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Abstract

The remarkable evolution of generative models
has enabled the generation of high-quality, vi-
sually attractive images, often perceptually in-
distinguishable from real photographs to human
eyes. This has spurred significant attention on
Al-generated image (AIGI) detection. Intuitively,
higher image quality should increase detection dif-
ficulty. However, our systematic study on cutting-
edge text-to-image generators reveals a counterin-
tuitive finding: AIGIs with higher quality scores,
as assessed by human preference models, tend to
be more easily detected by existing models. To
investigate this, we examine how the text prompts
for generation and image characteristics influence
both quality scores and detector accuracy. We
observe that images from short prompts tend to
achieve higher preference scores while being eas-
ier to detect. Furthermore, through clustering and
regression analyses, we verify that image charac-
teristics like saturation, contrast, and texture rich-
ness collectively impact both image quality and
detector accuracy. Finally, we demonstrate that
the performance of off-the-shelf detectors can be
enhanced across diverse generators and datasets
by selecting input patches based on the predicted
scores of our regression models, thus substantiat-
ing the broader applicability of our findings. Code
and data are available at GitHub.

1. Introduction

Recently, deep generative models have demonstrated impres-
sive capabilities in generating photorealistic images from

!School of Computer Science and Engineering, Sun Yat-sen
University, Guangzhou, China *School of Software Engineer-
ing, Xi’an Jiaotong University, Xi’an, China *Department of
Automation, Tsinghua University, Beijing, China “Peng Cheng
Laboratory, Shenzhen, China. Correspondence to: Pengxu Wei
<weipx3 @mail.sysu.edu.cn>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

SD 2.1 SDXL 1.0 SDh3 PixArt-a
0.75
> 0.80 0.65 0.60 0753
G 0.50 @
g 075 0.55 0.70 é
0.25
0.70 060 0.50 0.65<
0.00 :
-2 0 2 -2 0 2 -2 0 2 -2 0 2
ImageReward ImageReward ImageReward ImageReward
SD2.1 SDXL 1.0 SD3 PixArt-a

0.80

o
&
Accuracy

0.65 0

0.50 0.70

0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4
HPS v2 HPS v2 HPS v2 HPS v2

Figure 1: Average detector accuracy (the red curve) on gen-
erated images with different quality scores predicted by hu-
man preference models (ImageReward (Xu et al., 2023) and
HPS v2 (Wu et al., 2023a)) and the distribution of quality
scores (the blue histogram) for each generator. Counterintu-
itively, for the same generator, images with higher quality
scores tend to be easier to detect.

input text prompts (Ramesh et al., 2021; Nichol et al., 2021;
Rombach et al., 2022; Podell et al., 2024; Esser et al., 2024;
Chen et al., 2024c). As the generated images become per-
ceptually indistinguishable from real images to human eyes,
they pose substantial threats to the spread of disinformation,
particularly in the context of news dissemination related
to political and social issues, and to the security risks of
personal information.

Accordingly, Al-generated image (AIGI) detection aims to
build a binary classification model for distinguishing real
and fake (i.e., Al-generated) images. While existing meth-
ods for AIGI detection (Ojha et al., 2023; Tan et al., 2024;
Koutlis & Papadopoulos, 2024; Baraldi et al., 2024; Chen
et al., 2024a) may achieve promising results on benchmark
datasets (Zhu et al., 2023; Bammey, 2023; Baraldi et al.,
2024; Chen et al., 2024a), recent studies (Yan et al., 2025;
Cavia et al., 2024) reveal that their performance in real-
world applications is unsatisfactory due to a mismatch in
data distribution. Specifically, the AIGIs in existing datasets
are randomly generated without ranking and filtering, while
in the real world, synthetic images uploaded on the Inter-
net are more likely of high quality and aligned with human
preferences. This discrepancy in image quality between the
training data and real-world cases seems to contribute to the
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suboptimal performance of detectors in practice, and raises
an important question: Are high-quality generated images
preferred by humans more difficult for models to detect?

To study the performance of existing AIGI detectors on high-
quality generated images preferred by humans, we collect a
dataset of high-quality images generated by text-to-image
models with diverse prompts and obtain their quality scores
predicted by human preference models (Xu et al., 2023; Wu
et al., 2023a). By testing the average accuracy of six detec-
tors, we observe that generated images with higher quality
scores are consistently easier to detect across different gen-
erators and preference models, as depicted in Figure 1.

To explain this counterintuitive phenomenon, we analyze
two primary factors of the quality score: the text prompts
and image characteristics. Firstly, we observe that im-
ages generated from shorter prompts achieve higher quality
scores, likely because existing generators struggle to follow
complex prompts faithfully. More importantly, these im-
ages are also more easily spotted by AIGI detectors, which
provides valuable insights into the observed phenomenon.

To further study the common characteristics of generated im-
ages with higher quality scores and higher detector accuracy,
we conduct clustering-based analyses using quality-related
features extracted by a human preference model (Xu et al.,
2023). By examining representative image clusters, we find
that certain low-level image characteristics, such as high
saturation and rich texture, may serve as indicators of high
quality scores and high accuracy for detectors. This moti-
vates us to apply multiple linear regression to investigate
the correlation between various image characteristics (in-
dependent variables) and both quality scores and detector
accuracy (dependent variables). As expected, regression
models for different dependent variables consistently high-
light the influence of several low-level image characteristics.
To demonstrate the applicability of our findings and exam-
ine the generalization of the regression models, we apply
them to the input patch selection of off-the-shelf detectors
and evaluate their performance across different generators
and datasets. Experimental results reveal that selecting the
most detectable patch identified by the regression models
can enhance the performance of several existing detectors.

The main contributions of this paper are as follows:

* We collect a high-quality and diverse AIGI dataset to
enable the study of the relationship between image
quality and the detection difficulty.

* We reveal that high-quality AIGIs preferred by humans
tend to be easier to detect for existing AIGI detectors.

* We investigate the correlation between average detec-
tor accuracy and quality scores predicted by human
preference models, studying the influence of text con-

ditions and image features. Our findings suggest that
images generated from short text prompts or exhibit-
ing specific low-level features (e.g., high saturation
and rich texture) tend to achieve higher quality scores
while being easier to detect.

* We present a potential application of our findings in
enhancing the detector performance: identifying the
most detectable patch of an input image based on its
low-level characteristics.

2. Related Works

2.1. AI-Generated Image Detection

Methods. In the common setup of Al-generated image
(AIGI) detection, a detector is trained on fake images gen-
erated by one or more generators and paired real images.
The detector is expected to generalize to fake images from
unseen generators. Existing AIGI detection methods can
be primarily categorized as fingerprint-based or end-to-end.
Fingerprint-based models rely on certain low-level finger-
prints of the generated images, such as diffusion reconstruc-
tion error (Wang et al., 2023), up-sampling artifacts (Tan
etal., 2024), and filters proposed for steganalysis (Fridrich &
Kodovsky, 2012; Zhong et al., 2024; Chen et al., 2024b). In
contrast, end-to-end models classify an input image directly
based on its pixel values (Wang et al., 2020). To improve the
generalization of end-to-end models, some methods (Ojha
et al., 2023; Koutlis & Papadopoulos, 2024) utilize features
from large-scale pre-trained models such as CLIP (Rad-
ford et al., 2021). Others adopt contrastive learning to pro-
mote the separation of real and fake images in embedding
space (Baraldi et al., 2024; Chen et al., 2024a).

Benchmarks. Several benchmarks are constructed to evalu-
ate the generalization performance of AIGI detectors, featur-
ing the coverage of diverse generators. ForenSynths (Wang
et al., 2020) consists of images generated by 6 generative
adversarial networks (GANSs) (Goodfellow et al., 2014) and
5 other convolutional neural networks. Genlmage (Zhu
et al., 2023) is constructed based on the 1000 ImageNet
classes (Deng et al., 2009), covering GANs and diffusion
models. Specifically, for text-to-image diffusion models
like Stable Diffusion (Rombach et al., 2022), a simple
prompt template “photo of [class]” is applied to construct
the class conditioning prompts. With the prevalence of
text-to-image generators, recent works (Lu et al., 2023;
Baraldi et al., 2024; Chen et al., 2024a) collect prompts
for generation from the image captions in existing datasets,
including CC3M (Sharma et al., 2018), LAION (Schuh-
mann et al., 2022), and COCO (Lin et al., 2014). Syn-
thubuster (Bammey, 2023) obtains captions of real images
from RAISE-1k (Dang-Nguyen et al., 2015) via Midjour-
ney descriptor (Midjourney Inc., 2024) and CLIP Interroga-
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tor (pharmapsychotic, 2022). Although the text prompts in
these datasets may cover a wide range of semantics, they are
relatively short and simple, in contrast to the long and de-
scriptive captions utilized by more advanced text-to-image
models (Betker et al., 2023; Chen et al., 2024c). This poten-
tially limits the diversity of images generated from the same
generator in terms of visual features and complexity.

Detector performance on high-quality AIGIs. Unlike im-
ages in previous benchmarks that are randomly generated,
real-world AIGIs tend to be of higher quality due to more
advanced generators (e.g., Diffusion Transformers (Peebles
& Xie, 2022; Esser et al., 2024; Chen et al., 2024c¢)), the
application of prompt engineering (Liu & Chilton, 2022),
and human selection of candidate generation outputs. To
study existing detectors on real-world AIGIs, Cavia et al.
(2024) collect real and fake images from social networks,
and find that detectors trained on existing datasets gener-
alize poorly on these real-world data. Similar conclusions
are drawn by Yan et al. (2025), who construct a dataset of
high-quality AIGIs collected from online communities and
filtered by human annotators to ensure they are challeng-
ing for humans to detect. In addition, Song et al. (2024)
argue that the generalization issue of deepfake detectors can
be attributed to their reliance on easy-to-spot artifacts in
low-quality training samples. However, the poor generaliza-
tion of existing detectors on real-world AIGIs can also be
explained by other factors, such as data biases concerning
image size and compression (Grommelt et al., 2024; Ricker
et al., 2024). Therefore, whether high-quality AIGIs are
more difficult for detectors remains an open question.

2.2. Quality Assessment for AI-Generated Images

Despite the prevalence of Inception Score (IS) (Salimans
et al., 2016) and Fréchet Inception Distance (FID) (Heusel
et al., 2017) in image generation evaluation, these metrics
may not be suitable for assessing the visual quality of in-
dividual images and are not well-aligned with human pref-
erence, as suggested by (Kirstain et al., 2023; Wu et al.,
2023b). To this end, a series of human preference mod-
els (Kirstain et al., 2023; Xu et al., 2023; Wu et al., 2023b;a;
Zhang et al., 2024b) are constructed based on large-scale
AIGI datasets with human preference annotations, including
ratings of single images or rankings of image pairs in the
presence of corresponding text prompts.

3. Are Higher-Quality Images Harder to
Detect as Intuitively Believed?

Intuitively, high-quality generated images preferred by hu-
mans should contain fewer visible artifacts and therefore
may be more difficult to detect. In this section, we aim
to answer the question: Are high-quality generated images
preferred by humans harder for models to detect, as intu-

itively believed? To this end, we collect a high-quality and
diverse AIGI dataset and empirically study how detector ac-
curacy may relate to the quality scores predicted by human
preference models.

3.1. Evaluation Setup

Dataset collection. To study the relationship between im-
age quality and detector accuracy, a diverse dataset with a
sufficient number of high-quality generated images is essen-
tial. However, as reviewed in Section 2.1, existing bench-
mark datasets for AIGI detection suffer from limitations
in image quality and diversity. These shortcomings stem
from the exclusion of more advanced generators such as
Diffusion Transformers (Peebles & Xie, 2022; Esser et al.,
2024; Chen et al., 2024c), a lack of prompt engineering
considerations (Liu & Chilton, 2022), and reliance on low-
complexity text prompts. To this end, we construct a high-
quality and diverse dataset by 1) collecting real images from
four source datasets; 2) obtaining 4,000 captions spanning
a wide range of complexity from these real images; and
3) generating fake images using these captions as prompts
based on text-to-image generators, e.g., Stable Diffusion 2.1
(SD 2.1) (Rombach et al., 2022), Stable Diffusion XL 1.0
(SDXL 1.0) (Podell et al., 2024), Stable Diffusion 3 (SD
3) (Esser et al., 2024), and PixArt-a (Chen et al., 2024c).
Specifically, negative prompts are applied during generation
to improve image quality, and a set of positive modifiers are
randomly sampled and appended to prompts for increased
diversity in image characteristics. Details are presented in
Appendix A.1.

Human preference models. Since annotating large-scale
datasets with human preferences is challenging, we uti-
lize pre-trained human preference models (e.g., ImageRe-
ward (Xu et al., 2023) and Human Preference Score v2 (HPS
v2) (Wu et al., 2023a)) as a substitute for scoring. This pro-
vides a scalable and consistent approach to assessing image
quality in alignment with human judgments. These models
take a generated image and its corresponding text prompt as
inputs and predict a quality score for the image. Although
the preference models commonly take image-text alignment
into account for quality assessment, we empirically find
that this does not affect our conclusions, as discussed in
Appendix B.2.

AIGI Detectors. To ensure the reliability of our conclu-
sions, we evaluate six existing open-source AIGI detectors
that generalize well on our dataset. We use the average ac-
curacy across these detectors as an indicator of how easily a
set of generated images can be detected. Specifically, the se-
lected detectors include NPR (Tan et al., 2024), RINE (Kout-
lis & Papadopoulos, 2024), CoDE (Baraldi et al., 2024),
DRCT (Chen et al., 2024a) (including its Conv-B and CLIP
variants), and SuSy (Bernabeu-Perez et al., 2024). These
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Figure 2: Average quality scores (the red curve) for gener-
ated images of different difficulty levels and the distribution
of sample difficulty (the blue histogram). The difficulty is
measured by the number of correct predictions (#Correct)
from the 6 detectors. Notably, images that are easier to de-
tect (e.g., #Correct > 5) tend to have higher quality scores.

detectors typically pre-process input images using center
cropping without resizing. For evaluation, we directly apply
the official pre-trained weights and configurations to testing
on our dataset.

3.2. Main Observations

By investigating AIGI detectors on generated images of
different quality scores, we make an intriguing observation:
images with higher quality scores tend to be easier to detect,
as suggested by Figure 1'. Specifically, for each genera-
tor and preference model, we uniformly split the range of
quality scores into 30 segments and calculate the average de-
tector accuracy on samples corresponding to each segment.
A consistent trend emerges: for images with quality scores
above the distribution peak, average detector accuracy
generally increases as the quality score rises. Addition-
ally, while detectors may achieve relatively high accuracy
on images with low quality scores, this performance still
falls short compared to that on the highest-quality images.

To further explore the relationship between quality scores
and average detector accuracy, we plot the changes in qual-
ity scores as a function of detection difficulty in Figure 2,
which can be viewed as a transposition of Figure 1. Specifi-
cally, since the possible values of average accuracy of the 6
detectors are discrete for a single sample, we use the number
of detectors that correctly classify the sample as an index for
detection difficulty (with a lower number indicating higher
difficulty). As shown in Figure 2, images that are easier
to detect tend to have higher quality scores. In conjunc-
tion with the observations in Figure 1, there is a positive
correlation between quality scores and detector accuracy,
particularly for images of higher quality.

! Additional results on more generators and human preference
models are provided in Appendix B.1.
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Figure 3: Quality scores (the red curves in the first two rows)
and average detector accuracy (the red curves in the third
rows) for images generated from prompts with different
lengths, with the distribution of prompt lengths (the blue
histogram). Short prompts (< 20 words) and medium-length
prompts (21-40 words) generally correlate to higher quality
scores and higher detector accuracy, in contrast with the
long prompts (> 40 words).

4. Why Do High Quality Scores Correlate
With High Detector Accuracy?

To understand why higher quality scores of generated im-
ages may correlate with higher accuracy for detectors, we
study the commonalities of high-quality images as assessed
by human preference models. Specifically, as the quality
scores predicted by these models depend on both the text
prompt for generation and the features of the generated im-
age, we first examine the effect of text prompt complexity
in Section 4.1. Next, we explore the common characteris-
tics of high-quality images through clustering analysis in
Section 4.2. Finally, in Section 4.3, we conduct regression
analyses to assess how these image characteristics correlate
with quality scores and detector accuracy.

4.1. Influence of Text Prompt Complexity

As suggested by (Zhang et al., 2024a; Dong et al., 2024; Ma
et al., 2024), existing text-to-image generators tend to strug-
gle more with generating images from complex text prompts
compared to short and simple ones. Hence, we have reason
to believe that the quality of images generated under long
and short text prompts differs, and we further validate this
hypothesis through experiments. The results in Figure 3 con-
firm that images generated from short and medium-length
prompts (at most 40 words) generally achieve higher av-
erage quality scores. Moreover, within this range, images
generated from short prompts (at most 20 words) exhibit
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Figure 4: Analyses on generated images clustered by quality-related features extracted by ImageReward model. Left: The
average detector accuracy and the average quality scores are consistently positively correlated at the cluster level. Each point
represents an image cluster. The Pearson’s correlation coefficient r and the p-value are shown in the top left corner for each
figure. Right: Visualization of image patches from typical clusters of PixArt-a with high average detector accuracy and
high average quality scores. We take the center 224 x 224 patch in alignment with the pre-processing pipeline of detectors

studied in this paper.

slightly lower quality scores compared to those generated
from medium-length prompts with 21-40 words.

More importantly, we find that text prompt complexity has
a similar influence on average detector accuracy. Figure 3
reveals that generated images produced from short prompts
not only have higher quality scores but are also easier to
detect. This finding provides further insight into our observa-
tion in Section 3, suggesting that certain types of generated
images inherently exhibit both high quality scores and high
detector accuracy.

To understand how text prompt complexity affects the gen-
erated images, we first conduct a preliminary analysis of
their visual characteristics. A notable trait of images gener-
ated from short prompts is their relatively simple semantic
content and structure, which can be attributed to the limited
number of entities mentioned in the prompts. In addition,
regarding the shortest prompts, we find that the absence of
descriptions of visual attributes appears to contribute to the
relatively lower quality scores of the generated images. In
particular, prompts specifying object colors tend to produce
images with higher saturation, which may lead to improved
quality scores. Further details are provided in Appendix B.3.

While the analyses based on text prompt complexity of-
fer valuable insights into the positive correlation between
quality scores and average detector accuracy, grouping im-
ages solely by text length may not fully exploit the visual
attributes that human preference models and detectors are
sensitive to. Therefore, in the following sections, we extend

our analysis through image clustering to better understand
these underlying characteristics.

4.2. Image Clustering on Quality-Related Features

The observations in Section 4.1 suggest that high-quality
images may exhibit certain characteristics that contribute to
higher detector accuracy. To further explore these common
traits, we cluster images based on their visual features and
analyze the average quality scores and detector accuracy
within each cluster. As we focus on quality-related features,
the clustering is conducted in the feature space of the Im-
ageReward (Xu et al., 2023) model. We apply the K-Means
algorithm (Lloyd, 1982) with k£ = 50; other implementation
details are presented in Appendix A.2.

Based on the clustering results, we first observe a significant
positive correlation between average detector accuracy and
quality scores at the cluster level, measured by the Pear-
son correlation coefficient, as shown in Figure 4, albeit the
correlation is not strong. This trend further supports our
observations in Figure 1 and Figure 2.

Then, we focus on clusters with both high average detector
accuracy and quality scores. Through manual inspection of
images within these clusters, we identify several recurring
characteristics, including rich textures, low structural com-
plexity, high contrast, and high saturation, as illustrated in
Figure 4. We argue that these common characteristics may
help explain the positive correlation between detector accu-
racy and quality scores. For example, highly saturated im-
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Table 1: Comparison of regression models with different
sets of independent variables (low-level or high-level fea-
tures) and different dependent variable y. Standardized
coefficients for each independent variable and the corre-
sponding R2-score are presented. The high-level features
extracted by DINOvV2 are reduced to 6 dimensions via PCA.

(a) Low-level image characteristics

Y Lightness Contrast Saturation Sharpness "[jexture Slructurz'il
Richness Complexity
Accuracy 0.10 0.52 0.43 -0.33 0.42 -0.30
ImageReward 0.26 0.20 0.34 -0.46 0.35 -0.25
HPS v2 0.32 0.47 0.34 -0.71 0.54 -0.32

(b) High-level features (reduced to 6 dimensions by PCA)

y ‘ 1 o T3 x4 x5 z6 ‘ R?
Accuracy -0.18 -0.23 0.20 -0.23 0.04 0.11 0.76
ImageReward -0.39 -0.22 -0.04 -0.18 -0.02 -0.12 0.76
HPS v2 -0.45 -0.09 0.03 -0.30 -0.10 -0.17 0.68

ages may be more visually appealing to humans, leading to
higher quality scores, while their unnatural coloration could
make them more distinguishable for detectors. Likewise,
images with fine details and rich textures tend to receive
higher quality scores, yet detectors might excel at identify-
ing subtle artifacts in these intricate details, such as slight
distortions along edges.

4.3. Linear Regression Analyses

To further substantiate the findings in Section 4.2 and quan-
titatively study how image characteristics may influence
quality scores and average detector accuracy, we perform
linear regression analyses on different features. Specifically,
a linear regression model estimates the linear relationship
between a dependent or target variable (e.g., detector ac-
curacy or quality score) and a set of independent or input
variables (e.g., image features). The linear relationship can
be interpreted from the coefficients of independent variables
learned from the data. The instantiations of the regression
analyses and the results are detailed as follows.

Independent variables. Building on our previous observa-
tions, we first examine six low-level visual characteristics
of images: lightness, contrast, saturation, sharpness, texture
richness, and structural complexity. Each characteristic is
quantified using a scalar metric, which we treat as an inde-
pendent variable z; (¢ = 1,2,--- ,6) in a linear regression
model. The specific choices of metrics are detailed in Ap-
pendix A.3. Additionally, we explore whether high-level
features also contribute to the observed positive correlation
between average detector accuracy and quality scores. To
this end, we extract high-level features from images us-
ing DINOv2 (Oquab et al., 2023), a self-supervised image
encoder, and then reduce the feature dimension to 6 via
PCA (Pearson, 1901) to align with the low-level features.

Dependent variable. The dependent variable y can be (1)
the average accuracy of the detectors, or (2) the average
preference score predicted by the ImageReward or HPS v2
model. This yields three regression models for each set of
features.

Data fitting. Building on the clustering analysis in Sec-
tion 4.2, we perform regression analyses at the cluster level,
averaging the metrics within each cluster. To obtain a more
general regression model, we combine the cluster data for
all four generators and fit the regression models to them.
However, it should be noted that the average accuracy of
detectors may vary considerably across different generators,
as indicated by Figure 4. This variation can harm the re-
gression models that fit the mixed data by considering only
the aforementioned features as independent variables. To
this end, we allow the regression model to learn generator-
dependent intercepts to mitigate this bias. This is achieved
by adding an indicator variable for each generator to repre-
sent the source of an image cluster. Since we are primarily
interested in the relationship between independent variables
r1,Ts, - ,Ze and the dependent variable y, rather than
predicting the absolute value of y, the indicator variables
and intercept can be ignored after the data fitting process.
Additional details are provided in Appendix A.4.

Results for low-level features. Table 1a compares the stan-
dardized coefficients for each low-level image characteristic
learned by the three regression models and presents the cor-
responding coefficient of determination (R?). As suggested
by the sign and magnitude of the coefficients, the image
characteristics have a similar contribution to the prediction
of accuracy and quality scores. Specifically, lightness, con-
trast, saturation, and texture richness of images positively
correlate with both detector accuracy and quality scores,
while sharpness and structural complexity have a negative
correlation with these dependent variables. These conclu-
sions are consistent with our observations and conjectures
in Sections 4.1 and 4.2 and indicate the potential strengths
and weaknesses of existing detectors. Moreover, the con-
sistency across the three regression models reinforces the
observed positive correlation between quality scores and
average detector accuracy.

Results for high-level features. As suggested by Table 1b,
not all principal components of the high-level features have
consistent correlations with different dependent variables.
Nevertheless, the subspace spanned by the unit vectors cor-
responding to =1, x3, and x4 may provide certain support
for the positive correlation between quality scores and av-
erage detector accuracy. As illustrated in Figure 5, clusters
with lower values of z2 and x4 generally possess higher
quality scores and are easier to detect. In addition, we no-
tice that some outlier clusters (e.g., #5, #16, #18) do not
comply with the major trend. Specifically, Cluster #5 con-
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Figure 5: Analyses on clusters of images generated by PixArt-«.. Left: Cluster distribution in the high-level feature space.
x9 and x4 correspond to the two independent variables in Table 1b and represent two principal components of the high-level
features. Points are colored based on the ImageReward scores. Center: The same cluster distribution with points colored
based on the average detector accuracy. Right: Visualization of image patches from outlier clusters.

sists of images with dense and distorted characters, which
leads to low quality scores but makes them not difficult to
detect. Similarly, detectors achieve relatively high accuracy
on images in Clusters #16 and #18, which depict planes
and ships with a number of portholes and have low quality
scores. These examples suggest that existing detectors may
be sensitive to certain semantic details like characters and
portholes. This could explain the phenomenon observed in
Figure 1 that some lower-quality images are also relatively
easy to detect.

Discussion. The linear regression analyses suggest that
certain low-level image characteristics (e.g., high saturation
or low sharpness) and high-level features tend to induce
higher detector accuracy and higher quality scores. From
a causal perspective (Pearl, 2009), these features could be
the confounders underlying the counterintuitive positive
correlation between accuracy and quality. However, through
further intervention experiments presented in Appendix B.4,
we find that several low-level image characteristics do not
have uniform causal effects on the accuracy of different
detectors, suggesting the existence of other confounding
factors. Hence, for developing robust and generalizable
AIGI detectors, future studies could benefit from further
analyzing how these image features affect detectors.

5. Can We Optimize Patch-Based AIGI
Detection Through Quality Analysis?

In this section, we aim to explore whether our analysis of
image qualities in Section 4 can be leveraged to optimize
existing patch-based AIGI detection methods, which typi-
cally rely on center-cropping and disregard other patches.
Specifically, we examine whether the regression models
from Section 4.3 can identify the most detectable patch in
an image. To this end, we improve patch-based detectors by

selecting input patches according to the regression models’
predictions and investigate whether their performance can
be enhanced on various generators and datasets.

5.1. Selection Strategies for Input Patches

Most existing methods for Al-generated image detection
assume that fake images are completely generated by mod-
els rather than locally edited from real images. Under this
setting, a series of methods (Ojha et al., 2023; Tan et al.,
2024; Koutlis & Papadopoulos, 2024; Baraldi et al., 2024;
Chen et al., 2024a) adopt center cropping in their image
pre-processing pipeline without resizing. While limiting
the receptive field to a patch of size 224 x 224 may lead
to substantial losses of high-level information, especially
for high-resolution images, it preserves fine-grained details
and enables detectors to spot low-level traces of genera-
tion (Corvi et al., 2023; Gragnaniello et al., 2021).

Based on our findings in Section 4, we hypothesize that
selecting input patches according to the common character-
istics of high-quality or easy-to-detect images can enhance
the performance of existing detectors. Specifically, we first
patchify the input image and then use one of the regression
models from Section 4.3 to rank the patches by their pre-
dicted scores. By selecting the patch with the highest score
for a given image, we expect to make the detection more
accurate, particularly for detecting fake images.

However, this patch selection strategy may not have the
same expected effects on different types of detectors, as
reviewed in Section 2.1. Specifically, a recent study (Chen
et al., 2024b) suggests that simple patches with poor texture
are more effective for fingerprint extraction than complex
patches. This may contradict the role of texture richness in
our patch selection strategy based on the regression results.
Consequently, we speculate that for fingerprint-based mod-
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Table 2: Average detector accuracy (%) of end-to-end models on fake images. We compare different patch selection
strategies based on regression models with different dependent variables y.

Genlmage DRCT-2M Synthbuster

Dependent ¢ - te - SDXL- SDXL- LCM- SDv2- SDXL- . . Average
Variable y &y Midjourney Refiner Turbo SDXL  Ctrl Curl DALL-E2 DALL-E3 Firefly Midjourney ¢
/ Center 76.3 75.3 56.8 62.6 75.0 76.2 38.1 51.4 414 75.0 62.8
Easiest 75.0 76.0 56.6 62.1 74.8 76.0 38.6 51.3 454 75.5 63.1
Accuracy Random 70.6 72.0 56.1 61.1 73.6 75.0 36.7 50.9 37.8 71.1 60.5
Hardest 63.5 66.4 54.9 60.9 71.8 73.4 342 47.8 29.5 63.9 56.6
Easiest 73.1 75.0 56.2 60.5 74.4 76.0 37.6 50.1 44.6 70.9 61.8
ImageReward Random 70.6 72.0 56.1 61.1 73.6 75.0 36.7 50.9 37.8 71.1 60.5
Hardest 68.6 69.3 54.9 62.4 72.2 73.6 35.7 50.8 37.2 71.5 59.6
Easiest 74.1 75.7 56.3 61.0 74.5 76.0 38.6 51.0 44.2 73.7 62.5
HPS v2 Random 70.6 72.0 56.1 61.1 73.6 75.0 36.7 50.9 37.8 71.1 60.5
Hardest 66.3 67.3 55.0 62.0 72.1 73.5 343 49.7 34.5 69.2 58.4

els, selecting the patch with the lowest score predicted by the
regression models may yield better detection performance.

In the following part of this section, we verify our hypothe-
ses by experimentally comparing four input patch selection
strategies: (1) Easiest: selecting the patch with the high-
est predicted score; (2) Hardest: selecting the patch with
the lowest predicted score; (3) Random: selecting a ran-
dom patch; (4) Center: taking the center patch, as in the
aforementioned existing methods.

5.2. Experiments

AIGI detectors. In addition to the six AIGI detectors de-
scribed in Section 3.1, we consider SSP (Chen et al., 2024b),
which takes a single simple patch for fingerprint extraction.
We train the SSP model on Genlmage (Zhu et al., 2023)
instead of using the official checkpoints with unsatisfactory
generalization. Details are provided in Appendix A.5. Over-
all, the detectors can be categorized into: (1) fingerprint-
based models: NPR (Tan et al., 2024) and SSP; (2) end-
to-end models: RINE (Koutlis & Papadopoulos, 2024),
CoDE (Baraldi et al., 2024), DRCT (Chen et al., 2024a),
and SuSy (Bernabeu-Perez et al., 2024).

Datasets. To examine the generalization of the regres-
sion models on unseen generators, we test the detectors
using different patch selection strategies on images gener-
ated by the following generators from existing benchmark
datasets: Midjourney from Genlmage (Zhu et al., 2023);
SDXL-Refiner, SDXL-Turbo, LCM-SDXL, SDv2-Ctrl, and
SDXL-Ctrl from DRCT-2M (Chen et al., 2024a); DALL-E 2,
DALL-E 3, Firefly, and Midjourney from Synthbuster (Bam-
mey, 2023). We clarify the data selection in Appendix A.6.

Comparison of different regression models. Table 2
shows the average accuracy of end-to-end detectors on fake
images produced by different generators. First, selecting
the input patch with the highest scores predicted by regres-
sion models (i.e., the Easiest strategy) generally provides

higher average detector accuracy on various generated im-
ages, compared to the Random or Hardest strategy. Second,
the Center strategy adopted by existing methods is compa-
rable to the Easiest strategy and superior to the Random
strategy, which possibly suggests the particularity of the
center areas of generated images. Third, the three regres-
sion models provide consistent effects on average detector
accuracy, although the two models fitting quality scores may
be less effective in predicting the easiest patch. These re-
sults further validate the relationship between quality scores
and average detector accuracy.

Comparison of different detectors. To study how differ-
ent detectors are affected by patch selection strategies, we
compare their average performance across all generators in
Table 3. The Easiest and Hardest strategies are based on the
regression model fitting accuracy. First, all end-to-end de-
tectors except for DRCT (CLIP) achieve the best AP when
selecting the input patch based on the Easiest strategy. Sec-
ond, for DRCT (CLIP), we notice that the accuracy on real
images is significantly lower than that of other end-to-end
detectors. Adopting the Easiest strategy leads to a further
decline in this metric, which indicates that this detector may
learn different features for discriminating real and fake im-
ages. Third, the patch selection strategies have opposite
effects on fingerprint-based detectors, where the Hardest
strategy consistently provides better performance than the
Easiest and Random strategies. For SSP, its original strategy
of selecting the simplest patch can produce higher accuracy
on fake images, but at the cost of lower accuracy on real
ones. Overall, the results validate that the proposed patch
selection strategies can be used to enhance the performance
of some off-the-shelf detectors, while the “easiest” patches
for end-to-end detectors may be the “hardest” patches for
fingerprint-based detectors and vice versa.
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Table 3: Average performance (%) across all generators
for different detectors using different patch selection strate-
gies. ACC: accuracy on all images; AP: average precision;
ACC41e/ACC,eqr: accuracy on fake/real images. (*: the
strategy proposed in (Chen et al., 2024b) for SSP, which
selects the simplest patch with the lowest texture diversity
in the input image.)

Type | Detector Strategy ACC AP ACCjqre ACCreq
Center 75.0 90.2 51.6 98.5
Easiest 742 919 49.7 98.9
RINE Random 714 90.3 44.0 98.9
Hardest 67.6 90.0 36.4 98.9
Center 79.4 78.8 60.1 98.8
Easiest 797 79.2 60.8 98.7
CoDE  pandom 794 790 599 99.0
Hardest 77.8 77.2 56.9 98.7
=l Center 76.0 87.6 59.7 92.3
"Ou’ Easiest 77.8 89.4 62.1 93.6

8] SuSy

<5 Random 744 870 55.9 93.0
LS Hardest 69.8 827 48.6 91.1
Center 754 84.8 53.7 97.1
DRCT Easiest 76.4 87.6 53.8 99.0
(Conv-B) Random  75.1 84.2 54.1 96.0
Hardest 73.3 825 53.6 93.1
Center 78.9 884 89.0 68.9
DRCT Easiest 77.6 86.7 89.2 65.9
(CLIP) Random 784 87.6 88.5 68.3
Hardest 80.3 88.6 87.7 72.9
Center 716 759 66.8 76.3
- NPR Easiest 69.4 74.6 66.6 72.1
% Random  73.7 76.3 68.5 78.9
< Hardest  76.6 78.6 71.1 82.2
E Center 72.0 79.7 51.7 92.4
i Easiest 709 774 538 88.0
E SSP Random 734 81.0 54.9 92.0
Hardest 745 81.0 56.4 92.5
Simplest* 74.5 78.3 64.2 84.7

6. Conclusion

In this paper, we make a counterintuitive observation that
high-quality Al-generated images (AIGIs) preferred by hu-
mans tend to be less difficult for models to detect. We ex-
plain the positive correlation between detector accuracy and
the quality scores of generated images by investigating the
influence of text prompts and image features. Our results
suggest that images generated from shorter text prompts
or those exhibiting specific low-level image characteris-
tics (such as high saturation, high contrast, rich texture,
and low structural complexity) correlate with higher quality
scores and higher detector accuracy. Finally, we suggest
that existing patch-based AIGI detectors can be improved
by selecting the most detectable patch identified based on
low-level visual characteristics. This validates the broader
applicability of our findings.
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This paper studies Al-generated image detection, which
has become an important topic for Al governance as Al-
generated images become more perceptually indistinguish-
able from real ones. The findings in this paper suggest po-
tential strengths and weaknesses of existing detectors, and
are expected to promote the development of more advanced
models for detecting various Al-generated images. A po-
tential negative impact lies in the facilitation of adversarial
evasion attacks against existing detectors. For instance, as
suggested by our results, lowering the lightness and con-
trast of generated images may impair the performance of
certain kinds of detectors. A preliminary exploration of
the effectiveness of such adversarial image manipulations
is presented in Appendix B.4. However, we believe that
this potential risk also motivates future research on robust
detectors for Al-generated images in the real world.
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A. Implementation Details
A.1. Dataset Collection

Following the pipeline of the construction of existing datasets for AIGI detection (Zhu et al., 2023; Bammey, 2023; Baraldi
et al., 2024; Chen et al., 2024a), we collect real images from existing datasets, acquire the corresponding captions, and
generate the fake images via a set of text-to-image models taking these captions as text prompts.

Real image collection. The contents of the fake images are loosely determined by the real images. Hence, to ensure the
diversity of the dataset, we collect real images from four existing datasets: COCO (Lin et al., 2014), CC3M (Sharma et al.,
2018), LAION-Aesthetic (Schuhmann et al., 2022), and SA-1B (Kirillov et al., 2023). In particular, SA-1B is included as it
contains more images with complex scenes compared to the other datasets.

Text prompt collection. The text prompts are expected to be faithful descriptions of the visual content of the real images and
cover various levels of complexity. To this end, we apply BLIP-2 (Li et al., 2023) and a large multimodal model (InternVL2-
8B (Chen et al., 2024d)) to the captioning of real images. Specifically, we use different instructions for InternVL2-8B to
obtain captions with varying complexity. We also include the high-quality captions from COCO and those produced for
SA-1B by (Chen et al., 2024¢), which supplement the low-complexity and high-complexity captions, respectively. After
filtering and balancing the distribution of text lengths, we obtain 4,000 captions and use them as the text prompts for fake
image generation. As depicted by the histogram in Figure 3, these prompts effectively cover a wide range of text length,
from less than 10 words to over 120 words.

Fake image generation. The fake images are generated by six advanced open-source text-to-image models, namely Stable
Diffusion 2.1 (SD 2.1) (Rombach et al., 2022), Stable Diffusion XL 1.0 (SDXL 1.0) (Podell et al., 2024), Stable Diffusion
3 (SD 3) (Esser et al., 2024), PixArt-a (Chen et al., 2024c), FLUX.1 [dev] (Black Forest Labs, 2024), and Infinity (Han
et al., 2024). For each text prompt, we produce a fake image by each generator. To improve the quality of generated images
and increase the diversity of image characteristics, we follow the prompt engineering adopted by (Baraldi et al., 2024).
Specifically, a fixed negative prompt is applied for all images, while the positive modifiers are randomly sampled from a set
of common modifiers in the generation of each image. The generated images are compressed by the same format and quality
as the real counterparts to eliminate the compression bias (Grommelt et al., 2024).

A.2. Image Clustering Based on Quality-Related Features

To obtain the quality-related features for image clustering, we utilize the ImageReward (Xu et al., 2023) model. An empty
text is fed to the model instead of the text prompt corresponding to the input image, as we find that using the corresponding
prompts can lead to a near-linear distribution of samples in the feature space, possibly due to the strong features related to
image-text alignment. Real images corresponding to the 4,000 text prompts are included in the clustering process to indicate
the potential discrepancy between real and fake images and are neglected in the subsequent analyses. However, we find that
most clusters are mixed with real and fake images, which suggests the high fidelity of the generated images in our dataset.
In addition, considering that the detectors studied in this paper mostly adopt center-cropping without resizing in their image
pre-processing pipeline, we perform feature extraction based on the center 224 x 224 patches of images. Finally, to ensure
the reliability of our analyses, we filter out the clusters with the number of generated images fewer than 30.

A.3. Metrics for Low-Level Image Characteristics

* Lightness: Convert the image to HSV space, and take the average value of the Value channel.

e Contrast: Compute the root-mean-square (RMS) contrast (Peli, 1990), i.e., the standard deviation of the pixel
intensities.

 Saturation: Convert the image to HSV space, and take the average value of the Saturation channel.
* Sharpness: Apply the Laplacian operator on the grayscale image, and then compute the variance.

* Texture richness: Apply the Canny edge detector (Canny, 1986) to the grayscale image, and then compute the edge
density, i.e., the ratio of edge pixels.

* Structural complexity: Motivated by (Shen et al., 2024), we take the square root of the number of image segments
detected by the SAM 2 model (Ravi et al., 2024).
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A.4. Multiple Linear Regression

In Section 4.3, we analyze the correlation between image features (independent variables) and the average detector accuracy
or quality scores (dependent variable). Both independent variables z;,x9, - -- ,2¢ and the dependent variable y are
standardized to obtain the standardized coefficients (or beta coefficients) for comparison. The regression models are fit to
the data using the least squares approach.

A.5. Training SSP on GenImage

In our experiments, we find that the official checkpoints of the SSP model (Chen et al., 2024b) trained on fake images
produced by single generators of Genlmage (Zhu et al., 2023) fail to yield satisfactory results on other datasets. To obtain
a more generalizable SSP model, we train it on a mixture of fake images generated by all generators, and eliminate the
compression bias (Grommelt et al., 2024) in GenImage by aligning the compression format and quality of the fake images
with the real ones.

A.6. Test Data Selection

In Section 5.2, we test the detectors on fake images generated by various generators from multiple benchmark datasets (Zhu
et al., 2023; Bammey, 2023; Chen et al., 2024a). To ensure that the results are meaningful for the validation of our findings,
we filter out generators that satisfy any of the following conditions: (1) the generator is SD 2.1 or SDXL, which are included
in our dataset and should not be used for testing the generalization of our regression models; (2) the generator is included in
or very similar to the common generators used for the training of the detectors (e.g., SD 1.4/1.5), since detectors consistently
have high accuracy on images generated by seen generators; (3) the size of the generated images are 256 x 256 or smaller,
leaving no room for patch selection.

B. More Experimental Results and Further Discussions
B.1. Validation on More Generators and Human Preference Models

Figure 1 and Figure 2 in the main text demonstrate our main observations concerning the relation between the average
detector accuracy and image quality scores based on 4 generators (i.e., SD 2.1, SDXL 1.0, SD 3, and PixArt-«) and 2
human preference models (i.e., ImageReward and HPS v2). To further validate that the observations are consistent across
different generators and preference models, we extend Figures 1 and 2 with two more generators (a commercial DiT model,
FLUX.1 [dev] (Black Forest Labs, 2024) and an autoregressive model, Infinity (Han et al., 2024)), and one additional
human preference model (MPS (Zhang et al., 2024b)), as shown in Figures 6 and 7. Furthermore, we examine whether
similar trends can be observed on user-created images from advanced closed-source generators, including Midjourney
v6 (Midjourney Inc., 2024) and DALL-E 3 (Betker et al., 2023). To this end, we sample 50,000 and 75,000 generated
images from existing datasets collected by Cortex Foundation (2024) and Egan et al. (2024), respectively. The evaluation
results are presented in Figures 8 and 9. These results collectively validate that our main observations in Section 3 are
consistent across a broad range of generators and different human preference models.

B.2. Reducing the Influence of Image-Text Alignment in Image Quality Assessment

Existing human preference models (Xu et al., 2023; Wu et al., 2023a; Zhang et al., 2024b) commonly input the text prompt
for generation in addition to the generated image, because a high-quality image in practice should be not only visually
appealing but also aligned with the text prompt (i.e., satisfying the intention of the user). However, this paper focuses more
on the visual quality of the generated images, regardless of how the images are aligned with the text prompts.

To validate that the observed correlation between the detector accuracy and human preference scores can be attributed to the
visual quality of images, we try to reduce the influence of the image-text alignment in the comparison of image quality by
replacing the text input for the preference models. Specifically, instead of feeding the preference models with the original
prompt for generation, we use the BLIP-2 (Li et al., 2023) caption of the generated image itself, which is expected to be
well-aligned with the image as evaluated by the preference models. The results presented in Figures 10 and 11 are consistent
with those produced by the standard metrics (i.e., Figures 6 and 7), validating the correlation between the detector accuracy
and image visual quality.
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Figure 6: Average detector accuracy (the red curve) on generated images with different quality scores predicted by human
preference models (ImageReward, HPS v2, and MPS) and the distribution of quality scores (the blue histogram) for each
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Figure 7: Average quality scores (the red curve) for generated images of different difficulty levels and the distribution of
sample difficulty (the blue histogram). The difficulty is measured by the number of correct predictions (#Correct) from the 6
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Figure 8: Average detector accuracy (the red curve) on generated images with different quality scores predicted by human
preference models (ImageReward, HPS v2, and MPS) and the distribution of quality scores (the blue histogram) for
closed-source generators.
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Figure 9: Average quality scores (the red curve) for generated images of different difficulty levels and the distribution of
sample difficulty (the blue histogram) for closed-source generators. The difficulty is measured by the number of correct
predictions (#Correct) from the 6 detectors.
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Figure 10: Average detector accuracy (the red curve) on generated images with different quality scores predicted by human
preference models (ImageReward, HPS v2, and MPS; *: using the BLIP-2 caption of the generated image instead of the
original prompt as the text input) and the distribution of quality scores (the blue histogram) for each generator.

16



Are High-Quality AI-Generated Images More Difficult for Models to Detect?

SD2.1 SDXL 1.0 SD 3 PixArt-a FLUX.1 [dev] Infinity
*
1.40 ©
£03 0.80 1.10 1.20 1.20 g
s : 130 2
5 0.2 1.20 [}
g 0.60 1.10 5
° . 1.10 1.20
01 1.00 1.00 e
0.0 1.00 £
T 0123456 0123456 0123456 0123456 0123456 0123456
#Correct #Correct #Correct #Correct #Correct #Correct
SD 2.1 SDXL 1.0 SD 3 PixArt-a FLUX.1 [dev] Infinity
0.31 0.30
5§03 0.28 020 &
0.27 .
] 0.30 o
€02 0.28 0.29 0297
o 0.28 0.29 a
E o1 0.26 0.29 o
0.0 0.28 0.27 0.28 0.28 0.28
T 0123456 0123456 0123456 0123456 0123456 0123456
#Correct #Correct #Correct #Correct #Correct #Correct
SD 2.1 SDXL 1.0 SD 3 PixArt-a FLUX.1 [dev] Infinity
12.00 12.50
$03 10.00 12.25 : 13.00 12.60
2 ' 11.80 *
502 9.75 12.00 12.00 12.30 12508
= 11.60 =
201 9.50 12.00
o 11.75 11.40 11.50 12.40
0.0 9.25 11.50
0123456 0123456 0123456 0123456 0123456 0123456
#Correct #Correct #Correct #Correct #Correct #Correct

Figure 11: Average quality scores (the red curve) for generated images of different difficulty levels (*: using the BLIP-2
caption of the generated image instead of the original prompt as the text input) and the distribution of sample difficulty
(the blue histogram). The difficulty is measured by the number of correct predictions (#Correct) from the 6 detectors.
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B.3. Explaining the Influence of Text Prompt Complexity

In Section 4.1, we observe that (1) images generated from short and medium-length prompts (with at most 40 words) tend to
have higher quality scores and higher average detector accuracy, as compared with those generated from longer prompts; (2)
the quality scores are relatively lower for images generated from the short prompts (with at most 20 words) compared to
those from medium-length prompts (with 21-40 words).

To explain observation (1), we speculate that images generated from shorter prompts tend to have lower structural complexity
(which correlates with higher detector accuracy and higher quality scores as suggested in Section 4) as fewer entities are
mentioned in the prompts. This can be validated by the results in Figure 12a.
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Figure 12: Average structural complexity and average saturation of images corresponding to different ranges of text length.

To explain observation (2), we first notice that the shortest prompts (e.g., those with less than 10 words) may contain
fewer descriptions of the attributes of the objects, as evidenced in the examples in Appendix C. Besides, images generated
from these prompts generally exhibit lower saturation, as shown in Figure 12b. Therefore, we hypothesize that the lack of
descriptions of visual attributes, especially those related to the colors, may lead to lower saturation of the generated image,
and thereby lower quality scores and detector accuracy, as suggested in Section 4. We verify this hypothesis by counting the
ratios of prompts with color-related descriptions within different ranges of text length, and comparing the average saturation
of images generated from prompts with or without such descriptions, as shown in Table 4. It is clear that a higher ratio of
prompts with text length in 20-29 have color-related descriptions, and images generated from prompts with such descriptions
exhibit higher saturation on average.

Table 4: Comparison of text prompts with and without color-related descriptions. The prompt ratio is counted for three
segments of text lengths, and the average saturation is computed over all samples with text length fewer than 30.

Prompt Ratio (%)

Color-Related Descriptions Average Saturation
0-9 10-19 20-29
With 14.2 37.9 63.2 0.47
Without 85.8 62.1 36.8 0.40

B.4. Adversarial Attacks Inspired by the Linear Regression Analyses

The linear regression analyses in Section 4.3 indicate the potential strengths and weaknesses of existing AIGI detectors,
which could facilitate the understanding and promote the development of AIGI detection methods. However, the conclusions
could also inspire adversarial attacks against existing AIGI detectors. Specifically, Table 1a suggests certain adversarial
directions for image manipulations, such as decreasing the lightness, contrast, and saturation, or increasing the sharpness.
To investigate the effectiveness of such adversarial directions, we implement these manipulations with different factors (0.5
means decreasing by 50%; 1.5 means increasing by 50%). The results in Table 5 suggest that: (1) the adversarial lightness
and contrast manipulations are effective for DRCT and RINE; (2) CoDE and SuSy are less sensitive to these manipulations;
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(3) NPR shows improved performance under most kinds of manipulation. The inconsistent behavior of the detectors under
simple image manipulations indicates the difficulty in developing a universal attack against different AIGI detectors.

From another perspective, these intervention experiments on the low-level image characteristics suggest that they do not
have a direct and uniform causal effect on the accuracy of different detectors, despite the correlations witnessed in Table 1a.
Future works could further investigate the underlying reasons for the correlations between these image characteristics and
the detector accuracy.

Table 5: Detector accuracy (%) under different image manipulations. (The red/green numbers indicate decreased/increased
accuracy compared to the baseline; underlined numbers indicate significant changes in accuracy of over 10%.)

. . DRCT DRCT
Manipulation  Factor RINE CoDE SuSy NPR
(ConvB)  (CLIP)
None N/A 65.6 83.1 31.8 66.7 83.8 66.8
. 0.5 51.8 55.8 20.9 68.0 84.9 89.2
Lightness — - -
1.5 71.7 93.6 77.8 69.7 79.4 82.0
0.5 44.4 76.6 15.7 72.9 82.6 89.1
Contrast — — o2
L5 76.3 93.3 84.1 69.5 85.5 87.3
. 0.5 63.2 84.3 35.8 64.9 84.7 64.2
Saturation
1.5 67.6 90.9 56.7 65.1 82.7 68.5
0.5 76.6 85.3 34.0 71.2 84.9 89.5
Sharpness - -
1.5 55.0 81.7 52.2 62.5 80.6 73.4

B.5. The Relation Between Accuracy and Quality for Real Images

While this paper aims to investigate whether high-quality Al-generated images are more difficult to detect and understand the
correlation between detector accuracy and AIGI quality, it is natural to ask whether similar conclusions hold for real images.
To this end, we transfer the investigations to our collected real images. The results presented in Figure 13 do not show a
similar consistent correlation between high detector accuracy and high quality scores across different preference models. It
requires further studies to explore which kind of real images are easier or harder to be identified for AIGI detectors.
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Figure 13: Investigating the relation between average detector accuracy and quality scores for real images. In contrast
with the observations on fake images (Figures 6 and 7), the correlation between detector accuracy and image quality is less
significant and relatively inconsistent across different human preference models.

C. Qualitative Examples

We present random examples of our data corresponding to the short, medium-length, and long prompts in Figures 14 to 16.
For each generated image, we also provide the average accuracy of detectors (i.e., the proportion of detectors with correct
predictions) and the quality scores in these figures.
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sb21 SDXL 1.0 PixArt-a

Accuary (#Correct): 3/6 Accuary (#Correct): 4/6 Accuary (#Correct): 5/6 Accuary (#Correct): 4/6
ImageReward Score: 1.830 ImageReward Score: 1.823 ImageReward Score: 1.859 ImageReward Score: 1.875
HPSv2 Score: 0.262 HPSv2 Score: 0.249 HPSv2 Score: 0.296 HPSv2 Score: 0.297

Prompt: "A person stands on a hilltop at night, gazing at the starry sky and the Milky Way galaxy."

SD 3 PixArt-a

e

Accuary (#Correct): 4/6 Accuary (#Correct): 4/6 Accuary (#Correct): 4/6 Accuary (#Correct): 5/6

ImageReward Score: 1.127 ImageReward Score: 1.142 ImageReward Score: 1.710 ImageReward Score: 1.858
HPSv2 Score: 0.289 HPSv2 Score: 0.276 HPSv2 Score: 0.262 HPSv2 Score: 0.305

Prompt: "The image shows a pink flower with a red stamen in the center, surrounded by large green leaves."

SDXL 1.0 PixArt-a

”

laaa |- = =

)

dd an AA

Accuary (#Correct): 6/6 Accuary (#Correct): 5/6 Accuary (#Correct): 5/6 Accuary (#Correct): 6/6
ImageReward Score: 1.138 ImageReward Score: 0.786 ImageReward Score: 0.389 ImageReward Score: 1.356
HPSv2 Score: 0.282 HPSv2 Score: 0.279 HPSv2 Score: 0.249 HPSv2 Score: 0.292

Prompt: "a closet with clothes and shoes"

SD2.1 SDXL 1.0 SD3 PixArt-a

Accuary (#Correct): 5/6 Accuary (#Correct): 3/6 Accuary (#Correct): 2/6 Accuary (#Correct): 4/6

ImageReward Score: 1.682 ImageReward Score: 1.683 ImageReward Score: 0.629 ImageReward Score: 1.816
HPSv2 Score: 0.287 HPSv2 Score: 0.273 HPSv2 Score: 0.284 HPSv2 Score: 0.296

Prompt: "apples in bottles on a wooden table"

Figure 14: Random examples from our dataset corresponding to the short prompts (1-20 words).
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sb21 SDXL 1.0 SD3 PixArt-a

Accuary (#Correct): 3/6 Accuary (#Correct): 5/6 Accuary (#Correct): 3/6 Accuary (#Correct): 4/6
ImageReward Score: 1.916 ImageReward Score: 1.897 ImageReward Score: 1.924 ImageReward Score: 1.872
HPSv2 Score: 0.329 HPSv2 Score: 0.331 HPSv2 Score: 0.305 HPSv2 Score: 0.318

Prompt: "A white and orange bus is parked on a rocky, mountainous terrain with a clear blue sky and scattered clouds in the background."

sh2.1 SDXL 1.0

PixArt-a

Accuary (#Correct): 4/6 Accuary (#Correct): 5/6 Accuary (#Correct): 2/6 Accuary (#Correct): 4/6
ImageReward Score: -1.018 ImageReward Score: -0.212 ImageReward Score: -0.516 ImageReward Score: -0.433
HPSv2 Score: 0.257 HPSv2 Score: 0.277 HPSv2 Score: 0.244 HPSv2 Score: 0.248

Prompt: "The image showcases a grand, classical building with a prominent facade featuring tall columns, intricate stonework, and a decorative
pediment. The building's roof is adorned with ornate details and a golden statue, while the entrance is flanked by large, detailed columns."

SD2.1 SDXL 1.0 SD 3 PixArt-a

Accuary (#Correct): 5/6 Accuary (#Correct): 3/6 Accuary (#Correct): 2/6 Accuary (#Correct): 3/6

ImageReward Score: 0.796 ImageReward Score: 1.193 ImageReward Score: 0.382 ImageReward Score: 1.391
HPSv2 Score: 0.275 HPSv2 Score: 0.276 HPSv2 Score: 0.288 HPSv2 Score: 0.274

Prompt: "The image depicts a lavish breakfast spread with an assortment of pastries, fruits, juices, eggs, meats, cheeses, and condiments, arranged
on a table."

SDXL 1.0 SD3 PixArt-a
»

\Y

Accuary (#Correct): 3/6 Accuary (#Correct): 5/6 Accuary (#Correct): 5/6 Accuary (#Correct): 5/6
ImageReward Score: 0.072 ImageReward Score: 1.536 ImageReward Score: 1.647 ImageReward Score: 1.089
HPSv2 Score: 0.276 HPSv2 Score: 0.317 HPSv2 Score: 0.294 HPSv2 Score: 0.335

Prompt: "The image depicts a man in a green jacket and cap, raising his right hand in a thumbs-up gesture, with a group of people in similar green
attire clapping and smiling in the background."

Figure 15: Random examples from our dataset corresponding to the medium-length prompts (21-40 words).
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SDXL 1.0 SD3 PixArt-a

- :
Accuary (#Correct): 2/6 Accuary (#Correct): 4/6

Accuary (#Correct): 4/6
ImageReward Score: -0.776 ImageReward Score: 1.585 ImageReward Score: 0.341 ImageReward Score: 1.651
HPSv2 Score: 0.213 HPSv2 Score: 0.285 HPSv2 Score: 0.269 HPSv2 Score: 0.286

Accuary (#Correct): 4/6

Prompt: "The image depicts a vibrant hillside town with colorful buildings cascading down a steep slope. The architecture features a mix of pastel
hues, including pinks, yellows, and blues, with some buildings adorned with balconies and shutters. In the background, a prominent church

with a dome and cross stands out, adding a religious element to the scene. The sky is clear and blue, enhancing the overall picturesque

quality of the town."

sh2.1 SDXL 1.0 SD 3 PixArt-a

d 3 e y =
Accuary (#Correct): 4/6 Accuary (#Correct): 5/6 Accuary (#Correct): 4/6 Accuary (#Correct): 2/6
ImageReward Score: -1.534 ImageReward Score: 0.321 ImageReward Score: 0.124 ImageReward Score: 0.002
HPSv2 Score: 0.247 HPSv2 Score: 0.244 HPSv2 Score: 0.287 HPSv2 Score: 0.252

Prompt: "The image shows a collection of intricately decorated Christmas wreaths hanging on a shelf. The wreaths feature a variety of festive
elements such as pine cones, berries, ribbons, and bows, with colors predominantly in red, green, and white. Some wreaths have additional
decorations like snowflakes and candy canes. The background suggests a store or market setting with blurred shelves and other Christmas
decorations."

SD2.1 SDXL 1.0 SD 3 PixArt-a

L/ ! % ) &
Accuary (#Correct): 6/6 Accuary (#Correct): 3/6 Accuary (#Correct): 4/6 Accuary (#Correct): 6/6
ImageReward Score: 0.463 ImageReward Score: 0.681 ImageReward Score: 0.899 ImageReward Score: 0.773
HPSv2 Score: 0.288 HPSv2 Score: 0.295 HPSv2 Score: 0.303 HPSv2 Score: 0.325

Prompt: "The image features a close-up of a field of white daisies, with a focus on the petals and the surrounding grass. The daisies are blooming,
and their petals are spread out, creating a delicate and vibrant scene. The style of the image is artistic, with a focus on the beauty and

intricacy of the daisies and their surroundings. The image captures the essence of the flowers and their natural environment, emphasizing

the delicate and vibrant colors of the daisies and the soft, green grass."

SD2.1 SDXL 1.0 SD3 PixArt-a

Accuary (#Correct): 3/6 Accuary (#Correct): 4/6 Accuary (#Correct): 5/6 Accuary (#Correct): 5/6

ImageReward Score: -1.539 ImageReward Score: -1.904 ImageReward Score: -0.515 ImageReward Score: -0.655
HPSv2 Score: 0.236 HPSv2 Score: 0.241 HPSv2 Score: 0.267 HPSv2 Score: 0.257

Prompt: "The image is a black and white photo of a large city, likely taken from an aerial perspective. It showcases a cityscape with various
buildings, including hotels, a beach, and a pool. The style of the image is reminiscent of classic black and white photography, which
emphasizes the contrast between light and shadow, creating a timeless and artistic representation of the urban landscape. The presence of
the beach and pool adds a sense of leisure and relaxation to the city, contrasting with the bustling urban environment."

Figure 16: Random examples from our dataset corresponding to the long prompts (more than 40 words).
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