questions (via Live-
CodeBench (Jain et al., 2024)), as well as a novel code completion task

• Reasoning: a harder version of Web of Lies from Big-Bench Hard (Suzgun et al., 2023), and
novel Zebra Puzzles (e.g., (Jeremy, 2009)) and spatial reasoning questions

• Language Comprehension: Connections word puzzles, a typo-fixing task, and a movie synopsis
unscrambling task for recent movies on IMDb and Wikipedia

• Instruction Following: four tasks to paraphrase, simplify, summarize, or generate stories about
recent new articles from The Guardian (Guardian Media Group, 1821), subject to one or more
instructions such as word limits or incorporating specific elements in the response
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• Data Analysis: three tasks using recent datasets from Kaggle and Socrata, specifically, table
reformatting (among JSON, JSONL, Markdown, CSV, TSV, and HTML), predicting which
columns can be used to join two tables, and predicting the correct column type annotation

We evaluate dozens of models, including proprietary models as well as open-source models with sizes
ranging from 0.5B to 8x22B. We release all questions, code, and model answers, and we welcome
community engagement and collaboration. Our codebase is available at https://anonymous.
4open.science/r/LiveBench.

2 LIVEBENCH DESCRIPTION

In this section, we introduce LiveBench. It currently has six categories: math, coding, reasoning,
data analysis, instruction following, and language comprehension. Categories are diverse with two to
four tasks per problem. Each task either includes recent information sources (such as very recent
news articles, movie synopses, or datasets) or is a more challenging, more diverse version of an
existing benchmark task.

Each task is designed to have 40-100 questions which span a range of difficulty, from easy to very
challenging, while loosely aiming for an overall 30-70% success rate on the top models for each
task. Prompts are tailored for each category and task but typically include the following: zero-shot
chain of thought (Kojima et al., 2022; Wei et al., 2022), asking the model to make its best guess if
it does not know the answer, and asking the LLM to output its final answer in a way that is easy to
parse, such as in XML tags or in **double asterisks**. We also acknowledge that parsing answers
in this way requires some degree of instruction following, and we address this in Appendix A.4. In
the following sections, we give a summary of each task from each category. See Appendix A.3 for
additional details.

2.1 MATH CATEGORY

Evaluating the mathematical abilities of LLMs has been one of the cornerstones of recent research in
LLMs, featuring prominently in many releases and reports (Reid et al., 2024; OpenAI, 2023; Bubeck
et al., 2023). Our benchmark includes math questions of three types: questions modified from recent
high school math competitions, fill-in-the-blank questions from recent olympiad competitions, and
questions from our new, harder version of the AMPS dataset (Hendrycks et al., 2021).

Our first two math tasks, Competitions and Olympiad, are based on expert human-designed
math problems that offer a wide variety in terms of problem type and solution technique. In
Competitions, we include questions from AMC12 2023, SMC 2023, and AIME 2024 modifying
the prose and the answer order; in Olympiad, we include questions based on USAMO 2024 and
IMO 2024, in which the task is to rearrange masked out equations from the solution into the correct
order. These questions test problem solving with algebra, combinatorics, geometry, logic, number
theory, probability, and other secondary school math topics (Faires & Wells, 2022).

Finally, we release synthetically generated math questions in the AMPS_Hard task. This task is
inspired by the math question generation used to create the MATH and AMPS datasets (Hendrycks
et al., 2021). We generate harder questions by drawing random primitives, using a larger and more
challenging distribution than AMPS across 10 of the hardest tasks within AMPS.

2.2 CODING CATEGORY

The coding ability of LLMs is one of the most widely studied and sought-after skills for LLMs (Mnih
et al., 2015; Jain et al., 2024; Li et al., 2023a). We include two coding tasks in LiveBench: a
modified version of the code generation task from LiveCodeBench (LCB) (Jain et al., 2024), and a
novel code completion task combining LCB problems with partial solutions collected from GitHub.

The LCB Generation assesses a model’s ability to parse a competition coding question statement
and write a correct answer. We include 78 questions from LiveCodeBench (Jain et al., 2024) which
has several tasks to assess the coding capabilities of large language models.
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The Completion task specifically focuses on the ability of models to complete a partially correct
solution—assessing whether a model can parse the question, identify the function of the existing
code, and determine how to complete it. We use LeetCode easy, medium, and hard problems from
LiveCodeBench’s (Jain et al., 2024) April 2024 release, combined with matching solutions from
https://github.com/kamyu104/LeetCode-Solutions, omitting the last 15-70% of
each solution and asking the LLM to complete the solution.

2.3 REASONING CATEGORY

The reasoning ability of large language models is another highly benchmarked and analyzed skill of
LLMs (Wei et al., 2022; Suzgun et al., 2023; Yao et al., 2024). In LiveBench, we include three
reasoning tasks: our harder version of a task from Big-Bench Hard (Suzgun et al., 2023), Zebra
puzzles, and spatial reasoning questions.

Web of Lies v2 is an advancement of the similarly named task included in Big-Bench (bench
authors, 2023) and Big-Bench Hard (Suzgun et al., 2023). The task is to evaluate the truth value of a
random Boolean function expressed as a natural-language word problem. We create new, significantly
harder questions by including additional deductive components and several types of red herrings.
Next, we include spatial reasoning questions. This set of 50 handwritten questions tests a model’s
ability to make deductions about intersections and orientations of common 2D and 3D shapes.

Finally, we include Zebra Puzzles, a well-known reasoning task (Jeremy, 2009) that tests the
ability of the model to follow a set of statements that set up constraints, and then logically deduce the
requested information. We build on an existing repository for procedural generation of Zebra puzzles
(quint t, 2023). Below, we provide an example question from the Zebra Puzzles task.

An example question from the Zebra Puzzle task.

There are 3 people standing in a line numbered 1 through 3 in a left to right order.
Each person has a set of attributes: Food, Nationality, Hobby.
The attributes have the following possible values:
- Food: nectarine, garlic, cucumber
- Nationality: chinese, japanese, thai
- Hobby: magic-tricks, filmmaking, puzzles
and exactly one person in the line has a given value for an attribute.
Given the following premises about the line of people:
- the person that likes garlic is on the far left
- the person who is thai is somewhere to the right of the person who likes magic-tricks
- the person who is chinese is somewhere between the person that likes cucumber and the person
who likes puzzles
Answer the following question: What is the hobby of the person who is thai? Return your
answer as a single word, in the following format: **X**, where X is the answer.

2.4 DATA ANALYSIS CATEGORY

LiveBench includes three practical tasks in which the LLM assists in data analysis or data science:
column type annotation, table join prediction, and table reformatting. Each question makes use of a
recent dataset from Kaggle or Socrata.

The first task is to predict the type of a column of a data table. To create a question for the column
type annotation task (CTA), we randomly sample a table and randomly sample a column from that
table. We use the actual name of that column as the ground truth and then retrieve some samples
from that column. We provide the name of all the columns from that table and ask the LLM to select
the true column name from those options.

Data analysts often also require a table to be reformatted from one type to another, e.g., from
some flavor of JSON to CSV or from XML to TSV. We emulate that task in TableReformat by
providing a table in one format and asking the LLM to reformat it into the target format.

Finally, another common application of LLMs in data analysis is performing table joins (Goldbloom,
2024; Liu et al., 2024b; Sheetrit et al., 2024). In the TableJoin task, the LLM is presented with
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two tables with partially overlapping sets of columns. The LLM is tasked with creating a valid join
mapping from the first to the second table.

2.5 INSTRUCTION FOLLOWING CATEGORY

An important ability of an LLM is its capability to follow instructions. To this end, we include
instruction-following questions in our benchmark, inspired by IFEval (Zhou et al., 2023a), which is
an instruction-following evaluation for LLMs containing verifiable instructions such as “write more
than 300 words” or “Finish your response with this exact phrase: {end_phrase}.” While IFEval used
a list of 25 verifiable instructions, we use a subset of 16 that excludes instructions that do not reflect
real-world use-cases. See Appendix Table 3. Furthermore, in contrast to IFEval, which presents only
the task and instructions with a simple prompt like “write a travel blog about Japan”, we provide
the models with an article from The Guardian (Guardian Media Group, 1821), asking the models to
adhere to multiple randomly-drawn instructions while asking the model to complete one of four tasks
related to the article: Paraphrase, Simplify, Story Generation, and Summarize. We
score tasks purely by their adherence to the instructions.

2.6 LANGUAGE COMPREHENSION CATEGORY

Finally, we include multiple language comprehension tasks. These tasks assess the language model’s
ability to reason about language itself by, (1) completing word puzzles, (2) fixing misspellings while
leaving other stylistic changes in place, and (3) reordering scrambled plots of unknown movies.

First, we include the Connections category. Connections is a word puzzle popularized by the
New York Times (although similar ideas have existed previously). In this task, we present questions
of varying levels of difficulty with 8, 12, and 16-word varieties. The objective of the game is to sort
the words into sets of four words, such that each set has a ‘connection’ between them.

Next, we include the Typos task. The idea behind this task is inspired by the common use case for
LLMs in which a user asks the LLM to identify typos and misspellings in some written text but to
leave other aspects of the text unchanged. We create the questions for this task from recent ArXiv
abstracts, which we ensure originally have no typos, by programmatically injecting common human
typos into the text. Below is an example question from the Typos task.

An example question from the Typos task.

Please output this exact text, with no changes at all except for fixing the misspellings. Please
leave all other stylistic decisions like commas and US vs British spellings as in the original text.

We inctroduce a Bayesian estimation approach forther passive localization of an accoustic
source in shallow water using a single mobile receiver. The proposed probablistic focalization
method estimates the timne-varying source location inther presense of measurement-origin
uncertainty. In particular, probabilistic data assocation is performed to match tiome-differences-
of-arival (TDOA) observations extracted from the acoustic signal to TDOA predicitons provded
by the statistical modle. The performence of our approach is evaluated useing rela acoustic data
recorded by a single mobile reciever.

Finally, we include the Plot Unscrambling task, which takes the plot synopses of recently-
released movies from IMDb or Wikipedia. We randomly shuffle the synopses sentences and then
ask the LLM to simply reorder the sentences into the original plot. We find that this task is very
challenging for LLMs, as it measures their abilities to reason through plausible sequences of events.

2.7 LIVEBENCH UPDATES AND MAINTENANCE PLAN

Maintaining a contamination-limited benchmark requires that we update the set of questions over
time. We have so far released two updates, and we plan to continue to release updates to add new
questions and remove outdated questions. In each update, we replace 1/6 of the questions on average,
so that the benchmark is fully refreshed roughly every 6 months. We may speed up the turnover
rate of questions in the future, based on interest in LiveBench. Each month, we do not release
the new questions until one month later, so that the public leaderboard always has 1/6 questions that
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Table 1: LiveBench results across the 15 top-performing models. We display in this table the
highest-performing models on LiveBench, outputting the results on each main category, as well as
each model’s overall performance. See Table 2 for the results on all 49 models.

Model LiveBench Coding Data Instruction Language Math Reasoning
Score Analysis Following

o1-preview-2024-09-12 64.7 50.8 64.0 74.6 68.7 62.9 67.4
claude-3-5-sonnet-20241022 58.5 67.1 52.8 69.3 53.8 51.3 56.7
claude-3-5-sonnet-20240620 58.2 60.8 56.7 68.0 53.2 53.3 57.2
o1-mini-2024-09-12 56.7 48.1 54.1 65.4 40.9 59.2 72.3
gemini-exp-1114 56.0 52.4 57.5 77.1 38.7 54.9 55.7
gemini-exp-1121 56.0 50.4 57.0 80.1 40.0 62.8 45.8
step-2-16k-202411 55.1 46.9 54.9 79.9 44.5 48.9 55.5
gpt-4o-2024-08-06 53.8 51.4 52.9 68.6 47.6 48.2 53.9
gemini-1.5-pro-002 53.4 48.8 52.3 70.8 43.3 57.4 47.9
gpt-4o-2024-05-13 52.6 49.4 52.4 68.2 50.0 46.0 49.6
gemini-1.5-pro-exp-0827 52.4 40.9 50.8 69.3 46.1 56.1 50.9
meta-llama-3.1-405b-instruct-turbo 51.1 43.8 53.5 72.8 43.2 40.5 52.8
gpt-4o-2024-11-20 50.6 46.1 47.2 64.9 47.4 42.5 55.7
dracarys2-72b-instruct 50.1 56.6 49.1 65.2 33.5 50.6 45.8
chatgpt-4o-latest-0903 50.1 47.4 48.7 66.4 45.3 42.1 50.5

are private. We choose tasks to update based primarily on two factors: (1) the oldest tasks, and (2)
the currently easiest tasks. In this way, the questions in LiveBench will stay new and continue to
challenge the most capable LLMs. See additional details, as well as a longer discussion on different
forms of contamination, in Appendix A.6.

Method for sustainability One downside in a frequently-updating benchmark is that it requires
consistent work and computational resources each month. Therefore, we have a plan in place to
ensure its continued success. We maintain the best (or most popular) 40-50 models on the leaderboard
so as to avoid an ever-growing list of models to evaluate each month. For example, we maintain
about two versions of each model family on the leaderboard (to show the improvement from the
most recent version) but no more. This ensures that we have a tractable set of at most 50 models
to evaluate on 200 questions each month, which is easily within the computational budgets of the
authors’ institutions. Additionally, we have already had community contributions which further
reduces the computational burden of the authors.

The only other recurring work is to update the questions themselves each month. While we are
excited and able to add novel tasks each month, many of the tasks are synthetic and therefore very
fast and simple to create a new set of questions based on fresh data (e.g., updating the typos task
using brand new arXiv papers). Additionally, we have also seen community engagement here as well.

Completed monthly updates In the first monthly update, we added 50 questions in a new spatial
reasoning task, 28 additional coding generation questions, and 12 additional coding completion
questions. The total size of the benchmark after this update became 1000. In the second monthly
update, we fully updated the math olympiad questions, and we partially updated the math AMPS_Hard
and math_comp questions, for 132 replaced questions, to maintain 1000 questions.

3 EXPERIMENTS

In this section, first we describe our experimental setup and present full results for 49 LLMs on all 18
tasks of LiveBench. Next, we give an empirical comparison of LiveBench to existing prominent
LLM benchmarks, and finally, we present ablation studies.

Experimental setup. Our experiments include 49 LLMs total, with a mix of top proprietary
models, large open-source models, and small open-source models. In particular, for proprietary
models, we include OpenAI models such as o1-preview, chatgpt-4o, and gpt-4o (Brown
et al., 2020; OpenAI, 2023), Anthropic models such as claude-3-5-sonnet-20240620,
Google models such as gemini-1.5-pro-002 (Reid et al., 2024), and Mistral models such
mistral-large-2407 (Jiang et al., 2023).
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For open-source models, we include models such as Llama-3.1-405b-instruct,
Llama-3.1-70b-instruct (Dubey et al., 2024), deepseek-v2.5, (Liu et al., 2024a),
qwen2.5-72b-instruct (Team, 2024b; Yang et al., 2024), command-r-plus-08-2024
(Cohere, 2024; Cohere For AI, 2024), gemma-2-27b-it (Team, 2024a; Team et al., 2024),
mixtral-8x22b-instruct-v0.1 (Jiang et al., 2023), and phi-3.5-moe-instruct (Ab-
din et al., 2024). See Table 4 for a full list of citations.

For all models and tasks, we perform single-turn evaluation with temperature 0, unless otherwise
noted in the model card. All models run with their respective templates from our updated version of
FastChat (Zheng et al., 2024). We run all open-source models with bfloat16. When running new
models, we take care to set up its hyperparameters and chat template as in the model’s example code,
and we also double check the outputs to make sure that the inference, as well as our automated parsing
functions, are working correctly and fairly. See more details in Appendix A.4 and Appendix A.5.
For each question, a model receives a score from 0 to 1. For each model, we compute the score

on each task as the average of all questions, we compute the score on each of the six categories as
the average of all their tasks, and we compute the final LiveBench score as the average of all six
categories. In Appendix B, we give additional documentation including average input/output tokens
and cost to run LiveBench for each API model.

3.1 DISCUSSION OF RESULTS

We compare all 49 models on LiveBench according to the experimental setup described above;
see Table 1 and Table 2. We find that o1-preview-2024-09-12 performs the best over-
all, 6% better than all other models. o1-preview-2024-09-12 substantially outperforms
all other models in the data analysis, language, and math categories. The next-best model is
claude-3-5-sonnet-20240620, which far outperforms all other models in the coding cate-
gory (although o1-mini outperforms claude-3.5 in code generation, claude-3.5 has the
edge in code completion). o1-mini-2024-09-12 is third overall and is significantly better than
all other models in the reasoning category.

The best-performing open-source models are llama-3.1-405b-instruct and
qwen2.5-72b-instruct, which virtually tie with each other and outperform gpt-4-turbo.
The best-performing small open-source model is phi-3.5-moe-instruct (see Table 2): with
only 6.6B active parameters, it outperforms gpt-3.5 and is on par with mixtral-8x22b.

3.2 CORRELATION ANALYSES

Now we present analyses involving correlation among different categories and tasks. First, we
compute the Pearson correlation coefficient among all pairs of categories and tasks in LiveBench
(see Figure 2). We find that unsurprisingly, math, coding, and reasoning all correlate with one another.
Interestingly, language correlates fairly well with data analysis, likely due to both categories including
tasks that require the LLM to output a large part of the prompt that is modified in a specific way (e.g.,
by fixing typos or changing the table format). Surprisingly, instruction following correlates relatively
weakly with all other categories. Among tasks, we see that math comp correlates the highest with the
average LiveBench performance, suggesting that this task is the greatest indicator of overall model
performance. This is likely due to these being high-quality, diverse mathematical reasoning questions
(which we modified to reduce contamination). The task that is least correlated with the average
LiveBench performance is zebra puzzle; it is so challenging that all but the highest-performing
models do not perform significantly better than random chance, causing a greater amount of noise in
the ranking for the less-capable models.

Next, in order to see the strengths and weaknesses of each model, we create a scatterplot of each
model’s overall LiveBench performance vs. performance on a single category or task (Figure 3).
By plotting a best fit line and computing the residuals for each model, we can compute which models
are outliers in specific categories – that is, models that are disproportionately stronger in a particular
category relative to the best fit line. We see that the o1 and phi series of models are outliers in terms
of reasoning (Figure 3, left), while some of the Llama, gemini, and command-r models are
outliers in terms of instruction following. We present additional details in Appendix A.1, including a
table of each model’s relative best and worst tasks (computed as the highest and lowest residuals).
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Figure 3: Reasoning and instruction following performance vs. average performance. We plot
the performance of all 49 models’ reasoning (left) and instruction following (right) performance
compared to overall LiveBench performance, computing a best fit line and annotating outliers.

3.3 COMPARISON TO OTHER LLM BENCHMARKS

Next, we compare LiveBench to two prominent benchmarks, ChatBot Arena (Chiang et al., 2024)
and Arena-Hard (Li et al., 2024). In Figure 4, we show a bar plot comparison among models that
are common to both benchmarks, and in Figure 6, we compare the performance of these models to a
best-fit line. We also compute the correlation coefficient of model scores among the benchmarks:
LiveBench has a 0.91 and 0.88 correlation with ChatBot Arena and Arena-Hard, respectively.

Based on the plots and the correlation coefficients, we see that there are generally similar trends to
LiveBench, yet some models are noticeably stronger on one benchmark vs. the other. For exam-
ple, gpt-4-0125-preview and gpt-4-turbo-2024-04-09 perform substantially better on
Arena-Hard compared to LiveBench, likely due to the known bias from using gpt-4 itself as the
LLM judge (Li et al., 2024). We hypothesize that the strong performance of some models such as the
gemini-1.5 models on ChatBot Arena compared to LiveBench may be due to having an output
style that is preferred by humans. These observations emphasize the benefit of using ground-truth
judging, which is immune to biases based on the style of the output.

Comparison between Ground-Truth and LLM-Judging As an additional comparison between
LiveBench and LLM judge based benchmarks, we give a preliminary study in the Appendix on
the efficacy of LLM judging for hard math and reasoning questions. Specifically, we run an initial
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Figure 4: Comparison of LiveBench to other LLM benchmarks. We compare LiveBench to
ChatBot Arena (left) and Arena-Hard (right). We see that while there are generally similar trends,
some models are noticeably stronger on one benchmark vs. the other. For example, both GPT-4
models are substantially better on Arena-Hard.

experiment regarding the question, ‘if an LLM struggles to answer a hard math or reasoning question,
then will the LLM also struggle to determine whether or not a given answer to that question is
correct?’ Our experiments give evidence that the answer is yes, for zebra puzzles and AMC/AIME
questions, but the results are not definitive. See Appendix A.2.

3.4 ANALYSIS OF MONTHLY UPDATES

As described in Section 2.7, we have completed two monthly updates for LiveBench so far. The
rank correlation between the original and first update, and the first and second update, are both
> 0.997, showing that the model rankings have stayed consistent. On the other hand, between the
original and the most-recent set of questions, the median and mean average scores (among models
included in all iterations of the leaderboard) have both dropped by about 1.2%, showing that the
benchmark is becoming harder over time, as newly released models become more capable.

4 RELATED WORK

We describe the most prominent LLM benchmarks and the ones that are most related to our work. For
a comprehensive survey, see (Chang et al., 2024). The Huggingface Open LLM Leaderboard (Gao
et al., 2021; Beeching et al., 2023) is a widely-used benchmark suite that consists of static datasets
such as Big Bench Hard (Suzgun et al., 2023) and MMLU-Pro (Wang et al., 2024). While this has
been incredibly useful in tracking the performance of LLMs, its static nature leaves it prone to test
set contamination by models.
LLMs-as-a-judge. AlpacaEval (Li et al., 2023b; Dubois et al., 2023; 2024), MT-Bench (Chiang
et al., 2024), and Arena-Hard (Li et al., 2024) are benchmarks that employ LLM judges on a fixed
set of questions. Using an LLM-as-a-judge is fast, relatively cheap, and has the flexibility of being
able to evaluate open-ended questions, instruction-following questions, and chatbots. However, LLM
judging also has downsides. First, LLMs have biases towards their own answers (Li et al., 2024). In
addition, GPT-4 judges have a noticeable difference in terms of variance and favorability of other
models compared to Claude judges. Additionally, LLMs make errors. As one example, question 2 in
Arena-Hard asks a model to write a C++ program, yet GPT-4 incorrectly judges gpt-4-0314’s
solution as incorrect (Li et al., 2024).
Humans-as-a-judge. ChatBot Arena (Chiang et al., 2024; Zheng et al., 2024) leverages human
prompting and feedback. Users ask questions and receive outputs of two randomly selected models
and pick which output they prefer. This preference feedback is aggregated into an Elo score for each
model. While human evaluation is great for capturing the preferences of a crowd, using a human-
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as-a-judge has disadvantages. First, human-judging can be labor-intensive, especially for certain
tasks included in LiveBench such as complex math, coding, or long-context reasoning problems.
Whenever humans are involved in annotation (of which judging is a sub-case), design choices or
factors can cause high error rates (Lease, 2011), and even in well-designed human-annotation setups,
high variability from human to human leads to unpredictable outcomes (Rashkin et al., 2023).
Other benchmarks. LiveCodeBench (Jain et al., 2024) also regularly releases new questions and
makes use of ground-truth judging. However, it is limited to only coding tasks. The extensive
Omni-MATH benchmark Gao & Liu encompasses numerous math competitions, although using
LLM-as-a-judge grading potentially contributes to a degree of contamination or bias in some of the
benchmark’s scores; our completely objective correctness-based scoring avoids this concern. The
SEAL Benchmark (Scale AI, 2024), uses private questions with expert human scorers, however, the
benchmark currently only contains the following categories: Math, Coding, Instruction Following,
and Spanish. In Srivastava et al. (2024), the authors modify the original MATH dataset (Hendrycks
et al., 2021) by changing numbers in the problem setup. They find declines in model performance for
some LLMs, including frontier ones. However, while such work can evaluate LLMs on data that is
not in the pretraining set, the data still ends up being highly similar to the kind of data likely seen in
the pretraining set. In addition, the hardness of the benchmark remains the same over time.

Finally, we discuss benchmarks that were the basis for tasks in LiveBench. In IFEval (Zhou
et al., 2023b), the authors assess how good LLMs are at following instructions by adding one or
more constraints in the instruction as to what the output should be. They limit the set of constraints
to those in which it can provably be verified that the generation followed the constraints. In Big-
Bench (Srivastava et al., 2022), a large number of tasks are aggregated into a single benchmark with
the aim of being as comprehensive as possible. Big-Bench-Hard (Suzgun et al., 2022) investigates a
subset of Big-Bench tasks that were particularly challenging for contemporaneous models as well as
more complex prompting strategies for solving them.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this work, we introduced LiveBench, an LLM benchmark designed to mitigate both test set
contamination and the pitfalls of LLM judging and human crowdsourcing. LiveBench is the first
benchmark that (1) contains frequently updated questions from new information sources, in which
questions become harder over time, (2) scores answers automatically according to objective ground-
truth values, without the use of LLM judges, and (3) contains a wide variety of challenging tasks,
spanning math, coding, reasoning, language, instruction following, and data analysis. LiveBench
contains questions that are based on recently released math competitions, arXiv papers, and datasets,
and it contains harder, contamination-limited versions of previously released benchmarks. We
released all questions, code, and model answers, and questions are added and updated on a monthly
basis. We welcome community collaboration for expanding the benchmark tasks and models.

Limitations and Future Work. While we attempted to make LiveBench as diverse as possible,
there are still additions from which it would benefit. For example, we hope to add non-English
language tasks in the future. Furthermore, while ground truth scoring is beneficial in many ways, it
still cannot be used for certain use cases, such as ‘write a travel guide to Hawaii’ in which it is hard to
define a ground truth. Finally, while we attempted to make all tasks and categories fair for all models,
there are still biases due to certain LLM families favoring certain prompt types. We plan to update the
prompts (at the start and end of each question) in the future, as new prompt strategies are developed.
Similarly, we plan to continue updating the LiveBench leaderboard as new LLMs are released.

6 REPRODUCIBILITY STATEMENT

Our work is fully reproducible: we open-source the leaderboard, all questions, all code to run API
and open-source models, all model outputs for 49 models, and all code to score the models. In other
words, every part of the project is available publicly: https://anonymous.4open.science/
r/LiveBench. The only exception is that as the benchmark becomes more popular, we withhold
releasing the new set of questions each month, so that there are always some questions that are private.
These questions are then made public one month later. The readme in the above link gives instructions
to download all parts of the project and to score new models.
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7 ETHICS STATEMENT

Our paper introduces a new benchmark for LLMs, which contains frequently-updated questions from
new information sources, scores answers according to objective ground-truth values, and contains a
wide variety of tasks. We do not see any inherently negative broader societal impacts of our work.

Our hope is that our work will have a positive impact for both practitioners and researchers: by
providing a new benchmark with frequently-updated questions, our work has the potential to both
accelerate future research and enable more comprehensive and rigorous evaluations of existing and
future models. Furthermore, we hope that the general framework of our benchmark – frequently-
updated questions with new information sources – will catch on, mitigating the negative effects of
contamination in future LLM evaluation and making LLM benchmarks more ‘future-proof’.
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Figure 5: Results on LiveBench for all models, showing 95% bootstrap confidence intervals.
This is the full version of Figure 1 (left).

A ADDITIONAL DETAILS ABOUT LIVEBENCH EXPERIMENTS

In this section, we detail further descriptions about the LiveBench benchmark itself and our
experiments.

We include further depictions of the comparisons of LiveBench to ChatBot Arena and Arena-Hard
in Figure 6. We display the full results table for LiveBench in Table 2. We display the full bar plot
for LiveBench in Figure 5.

We display the list of all verifiable instructions in Table 3.

We display a table with the citations for all models in Table 4.

A.1 DETAILS FROM CORRELATION ANALYSES

Here, we provide more details from Section 3.2. First, we present the Pearson correlation coefficient
and std. error for each category (Table 5) and task (Table 6) compared to the overall average
LiveBench score, computed using data from all 49 models. This is a supplement to Figure 2. In
Table 7, we compute the relative best and worst task for each model, specifically, the tasks with the
highest and lowest residuals of the best fit line vs. overall LiveBench performance. In other words,
we compute the task that each model most outperforms and underperforms on, relative to a theoretical
model with the same overall performance but has balanced performance across each task.
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Table 2: LiveBench results across 49 models. We output the results for each model on each main
category, as well as each model’s overall LiveBench score.

Model LiveBench Coding Data Instruction Language Math Reasoning
Score Analysis Following

o1-preview-2024-09-12 66.0 50.8 64.0 77.7 72.7 62.9 68.0
claude-3-5-sonnet-20240620 59.8 60.8 56.7 72.3 56.9 53.3 58.7
o1-mini-2024-09-12 59.1 48.1 54.1 70.2 45.7 59.2 77.3
gpt-4o-2024-08-06 56.0 51.4 52.9 74.6 54.4 48.2 54.7
gemini-1.5-pro-002 54.9 48.8 52.3 77.7 47.4 57.4 46.0
chatgpt-4o-latest-0903 54.2 49.7 54.2 71.7 51.7 46.7 51.3
gpt-4o-2024-05-13 54.0 49.4 52.4 72.2 53.9 46.0 50.0
gemini-1.5-pro-exp-0827 53.8 40.9 50.8 75.9 49.3 56.1 49.3
llama-3.1-405b-instruct 53.2 43.8 53.5 78.5 49.8 40.5 53.3
qwen2.5-72b-instruct 52.9 56.6 48.8 75.5 38.1 52.4 46.0
gpt-4-turbo-2024-04-09 51.8 49.0 51.3 71.4 45.3 42.7 51.3
gemini-1.5-pro-exp-0801 51.6 41.2 50.2 78.8 47.0 43.5 48.7
claude-3-opus-20240229 50.0 38.6 54.3 70.9 51.7 43.4 41.3
gemini-1.5-flash-002 49.6 41.9 44.2 84.5 29.5 47.2 50.0
mistral-large-2407 48.5 47.1 46.6 71.8 39.8 43.7 42.0
dracarys2-llama-3.1-70b-instruct 47.8 36.3 46.1 76.6 41.5 38.9 47.3
gpt-4-0125-preview 47.3 41.8 54.1 63.9 43.6 33.4 47.3
deepseek-v2.5 47.3 45.5 46.8 69.1 35.2 47.9 39.3
dracarys-llama-3.1-70b-instruct 47.0 35.2 48.0 77.4 41.8 35.6 44.0
meta-llama-3.1-70b-instruct-turbo 46.6 32.7 50.3 79.1 42.4 34.4 40.7
gemini-1.5-flash-exp-0827 45.6 40.6 47.9 78.1 31.0 28.9 47.3
deepseek-coder-v2 45.4 41.5 38.3 67.2 33.0 47.1 45.3
gpt-4-0613 45.1 37.3 44.0 71.8 49.6 33.5 34.7
gemini-1.5-pro-api-0514 43.8 32.3 52.8 67.2 38.3 36.9 35.3
gpt-4o-mini-2024-07-18 43.3 43.2 44.5 65.7 35.3 35.6 35.3
dracarys-72b-instruct 40.5 38.9 26.2 68.1 31.2 38.4 40.0
gemma-2-27b-it 39.6 35.9 43.6 67.4 32.4 26.2 32.0
gemini-1.5-flash-api-0514 38.9 34.3 44.0 63.0 30.7 32.3 29.3
claude-3-sonnet-20240229 37.5 26.4 44.6 65.0 38.1 22.2 28.7
gemini-1.5-flash-8b-exp-0827 36.1 28.7 35.3 69.0 22.5 27.8 33.3
claude-3-haiku-20240307 35.4 24.5 41.5 64.0 30.1 22.9 29.3
mixtral-8x22b-instruct-v0.1 34.5 32.0 31.7 63.2 26.5 24.5 29.3
phi-3.5-moe-instruct 34.1 21.7 40.5 59.7 17.1 26.8 38.7
command-r-plus-08-2024 33.3 19.5 35.9 63.6 31.0 19.3 30.7
gpt-3.5-turbo-0125 33.2 27.7 41.2 60.5 24.2 18.9 26.7
command-r-plus 30.8 19.5 24.6 71.5 23.9 16.8 28.7
gemma-2-9b-it 30.6 22.5 35.1 61.6 27.6 19.5 17.3
mistral-small-2402 30.6 21.2 31.9 63.9 22.1 18.5 26.0
command-r-08-2024 29.7 17.9 31.3 65.7 17.0 19.5 26.7
phi-3-medium-4k-instruct 29.3 20.5 31.6 53.3 13.9 19.6 36.7
phi-3-small-128k-instruct 29.1 24.6 27.3 53.5 15.5 23.6 30.0
phi-3-medium-128k-instruct 29.0 21.1 32.1 56.2 12.8 17.6 34.0
open-mistral-nemo 28.4 28.7 33.4 51.8 14.1 16.9 25.3
phi-3.5-mini-instruct 27.4 15.9 30.4 58.3 9.7 16.8 33.3
phi-3-small-8k-instruct 26.9 20.3 29.6 55.8 15.1 17.2 23.3
meta-llama-3.1-8b-instruct-turbo 26.7 19.7 32.2 56.5 20.0 16.6 15.3
command-r 25.9 15.3 31.7 57.2 14.6 11.5 25.3
phi-3-mini-128k-instruct 25.1 15.0 34.0 51.4 7.8 14.6 28.0
phi-3-mini-4k-instruct 24.5 15.0 29.5 51.3 8.1 15.0 28.0

A.2 DETAILS FROM ABLATION STUDIES

In this section, we ive the details for the ablation study described in Section 3.3. For hard math
and reasoning questions, if an LLM struggles to answer the question, then will it also struggle to
determine whether or not a given answer to that question is correct? There are some classes of
problems for which the answer is surely ‘no’: any problems that are hard to solve by frontier LLMs,
yet easy to check whether an answer is correct or not, such as NP-Hard problems. Another exception
is that if an LLM judge is given access to the ground truth, then it will (of course) be able to judge
whether or not answers are correct. The tasks in our original experiments (AMC, AIME, and Zebra
puzzles) may not fit the class of exceptions. By way of a preliminary study of the above suggestion
(that LLM judges cannot judge Zebra puzzles and AMC/AIME questions that they cannot solve), we
run an experimental test. We use a judge prompt based on the MT-Bench judge prompt, which is
duplicated below.
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Table 3: The list of 25 instructions used in (Zhou et al., 2023a), and the 16 that are both ‘real-world’
and automatically verifiable, which we used in LiveBench. Descriptions are from (Zhou et al.,
2023a).

Instruction Group Instruction Description In IFEval In
LiveBench

Keywords Include Key-
words

Include keywords {keyword1}, {keyword2} in your response
✓ ✓

Keywords Keyword Fre-
quency

In your response, the word word should appear {N} times.
✓

Keywords Forbidden Words Do not include keywords {forbidden words} in the response.
✓ ✓

Keywords Letter Frequency In your response, the letter {letter} should appear {N} times.
✓

Language Response Lan-
guage

Your ENTIRE response should be in {language}, no other language is allowed.
✓

Length Constraints Number Para-
graphs

Your response should contain {N} paragraphs. You separate paragraphs using the markdown
divider: * * * ✓ ✓

Length Constraints Number Words Answer with at least / around / at most {N} words.
✓ ✓

Length Constraints Number Sen-
tences

Answer with at least / around / at most {N} sentences.
✓ ✓

Length Constraints Number Para-
graphs + First
Word in i-th
Paragraph

There should be {N} paragraphs. Paragraphs and only paragraphs are separated with each
other by two line breaks. The {i}-th paragraph must start with word {first_word}. ✓ ✓

Detectable Content Postscript At the end of your response, please explicitly add a postscript starting with {postscript marker}
✓ ✓

Detectable Content Number Place-
holder

The response must contain at least {N} placeholders represented by square brackets, such as
[address]. ✓

Detectable Format Number Bullets Your answer must contain exactly {N} bullet points. Use the markdown bullet points such as:
* This is a point. ✓ ✓

Detectable Format Title Your answer must contain a title, wrapped in double angular brackets, such as <<poem of
joy>>. ✓ ✓

Detectable Format Choose From Answer with one of the following options: {options}
✓

Detectable Format Minimum Num-
ber Highlighted
Section

Highlight at least {N} sections in your answer with markdown, i.e. *highlighted section*
✓

Detectable Format Multiple Sections Your response must have {N} sections. Mark the beginning of each section with {sec-
tion_splitter} X. ✓ ✓

Detectable Format JSON Format Entire output should be wrapped in JSON format.
✓ ✓

Combination Repeat Prompt First, repeat the request without change, then give your answer (do not say anything before
repeating the request; the request you need to repeat does not include this sentence) ✓ ✓

Combination Two Responses Give two different responses. Responses and only responses should be separated by 6 asterisk
symbols: ******. ✓ ✓

Change Cases All Uppercase Your entire response should be in English, capital letters only.
✓

Change Cases All Lowercase Your entire response should be in English, and in all lowercase letters. No capital letters are
allowed. ✓

Change Cases Frequency of All-
capital Words

In your response, words with all capital letters should appear at least / around / at most {N}
times. ✓

Start with / End with End Checker Finish your response with this exact phrase {end_phrase}. No other words should follow this
phrase. ✓ ✓

Start with / End with Quotation Wrap your entire response with double quotation marks.
✓ ✓

Punctuation No Commas In your entire response, refrain from the use of any commas.
✓

[Instruction] Please act as an impartial judge and evaluate the quality of the response
provided by an AI assistant to the user question displayed below. Your evaluation
should consider correctness alone. Identify and correct any mistakes. Be as objective
as possible. After providing your explanation, you must rate the response as either 1
(correct) or 0 (incorrect) by strictly following this format: “[[rating]]”, for example:
“Rating: [[1]]” [Question] question [The Start of Assistant’s Answer] answer [The End
of Assistant’s Answer]

We use gpt-4-turbo-2024-04-09 as the judge. We judge the model outputs of both
gpt-4-turbo-2024-04-09 and claude-3-opus-20240229.

See Table 8 and Table 9. We find that the error rate for all tasks is far above a reasonable value,
indicating that LLM judges are not appropriate for challenging math and logic tasks. However, we
note that there may be other experimental setups which could change the result, such as using a more
detailed prompt that is tailored to the task of judging hard math and reasoning problems.
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Figure 6: The performance of models on different benchmarks, compared to a best-fit line. We
compare the different in relative performance of LLMs on LiveBench vs. ChatBot Arena, and
LiveBench vs. Arena-Hard. We see that while many models are near the best-fit lines, a few are
notable outliers, providing evidence that their output style may be noticeably better or worse than
their ability to answer questions.

A.3 DETAILED DESCRIPTION OF LIVEBENCH CATEGORIES

In this section, we describe the categories and tasks of LiveBench and the grading methods in
more detail.

A.3.1 MATH CATEGORY

Evaluating the mathematical abilities of LLMs has been one of the cornerstones of recent research
in LLMs, featuring prominently in many releases and reports (Reid et al., 2024; OpenAI, 2023;
Brown et al., 2020; Bubeck et al., 2023). Our benchmark includes math questions of three types:
modified questions from recent high school math competitions, fill-in-the-blank questions from recent
proof-based USAMO and IMO problems, and questions from our new, harder version of the AMPS
dataset (Hendrycks et al., 2021).

Math competitions. Our first math category is based on expert human-designed math problems
that offer a wider variety in terms of problem type and solution technique. We focus on high school
math competition questions from English-speaking countries: AMC12, AIME, SMC, and USAMO,
and also IMO, the international competition.

First, we include questions based on the American Mathematics Competition 12 (AMC12), both
AMC12A and AMC12B 2023, released on November 8, 2023 and November 14, 2023, respectively,
and the Senior Mathematical Challenge (SMC) 2023, released on October 3, 2023. All three are
challenging multiple-choice competitions for high school students in the USA (AMC) and UK (SMC)
that build in difficulty, meant as the first step for high school students to qualify for their country’s
team for the International Mathematical Olympiad (IMO).

The questions test mathematical problem solving with arithmetic, algebra, counting, geometry,
number theory, probability, and other secondary school math topics (Faires & Wells, 2022). We
modify the questions by updating the prose of the questions that do not affect the answer, by
rearranging the order of the multiple choice answers when applicable, and by asking for a different
output format than the widely-used source website (https://artofproblemsolving.com/).
An example of a problem of this type from the AMC12A 2023 problem set is below:
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Table 4: List of models evaluated (across all LiveBench versions) and their respective citations.

Model Name Citation
chatgpt-4o-latest-0903 (Hurst et al., 2024)
claude-3-5-haiku-20241022 https://www.anthropic.com/claude/haiku
claude-3-5-sonnet-20240620 https://www.anthropic.com/news/claude-3-5-sonnet
claude-3-5-sonnet-20241022 https://www.anthropic.com/news/claude-3-5-sonnet
claude-3-haiku-20240307 (Anthropic, 2024)
claude-3-opus-20240229 (Anthropic, 2024)
claude-3-sonnet-20240229 (Anthropic, 2024)
command-r (Cohere, 2024)
command-r-08-2024 (Cohere, 2024)
command-r-plus (Cohere, 2024)
command-r-plus-08-2024 (Cohere, 2024)
deepseek-coder-v2 (DeepSeek-AI et al., 2024)
deepseek-coder-v2-lite-instruct (DeepSeek-AI et al., 2024)
deepseek-v2-lite-chat (DeepSeek-AI et al., 2024)
deepseek-v2.5 (DeepSeek-AI et al., 2024)
dracarys-72b-instruct https://huggingface.co/abacusai/Dracarys-72B-Instruct
dracarys-llama-3.1-70b-instruct https://huggingface.co/abacusai/Dracarys-Llama-3.1-70B-Instruct
dracarys2-72b-instruct https://huggingface.co/abacusai/Dracarys2-72B-Instruct
dracarys2-llama-3.1-70b-instruct https://huggingface.co/abacusai/Dracarys2-Llama-3.1-70B-Instruct
gemini-1.5-flash-002 (Reid et al., 2024)
gemini-1.5-flash-8b-exp-0827 (Reid et al., 2024)
gemini-1.5-flash-api-0514 (Reid et al., 2024)
gemini-1.5-flash-exp-0827 (Reid et al., 2024)
gemini-1.5-pro-002 (Reid et al., 2024)
gemini-1.5-pro-api-0514 (Reid et al., 2024)
gemini-1.5-pro-exp-0801 (Reid et al., 2024)
gemini-1.5-pro-exp-0827 (Reid et al., 2024)
gemini-exp-1114 https://ai.google.dev/gemini-api/docs/models/experimental-models
gemini-exp-1121 https://ai.google.dev/gemini-api/docs/models/experimental-models
gemma-1.1-7b-it (Team, 2024a)
gemma-2-27b-it (Team et al., 2024)
gemma-2-2b (Team et al., 2024)
gemma-2-9b-it (Team et al., 2024)
gpt-3.5-turbo-0125 (Brown et al., 2020)
gpt-3.5-turbo-1106 (Brown et al., 2020)
gpt-4-0125-preview (OpenAI, 2023)
gpt-4-0613 (OpenAI, 2023)
gpt-4-1106-preview (OpenAI, 2023)
gpt-4-turbo-2024-04-09 (OpenAI, 2023)
gpt-4o-2024-05-13 (Hurst et al., 2024)
gpt-4o-2024-08-06 (Hurst et al., 2024)
gpt-4o-2024-11-20 (Hurst et al., 2024)
gpt-4o-mini-2024-07-18 (Hurst et al., 2024)
grok-2 https://x.ai/blog/grok-2
grok-2-mini https://x.ai/blog/grok-2
llama-2-7b-chat-hf (Touvron et al., 2023)
llama-3.1-nemotron-70b-instruct (Adler et al., 2024)
meta-llama-3-70b-instruct (Meta, 2024)
meta-llama-3-8b-instruct (Meta, 2024)
meta-llama-3.1-405b-instruct-turbo (Dubey et al., 2024)
meta-llama-3.1-70b-instruct-turbo (Dubey et al., 2024)
meta-llama-3.1-8b-instruct-turbo (Dubey et al., 2024)
mistral-7b-instruct-v0.2 (Jiang et al., 2023)
mistral-7b-instruct-v0.3 (Jiang et al., 2023)
mistral-large-2402 (Jiang et al., 2023)
mistral-large-2407 (Jiang et al., 2023)
mistral-small-2402 (Jiang et al., 2023)
mixtral-8x22b-instruct-v0.1 (Jiang et al., 2023)
mixtral-8x7b-instruct-v0.1 (Jiang et al., 2023)
o1-mini-2024-09-12 https://openai.com/index/openai-o1-system-card/
o1-preview-2024-09-12 https://openai.com/index/openai-o1-system-card/
open-mistral-nemo (Jiang et al., 2023)
phi-3-medium-128k-instruct (Abdin et al., 2024)
phi-3-mini-128k-instruct (Abdin et al., 2024)
phi-3-small-128k-instruct (Abdin et al., 2024)
phi-3.5-mini-instruct (Abdin et al., 2024)
phi-3.5-moe-instruct (Abdin et al., 2024)
qwen1.5-0.5b-chat (Bai et al., 2023)
qwen1.5-72b-chat (Bai et al., 2023)
qwen1.5-110b-chat (Bai et al., 2023)
qwen1.5-7b-chat (Bai et al., 2023)
qwen2-0.5b-instruct (Yang et al., 2024)
qwen2-1.5b-instruct (Yang et al., 2024)
qwen2-72b-instruct (Yang et al., 2024)
qwen2-7b-instruct (Yang et al., 2024)
qwen2.5-72b-instruct (Team, 2024b)
qwen2.5-7b-instruct-turbo (Team, 2024b)
starling-lm-7b-beta (Zhu et al., 2023)
step-2-16k-202411 https://www.stepfun.com/#step2
vicuna-7b-v1.5 (Chiang et al., 2023)
vicuna-7b-v1.5-16k (Chiang et al., 2023)
yi-6b-chat https://huggingface.co/01-ai/Yi-6B
zephyr-7b-alpha (Tunstall et al., 2023)
zephyr-7b-beta (Tunstall et al., 2023)

An example question from the Math Competitions task.
How many complex numbers satisfy the equation z5 = z, where z is the conjugate of the
complex number z? (A) 2 (B) 3 (C) 5 (D) 6 (E) 7
If you cannot determine the correct multiple-choice answer, take your best guess. Once
you have your answer, please duplicate that letter five times in a single string. For
example, if the answer is F, then write FFFFF.21
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Table 5: Pearson correlation coefficient and std. error for each category compared to the overall
average LiveBench score, computed using data from all 49 models.

Category Correlation Std Error
math 0.9552 0.0552
language 0.9361 0.0697
coding 0.9361 0.0577
data_analysis 0.9073 0.0543
reasoning 0.8934 0.0740
instruction_following 0.8330 0.0623

Table 6: Pearson correlation coefficient and std. error for each task compared to the overall average
LiveBench score, computed using data from all 49 models.

Category Correlation Std Error
math_comp 0.9215 0.0815
tablejoin 0.9093 0.0796
LCB_generation 0.9050 0.0578
connections 0.8968 0.1085
coding_completion 0.8915 0.0936
web_of_lies_v2 0.8914 0.1453
plot_unscrambling 0.8808 0.0784
olympiad 0.8529 0.0979
AMPS_Hard 0.8503 0.1123
typos 0.8187 0.1339
simplify 0.8070 0.0725
summarize 0.7831 0.0885
story_generation 0.7446 0.0797
cta 0.7347 0.0595
paraphrase 0.7065 0.0763
tablereformat 0.6742 0.1238
spatial 0.6668 0.0909
zebra_puzzle 0.5236 0.1209

Ground Truth: EEEEE

Next, we include the American Invitational Mathematics Examination (AIME), both AIME I and
AIME II 2024, released on January 31, 2024 and February 7, 2024, respectively. These are prestigious
and challenging tests given to those who rank in the top 5% of the AMC. Each question’s answer is
an integer from 000 to 999. An example of a problem of this type from the AIME I 2024 problem set
is below:

An example question from the Math Competitions task.
Real numbers x and y with x, y > 1 satisfy logx(y

x) = logy(x
4y) = 10. What is the

value of xy? Please think step by step, and then display the answer at the very end of
your response. The answer is an integer consisting of exactly 3 digits (including leading
zeros), ranging from 000 to 999, inclusive. For example, the answer might be 068 or 972.
If you cannot determine the correct answer, take your best guess. Remember to have the
three digits as the last part of the response.

Ground Truth: 025

Proof-based questions. We consider the USA Math Olympiad (USAMO) 2024 and International
Math Olympiad (IMO) 2024 competitions, released on March 20, 2024 and July 22, 2024, respectively.
These contests are primarily proof-based and non-trivial to evaluate in an automated way. One
possibility is to use LLMs to evaluate the correctness of the natural language proof. However,
we then have no formal guarantees on the correctness of the evaluation. Another possibility is to
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Table 7: Relative best and worst task for each model, computed as the tasks with the highest and
lowest residuals of the best fit line vs. overall LiveBench performance, for each model.

Model Best Worst
o1-preview-2024-09-12 connections coding_completion
claude-3-5-sonnet-20240620 olympiad math_comp
o1-mini-2024-09-12 zebra_puzzle plot_unscrambling
gpt-4o-2024-08-06 spatial web_of_lies_v2
gemini-1.5-pro-002 olympiad zebra_puzzle
chatgpt-4o-latest-0903 cta summarize
gpt-4o-2024-05-13 typos tablejoin
gemini-1.5-pro-exp-0827 olympiad LCB_generation
meta-llama-3.1-405b-instruct-turbo web_of_lies_v2 olympiad
qwen2.5-72b-instruct AMPS_Hard typos
gpt-4-turbo-2024-04-09 LCB_generation paraphrase
gemini-1.5-pro-exp-0801 summarize math_comp
claude-3-opus-20240229 typos web_of_lies_v2
gemini-1.5-flash-002 summarize typos
mistral-large-2407 olympiad connections
dracarys2-llama-3.1-70b-instruct web_of_lies_v2 zebra_puzzle
gpt-4-0125-preview tablereformat olympiad
deepseek-v2.5 olympiad zebra_puzzle
dracarys-llama-3.1-70b-instruct web_of_lies_v2 coding_completion
meta-llama-3.1-70b-instruct-turbo summarize zebra_puzzle
gemini-1.5-flash-exp-0827 simplify AMPS_Hard
deepseek-coder-v2 olympiad tablereformat
gpt-4-0613 typos web_of_lies_v2
gemini-1.5-pro-api-0514 tablejoin connections
gpt-4o-mini-2024-07-18 AMPS_Hard web_of_lies_v2
dracarys-72b-instruct coding_completion tablereformat
gemma-2-27b-it tablereformat web_of_lies_v2
gemini-1.5-flash-api-0514 typos web_of_lies_v2
claude-3-sonnet-20240229 typos web_of_lies_v2
gemini-1.5-flash-8b-exp-0827 spatial zebra_puzzle
claude-3-haiku-20240307 typos web_of_lies_v2
mixtral-8x22b-instruct-v0.1 coding_completion tablereformat
phi-3.5-moe-instruct web_of_lies_v2 tablejoin
command-r-plus-08-2024 typos coding_completion
gpt-3.5-turbo-0125 typos web_of_lies_v2
command-r-plus story_generation tablereformat
gemma-2-9b-it typos spatial
mistral-small-2402 connections spatial
command-r-08-2024 paraphrase AMPS_Hard
phi-3-medium-4k-instruct web_of_lies_v2 typos
phi-3-small-128k-instruct AMPS_Hard summarize
phi-3-medium-128k-instruct web_of_lies_v2 typos
open-mistral-nemo coding_completion summarize
phi-3.5-mini-instruct web_of_lies_v2 typos
phi-3-small-8k-instruct zebra_puzzle spatial
meta-llama-3.1-8b-instruct-turbo typos zebra_puzzle
command-r zebra_puzzle AMPS_Hard
phi-3-mini-128k-instruct spatial typos
phi-3-mini-4k-instruct spatial summarize

auto-formalize the proofs into a formal language such as Lean and then run a proof checker. However,
while there have been notable recent improvements in auto-formalization, such a process still does not
have formal guarantees on the correctness of the auto-formalization – and thus that of the evaluation.
To tackle this, we formulate a novel task which can test the ability of an LLM in the context of proofs.
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Table 8: LLM judges cannot accurately evaluate challenging math and reasoning questions.
Error rate of LLM-as-a-judge scoring on challenging math (AMC, AIME, SMC) and reasoning
(Zebra puzzles) tasks. On all tasks, the error rate is surprisingly high, showing that LLMs are not
reliable judges for these tasks.

Model Judge AMC12 2024 AIME 2024 SMC 2023 Zebra Puzzles
GPT-4-Turbo GPT-4-Turbo 0.380 0.214 0.353 0.420
Claude-3-Opus GPT-4-Turbo 0.388 0.103 0.294 0.460

Table 9: Model Performance on math and reasoning tasks with both ground-truth (GT) or LLM
judging (LLM-Jdg.)

AMC12 2024 AIME 2024 SMC 2023 Zebra Puzzles
GT LLM-Jdg. GT LLM-Jdg. GT LLM-Jdg. GT LLM-Jdg.

GPT-4-Turbo 54 64.000 13.793 35.714 70.588 58.824 38 68
Claude-3-Opus 56 42.857 6.897 17.241 58.824 52.941 34 52

Specifically, for a proof, we mask out a subset of the formulae in the proof. We then present the
masked out formulae in a scrambled order to the LLM and ask it to reinsert the formulae in the
correct positions. Such a task tests the mathematical, deductive, and instruction following abilities of
the LLM. In particular, if the LLM is strong enough to generate the correct proof for a question, then
one would expect it to also solve the far easier task of completing a proof which has some missing
formulae – especially if the formulae are already given to it in a scrambled order. Note that this also
allows us to easily control the level of difficulty of the question by changing the number of formulae
that we mask.

We generate 3 hardness variants for each problem, masking out 10%, 50% and 80% of the equations
in the proof. We evaluate by computing the edit distance between the ground truth ranking order and
the model predicted ranking order. [NB : in preliminary testing we also evaluated using the accuracy
metric and the model rankings remained nearly the same]. Models perform worse on IMO compared
to USAMO, in line with expectations. We also looked at the performance as separated by question
hardness. The scores are greatly affected by question hardness going from as high as 96.8 for the
easiest questions (10% masked out, GPT-4o) to as low as 36 for the hardest (80% masked out). The
full results are in Table 10 and Table 11.

Synthetically generated math questions. Finally, we release synthetic generated math questions.
This technique is inspired from math question generation used to create the MATH and AMPS
datasets (Hendrycks et al., 2021). In particular, we randomly generate a math problem of one of
several types, such as taking the derivative or integral of a function, completing the square, or
factoring a polynomial. We generate questions by drawing random primitives, using a larger (and
therefore more challenging) distribution than AMPS. Note that, for problem types such as integration,
this simple technique of drawing a random function and taking its derivative results in a wide variety
of integration problems of varying difficulty. For example, problem solutions may involve applying
the chain rule, the product/quotient rule, trigonometric identities, or use a change of variables. In
order to extract the answer, we ask the model to use the same ‘latex boxed answer’ technique as in
the MATH dataset (Hendrycks et al., 2021). We judge the correctness of answers as in the EleutherAI
Eval Harness (Gao et al., 2021) using Sympy (Meurer et al., 2017) where we check for semantic as
well as numerical equivalence of mathematical expressions. An example of a integral problem is as
follows:

An example question from the AMPS Hard task.
Find an indefinite integral (which can vary by a constant) of the following function:
5 sec2(5x+ 1)− 8 sin(7− 8x). Please put your final answer in a boxed{}.

Ground Truth: − sin(7) sin(8x)− cos(7) cos(8x) + tan(5x+ 1)
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Table 10: IMO/USAMO results for each of 34 models across all hardness levels.

Model IMO USAMO Avg.

gpt-4o-2024-05-13 60.24 67.47 63.85
gpt-4-1106-preview 58.16 67.17 62.66
claude-3-opus-20240229 52.56 63.66 58.11
gpt-4-turbo-2024-04-09 50.96 64.80 57.88
gemini-1.5-pro-latest 52.11 59.15 55.63
gpt-4-0125-preview 43.04 60.66 51.85
Meta-Llama-3-70B-Instruct 43.24 59.55 51.40
claude-3-sonnet-20240229 44.78 52.97 48.87
command-r-plus 48.33 44.55 46.44
gpt-3.5-turbo-1106 40.37 49.65 45.01
mistral-large-2402 38.65 50.41 44.53
claude-3-haiku-20240307 41.51 47.31 44.41
gpt-3.5-turbo-0125 38.44 47.17 42.80
Qwen1.5-72B-Chat 34.35 48.47 41.41
Mixtral-8x22B-Instruct-v0.1 33.00 48.62 40.81
mistral-small-2402 34.51 44.78 39.64
Meta-Llama-3-8B-Instruct 36.05 36.59 36.32
Qwen1.5-110B-Chat 23.93 46.78 35.35
Mistral-7B-Instruct-v0.2 36.00 34.31 35.15
command-r 31.36 29.38 30.37
Phi-3-mini-128k-instruct 25.84 33.54 29.69
Mixtral-8x7B-Instruct-v0.1 26.52 32.50 29.51
Phi-3-mini-4k-instruct 26.60 30.33 28.46
Qwen1.5-7B-Chat 22.10 31.84 26.97
Starling-LM-7B-beta 14.99 28.70 21.84
zephyr-7b-alpha 25.99 16.43 21.21
vicuna-7b-v1.5-16k 23.14 16.69 19.91
Yi-6B-Chat 18.17 20.05 19.11
zephyr-7b-beta 9.57 22.57 16.07
Llama-2-7b-chat-hf 20.00 11.53 15.77
Qwen1.5-4B-Chat 11.90 16.78 14.34
vicuna-7b-v1.5 16.19 9.87 13.03
Qwen1.5-0.5B-Chat 9.27 10.61 9.94
Qwen1.5-1.8B-Chat 0.98 9.13 5.06

Table 11: IMO/USAMO results for each hardness level across 34 models.

Hardness level Avg. IMO USAMO

Easy 57.48 54.68 60.27
Medium 29.60 25.79 33.41
Hard 19.11 15.96 22.25

A.3.2 CODING CATEGORY

The coding ability of LLMs is one of the most widely studied and sought-after skills for LLMs (Mnih
et al., 2015; Jain et al., 2024; Li et al., 2023a). We include two coding tasks in LiveBench: a
modified version of the code generation task from LiveCodeBench (Jain et al., 2024), and a novel
code completion task combining LiveCodeBench problems with partial solutions collected from
GitHub sources. Examples of questions from the Coding tasks can be found here.

Code generation. In the LCB Generation task, we assess a model’s ability to parse a com-
petition coding question statement and write a correct answer. LiveCodeBench (Jain et al., 2024)
included several tasks to assess the coding capabilities of large language models. We have taken 78
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randomly selected problems from the April 2024 release of LiveCodeBench, selecting only problems
released in or after November 2023. The problems are competition programming problems from
LeetCode (Team, b) and AtCoder(Team, a), defined with a textual description and solved by writing
full programs in Python 3 code.

These problems are presented as in LiveCodeBench’s Code Generation task, with minor prompting
differences and with only one chance at generating a correct solution per question, per model. We
report pass@1, a metric which describes the proportion of questions that a given model solved
completely (a solution is considered correct if and only if it passes all public and private test cases).

Code completion. In this task, we assess the ability of the model to successfully complete a
partially provided solution to a competition coding question statement. The setup is similar to the
Code Generation task above, but a partial (correct) solution is provided in the prompt and the model
is instructed to complete it to solve the question. We use LeetCode easy, medium, and hard problems
from LiveCodeBench’s (Jain et al., 2024) April 2024 release, combined with matching solutions
from https://github.com/kamyu104/LeetCode-Solutions, omitting the last 15% of
each medium/hard solution and 30-70% of each easy solution and asking the LLM to complete the
solution. As with Code Generation, we report pass@1.

A.3.3 REASONING CATEGORY

The reasoning abilities of large language models is another highly-benchmarked and analyzed skill
of LLMs (Wei et al., 2022; Suzgun et al., 2023; Yao et al., 2024). In LiveBench, we include two
reasoning tasks: a harder version of a task from Big-Bench Hard (Suzgun et al., 2023), and Zebra
puzzles.

Web of lies v2. Web of Lies is a task included in Big-Bench (bench authors, 2023) and Big-
Bench Hard (Suzgun et al., 2023). The task is to evaluate the truth value of a random Boolean
function expressed as a natural-language word problem. In particular, the LLM must evaluate
fn(fn−1(...f1(x)...)), where each fi is either negation or identity, and x is True or False. We
represent x by the sentence: X0 {tells the truth, lies}, and we represent fi by a sentence: Xi says
Xi−1 {tells the truth, lies}. The sentences can be presented in a random order for increased difficulty.
For example, a simple n = 2 version is as follows: ‘Ka says Yoland tells the truth. Yoland lies. Does
Ka tell the truth?’ Already by October 2022, LLMs achieved near 100% on this task, and furthermore,
there are concerns that Big-Bench tasks leaked into the training data of GPT-4, despite using canary
strings (OpenAI, 2023).

For LiveBench, we create a new, significantly harder version of Web of Lies. We make the task
harder with a few additions: (1) adding different types of red herrings, (2) asking for the truth values
of three people, instead of just one person, and (3) adding a simple additional deductive component.
For (1), we maintain a list of red herring names, so that the red herrings do not affect the logic of the
answer while still potentially leading LLMs astray. For example, ‘Fred says Kayla lies,’ where Fred
is in the true ‘web of lies’, while Kayla may lead to a series of steps ending in a dead end. Overall,
the number of total red herring sentences is drawn from a uniform distribution ranging from 0 to 19.
For (3), we simply assign each name to a location and give sentences of the form ‘Devika is at the
museum. The person at the museum says the person at the ice skating rink lies.’ We find that this
makes the task significantly harder for leading LLMs, even without shuffling the sentences into a
random order.
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An example question from the Web of Lies v2 task.
In this question, assume each person either always tells the truth or always lies. Tala is
at the movie theater. The person at the restaurant says the person at the aquarium lies.
Ayaan is at the aquarium. Ryan is at the botanical garden. The person at the park says
the person at the art gallery lies. The person at the museum tells the truth. Zara is at the
museum. Jake is at the art gallery. The person at the art gallery says the person at the
theater lies. Beatriz is at the park. The person at the movie theater says the person at the
train station lies. Nadia is at the campground. The person at the campground says the
person at the art gallery tells the truth. The person at the theater lies. The person at the
amusement park says the person at the aquarium tells the truth. Grace is at the restaurant.
The person at the aquarium thinks their friend is lying. Nia is at the theater. Kehinde is
at the train station. The person at the theater thinks their friend is lying. The person at
the botanical garden says the person at the train station tells the truth. The person at the
aquarium says the person at the campground tells the truth. The person at the aquarium
saw a firetruck. The person at the train station says the person at the amusement park lies.
Mateo is at the amusement park. Does the person at the train station tell the truth? Does
the person at the amusement park tell the truth? Does the person at the aquarium tell the
truth? Think step by step, and then put your answer in **bold** as a list of three words,
yes or no (for example, **yes, no, yes**). If you don’t know, guess.

Ground Truth: no, yes, yes

Zebra puzzles. The second reasoning task we include is Zebra puzzles. Zebra puzzles, also called
Einstein’s riddles or Einstein’s puzzles, are a well-known (Jeremy, 2009) reasoning task that tests the
ability of the model to follow a set of statements that set up constraints, and then logically deduce the
requested information. The following is an example with three people and three attributes:

An example question from the Zebra Puzzle task.
There are 3 people standing in a line numbered 1 through 3 in a left to right order.
Each person has a set of attributes: Food, Nationality, Hobby.
The attributes have the following possible values:

• Food: nectarine, garlic, cucumber

• Nationality: chinese, japanese, thai

• Hobby: magic-tricks, filmmaking, puzzles
and exactly one person in the line has a given value for an attribute.
Given the following premises about the line of people:

• the person that likes garlic is on the far left

• the person who is thai is somewhere to the right of the person who likes
magic-tricks

• the person who is chinese is somewhere between the person that likes cucumber
and the person who likes puzzles

Answer the following question:
What is the hobby of the person who is thai? Return your answer as a single word, in the
following format: ***X***, where X is the answer.

Ground Truth: filmmaking

We build on an existing repository for procedural generation of Zebra puzzles (quint t, 2023); the
repository allows for randomizing the number of people, the number of attributes, and the set of
constraint statements provided. For the attribute randomization, they are drawn from a set of 10
possible categories (such as Nationality, Food, Transport, Sport) and for each of these categories there
are between 15 and 40 possible values to be taken. For the constraint statements, the implementation
allows for up to 20 ‘levels’ of constraint in ascending order of intended difficulty. For example, level
1 could include a statement such as ‘The person who likes garlic is on the left of the person who
plays badminton’ and a level 10 statement could be ‘The person that watches zombie movies likes
apples or the person that watches zombie movies likes drawing, but not both’. Higher levels also
include lower level statements in their possible set of statements to draw from, but this set narrows
progressively as the level increases from 12 to 20 by removing the possibility of having lower-level
statements (starting with removing level 1, then removing level 2, etc).
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The repository also includes a solver for the puzzles, which we use to ensure there is a (unique)
solution to all of our generated puzzles.

Our modifications to the original repository primarily target the reduction of ambiguity in the
statements (e.g. changing ‘X is to the left of Y’ to ‘X is to the immediate left of Y’). For generation,
we pick either 3 or 4 people with 50% probability, either 3 or 4 attributes with 50% probability, and
we draw the levels from the integer interval [10, 20] with uniform probability. In preliminary testing,
we found that larger puzzles proved exceedingly difficult for even the top performing LLMs.

Spatial reasoning. The final reasoning task is spatial reasoning questions. This set of 50 handwritten
questions tests a model’s ability to make deductions about intersections and orientations of common
2D and 3D shapes. Two example questions are below.

Example question one from the Spatial Reasoning task.
Suppose I have three spheres of radius 3 resting on a plane. Each sphere is tangent to
the other two spheres. If I consider a new shape whose vertices are equal to the set of
tangent points of the pairs of spheres, what is the new shape? Is it a square, tetrahedron,
triangle, circle, line segment, or rhombus? Think step by step, and then put your answer
in **bold** as a single phrase (for example, **circle**). If you don’t know, guess.

Ground Truth: triangle

Example question two from the Spatial Reasoning task.
Suppose I have a regular heptagon, and I can make four straight cuts. Each cut cannot
pass through any of the vertices of the heptagon. Also, exactly two of the cuts must be
parallel. What is the maximum number of resulting pieces? Think step by step, and then
put your answer in **bold** as a single integer (for example, **0**). If you don’t know,
guess.

Ground Truth: 10

A.3.4 DATA ANALYSIS

LiveBench includes three practical tasks in which the LLM assists in data analysis or data science:
column type annotation, table join prediction, and table reformatting. Each question makes use of a
recent dataset from Kaggle or Socrata.

Owing to the limited output context lengths of the current generation of LLMs and the comparatively
high per-token costs of generating responses, we upper bound the size of our tables with respect to
cell length, column count and row count. Even with these limitations, we find that our tasks remain
sufficiently challenging even for the current state-of-the-art models.

Example questions from the Data Analysis category can be lengthy, so examples can be viewed here.

Column type annotation. Consider a table A with t columns and r rows. We denote each column
C ∈ A as a function which maps row indices to strings; i.e., for 0 ≤ i < t, we have Ci : N → Σ∗,
where i is the column index. Let L ⊆ Σ∗ denote a label set; these are our column types to be
annotated. Standard CTA assumes a fixed cardinality for this label set, indexed by a variable we call
j. Given the above definitions, we define single-label CTA ⊂ A× L as a relation between tables
and labels:

∀C, ∃lj | (Ci, lj) ∈ CTA (1)
We seek a generative method M : Σ∗ → Σ∗ that comes closest to satisfying the following properties:

M(σ, L) ∈ L,∀C ∈ A,M(σ, L) ∈ CTA (2)

For further details on the task, please refer to Feuer et al. (2023). Implementation details. For each
benchmark instance, we retrieve a random A from our available pool of recent tables. We randomly
and uniformly sample C from A, use the actual column name of A as our CTA ground-truth L, and
retrieve σ1 · · ·σ5 column samples from C, with replacement, providing them as context for the LLM.
Metrics. We report Accuracy @ 1 over all instances, accepting only case-insensitive exact string
matches as correct answers.
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Table reformatting. Given a table A rendered according to a plaintext-readable and valid schema
for storing tabular information as, we instruct the LLM to output the same table with the contents
unchanged but the schema modified to a distinct plaintext-readable valid schema bs. Implementation
details. We use the popular library Pandas to perform all of our conversions to and from text strings.
We allow the following formats for both input and output: "JSON", "JSONL", "Markdown", "CSV",
"TSV", "HTML". As tabular conversion from JSON to Pandas is not standardized, we accept several
variations. At inference time, we ingest the LLM response table directly into Pandas. Metrics. We
report Accuracy @ 1 over all instances. An instance is accepted only if it passes all tests (we compare
column count, row count, and exact match on row contents for each instance).

Join-column prediction. Given two tables A and B, with columns a1, . . . and b1, . . . respectively,
the join-column prediction task is to suggest a pair (ak, bl) of columns such that the equality condition
ak = bl can be used to join the the tables in a way that matches with the provided ground-truth
mapping M : A → B. The mapping is usually partial injective: not every column in B is mapped
from A, not every column in A is mapped to B. For further details, please refer to Yan & He (2020).
Implementation details. We randomly sample columns with replacement from our entire collection
of tables, generating a fixed column pool C. We retain half the rows of A to provide as context to
the LLM. The remaining rows are used to generate a new table B. For each instance, we randomly
sample columns from both the target table and the column pool and join them to B. We anonymize
the column names in B, then pass both A and B to the LLM and ask it to return a valid join mapping
M. Metrics. We report the F1 score over columns, with TPs scored as exact matches between ground
truth and the LLM output, FPs scored as extraneous mappings, FNs scored as missing mappings, and
incorrect mappings counting as FP + FN.

A.3.5 INSTRUCTION FOLLOWING

An important ability of an LLM is its capability to follow instructions. To this end, we include
instruction following questions in our benchmark, inspired by IFEval (Zhou et al., 2023a).

Generating live prompts and instruction. IFEval, or instruction-following evaluation for LLMs,
contains verifiable instructions such as “write more than 300 words” or “Finish your response with
this exact phrase: {end_phrase}.” These instructions are then appended to prompts like “write a short
blog about the a visit in Japan”. We use this modular nature between the prompt and instruction to
construct live prompts.

For our live source, we considered news articles from The Guardian; we are able to obtain 200 articles
using their API1. Using the first n sentences article text as the source text, we consider four different
tasks using the text: paraphrase, summarize, simplify, and story generation. The exact prompts can
be seen in Table 12. For the instructions, we use the code provided by Zhou et al. (2023a), making a
few modifications such as increasing the max number of keywords from two to five. Additionally,
we compose different instructions together by sampling from a uniform distribution from 2 to 5.
However, since the instructions can be conflicting, we deconflict the instructions. This results in
approximate normal distribution of the number of instructions per example with the majority of the
containing two or three instructions. A full list of the instructions can be found in Appendix Table 3.
To construct, the full prompt, containing the news article sentences, the prompt, and the instructions,
we use the following meta prompt: “The following are the beginning sentences of a news article from
the Guardian.\n——-\n{guardian article}\n——-\n{subtask prompt} {instructions}”.

Scoring. To evaluate the model’s performance on instruction following, we use a scoring method
that considers two key factors: whether all instructions were correctly followed for a given prompt,
i.e. Prompt-level accuracy, and what fraction of the individual instructions were properly handled,
i.e. Instruction-level accuracy. The first component of the score checks if the model successfully
followed every instruction in the prompt and assigns 1 or 0 if it missed any of the instructions. The
second component looks at each individual instruction and checks whether it was properly followed
or not. The final score is the average of these two components, scaled to lie between 0 and 1. A score
of 1 represents perfect adherence to all instructions, while lower scores indicate varying degrees of
failure in following the given instructions accurately.

1https://open-platform.theguardian.com/
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Table 12: The prompt for each subtask used in each of the four instruction following tasks.

Subtask Subtask Prompt

Paraphrase Please paraphrase based on the sentences provided.

Summarize Please summarize based on the sentences provided.

Simplify Please explain in simpler terms what this text means.

Story Generation Please generate a story based on the sentences provided.

Example questions from the Instruction Following category can be lengthy, so examples can be
viewed here.

A.3.6 LANGUAGE COMPREHENSION

Finally, we include multiple language comprehension tasks. These tasks assess the language model’s
ability to reason about language itself by, (1) completing word puzzles, (2) fixing misspellings while
leaving other stylistic changes in place, and (3) reordering scrambled plots of unknown movies.

Connections. First we include the ‘Connections’ category2. Connections is a word puzzle category
introduced by the New York Times (although similar ideas have existed previously). Sixteen words
are provided in a random order; the objective of the game is to sort these into four sets of four
words, such that each set has a ‘connection’ between them. Such connections could include the
words belonging to a related category, e.g., ‘kiwi, grape, pear, peach’ (types of fruits); the words
being anagrams, the words being homophones, or being words that finish a certain context, e.g.,
‘ant, drill, island, opal’ being words that come after the word ‘fire’ to make a phrase. Due to the
variety of possible connection types that can exist, the wider knowledge required to understand
some connections, as well as some words potentially being ‘red herrings’ for connections, this task
is challenging for LLMs – prior work (Todd et al., 2024) has comprehensively tested the task on
the GPT family of models, as well as on sentence embedding models derived from, e.g., BERT
(Devlin et al., 2018) and RoBERTa (Liu et al., 2019). The authors found that GPT-4 has an overall
completion rate below 40% on the puzzles (when allowed multiple tries to get it correct), concluding
that ‘large language models in the GPT family are able to solve these puzzles with moderate reliability,
indicating that the task is possible but remains a formidable challenge.’ In our work, we assess the
single-turn performance and test performance on a much larger set of models.

The original task provided for a number of ‘retry’ attempts in the event of an incorrect submission for
a category. To fit into the framework of our benchmark we take the model’s answer from a single turn;
to ameliorate the increased difficulty of this setting, we use fewer words/groups for some questions.
The split we use is 15 questions of eight words, 15 questions of twelve words and 20 questions of
sixteen words. An example prompt is as follows:

An example question from the Connections task.
You are given 8 words/phrases below. Find two groups of four items that share something
in common. Here are a few examples of groups: bass, flounder, salmon, trout (all four
are fish); ant, drill, island, opal (all four are two-word phrases that start with ’fire’); are,
why, bee, queue (all four are homophones of letters); sea, sister, sin, wonder (all four
are members of a septet). Categories will be more specific than e.g., ’5-letter-words’,
’names’, or ’verbs’. There is exactly one solution. Think step-by-step, and then give your
answer in **bold** as a list of the 8 items separated by commas, ordered by group (for
example, **bass, founder, salmon, trout, ant, drill, island, opal**). If you don’t know
the answer, make your best guess. The items are: row, drift, curl, tide, current, press, fly,
wave.

Ground Truth: current, drift, tide, wave, curl, fly, press, row

The score for this task is the fraction of groups that the model outputs correctly.

2See https://www.nytimes.com/games/connections.
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Typo corrections. Next, we include details about the Typos task. The idea behind this task is
inspired by the common use-case for LLMs where a user will ask the system to identify typos and
misspellings in some written text. The challenge for the systems is to fix just the typos or misspellings,
but to leave other aspects of the text unchanged. It is common for the LLM to impose its own writing
style onto that of the input text, such as switching from British to US spellings or adding the serial
comma, which may not be desirable.

To create the questions for this task, we take text from recent ArXiv abstracts. These abstracts may
themselves start with misspellings and grammatical errors. Therefore, our first step is to manually
pass over the abstracts and fix typos and grammar issues. Next, we assemble a list of common
misspellings as found online. This is done so as to replicate common misspellings performed by
humans, even though we synthetically generate the questions. Finally, for each question, we sample a
probability p ∼ U(0.5, 0.7) of flipping correctly spelled words to misspelled words. We then use that
probability to replace every correctly spelled word with a common misspelling with that probability
p. This allows there to be variability in the difficulty of the problem included in the benchmark. In
our first release, we include 50 questions. Finally, to score this problem, we merely ask whether the
ground truth abstract is contained in the output provided by the LLM.

An example question from the Typos task.
Please output this exact text, with no changes at all except for fixing the misspellings.
Please leave all other stylistic decisions like commas and US vs British spellings as in
the original text.
We introducehten consept of a k-token signed graph adn studdy some of its combinatorial
and algebraical properties. We prove that twpo switching isomorphic signed graphs ahve
switching isomorphic token graphs. Moreover, we sohw tyhat the Laplacian spectum of a
balanced signed graph is contained in the Laplacian spectra of its k-token signed graph.
Besides, we introduce and studdyther unbalance levle of a signed graph, which is a new
parameter tyhat measures how far a signed graph is frome beng balanced. Moreover,
we study the relation bewteen the frustration index anbdther unballance level of signed
graphs adn their token signed graphs.

Ground Truth: We introduce the concept of a k-token signed graph and study some
of its combinatorial and algebraic properties. We prove that two switching isomorphic
signed graphs have switching isomorphic token graphs. Moreover, we show that the
Laplacian spectrum of a balanced signed graph is contained in the Laplacian spectra
of its k-token signed graph. Besides, we introduce and study the unbalance level of a
signed graph, which is a new parameter that measures how far a signed graph is from
being balanced. Moreover, we study the relation between the frustration index and the
unbalance level of signed graphs and their token signed graphs.

Plot unscrambling. Finally, we include a movie synopsis unscrambling task. We obtain movie plot
synopses from IMDb or Wikipedia for feature-length films released after January 1st 2024. These
synopses are then split into their constituent sentences and are randomly shuffled. The lengths of the
synopses vary from as few as 7 sentences to as many as 66 sentences; at the upper end, this is a very
challenging task. The LLM is provided the shuffled sentences with the prompt: ‘The following plot
summary of a movie has had the sentences randomly reordered. Rewrite the plot summary with the
sentences correctly ordered. Begin the plot summary with <PLOT_SUMMARY>.’.

Scoring the task involves two decision points: 1) how to deal with transcription errors - those in which
the model modifies the lines when producing its output 2) given the ground truth ordering of sentences
and the LLM’s ordering, choosing an appropriate scoring metric. For 1), one option is to permit
only strict matching – that is, the LLM must transcribe perfectly. However, although the strongest
models do perform well on this (we find they achieve over 95% transcription accuracy), we find that
LLMs often correct grammatical errors or spelling mistakes in the source data when transcribing.
As we are primarily interested in testing the models’ capabilities for causal language reasoning in
this task, rather than precise transcription accuracy, we instead apply a fuzzy-match using difflib
(Team, c) to determine the closest match using a version of the Ratcliff/Obershelp algorithm (Ratcliff
& Metzener, 1988). For 2), we calculate the score as 1− d

n_sentences_gt , where n_sentences_gt is the
number of sentences in the ground truth synopsis, and d is the Levenshtein distance (Levenshtein,
1966) of the model’s sentence ordering to the ground truth synopsis ordering. Thus if the model’s
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Table 13: Summary for tasks in LiveBench.

Category Task Num. Data Source

data_analysis cta 50 Kaggle and Socrata datasets
data_analysis tablejoin 50 Kaggle and Socrata datasets
data_analysis tablereformat 50 Kaggle and Socrata datasets

instruction_following summarize 50 The Guardian articles
instruction_following paraphrase 50 The Guardian articles
instruction_following story_generation 50 The Guardian articles
instruction_following simplify 50 The Guardian articles

language typos 50 ArXiv abstracts
language connections 50 NYT daily puzzles
language plot_unscrambling 40 IMDb plot synopses

reasoning web_of_lies_v2 50 N/A (synthetic)
reasoning zebra_puzzle 50 N/A (synthetic)
reasoning spatial 50 N/A (manually created)

math olympiad 36 International Olympiad 2024
math AMPS_Hard 100 N/A (synthetic)
math math_comp 96 AMC 2023 and AIME 2024

coding coding_completion 50 LiveCodeBench
coding LCB_generation 78 LiveCodeBench and Leetcode

sentence ordering perfectly matches the ground truth, the distance d would be 0, and the score would
be 1 for that sample.

One might think that it is plausible that synopsis unscrambling cannot always be solved with the
information provided. However, note that even if the set of sentences do not create a distinct causal
ordering, the task is essentially asking the LLM to maximize the probability that a given arrangement
of sentences is a real movie. In addition to causal reasoning, the LLM can use subtle cues to reason
about what ordering creates the most compelling plot. Furthermore, even if there does exist an upper
bound on the score that can be achieved that is strictly below 100%, it can still be a useful metric
for distinguishing models’ relative strengths. An analogous metric is that of next-token perplexity
in language modelling; although it is likely that a perfect prediction of the next token is impossible
to achieve, and we do not even know what the obtainable lower bound on perplexity is, it is still a
powerful metric for determining language-modelling performance.

Example questions from the plot unscrambling task can be lengthy, so examples can be viewed in our
repo here.

In Table 13, we also present a summary table consisting of the number of questions and source data
for each task in LiveBench.

A.4 GRADING METHODOLOGY

LiveBench makes use of automatic regex-based grading methods in order to avoid the biases and other
downsides of LLM judging, as detailed in Section 1. On the other hand, automated grading methods
have two main pitfalls, which we take care to circumvent. The first is that an instruction-following
element is added to the task. For example, a reasoning task with a complex answer instruction format
tests instruction-following as well as reasoning, rather than pure reasoning. The second is that care
must be made to allow for different answer formats so as not to favor a particular LLM (even after
giving exact, unambiguous instructions in the prompt, regarding the format of the answer).

When creating questions, we make sure that the prompt is written in such a way that the answer
format is fully specified and unambiguous. We typically give an example of the answer format in the
prompt, and specify any potential parts that are unclear.
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Additionally, our grading methodology is designed to be fully permissive, accommodating all answer
formats within reason. As a rule of thumb, if a human reading the LLM’s answer would be able to
comprehend the answer (and assuming it is correct), then the answer should be marked correct. For
example, in our math category, models can respond with answers in either latex ‘boxed{}’ or ‘fbox{}
’ environments. For multiple choice questions, we ask for the letter answer, but we accept either the
letter or the raw answer. The reason for our less-strict judging is because some models may have
been instruction-tuned to a particular format, giving them an advantage or disadvantage. We achieved
this by using flexible regex patterns that capture different notation styles or response structures. This
approach allows us to evaluate models based on their task-specific skills, rather than their ability to
follow specific instructions.

In order to ensure a given task is not overly testing instruction following (in addition to its actual
category), and also to ensure scoring accuracy and fairness, we regularly manually inspect a random
sample of responses which were labeled incorrect for each model. We look for common answer
formats that are incorrect and not picked up by the regex-based parser. This allows us to regularly
improve our automatic scoring functions to admit as many answer formats as possible, within reason.

We continue to monitor model outputs and update scoring functions as needed to capture answers
appropriately. When adding new models or tasks to the benchmark, we re-evaluate and refine scoring
methodologies to ensure fairness and accuracy. This ongoing evaluation and maintenance process
enables us to maintain the integrity of our benchmark, providing a comprehensive assessment of
models’ strengths and weaknesses. By decoupling instruction following capabilities from task-specific
evaluations, we can accurately evaluate and compare models across various tasks and categories.

A.5 QUALITY CONTROL FOR NEW MODELS

When integrating new models into LiveBench, we conduct thorough quality control to ensure
consistent and accurate evaluation. This process guarantees that our benchmark remains reliable and
effective in assessing model capabilities.

New Model Setup We perform all setup in order to accurately run inference on the model. New
models come with a README or example code on the chat template, system message, and hyperpa-
rameters to run the model, and so we match this setup in LiveBench’s code. For API models from an
existing model family, there is typically very little additional setup. For an API model from a new
family, such as the O1 series, we add the same hyperparameters, system message, etc., as its example
code. Similarly, for open-weight models, we make sure to match the published example code. Note
that we generally prefer to use (trusted) APIs, even for open-weight models, because APIs are more
controlled and fewer things can go wrong. As an example, new models occasionally have bugs when
they are first released.

Model Output Evaluation Next, we evaluate the new model on LiveBench and compare the new
model’s scores to other models of similar average score, or models from the same family or base. We
look for tasks that scored unusually low, relative to similar models. This is not a comprehensive test,
but it helps to more quickly flag tasks that have an unexpectedly low result, to debug potential errors
in the parsing code.

Manual Verification Next, we manually inspect the incorrect answers from the flagged tasks above,
as well as a random sample of the responses across all tasks. The goal is to make sure that the wrong
answers are truly incorrect, rather than a correct answer in the wrong format, or in such a way that it
is marked incorrect by the parsing function. (Note that these checks are focused on catching false
negatives. It is extremely unlikely for a false positive to occur, but we checked for false positives in
the initial development of LiveBench, and occasionally check answers that are scored correct, for this
reason.)

Scoring Function Updates Based on our evaluation and verification, we update our scoring
functions to accommodate any unique response patterns or notation styles exhibited by the new
model. This maintains the permissiveness and fairness of our grading methodology, ensuring accurate
scoring. Note that we made a few such updates when new models came out that hit new edge cases
of our scoring functions, in the first month of LiveBench’s release, but now we have not needed to
make a scoring function update for a few months.
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Table 14: Description for whether tasks in LiveBenchcan be updated automatically.

Category Task Can be updated automatically using a script?

data_analysis cta Yes - replace with newer datasets
data_analysis tablejoin Yes - replace with newer datasets
data_analysis tablereformat Yes - replace with newer datasets

instruction_following summarize Yes - replace with newer articles and/or update synthetic generation script
instruction_following paraphrase Yes - swap out news articles and/or update synthetic generation script
instruction_following story_generation Yes - swap out news articles and/or update synthetic generation script
instruction_following simplify Yes - swap out news articles and/or update synthetic generation script

language typos Yes - replace with newer paper abstracts
language connections Yes - replace with newer (daily) puzzles
language plot_unscrambling Yes - replace with newer imdb plot summaries

reasoning web_of_lies_v2 Yes - rerun (and/or update) the synthetic generation script
reasoning zebra_puzzle Yes - rerun (and/or update) the synthetic generation script
reasoning spatial No - create new questions by hand

math olympiad Yes* - rerun (and/or update) synthetic generation script, but source can only be updated yearly
math AMPS_Hard Yes - rerun (and/or update) the synthetic generation script
math math_comp Yes* - but can only be updated yearly, or by using different contests

coding coding_completion Yes - replace with more recent LeetCode questions
coding LCB_generation Yes - replace with more recent LeetCode questions

Re-Running the Evaluation Pipeline After potentially updating scoring functions for some tasks,
we re-score all models with the new scoring functions. This ensures consistent and accurate results.

A.6 QUESTION UPDATE POLICY

To ensure the continued relevance and effectiveness of LiveBench, we have implemented a thorough
question update policy. That said, we still maintain a degree of flexibility in updating questions, as
well as updating the LiveBench policies as a whole, in order to be able to adapt to new developments
and trends in the field (such as the release of models that employ search at inference time, or the
popularity of a new type of LLM capability). In this section, we give more details on the update
policy laid out in Section 2.7.

Regular Updates We update questions and tasks on a monthly basis, incorporating new and
challenging prompts that reflect the evolving landscape of large language models.

In each update, we replace 1/6 of the questions on average, so that the benchmark is fully refreshed
roughly every 6 months. We may speed up the turnover rate of questions in the future, based on interest
in LiveBench. Each month, we do not release the new questions until one month later, so that the
public leaderboard always has 1/6 questions that are private and completely contamination-free.

We choose tasks to update based primarily on two factors: (1) the oldest tasks, and (2) the currently
easiest tasks. In this way, the questions in LiveBench will stay new and continue to challenge the
most capable LLMs. We also update tasks if there is any suspected contamination or other reason
for updating a task. Nearly all tasks can be updated simply by running a script. See Table 14 for a
breakdown of each task. Although most tasks can be auotmatically updated with a script, we always
modify the generation script when creating new questions, in order to make sure that the distribution
of questions is different and harder over time.

Evaluation Re-Runs After updating questions and tasks, we re-run the evaluation pipeline on all
models, ensuring consistent and accurate results. By implementing this comprehensive question
update policy, we guarantee that LiveBench remains a vibrant, dynamic, and relevant benchmark for
evaluating large language models.

Version Control We maintain version control over all updates, ensuring transparency and repro-
ducibility. This allows researchers to track changes and compare results across different versions of
LiveBench.

Community Engagement We encourage community engagement and collaboration in expanding
and improving LiveBench. Researchers and developers can contribute new tasks, provide feedback
on existing ones, and participate in shaping the benchmark’s evolution.
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A.7 CONTAMINATION IN LIVEBENCH

We point out two different definitions of contamination: (1) test set contamination, and (2) task
contamination – or train test distribution similarity.

The first definition is the one that we use in Section 1: when the test data (the questions and answers
from the benchmark) are present in the training data itself. This is the definition that is commonly
used in the literature, often called ‘data contamination’, ‘data leakage’, ‘test set contamination’, or
even simply ‘contamination’ (Oren et al., 2023; Singh et al., 2024; Kalal et al., 2024; Golchin &
Surdeanu, 2023a).

The second definition is related to the question: how well do LLMs generalize today? A low level
of generalization is, e.g., training on AMC questions, and generalizing the same questions where
the order of the answer choices, and other prose in the questions, are changed, while a high level
of generalization is, e.g., training on AMC 12A 2023 and testing on AMC 12A 2024. The latter
example, despite LLMs already exhibiting some degree of this type of high generalization, is still
‘fair game’ with respect to pretraining and fine-tuning: many LLMs are trained on competitive math
problem tasks and then evaluated on new, unseen test problems from the same distribution.

Despite it being accepted practice, we attempt to guard against excessive uses of (2): we do not
publicly release any of the code used to generate LiveBench questions, we always modify the
generating code when updating the LiveBench questions (making the questions harder), and we do
not publicly release the new questions for one month.

We also acknowledge that LiveBench does not fully satisfy (1): while nearly all questions are from
June 2024 or more recent, there are some coding questions from November 2023, and the AMC
questions have only undergone a low level of modification from their November 2023 version.
Therefore, a limited fraction of LiveBench is likely contaminated on all recent LLMs.

B ADDITIONAL DOCUMENTATION

In this section, we give additional documentation for our benchmark. For the full details, see
https://anonymous.4open.science/r/LiveBench/README.md.

B.1 AUTHOR RESPONSIBILITY AND LICENSE

We, the authors, bear all responsibility in case of violation of rights. The license of our repository is
the Apache License 2.0.

B.2 MAINTENANCE PLAN

The benchmark is available on HuggingFace at [repo redacted for anonymity].

We actively maintain and update the benchmark, already having added multiple updates, and we
continue to welcome contributions from the community.

B.3 CODE OF CONDUCT

Our Code of Conduct is from the Contributor Covenant, version 2.0. See
https://www.contributor-covenant.org/version/2/0/code_of_conduct.
html.

B.4 DATASHEET

We include a datasheet (Gebru et al., 2021) for LiveBench in https://anonymous.4open.
science/r/LiveBench/.
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Table 15: Statistics for tasks in LiveBench. This table gives the number of questions
for each task, as well as the mean and std. dev number of output tokens per question for
gpt-4-turbo-2024-04-09.

Input Tokens Output Tokens

Category Task Num. Mean Std. Dev. Mean Std. Dev.

data_analysis cta 50 879.52 1294.81 2.42 1.36
data_analysis tablejoin 50 3111.28 1186.58 58.06 35.03
data_analysis tablereformat 50 1395.54 814.92 475.64 333.57

instruction_following summarize 50 1818.92 462.22 218.46 110.38
instruction_following paraphrase 50 1805.62 501.30 267.98 101.98
instruction_following story_generation 50 1794.30 474.77 405.24 156.49
instruction_following simplify 50 1835.42 486.83 226.00 114.61

language typos 50 1291.72 402.04 207.24 74.25
language connections 50 884.54 48.94 422.06 541.96
language plot_unscrambling 40 3545.68 1333.37 613.70 166.17

reasoning web_of_lies_v2 50 1670.64 337.40 490.82 98.68
reasoning zebra_puzzle 50 1407.20 281.02 616.94 105.61
reasoning spatial 50 450.48 134.30 337.88 88.16

math olympiad 36 4646.08 1579.41 1221.22 685.41
math AMPS_Hard 100 193.86 91.39 561.26 249.80
math math_comp 96 678.20 243.09 664.27 424.33

coding coding_completion 50 2659.30 718.70 67.08 46.00
coding LCB_generation 78 2159.88 796.14 213.44 154.34

Total 1000 1612.27 703.73 394.85 261.79

Table 16: Prices for running GPT and Claude models on LiveBench. This table gives the ap-
proximate cost for running models on LiveBench as of Oct 1, 2024. Note that we used the
gpt-4-turbo tokenizer for all computations, so all other prices are approximate.

Model Price in USD

o1-preview-2024-09-12 ≈ 47.87
o1-mini-2024-09-12 ≈ 9.57
gpt-4o-2024-05-13 ≈ 13.98
gpt-4-turbo-2024-04-09 27.97
gpt-4-1106-preview ≈ 27.97
gpt-3.5-turbo-0125 ≈ 1.40

claude-3-opus ≈ 53.80
claude-3-5-sonnet ≈ 10.76
claude-3-sonnet ≈ 10.76
claude-3-haiku ≈ 0.90

B.5 BENCHMARK STATISTICS

Here, we give statistics on the number of questions and average number of output tokens per task,
and the total cost of running LiveBench with common API models. For the number of questions
for each task, as well as the mean and std. dev number of input and output tokens per question for
gpt-4-turbo-2024-04-09, see Table 15. Across the 1000 questions in our current problem
set, the mean number of input tokens per question was 1612, and the mean number of output tokens
was 395. See Table 16 for the price to run GPT and Claude models on LiveBench, as of October 1,
2024. o1-preview-2024-09-12 is the most expensive at $47.87, while claude-3-haiku
is the cheapest, at $0.90.
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