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ABSTRACT

Retrieval-augmented generation (RAG) generally enhances large language mod-
els’ (LLMs) ability to solve knowledge-intensive tasks. But RAG could also lead
to performance degradation due to imperfect retrieval and the model’s limited abil-
ity to leverage retrieved content. In this work, we evaluate the robustness of LLMs
in practical RAG setups (henceforth retrieval robustness). We focus on three re-
search questions: (1) whether RAG is always better than non-RAG; (2) whether
more retrieved documents always lead to better performance; (3) and whether
document orders impact results. To facilitate this study, we establish a benchmark
of 1500 open-domain questions, each with retrieved documents from Wikipedia.
We introduce three robustness metrics, each corresponds to one research ques-
tion. Our comprehensive experiments, involving 11 LLMs and 3 prompting strate-
gies, reveal that all of these LLMs exhibit surprisingly high retrieval robustness;
nonetheless, different degrees of imperfect robustness hinders them from fully
utilizing the benefits of RAG.

1 INTRODUCTION

Large language models (LLMs) learn to acquire massive amounts of knowledge through large-scale
pre-training, enabling them to answer knowledge-intensive questions (OpenAI et al., 2024; An-
thropic, July. 2024; Meta, September 2024). However, relying exclusively on parametric knowledge
can lead to inaccuracies when dealing with unseen or time-sensitive information, or when the model
fails to precisely retrieve relevant knowledge from its own parameters. To alleviate these limitations,
retrieval-augmented generation (RAG) is proposed, where external documents containing informa-
tion relevant to the task are fetched from a datastore and provided to the model as context during
inference (Chen et al., 2017; Lewis et al., 2020).

Despite its potential, RAG does not always guarantee performance improvements. The retriever
might fail to retrieve relevant documents, and the LLMs might be distracted by irrelevant content,
leading to performance drop (Mallen et al., 2023). As achieving a perfect retriever remains an
elusive goal in practice, it is crucial for LLMs to behave robustly in the RAG setup to reduce the
risks during actual deployment.

Previous work has shown that LLMs are particularly vulnerable when provided with noisy contexts
that are synthetically constructed (Chen et al., 2024). Distracted by the specially designed mis-
leading information, models tend to produce incorrect outputs (Wu et al., 2024b). Despite yielding
valuable insights, synthetically constructed contexts are dissimilar to realistic retrieved contexts that
are usually drawn from credible corpora like Wikipedia and trusted news outlets.

To bridge this gap, this work benchmarks LLMs’ robustness under realistic RAG setups. We con-
sider an LLM retrieval robust if (1) its RAG performance is equal to or better than its non-RAG
performance; (2) adding more retrieved documents leads to equal or better performance; and (3)
its RAG performance is invariant to the order of retrieved documents. Three metrics are defined
correspondingly—no-degradation rate, retrieval size robustness, and retrieval order robustness.

We focus on open-domain question answering—a knowledge-intensive task where RAG is
widely adopted. We curate a benchmark of 1,500 samples by randomly drawing 500 ques-
tions each from three datasets—Natural Questions (Kwiatkowski et al., 2019), Hotpot QA (Yang
et al., 2018), ASQA (Stelmakh et al., 2022)—covering diverse domains and complexities.
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Figure 1: Comparison of retrieval robustness and
QA task performance across various LLMs. The
y-axis represents robustness (geometric mean of
the three robustness metrics), while the x-axis rep-
resents task performance (average across all k, o,
retrievers, and datasets). OpenAI GPT-4o and o3-
mini have very close robustness and performance.

To construct retrieved contexts, we leverage
two retrievers, including a canonical sparse
BM25 (Robertson & Zaragoza, 2009) retriever
and a dense retriever based on a strong embed-
ding model, BGE (Xiao et al., 2023). Both
retrievers retrieve context from Wikipedia ar-
ticles. For analyses of retrieval size and or-
der robustness, RAG setups with multiple re-
trieval sizes (5 to 100 documents) and three
ways of ordering them (original rank, reversed
rank, random shuffle) are evaluated. Our exper-
iments cover 11 LLMs from both open-source
and proprietary families. Each LLM is eval-
uated via vanilla prompting and two more so-
phisticated prompting strategies: one augments
the model’s own knowledge, and the other fil-
ters relevant retrieval contexts.

We find that LLMs are quite robust in general,
achieving over 80% scores on the geometric
mean of the three retrieval robustness metrics,
as shown by Figure 1. This indicates that, of-
tentimes, (1) RAG is better than non-RAG; (2)
more retrieved documents lead to better perfor-
mance; and (3) order of the documents does not
matter a lot. Nonetheless, the imperfect retrieval robustness reflects undesired behaviors, notably the
performance trade-off among individual samples (i.e., hurting performance on some examples while
gaining performance on others), which prevents the models from fully utilizing the benefits of RAG
and destabilizes response quality when changing the retrieval size or order. Such unpredictable
trade-off poses risks for realistic applications that demand consistent outcomes. Finally, we find that
retrieval robustness can be enhanced by augmenting the answers generated with the model’s own
knowledge, though it also limits the potential task performance gain from RAG.

Our contributions are summarized as follows:

• We propose sample-level metrics to rigorously measure retrieval robustness—how robust
LLMs handle queries in RAG setups.

• We compile a benchmark for evaluating retrieval robustness, following common RAG se-
tups in practice. It comprises diverse open-domain QA tasks along with retrieved docu-
ments from Wikipedia obtained by widely-used and strong retrievers.

• We conduct a comprehensive empirical study of 11 modern LLMs with 3 different prompt-
ing strategies, revealing the generally good robustness of LLMs in more realistic settings
and highlighting the consequences of their imperfect robustness.

2 RELATED WORKS

Retrieval-Augmented Generation (RAG) enhances parametric models by retrieving semantically
relevant information from a knowledge base (Gao et al., 2023b; Wu et al., 2024a). Typically, it
involves a retriever and a parametric language model. RAG can potentially help adapt pretrained
models to up-to-date knowledge, ground models with long-tail information, and thus improve fac-
tuality and accuracy (Asai et al., 2024). The pioneering RAG framework, DrQA (Chen et al., 2017),
was introduced to tackle knowledge-intensive open-domain question answering (QA) tasks, which
is still the main evaluation target of recent works. RAG has also been used for non-knowledge-
intensive tasks like language modeling, understanding, and reasoning (Borgeaud et al., 2022; Guo
et al., 2023; Izacard et al., 2024). There are many different ways to implement RAG. Some works,
e.g., knn-LM (Khandelwal et al., 2020), retrieve hidden states, while many other works retrieve text.
To utilize the retrieved documents, some works modified the model architecture. e.g., FiD (Izac-
ard & Grave, 2021) encoded each document separately and concatenated their hidden states in the
decoder, while RETRO (Borgeaud et al., 2022) added a chunked cross-attention module into the
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regular Transformer block. Another widely used method is to simply include the retrieved docu-
ments directly into the input. This can be done by putting them all together in one context (Ram
et al., 2023; Lee et al., 2024) or by generating answers with each of them separately and ensembling
the results (Guu et al., 2020; Lewis et al., 2020; Shi et al., 2024). Some works train the retriever
and the language model jointly (Lewis et al., 2020; Borgeaud et al., 2022; Lin et al., 2024), while
others fix the model and and only train the retriever (Ram et al., 2023; Shi et al., 2024). In this
paper, we opt for the simplest setup: we use off-the-shelf retrievers and LLMs, and we use the re-
trieved documents by directly including them in a single context window. This approach has become
increasingly practical with the long-context ability of modern LLMs (Lee et al., 2024).

Retrieval Robustness. Neural language models are shown to be easily distracted by adversari-
ally inserted irrelevant content (Jia & Liang, 2017; Shi et al., 2023; Weston & Sukhbaatar, 2023).
However, irrelevant context comes in naturally in any RAG setup due to the imperfect retriever.
Chen et al. (2024) showed that the LLM-based RAG performance goes down when increasing the
noise (i.e., documents that are relevant to the question but do not contain any information about
the answer) rate. Wu et al. (2024b) conducted a deeper analysis and found that highly semanti-
cally related information is more likely to distract LLMs. Thakur et al. (2024) evaluated LLM
RAG performance with a completely irrelevant set of documents and observed non-trivial halluci-
nation rates. Yoran et al. (2024) introduced the concept of retrieval robustness, “retrieval-robust
LLMs states that: (a) when relevant, the retrieved context should improve model performance;
(b) when irrelevant, the retrieved context should not hurt model performance.” However, all these
works usually handcrafted controlled yet synthetic evaluation setups that mixing irrelevant context
with relevant ones. Following the same spirit, we instead resort to a more realistic and practi-
cal setup where we simply pick the top-K contexts returned by a retriever which a natural mix-
ture of relevant and irrelevant content. And we extend the definition of retrieval robustness to the
three conditions stated in the introduction. In addition, some recent works tried to make RAG ro-
bust to intentional knowledge corruption attacks, e.g., injecting malicious facts (Zou et al., 2024;
Anonymous, 2024), which is not the type of robustness we would like to evaluate in this paper.

Retrieval Size Robustness

No-Degradation Rate

Retrieval Order Robustness

Figure 2: Our retrieval robustness metrics, target-
ing three research questions: (1) whether RAG is
always better than non-RAG; (2) whether more
retrieved documents always lead to better perfor-
mance; (3) whether document orders lead to con-
sistent results.

3 ROBUSTNESS METRICS

In this section, we present the three critical met-
rics for evaluating the retrieval robustness of
an LLM system, illustrated in Figure 2. We
define an LLM system as a backbone LLM,
paired with a prompting strategy. Let f(q, k, o)
denote the performance of an LLM system,
where q is the task query, k is the number
of retrieved documents, and o specifies the or-
der of the retrieved documents. In this paper,
f(q, k, o) is the correctness of the model’s re-
sponse to q, assessed by an LLM judge by com-
paring with the reference answer (§4.1). When
k > 0, f(q, k, o) represents the performance
of the LLM system in the RAG setup. For
consistency, we use f(q, 0) to denote the per-
formance of the LLM system in the non-RAG
setup, where model answers the query using its
own knowledge. See Section 4.3 for the choices
of k and o in our experiments.

No-Degradation Rate (NDR). This metric
measures how often the LLM system’s perfor-
mance with RAG f(q, k, o) (for any k > 0 and
o) is at least as good as the performance without
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RAG f(q, 0), which is calculated as:

NDR =
1

Z

∑
q∈Q

∑
k∈K

∑
o∈O

1
[
f(q, k, o) ≥ f(q, 0)

]
(1)

where K includes all choices of numbers of retrieved documents, O represents all possible document
orders used in the benchmark, and Q is the set of all task samples. Z = |Q| · |K| · |O| is the
normalization factor for the aggregation. A high NDR implies that, for most queries, using retrieval
does not degrade performance relative to the non-RAG baseline.

Retrieval Size Robustness (RSR). This metric examines how the system behaves as the number
of retrieved documents increases. Specifically, for each task query q and each value of k, we check
whether the performance is maintained or improved, compared to all smaller values of k. RSR only
considers k > 0, not involving the effect of NDR. Results for various ks are then aggregated across
all task samples, formally defined as:

RSR(q,ki,o) = 1
[
∧j<i[f(q, ki, o) ≥ f(q, kj , o)]

]
RSR =

1

Z

∑
q∈Q

∑
ki∈K,i>1

∑
o∈O

RSR(q,ki,o)
(2)

where Z = |Q| · (|K| − 1) · |O|. A high RSR indicates that performance rarely degrades when
adding more retrieved documents.

Retrieval Order Robustness (ROR). ROR concerns the sensitivity of the system to the order of
the same set of retrieved documents. For a task sample q and k > 0, let O denote selected choices of
permutations of the k documents. We can compute the standard deviation of the model performance
over all permutations o ∈ O, which is represented as σo∈O[f(q, k, o)]. For performance metrics
bounded between 0 and 1, the standard deviation is bounded between 0 and 0.5. Therefore, we scale
it by a factor of 2 to ensure the robustness metric ranges between 0 and 1. We compute the ROR
score as:

ROR =
1

Z

∑
q∈Q

∑
k∈K

(
1− 2σo∈O

[
f(q, k, o)

])
(3)

where Z = |Q| · |K|. A higher ROR means that different permutations of the same set of documents
produce more consistent performance.

The three metrics capture complementary aspects of retrieval robustness, reflecting different desired
behaviors of LLM systems with RAG in real world applications. NDR provides a safety guarantee
that retrieval will not harm results; RSR is critical for scenarios where retrieval size can be scaled
up for enhanced performance; and ROR is important for situations where document ranking is im-
perfect. Note that, for simplicity, we omit the marginalization over two different retrievers (see
Section 4.3) from the equations of all three metrics.

4 BENCHMARK SETUPS

We conduct experiments to benchmark retrieval robustness of LLM systems. Though RAG can
be applied for various tasks, we focus on the task where RAG is commonly adopted—answering
knowledge-intensive open-domain questions.

4.1 DATA AND EVALUATION METRICS

Open-domain QA Tasks. We sample from three QA datasets. Natural Questions (Kwiatkowski
et al., 2019) contains samples derived from Google Search queries, covering a broad range of ques-
tions real-world users ask online; Hotpot QA (Yang et al., 2018) is a multi-hop QA dataset that
requires chaining multiple passages to answer questions; ASQA (Stelmakh et al., 2022) targets ex-
traction of key information from multiple sources. We randomly sample 500 examples from each of
the datasets, totaling 1500 samples.

4
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Evaluation Metrics. Previous work usually used string match metrics for answers evalua-
tion (Mallen et al., 2023; Gao et al., 2023a). However, it is rigid and can not evaluate model
performance very well. Therefore, we prompt (see the prompts we used in Appendix D) Llama-
3.3-70B-Instruct to evaluate whether the generated responses align with the gold answers.1

Retrieval Corpus. We use Wikipedia as the corpus to retrieve documents from. We processed the
wikidump from June 2024, which contains 6 million articles. We split each article into chunks by
double newlines, resulting in 20 million chunks. Each chunk is treated as an independent “docu-
ment” for retrieval.

4.2 LLM SYSTEMS

Backbone LLMs. 11 LLMs from three open-source families and two proprietary families are
tested, including Llama-3 Instruct (3.1-8B, 3.1-70B, 3.2-1B, 3.2-3B) (Meta, July 2024;S), Mistral
Instruct (Nemo, Large) (Mistral.ai, July 2024;F), Command (R, R plus) (Cohere, Aug. 2024), Ope-
nAI GPT-4o (OpenAI et al., 2024), o3-mini (OpenAI, 2025), and Claude-3.5-sonnet (Anthropic,
July. 2024).

Prompting Strategies. Besides the vanilla prompting strategy that concatenates all retrieved doc-
uments in the prompt, we explore two alternative strategies that might help model incorporate infor-
mation in the retrieved documents more robustly. Both strategies involve two steps. (1) OwnKnow
obtains a draft answer based on models’ own knowledge by prompting without retrieval in the first
step, and then inserts this draft answer into the prompt for the RAG setup. (2) S2A, inspired by Sys-
tem 2 Attention (Weston & Sukhbaatar, 2023), first tries to identify the relevant retrieved documents
in the first step, and then only uses the identified documents in the RAG setup. This decouples rel-
evance estimation from answer extraction, allowing the answer extraction step to focus on the most
pertinent information.

4.3 RAG PARAMETERS
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Figure 3: Performance of the retrievers, measured
by the recall of gold answers within the concate-
nated retrieved documents. The gold answer is
considered covered if any of its alternative forms
exactly match a substring in the concatenated re-
trieved documents.

Retrievers. Our retrieval system is built on
top of Solr 92. We use two retrievers: one
is the canonical sparse retriever based on
BM25 (Robertson & Zaragoza, 2009), and the
other is cosine similarity based dense retriever
where we embeded each document by bge-
large-en-v1.53 (Xiao et al., 2023). For any ro-
bustness metric defined in Section 3, we get the
results for both retrievers and take the average.

Sizes. We experiment with retrieval sizes of
5, 10, 25, 50, 75, and 100 documents. The re-
trieval size is capped at 100 documents as most
models have reached their maximum context
lengths. When the retrieved documents exceed
the maximum context length of a model, we it-
eratively drop the lowest ranked document.

Orders. For each of these sizes, we apply
three ordering strategies based on the retriever’s
ranking of the documents: the original order
(returned by the retriever), the reversed order

1We also tried GPT-4o as the judge initially. However due to cost constraints for large-scale evaluation, we
opt for Llama-3.3-70B-Instruct. And on a subset of 2,000 samples, we find these two models agree at 93% of
time.

2https://solr.apache.org/docs/9_0_0/index.html
3http://huggingface.co/BAAI/bge-large-en-v1.5
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Figure 4: The three retrieval robustness metrics and task performance of experimented LLMs using
vanilla prompting. o3m: o3-mini; sonn: sonnet. The mean of task performance achieved with
different retrieval sizes and orders are is shown for each model. Model families are indicated by
icons, while the variants are indicated by model sizes (except for GPT-4o and Claude-3.5-sonnet).
As Llama variants of different sizes are released in different versions, Llama-3.1 and Llama-3.2 are
both included. Models generally have good retrieval robustness. While larger model sizes lead to
improved task performance, there exists no consistent trend across the retrieval robustness metrics.

(reversing the original order), and a randomly shuffled order. We test the reversed order because
sometimes we want to put the most relevant document to the end of the prompt (the closest to the
answer). We include a random order to simulate any potential reranking logic on top of the retriever.

Retrieval Quality. As our retrieval robustness benchmark relies on the retrievers, we examine the
retrieval quality by checking the recall of gold answers within the retrieved documents. We follow
prior work and determine if the concatenated retrieved documents contain the gold answer if its
substring is an exact match of any form of the gold answer (substring exact match) (Mallen et al.,
2023). For reference, we also report the best model performance without RAG (Non-RAG Perf)
to highlight the potential improvement that can be obtained with RAG. As shown in Figure 3, both
retrievers provide sufficiently high-quality retrieval, ensuring that the findings of our experiments
are based on valid setups.

5 RESULTS

5.1 OVERALL ROBUSTNESS

We report the three retrieval robustness metrics for LLM systems using vanilla prompting in Fig-
ure 4. Besides robustness, task performance is shown in the same figure with bars with a different
hatch style. Retrieval robustness is calculated following the definitions in Section 3, while task per-
formance is the average score across all k, o, retrievers, and datasets. All models achieve higher
than 80% retrieval robustness across all metrics, with GPT-4o and o3-mini surpassing 90%.
Compared to prior studies that highlight the weak robustness of RAG systems under synthetic setups,
such as using artificially created documents (Wu et al., 2024b), we show that LLMs demonstrate sur-
prisingly good retrieval robustness in more realistic settings. This high retrieval robustness means
we can safely apply RAG without overly stressing about whether RAG is better than non-RAG and
about the decisions on retrieval size and order, which can potential simplify RAG systems. Never-
theless, the remaining 10% may pose challenges for real-world deployment, particular for high-stake
domains where comprehensive reliability is required.

5.2 RELATION BETWEEN ROBUSTNESS AND PERFORMANCE

Although retrieval robustness metrics are derived from the sample-level task performance, retrieval
robustness does not always correlate with task performance. As shown in Figure 1 and Figure 4, task
performance usually gets better when models get larger. In contrast, we note that, larger LLMs can
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have lower retrieval robustness than smaller LLMs. For example, in Figure 1, Llama-3-8B has
higher robustness than 70B. If we “zoom in” to each of the three robustness metrics (Figure 4),
we can see that this inverse scaling trend mainly comes from No-Degradation Rate (NDR). This
is because larger models usually have richer parametric knowledge and answers more questions
correctly without retrieval, which means RAG will have a higher baseline to beat and thus RAG is
more likely to get worse than non-RAG. Therefore, in practice, when we apply RAG to knowledge-
rich LLMs (usually models of larger sizes), we need to be cautious about whether it will lead to
performance degradation from non-RAG.
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Figure 5: Task performance of models using
vanilla prompting under setups with actual no-
degradation rate (NDR) and perfect NDR. En-
hancing retrieval robustness could lead to a 12%
absolute performance gain for both models.

Here, we use one example to show how low ro-
bustness reduces RAG efficacy. In Figure 5,
solid lines illustrate the actual performance of
Mistral-Large and o3-mini at different number
of retrieved documents. Dashed lines show
their hypothetical performance under an ora-
cle setup. This oracle setup assumes perfect
NDR, meaning the models consistently gener-
ate responses at least as good as those produced
without retrieval. As the solid lines show, al-
though Mistral-Large surpasses o3-mini with-
out retrieval (0 retrieved documents), it yields
worse performance than o3-mini and even its
own non-RAG baseline when RAG is applied.
Conversely, if Mistral-Large has perfect NDR,
it would outperform o3-mini in the RAG setup.
The gap between the actual and oracle setups
demonstrate that Mistral-Large fails to preserve
its non-RAG performance for approximately
14% of the dataset samples, due to the insuffi-
cient retrieval robustness. Overall, retrieval ro-
bustness metrics complement standard task performance metrics and provide a new perspective of
how well LLMs perform in RAG settings.

5.3 EFFECT OF RETRIEVAL SIZE
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Figure 6: Task performance of models using
vanilla prompting under setups with actual RSR
and perfect RSR.

For most of the models, the overall task per-
formance is generally increasing as more
retrieved documents are added (see Fig-
ure 13, 14, 15, and 16 in Appendix). This again
demonstrates that in practice we do not have
to overly concern about picking the optimal re-
trieval size. If budget allows, we can simply
keep adding more documents till it reaches the
max input length limit.

Nevertheless, this does not indicate perfect re-
trieval size robustness, as models keep trad-
ing off performance across individual sam-
ples, i.e., hurting performance on some exam-
ples while gaining performance on others. Sim-
ilar to the perfect NDR setup, we investigate an
oracle setup with perfect RSR—choosing the
best answer among those generated at current
and all preceding values of ks as the final answer (Figure 6). Note that only answers produced by
RAG (i.e., k > 0) are considered in the perfect RSR setup to eliminate the effect of NDR. Although,
in the normal setup (actual RSR), task performance is increasing from k = 10 to k = 75, the
gain is much more significant in the hypothetical perfect RSR situation, enlarging the gap between
the two setups. This implies that models are constantly sacrificing some samples while enhancing
others with larger retrieval sizes. We think that the increasing number of retrieved documents chal-
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lenges models’ ability to identify helpful documents and handle longer inputs, and thus leads to the
imperfect robustness on retrieval size.

5.4 EFFECT OF RETRIEVAL ORDER
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Figure 7: Geometric mean of no-degradation rate
and retrieval size robustness, grouped by the order
of retrieved documents.

We break down retrieval robustness and task
performance by the order of the retrieved docu-
ments (Figure 7). Overall, LLMs demonstrate
good retrieval order robustness – the perfor-
mance achieved with different orders of the
retrieved documents is similar. This means,
in practice, we do not have to overly concern
about the order of documents. While GPT-4o
and o3-mini demonstrate the strongest retrieval
robustness and performance with normally or-
dered documents, all other models prefer the
reversed order. This suggests that placing
higher-ranked retrieved documents closer to
the question generally optimizes RAG perfor-
mance (see the prompt rag_qa.j2 in Ap-
pendix D).

Despite this high robustness, we underscore that performance variance across orders per-
sists at the sample level. We establish an oracle setup for retrieval order robustness that
selects the best response among responses generated with retrieved contexts ordered differ-
ently (perfect ROR), as shown in Figure 8. Picking the best response for each example
across different orders exhibits a large performance gain from each individual document order.
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Figure 8: Task performance of models using
vanilla prompting under setups with actual ROR
for each order and perfect ROR.

This indicates that each example has a different
best order, highlighting the need for continuing
efforts to improve order robustness.

5.5 EFFECTS OF PROMPTING STRATEGIES

Using prompting strategies to decompose re-
sponse generation has demonstrated effective-
ness in handling complex tasks. Figure 9 shows
that only the OwnKnow strategy that incorpo-
rates answers generated in the non-RAG setup
can consistently enhance retrieval robustness.
We believe outputs given by the non-RAG setup
serve as drafts and anchors, leading to reduced
variance. It is also possible that OwnKnow
benefits from its similarity to self-refinement
that was shown to be an effective prompting
technique (Yang et al., 2022; Madaan et al.,
2023). Although selecting task-relevant context benefits robustness when synthetic noisy passages
are injected into the input as shown by Weston & Sukhbaatar (2023), a similar S2A prompting
strategy fails to enhance retrieval robustness in our evaluations. We conjecture that, compared to
synthetic noisy contexts, realistic retrievers provide models with harder negative contexts that are
more challenging for the model to identify.

As we look into the maximum task performance across retrieval sizes rather than the mean task
performance, we observe that using OwnKnow might limit the maximum performance models can
possibly achieve, suggesting that the higher retrieval robustness of OwnKnow comes at a cost of
RAG effectiveness.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.4 0.5 0.6 0.7
Task Performance

0.80

0.85

0.90

0.95

Ro
bu

st
ne

ss

Vanilla vs. OwnKnow

0.4 0.5 0.6 0.7
Task Performance

0.80

0.85

0.90

0.95

Ro
bu

st
ne

ss

Vanilla vs. S2A

Llama 3.2 3B

Llama 3.1 70B

Command R

Command R+

Mistral Nemo

Mistral Large

GPT-4o

o3-mini

Claude 3.5 Sonnet

Vanilla

OwnKnow

S2A

Figure 9: Geometry mean of the three retrieval robustness metrics and task performance of LLMs
paired with different prompting strategies. The mean of task performance achieved with different
retrieval sizes and orders are shown for each model. Models are differentiated with colors and
prompting strategies are indicated by marker styles. The bar on the right of each marker indicates
the maximum performance across retrieval sizes.

6 CONCLUSIONS

We introduce retrieval robustness metrics—no-degradation rate, retrieval size robustness, and re-
trieval order robustness—to quantify how reliably LLMs handle queries via RAG. A realistic bench-
mark of 1,500 questions is compiled, spanning three open-domain QA datasets, with augmented
documents retrieved from Wikipedia using both sparse and dense retrievers. Our experiments with
10 LLMs from 5 families reveal that while models exceed 80% on those metrics, further improving
retrieval robustness is a challenge beyond model scaling. Imperfect robustness result in sample-level
trade-offs, often hurting the performance of some samples for the improvement on others, which for-
feits RAG’s potential gains. While incorporating outputs generated with the model’s own knowledge
can enhance retrieval robustness, it also limits the best performance that can be achieved by RAG.
We hope our benchmark inspires further research on robust RAG systems.

REPRODUCIBILITY STATEMENT

Questions in our benchmark come from Natural Questions Kwiatkowski et al. (2019) (Hugging-
face4), HotpotQA Yang et al. (2018) (Huggingface5, and ASQA Stelmakh et al. (2022) (Subset of
ALCE6). Upon acceptance, we will release scripts to reproduce our benchmark, including sampling
questions from the three QA datasets, processing Wikipedia dump, obtaining retrieved documents
based on the processed dump, and calculating metrics based on model outputs. We include the
prompt templates we use in our experiment in Appendix D.
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Figure 10: The three retrieval robustness metrics and task performance of experimented LLMs using
vanilla prompting on Natural Questions.
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A ADDITIONAL RESULTS

A.1 DATASET BREAKDOWN OF RETRIEVAL ROBUSTNESS

We show the retrieval robustness metrics and average RAG performance in Figure 10, 11, and 12.
Across all individual datasets, there is still no consistent improvement in retrieval robustness with
increased model sizes.

A.2 DATASET BREAKDOWN OF RAG PERFORMANCE ACROSS kS

We show open-domain QA performance at different numbers of retrieved documents in Figure 13,
with dataset breakdown in Figure 14, 15, and 16. Performance with each retriever and document
order can be found in Figure 17, 18, and 19.

Compared to non-RAG, open-source LLMs with RAG can always boost performance, with the
exception of Command R+ on Natural Questions. We also observe a performance drop on Hotpot
QA with the dense retriever when using Llama-3.1-70B.
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Figure 11: The three retrieval robustness metrics and task performance of experimented LLMs using
vanilla prompting on Hotpot QA.
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Figure 12: The three retrieval robustness metrics and task performance of experimented LLMs using
vanilla prompting on ASQA.
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Figure 13: Performance averaged across datasets, retrievers, and document orders.
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Figure 14: Performance on Natural Questions, averaged across retrievers and document orders.
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Figure 15: Performance on Hotpot QA, averaged across retrievers and document orders.
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Figure 16: Performance on ASQA, averaged across retrievers and document orders.
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Figure 17: Performance on Natural Questions with different retrievers and document orders.
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Figure 18: Performance on Hotpot QA with different retrievers and document orders.
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Figure 19: Performance on ASQA with different retrievers and document orders.

B INFERENCE SETUP

Inference Parameters. Due to the computational cost and running time, we use greedy decoding
and perform inference with each model under each setup once. During inference, models are allowed
to generate at most 100 tokens, though they never exceed the limit.

Inference Infrastructure. We use vLLM for more efficient inference (Kwon et al., 2023) and our
experiments are conducted on compute nodes with 8 H100 GPUs.

C THE USE OF LLMS

We use LLMs (Gemini and ChatGPT) to polish writing, including correcting grammar errors and
make language more concise.

D PROMPT TEMPLATES

The prompt templates (in jinja2 format) used in our experiments can be found at the end of Ap-
pendix.
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NON_RAG_QA.J2

1 Answer the following question in a concise manner without explanation.
Indicate your answer with "Answer:" and only include the answer words
or phrases. For example: "Question: What city is Kowloon a part of?

Answer: Hong Kong."
2

3 {{ question }}

RAG_QA.J2

1 Based on your own knowledge and retrieved contexts, answer the question
in a concise manner without any explanation. Indicate your answer
with "Answer:". For example: "Question: What city is Kowloon a part
of? Answer: Hong Kong." If the answer is not specified or mentioned
in the retrieved context, you must ignore the context and provide an
answer by yourself. You must not refrain from answering the question.

2

3 Retrieved contexts:
4 {% for c in sources %}Context {{loop.index}}
5 {{c}}
6 {% endfor %}
7 {{ question }}

OWNKNOW.J2

1 Previously, you answer the question with your own knowledge. Now, based
on your own knowledge and additional retrieved contexts, answer the
question in a concise manner without any explanation. Indicate your
answer with "Answer:". For example: "Question: What city is Kowloon a
part of? Previous Answer: previous answer. Answer: Hong Kong." If

the answer is not specified or mentioned in the retrieved context,
you must ignore the context and provide an answer by yourself. You
must not refrain from answering the question.

2

3 Retrieved contexts:
4 {% for c in sources %}Context {{loop.index}}
5 {{c}}
6 {% endfor %}
7 {{ question }} Previous Answer: {{ non_rag_output }}.

S2A.J2

1 Identify the retrieved context(s) that would be good context for
providing an unbiased answer to the question. Indicate your selected
context(s) "Selected Contexts:". For example: "Question: What city is
Kowloon a part of? Selected Conetxts: Context 2, Context 5." If

there is no retrieved context, reply with "Selected Conetxts: None".
2

3 Retrieved contexts:
4 {% for c in sources %}Context {{loop.index}}
5 {{c}}
6 {% endfor %}
7 {{ question }}

ANSWER_EVALUATION_NQ_HOTPOT.J2

1 You will be given a question, a list of gold answers to this question,
and a predicted answer. Any one answer or multiple answers from the
gold answer list can correctly answer the question. Your task is to
judge whether the predicted answer can answer the question correctly.

2 Note that predicted answer does not have to exactly match one or multiple
gold answers. It can answer the question correctly as long as its

meaning entails one or multiple gold answers and there is no any
additional incorrect information.
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3

4 Question:
5 {{ question }}
6

7 Gold Answers:
8 {{ gold_answer }}
9

10 Predicted Answer:
11 {{ pred_answer }}
12

13 Is the predicted answer a correct answer to the question?
14

15 IMPORTANT: Please strictly follow the following format in your response:
16 [Start answer]
17 <Your answer. Choose from: Yes, No>
18 [End answer]

ANSWER_EVALUATION_ASQA.J2

1 You will be given a question, gold answers to this question, and a
predicted answer. Gold answers are composed of multiple groups. Your
task is to judge whether the predicted answer cover each group of the
gold answers. Within one gold answer group, there can be multiple

alternative answers. As long as one of the alternative answers is
covered, the group is covered. Note that "cover" means "entail", in
other words, you need to judge the predicted answer entails any
answer within each group.

2

3 Question:
4 {{ question }}
5

6 Gold Answers:
7 {% for group in short_answer %}Group {{loop.index}}: {{ group }}
8 {% endfor %}
9 Predicted Answer:

10 {{ pred_answer }}
11

12 Does the predicted answer cover each group of the gold answers?
13

14 IMPORTANT: Please strictly follow the following format in your response:
15 [Start answer]
16 {% for group in short_answer %}Group {{loop.index}}: <Your answer. Choose

from: Yes, No>
17 {% endfor %}[End answer]
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