
Under review as a conference paper at ICLR 2022

FINE-GRAINED SOFTWARE VULNERABILITY DETEC-
TION VIA INFORMATION THEORY AND CONTRASTIVE
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Software vulnerabilities existing in a program or function of computer systems
have been becoming a serious and crucial concern. In a program or function con-
sisting of hundreds or thousands of source code statements, there are only few
statements causing the corresponding vulnerabilities. Vulnerability labeling on a
function or program level is usually done by experts with the assistance of ma-
chine learning tools; however, it will be much more costly and time-consuming
to do that on a statement level. In this paper, to tackle this challenging prob-
lem, we propose a novel end-to-end deep learning-based approach to obtain the
vulnerability-relevant code statements of a specific function. Inspired from previ-
ous approaches, we first leverage the mutual information theory for learning a set
of latent variables that can represent the relevance of the source code statements
to the corresponding function’s vulnerability. We then propose a novel clustered
spatial contrastive learning in order to further improve the representation learning
and robust the selection process of vulnerability-relevant code statements. The
experimental results on real-world datasets show the superiority of our proposed
method over other state-of-the-art baselines.

1 INTRODUCTION

Due to the variety of computer software as well as the diversity in its development processes, a large
amount of computer software faces software vulnerabilities (SVs), specific potential flaws, glitches,
weaknesses or oversights, that can be exploited by hackers or vandals resulting in severe and serious
economic damage (Dowd et al., 2006). Potential vulnerabilities presenting in software development
and deployment processes can create severe threats to cyber-security, leading to expenditure costs
of total over USD 1 trillion, a more than 50 percent increase from 2018 (McAfee & CSIS, 2020).
Although much effort has been devoted and many solutions have been proposed for software vul-
nerability detection (SVD), the number of SVs and the severity of the threat imposed by them have
gradually increased and caused considerable damage to individuals and companies (Ghaffarian &
Shahriari, 2017). These threats create an urgent need for automatic tools and methods to effectively
deal with a large amount of vulnerable code with a minimal level of human intervention.

There have been many methods proposed for SVD based on either machine learning or deep learning
approaches. Most previous work in software vulnerability detection (Shin et al., 2011; Yamaguchi
et al., 2011; Almorsy et al., 2012; Li et al., 2016; Grieco et al., 2016; Kim et al., 2017) belongs to the
former involving the knowledge of domain experts that can be outdated and biased (Zimmermann
et al., 2009). To mitigate this problem, deep learning approaches have been used to conduct SVD
and have shown great advances, notably in (Li et al., 2018a; Lin et al., 2018; Dam et al., 2018; Li
et al., 2018b; Duan et al., 2019; Cheng et al., 2019; Zhuang et al., 2020), over machine learning
approaches based on hand-crafted features.

Despite achieving the promising performance, current state-of-the-art deep learning-based methods
(e.g., (Li et al., 2018a; Dam et al., 2018; Li et al., 2018b)) are only able to detect software vulnera-
bilities at a function or program level. However, in real-world situations, programs or functions can
consist of hundreds or thousands of source code statements where only few of them, usually few core
statements, cause the corresponding vulnerabilities. Fig. 1 shows an example of a simple vulnerable

1



Under review as a conference paper at ICLR 2022

source code function. Among these many lines of code statements, there are only two statements
highlighted in red actually lead to the function’s vulnerability. The core statements underpinning a
vulnerability are even much sparser in source code of real-world applications.

Figure 1: An example of a buffer er-
ror vulnerability source code function.
For demonstration purpose, we choose
a short function. In this function, the
statement “data = dataBuffer - 8;”
is a vulnerability because we set data
pointer to before the allocated mem-
ory buffer, and the statement “data[i]
= source[i];” is a potential flaw due to
possibly copying data to memory before
the destination buffer.

Recently, instead of detecting whether a source code sec-
tion (i.e., a function or program. Hereafter, we use “sec-
tion or function or program” to denote a collection of
code statements) is vulnerable. There have been some ap-
proaches (Li et al., 2020; Nguyen et al., 2021) proposed
to deal with the fine-grained software vulnerability detec-
tion problem. This includes highlighting statements that
are highly relevant to the corresponding function’s vul-
nerability and associated code statements. In doing this,
we can then significantly speed up the process of isolating
and detecting software vulnerabilities, thereby reducing
the time and cost involved.

In particular, Li et al. (2020) proposed a new deep learn-
ing framework named VulDeeLocator for fine-grained
vulnerability detection. However, VulDeeLocator cannot
work directly with the original source code. It requires to
compile the source code to Lower Level Virtual Machine
intermediate code and cannot be used if a function can-
not be compiled. Furthermore, besides using the source
code section F (e.g., a C/C++ function or program) and
its corresponding label Y (i.e., Y ∈ {0, 1} where 1: vul-
nerable and 0: non-vulnerable), VulDeeLocator requires
the information relevant to vulnerable code statements for
extracting tokens from a function according to a given set
of vulnerability syntax characteristics, hence it cannot be
operated in the unsupervised setting (i.e., where the train-
ing process does not require any information relevant to
the labels at the code statement level). Nguyen et al.
(2021) proposed a novel method, named Information-
theoretic code vulnerability highlighting (ICVH), based on the concept of mutual information to
detect software vulnerabilities at a fine-grained level. The authors use ICVH as an explaining model
aiming to explain the reference model (i.e., the learning model approximating the true conditional
distribution p(Y | F )) by specifying the K code statements in the given source code function,
which mostly contribute to the vulnerability prediction decision of the reference model. ICVH can
be implemented in the unsupervised setting and works directly on the original source code.

In this paper, we propose a novel end-to-end deep learning-based approach for fine-grained software
vulnerability detection that allows us to find and highlight code statements, in functions or programs,
truly relevant to the presence of significant source code vulnerabilities. In particular, inspired from
Chen et al. (2018); Nguyen et al. (2021), we first leverage the mutual information theory in learning
a set of independent Bernoulli latent variables that can represent the relevance of the source code
statements to the corresponding function’s vulnerability. We name this one as a random selection
process ε picking out a subset F̃ = ε (F ) ⊂ F . Moreover, we observe that for vulnerable source
code sections (i.e., functions or programs), there are several core statements causing their vulner-
ability. If we group these core statements together, we have vulnerability patterns shared across
vulnerable source code sections. For example, the buffer overflow error can have two vulnerability
patterns named “buffer copy without checking size of input” or “the improper validation of array
index”. Additionally, those hidden vulnerability patterns can be embedded into real-world source
code sections at different spatial locations to form realistic vulnerable source code sections.

More specifically, given a set of vulnerable source code sections, we need to devise an elegant
mechanism to guide the selection process ε to select and highlight hidden vulnerability patterns.
This is evident a challenging task since vulnerability patterns are hidden and can be embedded into
real vulnerable source code sections at different spatial locations. To this end, for characterizing
a vulnerable source code section F , we consider F top including K statements in F with the top

2



Under review as a conference paper at ICLR 2022

K highest selection probabilities. We further observe that a vulnerability type consists of several
vulnerability patterns and vulnerable source code sections originated from the same vulnerability
pattern possess very similar the top K statements F top which tend to form well-separated clusters.
Based on this observation, we propose clustered spatial contrastive learning term inspired from
supervised contrastive learning (Khosla et al., 2020), which encourages F top in the same cluster to
have similar representations.

Finally, similar to Nguyen et al. (2021), we conduct experiments on two real-world source-code
datasets CWE-119 and CWE-399. The extensive experiments on these two real-world datasets show
the advancements of our proposed method in selecting and highlighting the core vulnerable state-
ments more accurately indicated by its performance superiority over baselines by a wide margin.

2 FINE-GRAINED SOFTWARE VULNERABILITY DETECTION

We denote a source code section (e.g., a C/C++ function or program) as F = [f1, . . . ,fL], which
consists of L lines of code statements f1, . . . ,fL (L can a be a large number, e.g., hundreds or
thousands). In practice, each code statement is represented as a vector, which is extracted by some
embedding methods. As those embedding methods are not the focus of this paper, we leave these
details to the experiment section. We assume that F ’s vulnerability Y ∈ {0, 1} (where 1: vulnerable
and 0: non-vulnerable) is observed (labeled by experts). As previously discussed, there is usually
a small subset with K code statements that actually lead to F being vulnerable, denoted as F̃ =
[f i1 , . . . ,f iK ] = [f j ]j∈S where S = {i1, . . . , iK} ⊂ {1, . . . , L} (i1 < i2 < ... < iK). To select
the vulnerability-relevant statements F̃ for each specific source code section F , we apply to use a
learnable random selection process ε, i.e., F̃ = ε (F ), whose training principle and construction are
presented in Section 2.1. We then propose a novel clustered spatial contrastive learning, which can
model important properties for the relationship of the source code sections, presented in Section 2.2
to further improve the representation learning and robust the selection process of F̃ .

It is worth noting that most of available datasets only have the vulnerability label (i.e., Y ) at the
source code level (i.e., to know whether a function F is vulnerable) and they do not contain the
information of the source code statements causing vulnerabilities. In the training process, our pro-
posed method only require the vulnerability label at the source code level (i.e., Y ) and are capable
of pointing out the vulnerability-relevant statements. In the context of fine-grained software vul-
nerability detection, this setting is considered as the unsupervised one mentioned in Nguyen et al.
(2021), meaning that the training process does not require labels at the code statement level (i.e., the
ground truth of vulnerable code statements causing vulnerabilities). The ground truth of vulnerable
code statements causing vulnerabilities is only used in the evaluation process.

2.1 TRAINING PRINCIPLE AND CONSTRUCTION OF THE SELECTION PROCESS

Training principle Inspired from Chen et al. (2018); Nguyen et al. (2021), we apply to use mutual
information (i.e., a measure of the dependence between two random variables and it captures how
much knowledge of one random variable reduces the uncertainty about the other) to the fine-grained
software vulnerability detection problem. We implement mutual information as a training principle
for obtaining the most vulnerability-relevant statements F̃ of each specific source code section F .
If we view F̃ and Y as random variables, the selection process ε can be learned by maximizing the
mutual information between F̃ and Y , formulated as follows:

maxε I(F̃ , Y ). (1)

We expand Eq. (1) further as the Kullback-Leibler divergence of the product of marginal distribu-
tions of F̃ and Y from their joint distribution:

I(F̃ , Y ) =

∫
p(F̃ , Y ) log

p(F̃ , Y )

p(F̃ )p(Y )
dF̃dY

≥
∫
p(Y, F̃ ) log

q(Y | F̃ )
p(Y )

dY dF̃ (2)

3



Under review as a conference paper at ICLR 2022

Noting that in the above derivation, we use a variational distribution q(Y |F̃ ) to approximate the
posterior p(Y | F̃ ), hence deriving a variational lower bound of I(F̃ , Y ) for which the equality
holds if q(Y | F̃ ) = p(Y | F̃ ). This can be further expanded as:

I(F̃ , Y ) ≥
∫
p(Y, F̃ , F ) log

q(Y | F̃ )
p(Y )

dY dF̃dF

=EFEF̃ |F [
∑
Y

p(Y |F ) log q(Y |F̃ )] + const (3)

We note that F̃ |F := F̃ ∼ p(·|F ) := ε (F ) is the same representation of the random selection
process and p(Y |F ) as mentioned before could the ground-truth conditional distribution of the F ’s
label on all of its features or probabilistic prediction from a reference model.

To model the conditional variational distribution q(Y |F̃ ), we introduce a classifier implemented
with a neural network, which takes F̃ as input and outputs its corresponding label. Our objective is
to learn the selection process as well as the classifier to maximize the mutual information:

maxε,q(EFEF̃ |F [
∑
Y

p(Y |F ) log q(Y |F̃ )]). (4)

The mutual information facilitates a joint training process for the classifier and the selection process.
The classifier is learned to identify a subset of the features leading to a data sample’s label while the
selection process is designed to select the best subset according to the feedback of the classifier.

Selection process For the selection process, we apply to use the multivariate Bernoulli distribu-
tion. Without loss of generality, we assume that all source code has the length of L statements
(i.e., filling with 0 (s) for the shorter source code and truncating the longer source code). For each
function, we use a binary latent vector Z ∈ {0, 1}L where each element zi indicates whether fi is
related to the vulnerability of F . As Z depends on F , we denote Z(F ). With Z, we further construct
F̃ = ε (F ) by F̃ = Z (F ) � F , where � represents the element-wise product.

To construct Z, we model Z ∼
∏L
i=1 Bernoulli(pi), which yields f̃i = fi with probability pi and

f̃i = 0 with probability 1 − pi. We then construct pi = ωi (F ;α) where ω is a neural network
parameterized by α, taking F as input, and outputting a probability. We then employ another neural
network g(F̃ ;β) to define q(Y |F̃ ). Recall that F̃ = [zifi]

L
i=1 where Zi ∼ Bernoulli (pi) with

pi = ωi(F ;α). We apply the Gumbel softmax distribution to do continuous relaxation that allows
us to jointly train ω (·;α) and g (·;β). Let ai, bi

iid∼ Gumbel(0, 1) and we sample Zi (F ;α) ∼
Concrete(log ωi(F ;α), log(1− ωi(F ;α))), we have:

Zi (F ;α) =
exp{ logωi(F ;α)+ai

τ }
exp{ logωi(F ;α)+ai

τ }+ exp{ log(1−ωi(F ;α))+bi
τ }

2.2 CLUSTERED SPATIAL CONTRASTIVE LEARNING

Motivation For each vulnerable function F , we observe that there are few statements causing
vulnerability. If we group those core statements together, they form vulnerability patterns. The left-
hand figure in Figure 2 shows a vulnerability pattern named the improper validation of array index
flaw pattern for the buffer overflow error in which the software performs operations on a memory
buffer, but it can read from or write to a memory location that is outside of the intended boundary
of the buffer. More specifically, this aims to get a value from an array (i.e., int *array) via specific
index and save this value into a variable (i.e., value). However, this only verifies that the given array
index is less than the maximum length of the array using the statement “if(index<len)” but does not
check for the minimum value, hence allowing a negative value to be accepted as the input array
index, which will result in an out of bounds read and may allow access to sensitive memory.

4



Under review as a conference paper at ICLR 2022

Figure 2: An example of the improper validation of array index flaw pattern (i.e., the left-hand
figure) with two real-world source code functions (i.e., the middle and right-hand figures) containing
this pattern. In each function, there are some parts omitted for the brevity.

As shown in Figure 2, this vulnerability pattern is embedded into real-world functions getValue and
takeArrayValue in which the core statements in the vulnerability pattern are placed into different
spatial locations under different variable names. We wish to guide the selection process so that the
vulnerable source code sections originated from the same vulnerability pattern have similar selected
and highlighted statements which commonly specify this vulnerability pattern. This is challenging
because the common vulnerability pattern is embedded into those source code sections at different
spatial locations. To address this issue, given a source code section F , we define F top as a subset of
F including its K statements with the top K selection probability pi = ωi (F ;α) and employ F top
to characterize the predicted vulnerability pattern of F . It is worth noting that the statements F top
preserves the order in F .

To enforce two vulnerable source code sections originated from the same vulnerability pattern hav-
ing the same F top, an initial naive solution is to employ the supervised contrastive learning (Khosla
et al., 2020) to reach the following objective function based on the contrastive learning principle as
follows:

Lscl =
∑
i∈I

1yi=1
−1
|P (i)|

∑
p∈P (i)

log
exp(sim(F topi , F topp )/τ)∑

a∈A(i) exp(sim(F topi , F topa )/τ)
(5)

where I ≡ {1...m} is a set of indices of input data in a specific mini-batch, sim is the cosine
similarity, τ > 0 is a scalar temperature parameter, A(i) ≡ I \ {i}, P (i) ≡ {p ∈ A(i) : yp = 1}
is the set of indices of vulnerable source code sections with the label 1 (1 : vulnerable and 0:
non-vulnerable) in the mini-batch except i, |P (i)| is its cardinality, and 1A represents the indicator
function.

It can be observed that although the objective function in (5) encourages vulnerable source code
sections sharing the same selected and highlighted vulnerability pattern, it seems to overdo this by
forcing all vulnerable source code sections sharing the same vulnerability pattern. It what follows,
we present an efficient workaround to mitigate this drawback.

Clustered spatial contrastive learning We observe that each different vulnerability type might
have some different vulnerability patterns causing it. For example, the buffer overflow error can have
“buffer copy without checking size of input” or “the improper validation of array index”, and other
vulnerability patterns. Please refer to the appendix section for more details. We further observe that
the vulnerable source code sections originated from the same vulnerability pattern have the similar
F top and tend to form a well-separated cluster as shown in Figure 3. Therefore, we propose to do
clustering analysis (e.g., k-means) on F top to group vulnerable source code sections with the same
vulnerability patterns and employs contrastive learning to force them to become more similar as
follows:

Lcscl =
∑
i∈I

1yi=1
−1
|C(i)|

∑
c∈C(i)

log
exp(sim(F topi , F topc )/τ)∑

a∈A(i) exp(sim(F topi , F topa )/τ)
(6)

5



Under review as a conference paper at ICLR 2022

Figure 3: A demonstration of different vulnerability patterns forming different patterns in the latent
space for the buffer overflow error. In this one, we assume that there are three different patterns
causing the buffer overflow error (e.g., the CWE-119 dataset). Note that each data point in a pattern
is a specific F top of a corresponding function F . In reality, we can have more different vulnerability
patterns in the the buffer overflow error.

where I ≡ {1...m} is a set of indices of input data in a specific mini-batch, A(i) ≡ I \ {i},
C(i) ≡ {c ∈ A(i) : ỹc = ỹi and yc = 1} is the set of indices of vulnerable source code sections
labeled 1 which are in the same cluster as Fi except i, and |C(i)| is its cardinality. Note that in (6),
we apply k-means for the current mini-batch and denote ỹi as the cluster label of the source code
section Fi.

Combining the objective functions mentioned in Eqs. (4 and 6), we arrive at the following objective
function:

maxε,q(EFEF̃ |F [
∑
Y

p(Y |F ) log q(Y |F̃ )]− αLcscl) (7)

where α > 0 is the trade-off hyper-parameter.

3 EXPERIMENTS

3.1 BASELINE APPROACHES

We revised several possible baseline approaches and compared with our proposed method (i.e.,
named FinVulD-IC standing for Fine-grained Software Vulnerability Detection via Information The-
ory and Contrastive Learning). From machine learning and data mining perspectives, it seems that
the existing methods in interpretable machine learning (Ribeiro et al., 2016; Shrikumar et al., 2017;
Lundberg & Lee, 2017; Chen et al., 2018) with adoption are ready to apply. Unfortunately, be-
sides Chen et al. (2018), none of others can be adopted to be applicable to the specific context of
statement-grained vulnerability detection.

The main baseline to our proposed FinVulD-IC approach is the Information-theoretic code vulnera-
bility highlighting (ICVH) introduced by Nguyen et al. (2021). We did not compare with VulDee-
Locator (Li et al., 2020) because: i) it cannot work directly with source code (i.e., the source code
needs to be compiled to the Lower Level Virtual Machine intermediate code and the method cannot
be used when a program source code cannot be compiled), and ii) VulDeeLocator requires informa-
tion relevant to vulnerable code statements for extracting tokens from program code according to a
given set of vulnerability syntax characteristics, hence it cannot be operated in the unsupervised set-
ting (i.e., where we do not use the information about the ground truth of vunerable code statements
in the fine-grained software vulnerability detection problem).

3.2 EXPERIMENTAL SETUP

Experimental datasets We used two real-world datasets including the resource management er-
ror vulnerabilities (i.e., CWE-399 consisting of 1,010 vulnerable functions and 1,313 non-vulnerable
functions) and the buffer error vulnerabilities (CWE-119 consisting of 5,582 vulnerable functions

6



Under review as a conference paper at ICLR 2022

and 5,099 non-vulnerable functions) collected by Li et al. (2018a). The minimum, mean, and maxi-
mum length of functions in CWE-399 and CWE-119 are (4; 51; 177) and (4; 21; 164) respectively.
Note that to the identical functions in both CWE-119 and CWE-399 datasets, we keep one and
remove the rest.

Labeling core vulnerable statements for evaluation The CWE-399 and CWE-119 datasets only
have vulnerability labels at the function level (i.e., the function is vulnerable or non-vulnerable). In
the training process, we do not use the information of vulnerable statements (i.e., the vulnerability
labels at the statement level); however, this information is necessary to evaluate the models’ per-
formance. To obtain the ground truth of vulnerable code statements, inspired from Nguyen et al.
(2021), we used the description of vulnerability information (i.e., the comments and annotations) in
the original source code functions as well as the differences between the vulnerable versions and the
fixed versions (i.e., non-vulnerable versions) of the source code functions.

Measures and evaluation The main purpose of our proposed FinVulD-IC method is to support
programmers and developers to narrow down the vulnerable scope for seeking vulnerable state-
ments. This would be helpful in the context that they need to identify several vulnerable statements
from hundreds or thousands of lines of code. We aim to specify lines of statements (e.g., top K=5)
so that with a high probability those lines cover most or all vulnerable statements. Bearing this
incentive, and inspired from Nguyen et al. (2021), to evaluate the performance of the our proposed
method and baselines, we use two measures introduced in Nguyen et al. (2021) including: vulner-
ability coverage proportion (VCP) (i.e., the proportion of correctly detected vulnerable statements
over all vulnerable statements in a dataset) and vulnerability coverage accuracy (VCA) (i.e., the ratio
of the successfully detected functions, having all vulnerable statements successfully detected, over
all functions in a dataset). In addition to VCP and VCA measures, we also reported the label (i.e.,
Y ) classification accuracy (ACC) on CWE-399 and CWE-119 datasets for the mentioned methods.

For the data processing and embedding, and the models’ configuration, please refer to the appendix
section.

3.3 EXPERIMENTAL RESULTS

Code vulnerability highlighting with selected code statements in the unsupervised setting We
compared the performance of our proposed FinVulD-IC method with baselines including RSM (i.e.,
the random selection method, we first randomly chose K code statements from each function in the
CWE-119 and CWE-399 datasets, and then we compute the VCP and VCA measures of the method
for each dataset), L2X (Chen et al., 2018), and ICVH (Nguyen et al., 2021) in the unsupervised
setting (i.e., we do not use any information about ground truth of vulnerable code statements in
the training process) for highlighting the vulnerable code statements. We aim to find out the top
K statements that mostly cause the vulnerability of each function. The number of selected code
statements for each function is fixed equal to 5 or 10 as mentioned in Table 1.

Table 1: Performance results in terms of two main measures including VCP and VCA on the testing
set of the CWE-399 and CWE-119 datasets for RSM, L2X, ICVH and FinVulD-IC methods with
K = 5 and K = 10 (best performance is shown in bold).

Dataset K Method VCP VCA ACC

CWE-399 5

RSM 16.2% 15.0% NA
L2X 77.7% 68.0% 95.8%

ICVH 69.5% 54.7% 95.3%
FinVulD-IC 80.4% 72.0% 96.0%

CWE-119 5

RSM 36.7% 27.2% NA
L2X 89.2% 84.5% 93.1%

ICVH 77.2% 67.9% 92.6%
FinVulD-IC 90.9% 87.8% 93.8%

Dataset K Method VCP VCA ACC

CWE-399 10

RSM 48.7% 38.0% NA
L2X 80.4% 71.0% 94.7%

ICVH 84.5% 77.0% 96.4%
FinVulD-IC 87.2% 81.0% 96.9%

CWE-119 10

RSM 49.9% 46.9% NA
L2X 93.2% 90.3% 93.7%

ICVH 93.5% 91.1% 94.0%
FinVulD-IC 97.5% 95.5% 93.9%

The experimental results in Table 1 show that our proposed FinVulD-IC method achieved a much
higher performance for the VCP and VCA measures compared with the RSM, L2X, and ICVH meth-
ods on both CWE-399 and CWE-119 datasets in both cases K = 5 and K = 10. For example,
to the CWE-399 dataset with K = 10, our proposed FinVulD-IC method achieved 87.2% for VCP
and 81.0% for VCA while (RSM, L2X, and ICVH) achieved (48.7%, 80.4%, and 84.5%) for VCP
and (38.0%, 71.0%, and 77.0%) for VCA respectively. We also observed that the higher value of

7



Under review as a conference paper at ICLR 2022

selected code statement K was used, the higher performance for the VCP and VCA measures that
the models obtained.

Furthermore, the higher classification accuracy (ACC) in almost cases on the CWE-399 and CWE-
119 datasets withK = 5 andK = 10 shows that our proposed FinVulD-IC method achieved a better
highlighting performance in terms of making label predictions and highlighting the vulnerable code
statements compared to the baselines.

3.4 EXPLANATORY CAPABILITY OF OUR PROPOSED METHOD

Figure 4: The source code function and selected
code statements highlighted relevant to vulner-
abilities are shown with K = 5. The green and
red lines highlight the detected code statements
while red lines specify the core vulnerable state-
ments obtained from the ground truth, and these
lines are detected by our method. For demon-
stration purpose, we choose a simple and short
vulnerable source code function.

In order to demonstrate the ability of our pro-
posed method in detecting and highlighting the
vulnerable code statements in the vulnerable
functions to support security auditors and code
developers, in this section, we show some visu-
alizations of the selected code statements in some
vulnerable functions. Note that, for demonstra-
tion purpose and simplicity, we choose simple
and short vulnerable source code functions. We
set K = 5 for these functions as mentioned in
Figs. (4 and 5). In these figures, the colored
lines (i.e., the green and red lines) highlight the
detected code statements obtained when using
our proposed method in the unsupervised learn-
ing setting. In addition, red lines specify the core
vulnerable statements obtained from the ground
truth, and these lines are detected by our method.

For example, in Fig. 4, the vulnerable func-
tion has two vulnerable code statements including
“memset ( var1 , str , 100 - 1 ) ;”, which is a flaw
because we initialize var1 as a large buffer that is
larger than the small buffer used in the sink, and
“strcpy ( var4 , var1 ) ;”, which is a potential flaw because of the possible buffer overflow if data is
larger than dest, which lead to a vulnerability. Our proposed method with K = 5 can detect these
vulnerable statements which cause the corresponding function vulnerable.

Figure 5: The left-hand and right-hand fig-
ures are the first and second parts of the func-
tion respectively. The source code function
and selected code statements highlighted rele-
vant to vulnerabilities are shown with K = 5.
The the green and red lines highlight the de-
tected code statements while red lines specify
the core vulnerable statements obtained from
the ground truth, and these lines are detected
by our method. For demonstration purpose and
simplicity, we choose a simple and short vulner-
able source code function.

In Fig. 5, the function has some core vulnera-
ble code statements including “if ( fgets ( var2 ,
var3 , stdin ) != NULL )” which is a potential
vulnerability because we read data from the con-
sole using fgets(), and “if ( var1 > wcslen ( var7
) )” which is potential flaw due to no maximum
limitation for memory allocation. Our method
with K = 5 can also detect all of these potential
vulnerable code statements that make the corre-
sponding function vulnerable.

3.5 ABLATION STUDIES

In this section, we investigate the correlation
between the number of chosen clusters guiding
the computation of the proposed clustered spa-
tial contrastive learning mentioned in Eq. (6),
the trade-off hyper-parameter α representing for
the weight of the proposed clustered spatial con-
trastive learning term in the final objective func-
tion 7, and the VCP and VCA measures for our
proposed FinVulD-IC method. As mentioned in
the experiments section, the number of chosen

8



Under review as a conference paper at ICLR 2022

Figure 6: The correlation between the number of chosen clusters and the trade-off hyper-parameter
α, and the VCP and VCA measures.

clusters used in our proposed clustered spatial contrastive learning is set equal to 3 while the trade-
off parameter α is in {10−2, 10−1, 100}. In this ablation study, the number of chosen clusters varies
in {1, 3, 5, 7, 10} whilst the trade-off hyper-parameter α varies in {0, 10−3, 10−2, 10−1, 100, 2 ×
100, 3× 100}.
As shown in Fig. 6 (the left-hand figure), we observe that our proposed FinVulD-IC method obtains
a higher performance for the VCP and VCA measures on both CWE-119 and CWE-399 datasets
when the chosen cluster is in {3, 5, 7} compared to the case in which the chosen cluster is equal to 1
or 10. In the case of the chosen cluster equal to 1, we assume that to each vulnerability type (e.g., the
buffer overflow error), there is only one dynamic pattern causing the corresponding vulnerability;
however, in reality, for each vulnerability type, there are some vulnerability patterns as mentioned
in section 2.2. To the case when we set the chosen cluster equal to 10, we may set the number of
vulnerability patterns higher than the true one. These are the reasons why the model’s performance
in these cases are lower than the case when the chosen cluster varies in {3, 5, 7} which can reflect
more appropriate values of the true number of patterns in each dataset (i.e., CWE-399 or CWE-119).

To the case of the trade-off hyper-parameter α, the results in Fig. 6 (the right-hand figure) show that
we can obtain a better model’s performance when α varies in {100, 2× 100, 3× 100} compared to
the case in which α varies in {0, 10−3, 10−2, 10−1}. It means that the clustered spatial contrastive
learning term plays an important role in the training process because the model’s performance is
significantly improved, and the model’s performance is much higher than the case without using this
term (i.e., the value of α is set to 0). Furthermore, the results in Fig. 6 (the right-hand figure) also
indicate that we should set the value of the trade-off hyper-parameter α higher than 10−1 to make
sure that we use enough information of the clustered spatial contrastive learning term to enhance the
representation learning and robust the selection process of vulnerability-relevant code statements.

4 CONCLUSION

In this paper, we have successfully proposed a novel end-to-end deep learning-based method for
tackling the fine-grained software vulnerability detection problem. In particular, we first leverage
the mutual information theory in learning a set of independent Bernoulli latent variables that can rep-
resent the relevance of the source code statements to the corresponding function’s vulnerability. This
one is named as a random selection process ε. We then propose a novel clustered spatial contrastive
learning in order to further improve the representation learning and robust the random selection
process ε. Specifically, our novel clustered spatial contrastive learning guides the random selection
process ε to select and highlight hidden vulnerability pattern characterized by F top in source code
sections so that the vulnerable source code sections originated from the same vulnerability pattern
are encouraged to have similar selected and highlighted vulnerability-relevant code statements. The
experimental results show the superiority of our proposed FinVulD-IC method compared with other
state-of-the-art baselines in selecting and highlighting the vulnerable code statements in source code
functions.

9



Under review as a conference paper at ICLR 2022

REFERENCES

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, Geoffrey
Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16), pp. 265–283, 2016.

M. Almorsy, J.C. Grundy, and A. Ibrahim. Supporting automated vulnerability analysis using for-
malized vulnerability signatures. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2012, pp. 100–109, 2012. ISBN 978-1-4503-1204-2.

J. Chen, L. Song, M. J. Wainwright, and M. I. Jordan. Learning to explain: An information-theoretic
perspective on model interpretation. CoRR, abs/1802.07814, 2018.

Xiao Cheng, Haoyu Wang, Jiayi Hua, Miao Zhang, Guoai Xu, Li Yi, and Yulei Sui. Static detec-
tion of control-flow-related vulnerabilities using graph embedding. In 2019 24th International
Conference on Engineering of Complex Computer Systems (ICECCS), 2019.

H. K. Dam, T. Tran, T. Pham, N. S. Wee, J. Grundy, and A. Ghose. Automatic feature learning for
predicting vulnerable software components. IEEE Transactions on Software Engineering, 2018.

M. Dowd, J. McDonald, and J. Schuh. The Art of Software Security Assessment: Identifying and
Preventing Software Vulnerabilities. Addison-Wesley Professional, 2006. ISBN 0321444426.

Xu Duan, Jingzheng Wu, Shouling Ji, Zhiqing Rui, Tianyue Luo, Mutian Yang, and Yanjun Wu. Vul-
sniper: Focus your attention to shoot fine-grained vulnerabilities. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 4665–4671, 2019.

Seyed M. Ghaffarian and Hamid R. Shahriari. Software vulnerability analysis and discovery using
machine-learning and data-mining techniques: A survey. ACM Computing Surveys (CSUR), 50
(4):56, 2017.

G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier. Toward large-scale vulnerabil-
ity discovery using machine learning. In Proceedings of the Sixth ACM Conference on Data and
Application Security and Privacy, CODASPY ’16, pp. 85–96, 2016. ISBN 978-1-4503-3935-3.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. CoRR, abs/2004.11362,
2020.

S. Kim, S. Woo, H. Lee, and H. Oh. VUDDY: A scalable approach for vulnerable code clone
discovery. In IEEE Symposium on Security and Privacy, pp. 595–614. IEEE Computer Society,
2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu. Vulpecker: An automated vulnerability detection
system based on code similarity analysis. In Proceedings of the 32Nd Annual Conference on
Computer Security Applications, ACSAC ’16, pp. 201–213, 2016. ISBN 978-1-4503-4771-6.

Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong. Vuldeepecker: A deep
learning-based system for vulnerability detection. CoRR, abs/1801.01681, 2018a.

Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin. Vuldeelocator: A deep learning-based fine-grained
vulnerability detector. arXiv preprint arXiv:2001.02350, 2020.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, Zhaoxuan Chen, Sujuan Wang, and Jialai
Wang. Sysevr: A framework for using deep learning to detect software vulnerabilities. CoRR,
abs/1807.06756, 2018b.

G. Lin, J. Zhang, W. Luo, L. Pan, Y. Xiang, O. De Vel, and P. Montague. Cross-project transfer
representation learning for vulnerable function discovery. In IEEE Transactions on Industrial
Informatics, 2018.

S. M. Lundberg and S-I. Lee. A unified approach to interpreting model predictions. In Advances in
Neural Information Processing Systems, pp. 4765–4774, 2017.

10



Under review as a conference paper at ICLR 2022

McAfee and CSIS. Latest report from mcafee and csis uncovers the hidden costs of cybercrime
beyond economic impact. 2020.

Van Nguyen, Trung Le, Olivier de Vel, Paul Montague, John Grundy, and Dinh Phung. Information-
theoretic source code vulnerability highlighting. In International Joint Conference on Neural
Networks (IJCNN), 2021.

M T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?: Explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 1135–1144. ACM, 2016.

Y. Shin, A. Meneely, L. Williams, and J A Osborne. Evaluating complexity, code churn, and de-
veloper activity metrics as indicators of software vulnerabilities. IEEE Transactions on Software
Engineering, 37(6):772–787, 2011.

A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through propagating
activation differences. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 3145–3153. JMLR. org, 2017.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:
1929–1958, 2014.

F. Yamaguchi, F. Lindner, and K. Rieck. Vulnerability extrapolation: assisted discovery of vul-
nerabilities using machine learning. In Proceedings of the 5th USENIX conference on Offensive
technologies, pp. 13–23, 2011.

Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, Xiang Wang, and Qinming He. Smart contract
vulnerability detection using graph neural network. In Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-20, pp. 3283–3290, 2020.

T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project defect prediction:
A large scale experiment on data vs. domain vs. process. In Proceedings of the the 7th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ESEC/FSE ’09, pp. 91–100, 2009. ISBN 978-1-
60558-001-2.

A APPENDIX

DATA PROCESSING AND EMBEDDING

We preprocessed the datasets before injecting them into deep neural networks. We standardized the
source code by removing comments and non-ASCII characters, mapping user-defined variables to
symbolic names (e.g., “var1”, “var2”) and user-defined functions to symbolic names (e.g., “func1”,
“func2”), and replacing strings with a generic <str> token. We then embedded source code state-
ments into vectors. For instance, considering the following statement (C programming language)
“if(func3(func4(2,2),&var2)!=var11)”, to embed this code statement, we tokenized it to a sequence
of tokens (e.g., if,(,func3,(,func4,(,2,2,),&,var2,),!=,var11,)), and then we used a 150-dimensional
token embedding followed by a Dropout layer with a dropped fixed probability p = 0.2 and (a 1D
convolutional layer with the filter size 150 and kernel size 3, and a 1D max pooling layer) or (a 1D
max pooling layer) to encode each statement in a function F . Finally, a mini-batch of functions in
which each function consisting of L encoded statements was fed to the models.

MODEL CONFIGURATION

For the L2X (Chen et al., 2018) and ICVH (Nguyen et al., 2021) methods, they were proposed to
work as explaining models aiming to explain the output of a learning model (i.e., which approxi-
mates the true conditional distribution p(Y | F )). To use these methods directly to deal with the
problem of fine-grained software vulnerability detection, we keep their principles and apply them
directly to approximate p(Y | F ) using p(Y | F̃ ) where F̃ consists of the selected vulnerability-
relevant source code statements. To these methods, for the architecture of the random selection

11



Under review as a conference paper at ICLR 2022

network obtaining F̃ as well as the classifier working on F̃ to mimic p(Y | F ), we follow the
structures mentioned in the corresponding original papers.

To our proposed method, for the ω (·;α) and g (·;β) networks, we used deep feed-forward neural
networks having three and two hidden layers with the size of each hidden layer in {100, 300}. The
dense hidden layers are followed by a ReLU function as nonlinearity and Dropout (Srivastava et al.,
2014) with a retained fixed probability p = 0.8 as regularization. The last dense layer of the ω (·;α)
network for learning a discrete distribution is followed by a sigmoid function while the last dense
layer of the g (·;β) network is followed by a softmax function for predicting. The number of chosen
clusters guiding the computation of the proposed clustered spatial contrastive learning mentioned in
Eq. (6) is set to 3 while the trade-off hyper-parameter α representing for the weight of the proposed
clustered spatial contrastive learning term in the final objective function 7 is in {10−2, 10−1, 100},
and the scalar temperature τ is in {0.5, 1.0}. The length of each function is padded or truncated to
L = 100 code statements.

To our proposed method and baselines, we employed the Adam optimizer (Kingma & Ba, 2014) with
an initial learning rate of 10−3, while the mini-batch size is 100 and the temperature τ for the Gumbel
softmax distribution is equal to 0.5. We split the data of each data set into three random partitions.
The first partition contains 80% for training, the second partition contains 10% for validation and the
last partition contains 10% for testing. For each dataset, we used 10 epochs for the training process.
We additionally applied gradient clipping regularization to prevent over-fitting. For each method,
we ran the corresponding model 5 times and reported the averaged VCP and VCA measures as well
as the ACC. We ran our experiments in Python using Tensorflow (Abadi et al., 2016) on an Intel
Xeon Processor E5-1660 which has 8 cores at 3.0 GHz and 128 GB RAM.

ADDITIONAL EXPERIMENTS

Auxiliary measure As mentioned in the experiments section in the paper, the main purpose of
our proposed FinVulD-IC method is to support programmers and developers to narrow down the
vulnerable scope for seeking vulnerable statements. This would be helpful in the context that they
need to identify several vulnerable statements from hundreds or thousands of lines of code. We
aim to specify lines of statements (e.g., top K=5) so that with a high probability those lines cover
most or all vulnerable statements. Bearing this incentive, and inspired from Nguyen et al. (2021), to
evaluate the performance of the our proposed method and baselines, we use two measures introduced
in Nguyen et al. (2021) including : vulnerability coverage proportion (VCP) (i.e., the proportion of
correctly detected vulnerable statements over all vulnerable statements in a dataset) and vulnerability
coverage accuracy (VCA) (i.e., the ratio of the successfully detected functions, having all vulnerable
statements successfully detected, over all functions in a dataset).

Table 2: Experimental results in terms of the aux-
iliary VCE measure on the testing set of the CWE-
399 and CWE-119 datasets for RSM, L2X, ICVH
and FinVulD-IC methods with K = 5.

Dataset K Method VCE

CWE-399 5

RSM 9.1%
L2X 43.6%

ICVH 39.1%
FinVulD-IC 45.1%

CWE-119 5

RSM 12.5%
L2X 30.5%

ICVH 26.4%
FinVulD-IC 31.1%

In practice, programmers and developers can
set their preferable top K for the used meth-
ods, so that we need a measure that penalizes
large top K. To this end, we propose an auxil-
iary measure named VCE (i.e., vulnerable cov-
erage efficiency) which measures the percent-
age of vulnerable statements detected over the
number of selected statements. For example,
if a source code section has 3 core vulnerable
code statements and using top K=5, we can suc-
cessfully detect 2 vulnerable statements. The
VCE measure in this case is equal to 2/5 = 0.4.
This additional measure would offer a helpful
measure of efficiency to users.

We have computed the auxiliary VCE measure for our proposed FinVulD-IC method and baselines
(i.e., RSM, L2X, and ICVH) with top K = 5 in the unsupervised setting. The experimental results
mentioned in Table 2 show that our proposed FinVulD-IC method obtained the highest VCE measure
in both CWE-399 and CWE-119 datasets compared with the baselines. In particular, to the CWE-
399 dataset, the FinVulD-IC method gained 45.1% for the auxiliary VCE measure. It means that in
this case, we can detect 5×0.451 = 2.255 vulnerable statements out of 5 spotted lines.

12


