
Published as a conference paper at ICLR 2023

LEARNING ABOUT PROGRESS FROM EXPERTS

Jake Bruce
DeepMind

Ankit Anand
DeepMind

Bogdan Mazoure∗
McGill University

Rob Fergus
DeepMind

ABSTRACT

Many important tasks involve some notion of long-term progress in multiple phases: e.g.
to clean a shelf it must be cleared of items, cleaning products applied, and then the items
placed back on the shelf. In this work, we explore the use of expert demonstrations
in long-horizon tasks to learn a monotonically increasing function that summarizes
progress. This function can then be used to aid agent exploration in environments
with sparse rewards. As a case study we consider the NetHack environment, which
requires long-term progress at a variety of scales and is far from being solved by
existing approaches. In this environment, we demonstrate that by learning a model
of long-term progress from expert data containing only observations, we can achieve
efficient exploration in challenging sparse tasks, well beyond what is possible with
current state-of-the-art approaches. We have made the curated gameplay dataset used
in this work available at https://github.com/deepmind/nao_top10.

1 INTRODUCTION

Complex real-world tasks often involve long time dependencies, and require decision making across
multiple phases of progress. This class of problems can be challenging to solve due to the fact that
the effects of multiple decisions are intertwined together across timesteps. Moreover, the sparsity of
the learning signal in many tasks can result in a challenging exploration problem, which motivates the
use of intrinsic sources of feedback, e.g. curiosity (Pathak et al., 2017; Raileanu & Rocktäschel, 2020),
information-gathering (Kim et al., 2018; Ecoffet et al., 2019; Guo et al., 2022), diversity-seeking (Hong
et al., 2018; Seo et al., 2021; Yarats et al., 2021) and many others.

The internal structure of some environments implicitly advantages certain types of intrinsic motivation. For
example, Go-Explore (Ecoffet et al., 2019) excels on Montezuma’s Revenge by enforcing spatio-temporally
consistent exploration, while ProtoRL (Yarats et al., 2021) achieves high returns in continuous control
domains. Nevertheless, some challenging tasks that do not have this structure remain unsolved due
to complex dynamics and large action spaces. For instance, in this work we study the game of
NetHack (Küttler et al., 2020), which manifests a mixture of long task horizon, sparse or uninformative
learning signal and complex dynamics, making it an ideal testbed for building exploration-oriented
agents. The complexity of NetHack prevents agents from efficiently exploring the action space, and even
computing meaningful curiosity objectives can be challenging.

Instead of training agents on NetHack tabula rasa, a challenging prospect for efficient exploration, we take
inspiration from recent advances in another hard exploration benchmark, Minecraft (Baker et al., 2022;
Fan et al., 2022), and leverage plentiful offline human demonstration data available in the wild. Equipping
learning agents with human priors has successfully been done in the context of deep reinforcement
learning (Silver et al., 2016; Cruz Jr et al., 2017; Abramson et al., 2021; Shah et al., 2021; Baker et al.,
2022; Fan et al., 2022) and robotic manipulation (Mandlekar et al., 2021).

One of the salient features of domains such as NetHack (Küttler et al., 2020) is the lack of an explicit signal
for monotonic progress. The objective of the game is to descend through the dungeon obtaining equipment,
finding food & gold, battling monsters and collecting several critical items along the way, before returning
to the beginning of the game with one particular item. A full game can take even experienced players
upward of 24 hours of real time and more than 30k actions, and the game can be punishingly difficult for all
but the best players. In addition, the in-game score is not a meaningful measure of progress, and maximizing
it does not lead agents toward completing the game (Küttler et al., 2020). Correspondingly, agents trained
via reinforcement learning methods fail to make significant long-term progress (Hambro et al., 2022a).

∗This work was done while the author was doing internship at DeepMind. Author is now at Apple.

1

https://github.com/deepmind/nao_top10

Published as a conference paper at ICLR 2023

Figure 1: In this work, we learn a model of task progress from expert demonstrations and use it as an
exploration reward. This figure shows an example cumulative progress curve over the first 300 steps of
a representative episode, alongside three frames taken over the course of the sequence. In the course of
a typical episode, the player @ will explore a procedurally-generated dungeon, interact with objects
) [, open locked and unlocked doors + search for the stairs to the next level > , and more.

Many tasks of interest combine long horizons, complex temporal dependencies and sparse feedback,
but demonstrations with actions are often difficult to obtain: we focus on these settings where abundant
unlabeled data is available in the wild. To address these problems we propose Explore Like Experts (ELE),
a simple way to use progress estimates from expert demonstrations as an exploration reward. We estimate
progress by training a model to predict the temporal distance between any two observations; the model is pre-
trained on offline human demonstrations and does not require actions. Maximizing an exploration objective
based on this progress model leads to new state-of-the-art performance on complex NetHack tasks known for
their difficulty, including four tasks on which other competing methods achieve no reward at all. While we
focus on NetHack in this work, the method is not specific to that domain, and can in principle be applied to
any challenging exploration task with demonstration data that incorporates a notion of long-term progress.

2 RELATED WORKS

Intrinsic motivation: In complex domains with sparse extrinsic feedback, agents may resort to
intrinsic motivation. Existing intrinsic motivation objectives can be informally categorized into curiosity-
driven (Pathak et al., 2017; Zhang et al., 2020; Raileanu & Rocktäschel, 2020), information-gathering (Kim
et al., 2018; Ecoffet et al., 2019; Seurin et al., 2021; Guo et al., 2022), diversity-seeking (Bellemare et al.,
2016; Hong et al., 2018; Seo et al., 2021; Yarats et al., 2021). These works propose various intrinsic
motivation objectives which result in more efficient exploration than using random actions. A simple yet
effective approach is Random Network Distillation (RND) (Burda et al., 2019) where the the predictions
of a frozen network are used as distillation target for an online network, and the prediction error acts as
an exploration reward. One significant drawback of intrinsic motivation methods is that they may need
to cover large regions of sub-optimal state-action space before encountering extrinsic feedback. To mitigate
this, approaches like Go-Explore (Ecoffet et al., 2019) reset to promising states and resume exploration
from there, but this requires that the environment can be reset to desired states, or that arbitrary states can
be reached via behavior (Ecoffet et al., 2021). Unfortunately, the ability to instantiate arbitrary states in the
environment is not feasible in many domains of interest including Nethack, and particular configurations
of the environment are not always reachable from all states.

2

Published as a conference paper at ICLR 2023

Learning from human demonstrations: Equipping learning agents with priors derived from human
demonstrations has long been an important direction of research. Behavior cloning has proven effective in
complex tasks, for example, in the case of Minecraft (Shah et al., 2021; Baker et al., 2022; Fan et al., 2022).
Video Pretraining (VPT, Baker et al., 2022) first trains an inverse dynamics model on a small dataset anno-
tated by humans, and uses it to infer the actions in a large-scale unlabeled dataset. While drastically improv-
ing performance of RL agents on Minecraft, VPT does require an external source of supervision to provide
labels. By contrast, incremental approaches first involve a reward-free or action-free pre-training phase,
which can be used to gather missing actions or rewards, and then used to label the offline dataset or fine-tune
the representations found during the first phase (Torabi et al., 2018a; Yu et al., 2021; Seo et al., 2022).

Another leading approach to learn from demonstrations is Generative Adversarial Imitation Learning
(GAIL) (Ho & Ermon, 2016) where a discriminator model learns to distinguish expert and agent behavior,
and the RL agent is incentivized to make its own distribution indistinguishable from the expert’s. This was
further extended to GAIfO (Torabi et al., 2018b) which learns to distinguish two consecutive observations
instead of state-action distributions, for cases in which actions are not available. Similarly, BCO (Torabi
et al., 2018a) extends behavior cloning to the action-free case, by learning an inverse model for action
labeling from the agent’s online data. ILPO (Edwards et al., 2019) extends BCO by factoring the action
labeling problem into forward modelling conditioned on a latent action followed by remapping to the
primitive action space. The learning process for ILPO involves making a prediction for each possible
latent action in order to take the maximum likelihood prediction for estimating latent action labels, which
can be computationally expensive for large state and action spaces, and is challenging when environment
dynamics are stochastic. FORM (Jaegle et al., 2021) is another recently proposed approach that learns
a forward generative model of dynamics from demonstrations without actions and rewards the agent for
producing transitions that are likely under the model. Other approaches like R2D3 (Gülçehre et al., 2020)
and DQfD (Hester et al., 2018) mix demonstrations and online data in the replay, but they require access
to actions and rewards in the offline data, which is also the case in offline reinforcement learning (Fujimoto
et al., 2019; Prudencio et al., 2022). As the demonstration data used in our experiments doesn’t include
any actions, we compare our approach with GAIfO, BCO, and FORM in this work.

NetHack: The game of NetHack (Küttler et al., 2020) is a complex pre-existing environment with
a very sparse ultimate objective, large degrees of procedural generation and stochasticity, long-term
dependencies, a strong notion of implicit monotonic progress, and a large state-action space. This
makes tabula rasa learning on NetHack challenging, as recently emphasized by the results of the 2021
NetHack competition (Hambro et al., 2022a). Notably, symbolic and rule-based agents still outperform
reinforcement learning methods on many metrics. In this work, we demonstrate that by leveraging openly
available recorded gameplay from NetHack players in the wild (Hambro et al., 2022b), we can outperform
state-of-the-art imitation and exploration approaches on a variety of hard NetHack tasks.

3 METHODOLOGY

Our method, which we refer to as Explore Like Experts (ELE), consists of two phases: i) learning a
progress model offline, and ii) using the learned progress model as an auxiliary reward in reinforcement
learning. The first phase of learning a progress model uses the expert data to learn a regressor which
predicts a scalar progress reward given two observations from the same episode. The second phase
simply uses the fixed weights of learned progress model to provide an auxiliary reward from the current
observation and another past observation within this episode, and the underlying agent optimizes a
weighted sum of the auxiliary and extrinsic reward while training.

Given a set of demonstrationsD, the goal of the progress model is to predict the temporal distance between
two observations within the same demonstration. Formally, let (sdi ,s

d
j) be observations at the ith and

jth position in the demonstration trajectory Td. We predict f(sdi ,s
d
j ;θ) denoting the temporal distance

between sdi and sdj in the trajectory. Expert demonstrations can have very long episodes, so we predict
the distance between these observations in signed log-space: ydij=sgn(j−i)log(1+|j−i|). The progress
model is trained by minimizing the mean squared error between the true value ydij in transformed space
and f(sdi ,s

d
j ;θ). The resulting progress model f(.;θ) captures a monotonic increasing function of progress

within the expert trajectories. In NetHack, this corresponds to behaviors such as increasing the character’s
level, revealing tiles in the dungeon, discovering new dungeon levels, finding gold, and improving the
hero’s armor. See Fig. 5 and Section 4.5 for visualizations of the progress model on example trajectories.

3

Published as a conference paper at ICLR 2023

The second phase uses the learned progress model f(;θ∗) with a reinforcement learning algorithm A.
In this phase, the extrinsic reward of the environment is augmented with the auxiliary reward from
the progress model. To calculate the reward, we transform the progress estimates back to linear space:
f∗(si,sj;θ

∗)=sgn(f(si,sj;θ))∗(ef(si,sj;θ
∗)+1). While the auxiliary reward could be computed in many

ways using the progress model, such as computing the temporal distance between the initial state and
the current state, or computing the relative progress against the initial observation for consecutive states,
we empirically observe that computing progress over small distances is significantly more effective (see
Section A.4 for performance of the different variants). Hence in this work, we compute an auxiliary reward
rat =f

∗(st−k,st;θ
∗) to measure progress between the current state (st) and a state from k steps in the past

(st−k) where k is a hyperparameter. The reward rtotal
t is computed as weighted sum of auxiliary reward

rat and extrinsic environment reward rt:

rtotal
t ←rt+w

af∗(st−k,st;θ
∗) (1)

where wa>0 is a hyperparameter. See Algorithm 1 for a pseudocode description.

3.1 GRID WORLD EXAMPLE

To illustrate the progress model in a simple case, we consider a tabular grid-world environment with
a Markov decision process as follows: a 2D state space s ∈ [1,200]× [1,200], where at each timestep
the agent can move in any of the eight cardinal and diagonal directions. The agent begins the episode
at s0=(1,100) and receives a reward of 1000 when it reaches s=(200,100), and zero otherwise. The
reward and termination conditions are designed to be similar to the NetHack tasks that we investigate
in Section 4. In this toy example we employ a tabular Q-learning approach, with the the vanilla RL agent
only receiving extrinsic reward, while our ELE agent additionally receives exploration reward from the
progress model. The progress model in this case is also tabular with an input space of si×sj. It is trained
to estimate progress on a set of demonstrations from a sub-optimal ϵ-greedy oracle policy, where an action
is chosen uniformly at random with probability ϵ=0.975 and the optimal action is chosen with probability
1−ϵ=0.025. In other words, the demonstration agent performs a biased random walk toward the goal.

We demonstrate in Fig. 2 that the paths taken by the tabular Q-learning agent without an exploration
reward do not approach the shortest path even after 20k episodes, whereas the same agent with the
addition of the ELE objective achieves much more direct paths despite learning from highly sub-optimal
demonstrations. As shown in Fig. 2, even trained only on extremely noisy demonstrations, the progress
model forms a smooth and consistent flow field toward the goal, due to the non-local nature of our
approach. In contrast, most existing imitation learning approaches are purely local, and their models
incorporate information only in the near vicinity of the current state. See Section A.8 for more details
on the tabular case and a theoretical analysis in terms of stochastic processes.

In the rest of the paper, we take NetHack as the domain of interest. It is also grid-based, but is a much more
complex environment than the toy example, is a pre-existing domain that humans have found engaging
to play for over 30 years, and is still far from solved by any existing approach (Küttler et al., 2020; Hambro
et al., 2022a). The method is not specific to NetHack and applies in principle to other domains that admit
a notion of long-term progress, where demonstration data is available.

4 EXPERIMENTS

In this work, we consider NetHack as the primary environment for evaluating our proposed approach. ELE
and all baselines are implemented as auxiliary rewards and/or losses on top of an underlying reinforcement
learning agent. We use Muesli (Hessel et al., 2021a) as the agent, which is a lightweight modification
of MuZero (Schrittwieser et al., 2020) that does not involve deep tree search. In these experiments we
use a progress reward scale wa=0.01 and progress history length k=8; see Section A.1 for more details
about the implementation. All reported results are aggregated over 5 seeds. The progress model takes
the form of a neural network with the same structure as the feed-forward component of the underlying
agent, but weights are not shared with the agent. See A.1 for implementation details about the architecture.

For all NetHack experiments, we remove the explicit timer from the observations, as it provides a shortcut
to predicting timing differences that does not reflect the important elements of progress in the game (a
common practice in exploration-focused work (Bellemare et al., 2016)). See Section A.6 for more informa-
tion on timer sensitivity. All methods were implemented using the Jax ecosystem for scalable differentiable

4

Published as a conference paper at ICLR 2023

Figure 2: Toy grid environment: 200×200 grid with tabular Q-learning agent and ELE. The agent can
move in 8 directions, starts at (1,100) and receives a reward of 1000 when reaching (200,100). See
Section A.8 for more details. Left: 10 example trajectories from each method: ELE discovers paths that
reach the goal more directly than either pure RL with ϵ-greedy random exploration or the demonstrations
that it learned from. Right: Visualization of the ELE progress model f∗(si,sj) for si=(100,100) against
all possible successor states sj. The model has learned that expert progress tends to be positive (bright)
to the right of si and negative (dark) to the left.

programming (Babuschkin et al., 2020; Hessel et al., 2021b; Yang et al., 2021). We use demonstrations
from the publically available expert trajectories recorded at http://nethack.alt.org.

4.1 TASKS

We evaluate our approach on three standard tasks: Score, Scout, and Oracle (Küttler et al., 2020), as
well as four new sparse tasks that represent important subtasks in the full NetHack game. Importantly,
for all of these tasks we do not use the reduced action space presented in (Küttler et al., 2020), but instead
use the entire unrestricted NetHack action space of 121 discrete actions, and we do not skip any messages
or menu states. In addition, the hero role is chosen uniformly at random from the entire pool every episode,
which is a challenging setting even for humans, who often exhibit a preference for particular roles. These
settings ensure that the tasks that we investigate represent the entire complexity of the early game. For
every task, episodes are terminated after 1M environment steps or when the agent dies, except as described
below. All agents are all trained for a total of 1B environment steps, the standard frame budget established
in the literature (Küttler et al., 2020). To convey a sense of the relative time horizon of each task, we list
the average episode lengths as achieved by our method in Table 1.

In the Score task, the reward function is the difference in the in-game score from the previous timestep, as
is commonly done in game-based environments (Bellemare et al., 2013). This is a relatively dense reward
signal: score in NetHack is obtained for killing monsters, obtaining gold, identifying wands and potions,
descending into deeper dungeon levels, reading novels, purchasing consultations from the oracle, and more.

In the Scout task, the agent is given a reward of 1 for every tile revealed in the dungeon. This is the densest
task that we consider in this work, and provides an explicit signal for learning spatial exploration behavior.

The objective of the Oracle task is to find the Oracle in the dungeon, which is a non-player character
that is always located in a distinct location between 4 and 8 dungeon levels below the starting level. Once
the agent moves to a tile adjacent to the Oracle, it receives a reward of 1000 and the episode is terminated.
This is a very sparse and fairly challenging task: in our human baselines, we find that intermediate human
players are only able to reach the Oracle in approximately 48% of episodes.

In addition to these standard tasks, we study four more tasks of increasing sparsity to provide a continuum of
challenge between the Score and Oracle tasks. For the Depth 2 and Depth 4 tasks, the objective is to reach a
dungeon level 2 or 4 levels below the surface. The initial level is at depth 1, so these tasks require navigating
1 and 3 dungeon levels to find the stairs, respectively. As with Oracle, the agent is given a reward of 1000
when reaching the target depth, and the episode is terminated. The Exp Level N tasks reward the agent for
reaching a target experience level. The hero begins the game at level 1, so Exp Level 2 and Exp Level 4
require defeating enough monsters to gain 1 and 3 levels, respectively. As with the previous sparse tasks, the
agent receives a reward of 1000 once the target experience level is reached, and the episode is terminated.

5

http://nethack.alt.org

Published as a conference paper at ICLR 2023

In order to facilitate comparison between tasks, we normalize episode returns to lie approximately in the
range [0,1]. In the sparse tasks, we simply scale the reward down from 1000 to 1. For Score and Scout, we
divide all reported returns by the 80th percentile of the episode returns of all methods (1410 and 3425, respec-
tively). Note that this is for reporting purposes only: the agents optimize the true underlying task objective.

Task Length Task Length Task Length

[Std] Scout 596.2 Depth 2 76.1 Depth 4 183.7
[Std] Score 511.5 Exp Level 2 133.4 Exp Level 4 386.6
[Std] Oracle 547.2

Table 1: Average episode length for each task as achieved by ELE; tasks marked with [Std] indicate
standard tasks that were defined in (Küttler et al., 2020). Since the action space of NetHack consists of
121 different actions, sparse tasks with horizons as long as these are very challenging to solve without
a dedicated exploration strategy, and many are still challenging even with access to human demonstrations
(see Section 4.4). Unlike real-time games with high frame rates, the turn-based nature of NetHack means
that even relatively short episodes such as those in the Depth 2 task can correspond to multiple minutes
of human gameplay, and the Oracle task can take intermediate human players more than 30 minutes of
real time to complete (see Section A.3 for details).

4.2 DATASETS

We leverage the data recorded and made publically available by the owners of http:
//nethack.alt.org (Hambro et al., 2022b) in order to provide demonstrations for learning
to play NetHack. The data poses at least three distinct challenges: 1) the recordings do not include
actions or rewards, so straightforward behavior cloning or GAIL cannot be applied; 2) users play with
a wide variety of interface settings, including but not limited to character and color remapping, user
interface element repositioning, and auto-pickup and other game settings (Hambro et al., 2022b); and
3) the gameplay varies widely in quality: many beginners use the server as their primary platform for
playing the game, and the data also includes scripted bots that do not play at high levels of competence
or at all (e.g. behaviors such as save-scumming (Hambro et al., 2022b)). However, as the server is the
most popular platform for playing the game, it also contains large amounts of highly skilful play. As the
data was recorded over the last 14 years, the players were not aiming to solve the tasks we consider in
this work; however, the tasks represent common milestones encountered in natural gameplay.

Our method addresses 1) and 2) by not relying on actions or a sensitive discriminator to function. 3)
remains an issue, since large proportions of deliberately bad gameplay are likely to impact any learning
algorithm that attempts to leverage demonstrations to improve performance. To mitigate this, we use
data from only the top 10 users ranked by a quantity called Z-score (nethackwiki.com, 2022) that rewards
decreasing values for each win, which is calculated as Zuser =

∑
role

∑Mrole
i=1

1
i where Mrole is the total

number of games the user has won with that role. The Z-score metric has been designed by the community
to incentivize winning the game with a wide selection of character roles, which aligns with our goal for
a dataset to contain as much high-quality gameplay across the entire space of the game as possible.

To empower further research using high-quality NetHack demonstrations, we have released a curated
dataset of gameplay from the top 10 users in the form of easily accessible compressed data at https:
//github.com/deepmind/nao_top10. In total, this amounts to 16478 sessions of gameplay with
a total of approximately 184M transitions, and is approximately 12 GB in size. See Section A.2 for more
information on the datasets. The resulting dataset is much smaller than the entire dataset in its original form.

4.3 BASELINES

We compare our method against a variety of popular baselines that are focused on exploration and learning
from demonstrations without access to actions, as well as the underlying Muesli agent without any explicit
exploration objectives. All baselines use the same curated demonstration set that we use for ELE. We
performed a hyperparameter search for each baseline; see Section A.1 for implementation details and
hyperparameter search results.

6

http://nethack.alt.org
http://nethack.alt.org
https://github.com/deepmind/nao_top10
https://github.com/deepmind/nao_top10

Published as a conference paper at ICLR 2023

FORM (Jaegle et al., 2021): an action-free imitation learning approach that learns a passive dynamics model
pD(st+1|st) from expert demonstrations, and uses the log-likelihood ratio of the expert dynamics model to
an online estimator of its own transition dynamics logpD(st+1|st)−logpI(st+1|st) as an imitation reward.

BCO (Torabi et al., 2018a): an approach to behavior cloning without access to actions in which an inverse
dynamics model p(at|st,st+1) is trained on the agent’s own transitions, and used to label the action-free
expert data to enable a behavior cloning objective. It should be noted that although the demonstrations
are not recorded for tasks considered in this work, the BCO loss acts as a policy regularizer toward the
types of behavior that are generally useful for the game. We also add the extrinsic reward as an objective
to all baselines: the purpose of the imitation losses is to encourage exploration.

GAIfO (Torabi et al., 2018b): an adversarial approach to action-free imitation learning in which a
discriminator p(Expert|st,st+1) is trained to distinguish agent and expert transitions, and the probability
of the agent’s transitions being classified as expert behavior is used as an imitation reward.

RND (Burda et al., 2019): a demonstration-free exploration reward in which a randomly initialized feature
encoder ffrozen(st) is used as a target for distillation into an online trained encoder fonline(st), and the
prediction error between the online and target encoders is used as an intrinsic reward.

4.4 RESULTS

Figure 3: Left: Median normalized episode return achieved by each approach after 1B frames of training,
with error bars denoting the range from the 25th to 75th percentile over 5 seeds. Tasks marked as [Std]
are existing tasks from the literature. The sparse task reward is scaled down by 1000 to lie in the range
[0,1]; for Score and Scout we normalize the return by the 80th percentile over all approaches (1410 and
3425, respectively) for ease of comparison. Right: Permutation test comparing all pairs of algorithms
on randomly sampled runs, to quantify the probability that each algorithm outperforms the others on any
given task (Agarwal et al., 2021). ELE outperforms all approaches with a wide margin, except FORM
which we outperform in 70% of samples.

We evaluate our approach on the tasks in Section 4.1. Fig. 3 (left) shows the total episode return achieved
by each approach on all of the tasks we investigate after training for 1B steps, which is an established
frame budget for NetHack (Küttler et al., 2020). Figure 3 (right) shows the permutation test comparing all
pair of algorithms and statistically evaluating if one algorithm is better than other as proposed in Agarwal
et al. (2021). See Section A.5 for further comparison on aggregate metrics based on the mean, median,
IQM and optimality gap.

The baseline approaches do well on the denser tasks, but struggle to discover the extrinsic reward on the
sparse tasks. By contrast, ELE succeeds even on the very sparse tasks, and achieves similar results to
the other approaches on the dense tasks. Note that the Oracle task is challenging even for human players:
in our human baseline gameplay, intermediate human players achieve approximately 48% success on
average. See Sections 4.2 and A.6 for more details about the demonstrations and further analysis.

4.5 ANALYSIS

In Fig. 4, we plot the (left) cumulative local progress and (right) instantaneous progress with respect to
the initial state, for 100 different episodes from a variety of different data sources. As expected, progress
increases consistently for all datasets except for the uniform random policy. These plots demonstrate that

7

Published as a conference paper at ICLR 2023

agents are able to optimize progress more aggressively than either the source data or our human baseline
recordings, which we also observe qualitatively in the relatively reckless behavior of the agents—humans
tend to be much more careful and conservative. The high variance of the instantaneous progress plot shows
the difficulty of estimating temporal differences for long timescales, and justifies the use of cumulative
local progress as an exploration objective instead.

Figure 4: Example progress curves on the first 500 steps of recorded episodes. Each curve shows the median
and middle 50% of the data over 100 episodes. Left) Cumulative progress: the sum of f∗(st−8,st) over the
episode. The agents pursue progress much more aggressively than either the NAO experts or our on-task
human baseline. Right) Instantaneous progress against the initial frame: f∗(s0,st). Instantaneous progress
estimates against the initial frame are much noisier than the cumulative sum of local progress, in part because
long-range progress estimates are much more difficult due to the many possible paths between distant states.

Fig. 5 shows the instantaneous progress estimates f∗(st−k,st) for a single representative episode, with
the peak of maximum progress indicated in red, alongside a rendering of the two frames for the transition
corresponding to this peak, and an example saliency map of the progress model on the bottom two statistics
lines in the observation. Fig. 5 (bottom) shows the sensitivity of the progress model to features including
character and dungeon level, score, gold, and armor class. In other words, ELE has learned that revealing
tiles in the dungeon, increasing its ability scores, and descending to deeper levels all reflect expert progress.
Despite the procedural generation and stochasticity of the underlying environment, some aspects of the
observations reliably indicate progress in the game. These measures indicate that ELE’s progress model
captures many of these subtle indicators from even such a diverse set of demonstrations.

Figure 5: Left: Instantaneous progress f∗(st−k,st) for a representative episode where k=8, with peak
progress indicated in red. Right: Cropped frames st−k and st corresponding to the peak progress estimate.
This transition demonstrates how dungeon exploration results in high progress estimates. Bottom: Example
saliency map over the bottom two lines of the observation, with brighter colors corresponding to higher
sensitivity of the output to that cell in the observation. The progress model has learned to be sensitive
to dungeon and experience levels, character ability scores, gold, magic power, armor class, and game score.
See Fig. 17 for more saliency visualizations.

8

Published as a conference paper at ICLR 2023

Figure 6 shows the results of experiments using different history offsets and dataset sizes for ELE. On the
left, the learned progress model is evaluated using different offsets k into the recent past for the progress
reward on Oracle, the most challenging task. While ELE is robust to a variety of history lengths, we
observe that horizon length k=8 performs best for sparse tasks. On the right, we evaluate the performance
of ELE with increasing dataset size by using demonstrations from the top N experts by Z-score. While
large datasets perform well on the dense Score task, we find that the top 10 experts provide the best dataset
for the challenging Oracle task. In Section A.2 we provide an analysis of the datasets and demonstrate
that Top 10 provides the best balance between dataset size and coverage of the early game, which is where
the tasks we investigate in this paper take place.

Figure 6: Comparison of ELE using different hyperparameters. Left: Hyperparameter sweep for history
length k where k=8 performs best. Right: Performance of ELE using demonstration datasets of increasing
size. We find that the top 10 experts provide the best dataset for our most challenging task (see Section A.2
for further analysis).

5 CONCLUSION

In this work, we hypothesize that a collection of expert demonstrations implicitly defines a set of monotonic
progress functions, and that increasing these progress functions over time results in efficient exploration
in challenging environments. We propose a method for approximating one simple class of such monotonic
progress functions: the temporal difference between frames. All else being equal, exploration that looks
like positive temporal difference under the expert distribution is likely to discover extrinsic task feedback
more efficiently than unguided exploration. We demonstrate in the NetHack environment that following
a progress model is an effective way to discover rewards in even very sparse tasks, and even when the
demonstrations in question consist of noisy, action-free data captured in the wild.

When the observations contain explicit timing information, effort is required to mitigate the tendency of
the progress model to focus solely on these features to the exclusion of more semantically meaningful
information. In this work we explicitly remove the timer from the input, which is easy to do in NetHack
observations. However, for other environments where the explicit timing information is more subtle and
difficult to remove explicitly, there are promising research directions involving unsupervised approaches
to factor these features out.

The issue with explicit time observations is an instance of a more general challenge in applying this sort
of method. Consider tasks with cyclic dynamics, or state maintenance tasks such as balancing a pole:
maximizing predicted temporal distances would not be sufficient, and in this situation an explicit timer
in the observation may actually help rather than hurt. Thus, when applying a method such as ELE, some
care is warranted to ensure that the observations will encourage the model to learn a notion of progress
that is appropriate to the task.

The temporal difference between frames is a simple monotonic function that we have chosen to focus on
in this work. However, we hypothesize that demonstrations implicitly define a large set of such functions,
and discovering latent progress functions not directly tied to temporal differences is another important
area that deserves further investigation beyond the scope of this report.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

We would like to thank Duncan Williams, Surya Bhupatiraju, Dan Horgan and Richard Powell for
developing the underlying Muesli agent for NetHack, including hyperparameter and architecture tuning.
We would like to thank Adam Santoro, Doina Precup and Tim Rocktäschel for feedback on the paper,
which improved the manuscript substantially. We would also like to thank the anonymous reviewers for
detailed reviews and feedback on the paper. Additionally, we are grateful to M. Drew Streib, the host
of the nethack.alt.org server for recording 14 years of gameplay, without which this work would not have
been possible. Last but not the least, we would like to extend our heartfelt thanks to the 10 experts in the
NetHack community whose gameplay data helped us to make scientific advances in this domain, in order
of increasing Z-score: stenno, 78291, Fek, YumYum, rschaff, oh6, Luxidream, Tariru, stth, and Stroller.

ETHICS STATEMENT

This work is made possible by expert data generated by the NetHack community and made publically
available by the owners of http://nethack.alt.org. The data includes full human gameplay in
the form of terminal recordings, and these recordings include the usernames of the humans that generated
the data. This data is already publically available and permissively licensed; we train on the existing data
and release a curated subset.

REPRODUCIBILITY STATEMENT

We have made an effort to ensure reproducibility via a) releasing the dataset that we used for our main
results to empower the community to conduct further research using this curated subset of high-quality
play, and b) exhaustively detailing the hyperparameters and implementation details of our approach, our
network architecture, and the computational resources used for our experiments in Section A.1. We also
detail several potential variations of our approach in Section A.4.

REFERENCES

Josh Abramson, Arun Ahuja, Arthur Brussee, Federico Carnevale, Mary Cassin, Felix Fischer, Petko
Georgiev, Alex Goldin, Tim Harley, et al. Creating multimodal interactive agents with imitation and
self-supervised learning. arXiv preprint arXiv:2112.03763, 2021.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky, David
Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Claudio Fantacci, Jonathan Godwin, Chris Jones,
Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii
Kemaev, Michael King, Markus Kunesch, Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara
Norman, John Quan, George Papamakarios, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Rosalia
Schneider, Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Luyu Wang, Wojciech Stokowiec,
and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL http://github.com/deepmind.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon Houghton,
Raul Sampedro, and Jeff Clune. Video PreTraining (VPT): Learning to Act by Watching Unlabeled
Online Videos. arXiv preprint arXiv:2206.11795, 2022.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information processing
systems, 29, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by ran-
dom network distillation. In 7th International Conference on Learning Representations,

10

http://nethack.alt.org
http://github.com/deepmind

Published as a conference paper at ICLR 2023

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=H1lJJnR5Ym.

Gabriel V Cruz Jr, Yunshu Du, and Matthew E Taylor. Pre-training neural networks with human
demonstrations for deep reinforcement learning. arXiv preprint arXiv:1709.04083, 2017.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then explore.
Nature, 590(7847):580–586, 2021.

Ashley Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Isbell. Imitating latent policies from
observation. In International conference on machine learning, pp. 1755–1763. PMLR, 2019.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied agents
with internet-scale knowledge. arXiv preprint arXiv:2206.08853, 2022.

James C Fu and Tung-Lung Wu. Linear and nonlinear boundary crossing probabilities for brownian
motion and related processes. Journal of Applied Probability, 47(4):1058–1071, 2010.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Çaglar Gülçehre, Tom Le Paine, Bobak Shahriari, Misha Denil, Matt Hoffman, Hubert Soyer, Richard
Tanburn, Steven Kapturowski, Neil C. Rabinowitz, Duncan Williams, Gabriel Barth-Maron, Ziyu Wang,
Nando de Freitas, and Worlds Team. Making efficient use of demonstrations to solve hard exploration
problems. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Zhaohan Daniel Guo, Shantanu Thakoor, Miruna Pı̂slar, Bernardo Avila Pires, Florent Altché, Corentin
Tallec, Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, et al. BYOL-Explore:
Exploration by Bootstrapped Prediction. arXiv preprint arXiv:2206.08332, 2022.

Eric Hambro, Sharada Mohanty, Dmitrii Babaev, Minwoo Byeon, Dipam Chakraborty, Edward Grefenstette,
Minqi Jiang, Jo Daejin, Anssi Kanervisto, Jongmin Kim, et al. Insights from the NeurIPS 2021 NetHack
challenge. In NeurIPS 2021 Competitions and Demonstrations Track, pp. 41–52. PMLR, 2022a.

Eric Hambro, Roberta Raileanu, Danielle Rothermel, Vegard Mella, Tim Rocktäschel, Heinrich
Kuttler, and Naila Murray. Dungeons and data: A large-scale nethack dataset. In Thirty-sixth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022b. URL
https://openreview.net/forum?id=zHNNSzo10xN.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theophane Weber,
David Silver, and Hado Van Hasselt. Muesli: Combining improvements in policy optimization. In
International Conference on Machine Learning, pp. 4214–4226. PMLR, 2021a.

Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Kemaev, John Quan, Thomas Keck, Fabio Viola,
and Hado van Hasselt. Podracer architectures for scalable reinforcement learning. arXiv preprint
arXiv:2104.06272, 2021b.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John
Quan, Andrew Sendonaris, Ian Osband, et al. Deep Q-learning from demonstrations. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

11

https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=zHNNSzo10xN

Published as a conference paper at ICLR 2023

Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu, and Chun-Yi Lee.
Diversity-driven exploration strategy for deep reinforcement learning. Advances in neural information
processing systems, 31, 2018.

Andrew Jaegle, Yury Sulsky, Arun Ahuja, Jake Bruce, Rob Fergus, and Greg Wayne. Imitation by predicting
observations. In International Conference on Machine Learning, pp. 4665–4676. PMLR, 2021.

Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. EMI: Exploration
with mutual information. arXiv preprint arXiv:1810.01176, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. Advances in Neural
Information Processing Systems, 33:7671–7684, 2020.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Mart́ın-Mart́ın. What matters in learning from offline human
demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. Advances in neural information processing systems, 29, 2016.

nethackwiki.com. Nethack wiki, 2022. URL https://nethackwiki.com.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In International conference on machine learning, pp. 2778–2787. PMLR, 2017.

Rafael Figueiredo Prudencio, Marcos R. O. A. Máximo, and Esther Luna Colombini. A survey on offline
reinforcement learning: Taxonomy, review, and open problems. CoRR, abs/2203.01387, 2022. doi:
10.48550/arXiv.2203.01387. URL https://doi.org/10.48550/arXiv.2203.01387.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. arXiv preprint arXiv:2002.12292, 2020.

Herbert Robbins and David Siegmund. Boundary crossing probabilities for the wiener process and sample
sums. The Annals of Mathematical Statistics, pp. 1410–1429, 1970.

René L Schilling and Lothar Partzsch. Brownian Motion: An Introduction to Stochastic Processes, 2012.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari, Go, Chess
and Shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State entropy
maximization with random encoders for efficient exploration. In International Conference on Machine
Learning, pp. 9443–9454. PMLR, 2021.

Younggyo Seo, Kimin Lee, Stephen L James, and Pieter Abbeel. Reinforcement learning with action-free
pre-training from videos. In International Conference on Machine Learning, pp. 19561–19579. PMLR,
2022.

Mathieu Seurin, Florian Strub, Philippe Preux, and Olivier Pietquin. Don’t do what doesn’t matter:
Intrinsic motivation with action usefulness. arXiv preprint arXiv:2105.09992, 2021.

Rohin Shah, Cody Wild, Steven H Wang, Neel Alex, Brandon Houghton, William Guss, Sharada Mohanty,
Anssi Kanervisto, Stephanie Milani, Nicholay Topin, et al. The MineRL BASALT competition on
learning from human feedback. arXiv preprint arXiv:2107.01969, 2021.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the
game of Go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

12

https://nethackwiki.com
https://doi.org/10.48550/arXiv.2203.01387

Published as a conference paper at ICLR 2023

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation. CoRR,
abs/1807.06158, 2018b. URL http://arxiv.org/abs/1807.06158.

Fan Yang, Gabriel Barth-Maron, Piotr Stańczyk, Matthew Hoffman, Siqi Liu, Manuel Kroiss, Aedan Pope,
and Alban Rrustemi. Launchpad: A programming model for distributed machine learning research.
arXiv preprint arXiv:2106.04516, 2021. URL https://arxiv.org/abs/2106.04516.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with prototypical
representations. In International Conference on Machine Learning, pp. 11920–11931. PMLR, 2021.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Chelsea Finn, Sergey Levine, and Karol Hausman. Data
sharing without rewards in multi-task offline reinforcement learning. 2021.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuandong Tian.
Bebold: Exploration beyond the boundary of explored regions. arXiv preprint arXiv:2012.08621, 2020.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

Architecture diagrams for all approaches are shown in Fig. 7. The architecture of the agent is composed of a
feedforward ResNet (He et al., 2016) torso without normalization layers, followed by an LSTM (Hochreiter
& Schmidhuber, 1997) and a residual connection from the torso. The BCO baseline uses the same
architecture as the agent. The GAIfO and RND baselines use only the feedforward network, with each
hidden layer reduced to 16 channels to minimize overfitting. FORM requires full state predictions, and
so we use the fully-convolutional architecture shown in Fig. 7.

Hyperparameters for all experiments are shown in Table 2. Where hyperparameters differ between
approaches, the differences are shown in Table 3. We anneal the learning rate linearly toward its final
value over the course of 1B frames. Each experiment was run on 8 TPUv3 accelerators using a podracer
configuration (Hessel et al., 2021b). Algorithm 1 provides a pseudocode description of the algorithm.
Results of hyperparameter sweeps for each approach are shown in Fig. 8.

Hyperparameter Value

Optimizer Adam (Kingma & Ba, 2014)
Adam ϵ 10−8

Initial learning rate 6×10−4

Final learning rate (linear anneal) 10−5

Maximum absolute parameter update 1.0
Discount factor 0.997
Policy unroll length 35
Model unroll length 5
Retrace λ (Munos et al., 2016) 0.95
Batch size 960 sequences
Replay proportion in batch 50%
Replay buffer capacity 4000 frames
Replay max samples per insert 1
Target network update rate 0.1
Muesli regularization weight (uniform prior) 0.003
Muesli regularization weight (target network prior) 0.03
Value loss weight 0.25
Reward loss weight 1.0
Policy loss weight 3.0

Table 2: Muesli hyperparameters that are consistent between methods.

13

http://arxiv.org/abs/1807.06158
https://arxiv.org/abs/2106.04516

Published as a conference paper at ICLR 2023

Figure 7: Left: RL agent architecture. Right: FORM model architecture.

Hyperparameter Value

ELE reward weight wa 0.01
BCO loss weight 0.01
FORM batch size 576 sequences
FORM reward weight 0.1
GAIfO reward weight 1.0
RND reward weight 0.1

Table 3: Hyperparameters that differ between methods. Note that the large prediction network in FORM
requires a smaller batch size in order to fit in accelerator memory.

A.2 DATASET SIZE

The full dataset from http://nethack.alt.org (Hambro et al., 2022b) contains approximately
7M sequences at the time of this writing. However, the data varies widely in quality from beginners and
scripted bots all the way to world-class gameplay from the top NetHack experts. In addition, the full
dataset is too large to fit comfortably on most storage hardware. As a result, it would be desirable to reduce
the size of the dataset to just a curated sample of the highest quality play. To generate a curated subset
of the highest quality data, we filter the dataset to include only the sessions from the top N users as ranked
by Z-score. From the NetHack wiki (nethackwiki.com, 2022):

Z-score is meant to provide an alternative to using score to rank players, since score
is not a reliable measure of ability. It is compiled by looking at all of a player’s

14

http://nethack.alt.org

Published as a conference paper at ICLR 2023

Algorithm 1: Pseudocode description of Explore Like Experts (ELE)
Input :DatasetD, hyperparameters k and wa

1 for epochm=1,2,..,M do
2 Sample minibatch {(sdi ,sdj)}∼D

/* Update the parameters of the progress model */
3 θm+1←θm+α∗Σi,j,k∇(ydij−f(si,sj;θm))2

4 for epoch j=1,2,...J do
5 Sample a trajectory τ∈T from current actor policy
6 for (st,at,rt)∈τ do

/* Compute auxiliary reward using the progress model */
7 rat =f

∗(st−k,st;θM)
/* Update the total reward by linear

combination of environment reward and auxiliary reward */
8 rt←rt+w

arat
9 Update agent parameters with τ using new reward

Figure 8: Hyperparameter sweeps for each method on a dense and a sparse task. Where there is ambiguity
over which hyperparameter value to use for the final experiments, we choose the hyperparameter that
performs best on the sparse task over the dense task.

ascensions and assigning 1 point for the first ascension of a role, 1/2 a point for the
second ascension, 1/3 for the third, and so on. Z-score encourages playing the complete
set of roles rather than repeatedly ascending the same role.

In addition to filtering by Z-score, we include only episodes where the screen contains only standard
ASCII characters (i.e. sessions that use the standard NetHack interface), we eliminate any episodes where
we cannot identify the dungeon grid on the screen (as this indicates the user may be using a non-standard
user interface layout), and consider only episodes that contain at least 100 timesteps to minimize the
number of episodes that involve save-scumming (Hambro et al., 2022b).

In order to determine how many of the top experts are sufficient to use as a demonstration dataset we
evaluate our method on Score, the most popular NetHack task, and Oracle, the most challenging of the
sparse tasks in this paper, using demonstrations from the top N users forN∈ [1,2,3,5,10,20,50,100]; the
results are shown in Fig. 6 (right). Dataset sizes are shown in Table 4. All else being equal, one might
expect larger datasets to be better. In actuality, we find that the top 10 experts works best for the sparse
tasks, and so this is the dataset we use for all of the experiments in this work that use demonstrations,
and this is the dataset we release alongside the paper.

In order to explain why increasing dataset size does not yield better results on these tasks, we consider
two analyses. Fig. 9 shows, for each dataset, the proportion of the timesteps in the dataset that correspond
to the early game of NetHack, i.e. the portion of the game that is most relevant to all of the tasks we

15

Published as a conference paper at ICLR 2023

Dataset # Sequences # Timesteps

Top 1 4703 54.2 M
Top 2 8336 112.1 M
Top 3 11887 136.3 M
Top 5 11962 136.5 M
Top 10 16478 184.2 M
Top 20 33882 282.2 M
Top 50 62300 421.3 M
Top 100 98614 567.5 M

Table 4: Size of each dataset considered in this section.

consider. Specifically, this is experience levels 1-5, dungeon levels 1-10, and dungeon number 0 (i.e. the
main dungeon). We see in these results that the top-10 dataset which we find yields the best results is
also the dataset that includes the most gameplay covering the early dungeon and experience levels.

Figure 9: Proportion of transitions that cover the early game in each dataset; higher is better. The top-10
dataset contains the largest proportion of early game data in terms of both dungeon level and experience
level, and is only marginally behind top-2 in terms of time spent in the main branch of the dungeon
(dungeon number zero).

In order to attempt to quantify the degree to which each dataset covers the state distribution of the game, we
also analyze the difference between each dataset and all of the others as measured by the total symmetric
KL divergence between distributions over: character alignment, role, dungeon number, dungeon level,
and experience level (See Fig. 10). We see with this analysis that the top-10 dataset is closest to all of
the other datasets by most of the quantities in question, which suggests that top-10 may have the best
general coverage of the game.

Figure 10: Total KL between distributions over alignment, role, dungeon number, level number, and
experience level, as the sum over the KL between the dataset in question and all others. Lower values
indicate that the dataset coverage is closer to the others.

16

Published as a conference paper at ICLR 2023

A.3 HUMAN BASELINE FOR ORACLE TASK

To convey a sense of the difficulty of the Oracle task, we collected 170 episodes of gameplay from an
intermediate NetHack player. Table 5 reports some statistics of these human games. In particular, our
human baseline finds the Oracle in 48.2% of episodes, taking an average of 899.2 timesteps to do so on
a successful episode, which corresponds to an average of 8.9 minutes of gameplay. This is longer than a
typical episode from our agent, which completes the task in an average of 547.2 steps as reported in Table 1.
On average the human player performed 1.9 steps per second, which highlights how much longer a game
of NetHack can be, compared to environments with high frequency real-time frame rates such as Atari.

Number of games 170
Success rate 48.2%
Number of timesteps (All) 863.5± 584.8 steps
Number of timesteps (Successful) 899.2± 662.9 steps
Maximum number of timesteps 4663 steps
Real time length (All) 8.2± 5.9 minutes
Real time length (Successful) 8.9± 7.0 minutes
Maximum real time length 35.1 minutes
Steps per second 1.9± 0.5

Table 5: Statistics of intermediate human gameplay on the challenging Oracle task.

A.4 PROGRESS REWARD VARIANTS

Given a progress model f∗(si,sj) that estimates the temporal distance between two states, there are a variety
of ways that an exploration reward can be formulated. In this section, we explore three potential approaches.
With the Initial Absolute reward function, we give an exploration reward to the agent equal to the estimated
temporal distance between the current state and the initial state rt=f∗(s0,st). The Local Absolute reward
function corresponds to a reward function equal to the estimated temporal distance between the current
state and a frame k steps in the past rt=f∗(st−k,st). Finally, the Local Relative approach rewards the
agent based on the difference in local progress between adjacent states rt=f∗(st−k,st)−f∗(st−k,st−1).

Fig. 11 shows the performance of the agent using each of the variants on Depth 4 and Oracle, two of
the more challenging sparse tasks. We can see that the local absolute progress performs best, with local
relative progress achieving reasonable performance, but worse than local absolute. Progress against the
initial frame, on the other hand, performs quite poorly—see Fig. 4 for a visualization of the initial absolute
progress over the course of an episode: it has very high variance, indicating that it is difficult to make
absolute progress predictions over such long timescales.

Figure 11: Performance of three variants of the progress reward: Local Absolute refers to the approach that
we use in the paper where the reward rt=f∗(st−k,st) with k=8; Local Relative corresponds to a reward
based on the difference between local progress for adjacent states rt=f∗(st−k,st)−f∗(st−k,st−1); and
Initial Absolute refers to rewarding progress against the initial state of the episode rt=f∗(s0,st). This
figure shows the performance of the three variants on two of the challenging sparse tasks: Depth 4 (Left)
and Oracle (Right).

17

Published as a conference paper at ICLR 2023

A.5 STATISTICAL ANALYSIS OF RESULTS

In this section we conduct a statistical analysis of the performance of our approach using the methouds
outlined in (Agarwal et al., 2021). Fig. 12 shows evaluation metrics aggregated across all tasks in order
to produce a larger statistical sample. As mentioned in Section 4.1, we normalize the returns of the
dense tasks Score and Scout by the 80th percentile across all approaches so they lie approximately in
a comparable range [0,1] to the sparse tasks. See Fig. 3 (right) for permutation tests that demonstrate
that our method outperforms RND, GAIfO, BCO, and vanilla Muesli at confidence levels of at least 85%
on this benchmark, while since FORM performs well on Depth 2 as well as the dense tasks, ELE only
outperforms FORM with confidence of approximately 70%.

Figure 12: Aggregate metrics on 9 NetHack tasks with 95% CIs based on 5 random seeds. Higher mean,
median and IQM scores and lower optimality gap are better. Our method ELE significantly outperforms
the baselines according to all measures of central tendency.

A.6 ANALYSIS OF THE PROGRESS MODEL

In order to visualize the sort of transitions that result in large progress events, we include a representative
example of an instantaneous progress curve f∗(st−8,st) for a typical episode generated by our ELE agent.
Fig. 13 shows the progress values with the top 4 progress events highlighted in red, and Fig. 14 shows
the specific transitions that correspond to those events. The progress model has learned that, in this episode,
revealing tiles in the dungeon, leveling up, and descending to new dungeon levels are the most prominent
indicators of progress.

Figure 13: Peaks of the progress estimate during a representative episode.

In the latest version of the NetHack learning environment, the in-game timer is visible in the observations.
This is an issue for our approach, where if trivial timing information is available, the progress model is not
required to learn semantically meaningful representations of progress. Therefore, for all methods evaluated
in this work, we mask the timer feature with zeros to reduce reliance on this trivial information. See Fig. 15
for a) the loss curve of the supervised regressor in the offline training phase for the model with and without
access to the timer feature, and b) the sensitivity of the model to the timer feature as a proportion of the
total gradient with respect to the input. In Fig. 16 we show the performance of the resulting agent when
trained against a progress model with and without access to the timer.

18

Published as a conference paper at ICLR 2023

Figure 14: Visualization of the pair of frames corresponding to each peak in Fig. 13. Differences are
highlighted in red: in this episode, the progress model estimates large amounts of progress for (Top)
exploring the dungeon, (Middle) leveling up, and (Bottom) descending to the next dungeon level.

Fig. 17 shows a saliency map of the learned progress model a) with access to the timer, and b) without
access to the timer. The magnitude of the gradient of the absolute progress estimate is represented by the
brightness of the red highlight. Where explicit timing information is available, the model will focus almost
exclusively on this feature. We find that this hurts the ability of ELE to explore, as even meaningless
random behavior usually results in advancement of the in-game time, so we remove it from the observation
in this work. Some real-world environments contain explicit timing information like this, so factoring
out these features in a way that requires less domain knowledge is a promising objective for further work.

19

Published as a conference paper at ICLR 2023

Figure 15: Left: Median learning curve for the supervised regressor over three seeds in the offline training
phase. Note that with access to the timer, the loss curve reaches a much lower value, indicating that the
timer feature is extremely useful for the prediction task, despite not conveying much information about
progress. Right: The sensitivity of the progress model to the timer feature, as a proportion of the total
gradient with respect to the input: when the model has access to the timer, it concentrates a disproportionate
amount of its weights on that part of the input.

Figure 16: Episode return achieved by ELE using progress models with and without access to the timer
on two of the sparse tasks: (Left) Depth 4 and (Right) Oracle. The progress model with access to the
timer results in poor exploration, since the estimate considers primarily the in-game time passing, rather
than making meaningful progress in exploring the dungeon.

In addition to the saliency analysis, we provide an accuracy plot in Fig. 18 that demonstrates the accuracy
of the trained progress model over a variety of tolerances around the target value. The models trained
on each of the datasets do not differ significantly in their accuracy, and perhaps surprisingly, the accuracy
itself is apparently not very high (for example, only approximately 55% of predictions are within 50% of
the target value). This is likely because of the difficulty of predicting distances over very long trajectories:
we sample a maximum distance of 10K timesteps during training, and for long intervals like this, there
are very many different paths that could lead between two states. Nonetheless, the progress model appears
to be effective as an exploration reward despite the difficulty of making accurate predictions.

A.7 FORM AND STOCHASTICITY

Despite performing well compared to the other baselines, FORM struggles to solve the hardest tasks
where ELE still succeeds. The core mechanism of FORM is to learn a predictor pD(st)→st+1 of state
transitions under a demonstrator policy, independent of actions. This prediction task is difficult when a) the
demonstration policies result in inconsistent transitions, and b) the environment dynamics are themselves
highly stochastic. In our case, the demonstration policies are quite diverse: we use ten different experts
who will each have different play styles, and they may not even take the same action each time they
themselves encounter the same state, due to differences in mood, motivation, etc.

20

Published as a conference paper at ICLR 2023

Figure 17: Saliency map for the progress model over the input calculated as∇st|f(st−k,st)|, (top) with
and (bottom) without access to the timer observation. Top: When the timer is available, the saliency map
is consistently strongest in that part of the input. Bottom: with the timer feature explicitly masked, the
model is required to pay attention to more semantically interesting parts of the input such as the dungeon,
and the character statistics.

Figure 18: Accuracy of the progress model for each dataset over a variety of tolerances around the target
value. Since the progress model is a regression model, it is not easy to provide an intuitive summary in
a single accuracy value. Instead, we show how many predictions from the model lie within a particular
percentage of the target value.

Beyond this, NetHack is stochastic and partially observed: it is not possible to predict accurately what
the next dungeon level will look like, or what will be revealed behind a closed door. Both of these factors
make for a challenging prediction task, and the resulting rewards from FORM may be highly inconsistent.
In addition, while the FORM model is trained on a dataset of pairs (st,st+1), the ELE progress model
is trained on pairs (st,st+k) for k∈ [−10000,10000]. As a result, the effective size of the progress model
dataset much larger. See Fig. 19 for example predictions and likelihood visualizations from the FORM
model, demonstrating the difficulty of the prediction task.

21

Published as a conference paper at ICLR 2023

Figure 19: Predictions and likelihood visualizations from the FORM model. (Left) Average of 256 samples
from the FORM model p(st+1|st) expert demonstrations. Note that due to the inherent stochasticity of
the training data, the predictions are quite fuzzy in regions of the input hidden from the player. (Right)
The actual next frame st+1, with the surprisal under the predicted distribution highlighted by heatmap. The
bright highlights indicate highly surprising elements of the observation, which are not in general possible to
predict in advance due to the stochasticity in both the expert policy p(at|st) and the environment dynamics
p(st+1|st,at).

A.8 MOTIVATIONAL EXAMPLE DERIVATION AND CONNECTION TO STOCHASTIC PROCESSES

The mechanism at the core of ELE consists in capturing an average direction of forward progress from
competent offline demonstrations. That is, knowing that the training data is coming from a reasonable
policy implies that capturing its overall trend in a model and subsequently using this model for intrinsic
motivation will project the RL agent onto a subspace spanned by the competent demonstrations. In this
subspace, even undirected exploration can greatly improve the understanding of the agent about the world,
as the deviations are concentrated along reasonable paths.

22

Published as a conference paper at ICLR 2023

In this section, we dissect the notion of forward progress by showing how it is analogous to the concept
of drift in stochastic process theory. We begin by constructing a simple 1-dimensional environment where
the notion of forward progress corresponds to the drift of the stochastic process.

Suppose an agent begins an episode at the origin of the real line, and is allowed to take independent,
Gaussian steps either to the left or to the right of the starting position. Moreover, the agent receives a
positive reward the first time it crosses a boundary specified by x= c for c> 0 within at most T steps.
This hypothetical example can be formulated as maximizing the number of boundary crossings in a Wiener
process (Fu & Wu, 2010).

The core idea for solving this 1-dimensional walk on the real line is summarized as follows: if we estimate
the progress (i.e. expected direction) of sample paths which are deemed successful according to some
criteria (in this case, reaching a specific region on the line), then we can use this information to guide
our learning by projecting the problem into a simpler space s.t. even random deviations of the RL agent
from demonstrations can lead to improving the agent’s performance.

Lemma A.1 Let V (0,∆) be the value function at t = 0 of the policy W⃗(t) = W(t) + ∆t, where
{W(t):t∈ [0,T]} is a Wiener process on [0,T], deployed in the 1-dimensional example above. Then,

c

T
=argmax

∆∈R+

V (0,∆) (2)

Since the angle between the expected values of the optimal policy W(t)+∆t and W(t) in the time
domain is given by θ=tan−1(c

T), ∆ can be interpreted as a measure of alignment of the current policy
with respect to the optimal one. Pre-training a progress model on data which has a high θ will provide
an initial alignment, while pre-training on data closer to random has a lower θ and hence lower value. Our
approach aims to use demonstrations to learn a progress model which, when used as an auxiliary reward,
yields behavior which is more closely aligned to the optimal behavior than random exploration would be.

Optimal value function depends on the drift Let {W(t):t∈ [0,T]} be a Wiener process on R. Then
the expected reward collected by the policy W⃗(t)=W(t)+∆t (i.e. Wiener process with drift ∆) over
the time interval [0,T] is

V (0;∆)=E[
T∑
t=0

I[W⃗(t)≥c]]=
T∑
t=0

P[W(t)+∆t≥c]I[W(t)+∆t≥c], (3)

where P[W(t)+∆t≥c] can be upper-bounded using the martingale result of Robbins & Siegmund (1970)

P[W(t)+∆t≥c]≤P[sup
t∈[0,T]

W(t)+∆t≥c]=1−Φ
(

c√
T
+∆
√
T

)
+e−2c∆Φ

(
∆
√
T− c√

T

)
. (4)

This implies that for ∆1>∆2>0, V (0,∆1)>V (0,∆2), as the process W(t) is symmetrically around
0. Specifically, sample paths reaching c are more likely for higher values of ∆. This can be shown by
writing the above probability as

ψ(∆)=1−Φ
(

c√
T
+∆
√
T

)
+e−2c∆Φ

(
∆
√
T− c√

T

)
. (5)

Since ψ is smooth in ∆, solving the following optimization problem using Leibniz’s rule

∆∗=

{
d

d∆
ψ(∆)=0

}
(6)

23

Published as a conference paper at ICLR 2023

yields the following relationship between path length, boundary position and drift parameter:

T=

√
2c∆+1+1

∆2
+
c

∆
(7)

If, matching our 1-D experiments, we let c = 200 and T = 2000, then the estimated drift
∆= 1

10+
1

10
√
10
≈0.1316. Given that E[W⃗(t)]=∆t and V[W⃗(t)]=t, the process W⃗(t) rotates according

to the angle specified by ∆, and the number of boundary crossings increases when ∆→∞.

If we wish to go further and let the agent’s trajectories end withing an ε−ball of the goal c, the
corresponding success probability can be computed as follows:

P[c−ε≤W(t)−∆t≤c+ε]=1−P[W(t)−∆t≥c+ε]−P[W(t)−∆t≥c−ε]

=Φ

(
c+ε√
T
+∆
√
T

)
−e−2(c+ε)∆Φ

(
∆
√
T− c+ε√

T

)
+Φ

(
c−ε√
T
+∆
√
T

)
−e−2(c−ε)∆Φ

(
∆
√
T− c−ε√

T

)
−1

(8)

Maximizing the above probability as a function of ∆ using Leibniz’s rule yields ∆∗= c
T , which agrees

with results of Schilling & Partzsch (2012).

Figure 20: 100 sample paths from the Wiener process with drift ∆, for various values of ∆. Paths which
end in the region [190,210] after 2000 timesteps are highlighted in red, and the mean of W⃗(t)=∆t is
shown in green.

Figure 21: Fraction of sample paths which land in the region [190,210] after 2000 timesteps as a function
of drift parameter ∆. ∆=0.1 is the value for which W⃗(t) has the most paths landing in the goal region,
and thus corresponds to maximal progress.

24

Published as a conference paper at ICLR 2023

Figure 22: Toy grid environment: 200×200 square grid with tabular Q-learning agent and ELE. The
agent can move in the 8 orthogonal and diagonal directions, starts at (1,100) and receives a reward of
1000 and episode termination when reaching (200,100). (Top Left) Episode return: the demonstrations
achieve approximately 950 reward on average, while ELE receives nearly 1000, and tabular Q-learning
on its own reaches approximately 700 by the time the experiment ends after 20K episodes. (Top Right)
Episode length: the demonstrations and Q-learning agent take suboptimal paths to the goal, whereas
tabular Q-learning + the ELE objective rapidly reaches near-optimal path lengths. (Bottom Left) 10
example trajectories from each method: ELE discovers paths that more directly approach the goal than the
demonstrations that it learned from. (Bottom Right) Visualization of the ELE progress model f∗(st,st+k)
for st = (100,100) against all possible st+k. The model has learned that expert progress tends to be
positive to the right of st and negative to the left.

25

Published as a conference paper at ICLR 2023

Figure 23: Progress model estimates f∗(st,st+k) from nine different states st=(x,y) in the toy tabular
environment. Rows: x=50, x=100, and x=150. Columns: y=50, y=100, and y=150. Progress
estimates are generally high in the direction of the goal, and low in the opposite direction. Points near
the y=100 line are the most densely represented in the demonstration data, so the progress estimates
toward the center of the grid are the most well-defined.

26

	Introduction
	Related Works
	Methodology
	Grid world example

	Experiments
	Tasks
	Datasets
	Baselines
	Results
	Analysis

	Conclusion
	Appendix
	Implementation details
	Dataset Size
	Human baseline for Oracle task
	Progress reward variants
	Statistical analysis of results
	Analysis of the progress model
	FORM and Stochasticity
	Motivational example derivation and connection to stochastic processes

