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Abstract

We introduce a formal experimental design methodology for guiding the placement
of drifters to infer ocean currents. The majority of drifter placement campaigns
either follow standard ‘space-filling’ designs or relatively ad-hoc expert opinions,
which could be significantly improved on by appealing to statistical experimental
design. Drifter observations follow a Lagrangian structure as drifters are advected
through the Eulerian vector field. It is, therefore, important to consider the likely fu-
ture trajectories of placed drifters to compute the utility of candidate measurement
locations. We present BALLAST: Bayesian Active Learning with Look-ahead
Amendment for Sea-drifter Trajectories, a novel light-weight, nonmyopic policy
amendment for drifter trajectory data that can be appended to any myopic pol-
icy. Our numerical studies suggest benefits in incorporating BALLAST into the
sequential placement strategies of drifters.

1 Introduction

Understanding and predicting ocean currents are of vital importance to mapping the flow of heat,
nutrients, pollutants and sediments in the ocean [3, 9]. Ocean currents are inferred from a plurality
of measurement devices, such as fixed-location buoys, satellites and free-floating buoys, known
as drifters [11]. Free-floating drifters are being increasingly used due to their ability to sample
both spatial and temporal flow properties and remain relatively affordable as compared to other
measurement devices [15].

Standard experiment designs consider measurement devices that operate at a single location at a
single time. Drifters are different: advected by the background vector field, drifters proceed to
move following the Lagrangian flow of the ocean currents and collect data at multiple locations at
multiple times (see the orange observation trajectories and the extended red observations in Figure
1). Drifter measurements thus require nontrivial policies for experiment designs and sequential
experiment designs (SED) where observations are made incrementally — allowing efficient dynamic
experimentation by adapting to the results of previous measurements. However, the majority of
existing drifter placement campaigns either follow standard ‘space-filling’ designs [19] or relatively
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Figure 1: An example run with Max Var BALLASTs method with 10 sampled look-aheads. (Left)
The ground truth field. (Mid) The estimated field using three placed drifters with the predictive
standard deviation as the heat map. Trajectories of the three currently placed drifters are in orange.
The three stars indicate three candidate locations for the next placement, with purple arrows indicating
the 10 look-ahead trajectories sampled from our current model of the underlying flow. The blue star
is the selected location for the next placement. (Right) The estimated field using four placed drifters
with new observations in red.

ad-hoc expert opinions [21]. To the best of our knowledge, methodology for a formal statistical
design of drifter allocation strategies does not exist.

Standard (S)ED policies only consider the observation made immediately at the selected observation
point, making them myopic [4, 16] and are likely insufficient to guide the temporally extended
Lagrangian observations associated with drifter placement designs. Policies that take into account
potential future observations, often called nonmyopic policies, exist in the literature [8, 7, 23], but they
focus on solving or approximating the Bellman equation considering the next several observations
actively selected by the decision-maker (see [5] for a discussion). A practical sequential placement
strategy for drifters should incorporate potential future trajectories while remaining computationally
light-weight.

In this work, we introduce an experimental design strategy for drifters — Bayesian Active Learning
with Look-ahead Amendment for Sea-drifter Trajectories (BALLAST) — that offers a light-weight,
nonmyopic policy amendment by leveraging a vector-output Gaussian process model and the drifters’
Lagrangian trajectory structure. We make three primary contributions: (i) we introduce sequential
experimental design concepts to the problem of drifter placement, (ii) we propose a novel light-weight,
nonmyopic SED policy amendment that can be easily appended to most existing myopic SED policies
like maximum variance and maximum integrated variance [6], and (iii) we present the results of
numerical simulations that showcase improved performance of our proposed policy over common
alternatives.

2 Background

Gaussian Processes A vector-output Gaussian process model is used here to model the 2-
dimensional, stationary vector field that represents the ocean currents over a region. A vector-output
Gaussian process (GP) {y(x)}x∈X with input space X , output space RD with D > 1, RD-valued
mean function µ and RD×D-valued covariance function k is a continuous stochastic process fully de-
noted as y(·) ∼ GP(µ(·), k(·, ·)) such that every finite collection of random variables in {y(x)}x∈X
has a multivariate normal distribution [22, 1]. Normally, the mean function µ is set to be a constant-
zero function, which will be the case here too. Details about regressions and predictions with a
vector-output GP can be found in Appendix A.

Experimental Design Experimental design considers the problem of choosing the optimal mea-
surement x∗ given some existing data D and a model g according to some utility function U that
calculates the expected quality of each possible measurement x within the measurement set R under
the belief of our latest model g. Mathematically, this is given by x∗ = argmaxx∈R Eg[U(x, g,D)].
When we wish to make measurements sequentially, or adaptively, we will find an optimal mea-
surement x∗

n+1 for each time n based on existing data Dn and latest model gn according to
x∗
n+1 = argmaxx∈R Egn [U(x, gn,Dn)].
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In this work, we will use a Gaussian process as our model due to its expressibility, conjugacy with
data updates and inherent uncertainty quantification. The choice of utility functions is central to
the effectiveness of an (S)ED. Two common choices of utility functions are the variance of our
latest model gn at the candidate decision x (yielding the maximum variance policy), and the total
variance of the posterior distribution of our model after being updated by the candidate decision x
and its outcome y (yielding the maximum integrated variance policy). See [6, 18] for comprehensive
introductions to these designs.

3 Sequential Drifter Placement and BALLAST

The problem of sequential drifter placement can be formulated as follows. Consider a fixed region
R ⊂ R2 of the ocean that we wish to understand its currents. Let F denote the true stationary vector
field of the region R. We will place drifters sequentially into the region and use the observations to
infer the true field F , and the goal is to maximally reduce our uncertainty about F using a minimum
number of drifters.

Assuming n drifters are currently deployed, we have existing data Dn and latest model gn. With a
utility function choice U , the myopic allocation policy is to only consider the initial placement point
from R, selected by

x∗ = argmax
x∈R

Egn [U(x, gn,Dn)]. (1)

Recall that drifters are free-floating and will keep collecting data at different locations once placed.
A myopic policy does not take into account the future trajectory of a drifter placed at x and could
favour locations that are apparently more promising yet uninformative overall — say the placed
drifter leaves R immediately or is stuck in a convergent region and so is, in effect, stationary. With
myopic policies, the Lagrangian structure of the drifter observations is completely ignored.

3.1 BALLAST

We propose the BALLAST method, a nonmyopic policy amendment with look-aheads of drifter
trajectories that is computationally expedient. While still considering only the initial placement point
x ∈ R, we construct the look-ahead of a drifter placed at x via a projection of T steps with step size
δ using a vector field F̂ , denoted by PT

δ (x, F̂ ) ∈ RT+1. Given n existing drifters with data Dn and
model gn, the BALLAST method determines the next placement location by

x∗ = argmax
x∈R

Egn

[
U(PT

δ (x, F̂ ), gn,Dn)
]
. (2)

We will denote the conversion from Equation (1) to Equation (2) as the BALLAST amendment to
the base myopic policy. Various design choices of this amendment are discussed below.

Look-ahead Projection The trajectory of a drifter at x inside the vector field F̂ can be approximated
using numerical ordinary differential equation solvers. The simplest choice is the Euler method,
which iteratively updates each step by x(m+1)δ = xmδ+δF̂ (xmδ) for m ∈ Z≥0 where F̂ (x) denotes
the value of the field F̂ at x. Other solvers such as the implicit Euler method can also be used [17].

Step Size and Number Caution is required when setting the step size δ and the step number T
to balance the trade-off between practicality and accuracy. A tiny step size δ may induce unwanted
computational costs, yet too large a step size will produce poor approximations of the drifter dynamics
and yield inaccurate predictions. For step number T , a small value will make the policy more myopic,
which we wish to avoid, yet a large value will incur additional computational costs. Furthermore,
the look-ahead is based on an estimated vector field F̂ , which could be erroneous, so too long of a
look-ahead might be misleading.

Estimated Vector Field Choice of the estimated vector field reflects our latest understanding of
currents in the region R. As alluded to previously, the quality of the estimated vector field strongly
influences the projection quality. Here, we propose two ways to construct the estimated field which
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induce two versions of BALLAST. The first way is to choose, naively, the predictive mean µDn of
the latest GP model gn, that leads to the policy

x∗ = argmax
x∈R

Egn

[
U(PT

δ (x, µDn
), gn,Dn)

]
(3)

which we call BALLASTn. The second way is to draw K independent sample fields {F̂k}Kk=1 from
the predictive distribution of the latest model gn and estimate the utility using the sample averages.
Denote this second method by BALLASTs, with F̂k ∼ gn for k = 1, 2, . . . ,K, we have

x∗ = argmax
x∈R

1

K

K∑
k=1

Egn

[
U(PT

δ (x, F̂k), gn,Dn)
]
. (4)

One should note that BALLASTs and BALLASTn are different. For BALLASTs, when we take the
limit k → ∞, we get

1

K

K∑
k=1

U(PT
δ (x, F̂k), gn,Dn) → EF̂∼gn

[
U(PT

δ (x, F̂ ), gn,Dn)
]

whereas for BALLASTn we have

U(PT
δ (x,EF̂∼gn

[F̂ ]), gn,Dn)

instead. Since U ◦ PT
δ is not a linear function in the field choice, the two quantities are not identical,

showing that BALLASTs and BALLASTn are indeed different.

Utility Function It is obvious from the formulation that the BALLAST methods are compatible
with any utility function U . With the look-ahead amendment provided by BALLAST methods,
we have observed noticeable improvements from utility choices such as maximum variance and
maximum integrated variance, as supported by the simulations in the following section.

4 Simulation Results

We generate a ground truth vector field F from a vector-valued GP parameterised by the Helmholtz
kernel of [2] with prespecified hyperparameters. A total of 8 drifters are sequentially placed with
T ×δ = 5×0.03 unit time apart, and the observations provided by the drifters follow the ground truth
field F with small additive observation noise. When a drifter leaves the region R, we terminate its
motion. Eight placement policies are considered: uniform sampling, Sobol sequence [10], maximum
variance, maximum variance with BALLASTn, maximum variance with BALLASTs using 100
sampled look-aheads, maximum integrated variance, maximum integrated variance with BALLASTn,
and maximum integrated variance with BALLASTs using 100 sampled look-aheads. As demonstrated
in Figure 1, we update the model and compute the mean squared error (MSE) of the predictive mean
with each placement. Further details of the experiment are found in Appendix B.

Figure 2 shows experimental results over 100 random starting seeds and indicates improvements,
regardless of the base utility functions, of the BALLAST amendments. The improvement is more
significant as more drifters are placed. Furthermore, a simple policy like maximum variance after
BALLAST amendments displays comparable performance to a more complicated myopic policy, the
maximum integrated variance.

We have not carried out a thorough computational cost comparison, but for indicative timings using a
standard laptop, one full run of the simulation with the maximum variance policy takes 15 seconds,
while that with the BALLASTn takes around 20 seconds and that with the BALLASTs using 100
sampled look-aheads under simple parallelization of the samples takes around 1 minute 15 seconds.
For operational drifter placement, these computational costs are likely to be insignificant.

5 Conclusion

In this paper, we introduce a formal experimental design of the sequential placement of drifters for
ocean currents inference. Our numerical results showed that SED-based policies noticeably outper-
formed common ad-hoc or space-filling drifter allocation strategies, which are further outperformed
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Figure 2: (Left) Mean MSE over the number of drifters placed. (Right) Mean rank (lower is better)
of MSE over the number of drifters placed. One standard deviation radius error bounds are included.

by our proposed light-weight and nonmyopic BALLAST extensions. Potential further work includes
considering time-varying ocean flows, for which more efficient sampling methods will be investigated
[20], establishing theoretical guarantees for the non-myopic benefits of BALLAST, and incorporating
BALLAST into a wider risk-averse [14] framework or incorporating information-theoretic framework
for batch [12] or multi-fidelity designs [13].
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A Vector-Output Gaussian Process Details

For a D-vector-output GP model y ∼ GP(µ, kβ) with kernel specified by hyperparameters β, N
observations D = X ∪ Y = {xi}Ni=1 ∪ {yi}Ni=1 for input xi and noisy output yi = y(xi) + ε, ε ∼
ND(0, S) with S = σ2ID, if we let θ = (β, σ) denote all the unknown parameters of y, then the
log-likelihood is given by

l(θ|D) = −1

2
yT (Kβ(X,X) + Σ)−1y − 1

2
log |Kβ(X,X) + Σ| − ND

2
log 2π

6



where y ∈ RND is the concatenation of observations {yi}Ni=1, Kβ(X,X) ∈ RND×ND with

Kβ(X,X) =


K1,1(X,X) K1,2(X,X) . . . K1,D(X,X)
K2,1(X,X) K2,2(X,X) . . . K2,D(X,X)

...
... . . .

...
KD,1(X,X) KD,2(X,X) . . . KD,D(X,X)


and Kd,d′(X,X) = {kβ(xi, xj)}Ni,j=1 for d, d′ = 1, 2, . . . , D, and Σ = S ⊗ IN with ⊗ denoting
the Kronecker product.

Furthermore, the posterior predictive distribution y(x∗)|D of a test point x∗ ∈ X after observing D
is provided by

y(x∗)|y, x∗, X,y,θ ∼ N(µ∗(x
∗),K∗(x

∗, x∗))

µ∗(x
∗) = Kβ(x

∗, X)[Kβ(X,X) + Σ]−1y

K∗(x
∗, x∗) = Kβ(x

∗, x∗)−Kβ(x
∗, X)[Kβ(X,X) + Σ]−1Kβ(x

∗, X)T

where Kβ(x
∗, X) ∈ RD×ND is the concatenation of D × D matrix Kβ(x

∗, xj) where j =
1, 2, . . . , N .

A.1 The Helmholtz kernel

The vector-output kernel of choice for this paper is the Helmholtz kernel of [2], which is a recently
proposed model that can better capture the vector field structure using the Helmholtz decomposition.
Denoting the 2D vector field by F = [u, v]T with Helmholtz decomposition F = gradΦ + rotΨ
for the potential function Φ and the stream function Ψ, the Helmholtz kernel imposes a GP prior
to each of the two functions, i.e. Φ ∼ GP(0, kΦ),Ψ ∼ GP(0, kΨ), which gives the overall kernel
F ∼ GP(0, kHelm) with the kernel function

kHelm(x,x
′) =

[
∂2
x1x′

1
kΦ(x,x

′) + ∂2
x2x′

2
kΨ(x,x

′) ∂2
x1x′

2
kΦ(x,x

′)− ∂2
x2x′

1
kΨ(x,x

′)

∂2
x2x′

1
kΦ(x,x

′)− ∂2
x1x′

2
kΨ(x,x

′) ∂2
x2x′

2
kΦ(x,x

′) + ∂2
x1x′

1
kΨ(x,x

′)

]
.

for x,x′ ∈ R2 if we assume Φ and Ψ are independent. The two kernels of Φ,Ψ are chosen to be
squared exponential kernels with respective lengthscales lΦ, lΨ.

B Additional Details and Plots of the Experiment
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Figure 3: (Left) Mean average standard deviation over the number of drifters placed. (Right) Mean
rank (lower is better) of average standard deviation over the number of drifters placed. One standard
deviation radius error bounds are included.

The ground truth vector field F is generated using the Helmholtz kernel of [2], further explained in
Appendix A.1, with known hyperparameters (lengthscales lΦ = 0.7, lΨ = 0.5 for kΦ, kΨ respectively)
over the region R = [0, 2]2 and the square 25 × 25 grid G. A total of 8 drifters are sequentially
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placed, Tδ unit time apart, with T = 5 and δ = 0.03, and the observations provided by the drifters
follow the ground truth field F via an Euler discretization of step size δ = 0.03 and additive centered
Gaussian observation noise with variance 0.01. The velocity of the drifter is taken to be the value of
the vector field at the nearest block of the current position. When a drifter leaves the region R, we will
terminate its motion. Eight placement policies are considered: uniform sampling, Sobol sequence,
maximum variance, maximum variance with BALLASTs, maximum variance with BALLASTn
using 100 samples, integrated variance, integrated variance with BALLASTs, and integrated variance
with BALLASTs using 100 samples. The first drifters under all policies, except for the case of the
Sobol sequence, are placed at a uniformly drawn location of G.

The model we use is the Helmholtz kernel with the true hyperparameters. With each placement, we
update the model with all existing data and compute the mean squared error (MSE) of the predictive
mean against the truth F̂ as well as the average standard deviation of the predictive distribution. A
total of 100 iterations with different initial seeds are done for all eight policies, and the results are
summarised in Tables 1 and 2.

Table 1: Mean MSE over 100 Runs for all eight policies across the number of drifters placed.

1 2 3 4 5 6 7 8
Uniform 9.794 7.822 6.074 5.157 4.456 3.417 2.852 2.366

Sobol 11.491 8.930 6.433 4.521 3.399 2.298 1.872 1.556
Max Var 9.979 8.997 8.130 7.216 6.063 4.643 3.357 2.278

Max Var BALLASTn 9.794 7.840 5.810 4.244 3.351 2.325 1.524 1.006
Max Var BALLASTs 9.794 7.220 5.073 3.472 2.672 2.001 1.482 1.094

Int. Var 10.077 7.645 5.099 3.248 2.025 1.321 0.836 0.616
Int. Var BALLASTn 9.794 7.120 5.006 3.520 2.079 1.352 0.951 0.607
Int. Var BALLASTs 10.188 7.154 4.938 3.415 2.087 1.221 0.789 0.516

Table 2: Mean Average Standard Deviation over 100 Runs for all eight policies across the number of
drifters placed.

1 2 3 4 5 6 7 8
Uniform 3.019 2.528 2.100 1.754 1.492 1.266 1.116 0.974

Sobol 4.732 3.801 2.971 2.279 1.868 1.403 1.183 1.011
Max Var 3.016 2.777 2.570 2.317 2.020 1.713 1.370 1.070

Max Var BALLASTn 3.019 2.501 2.000 1.572 1.209 0.936 0.726 0.576
Max Var BALLASTs 3.019 2.373 1.785 1.351 1.058 0.839 0.680 0.551

Int. Var 3.022 2.367 1.747 1.256 0.921 0.681 0.519 0.408
Int. Var BALLASTn 3.019 2.351 1.735 1.250 0.911 0.681 0.515 0.400
Int. Var BALLASTs 3.040 2.348 1.737 1.253 0.900 0.663 0.496 0.379

We have also produced the mean average standard deviation summary and rank plots in Figure 3,
similar to those in Figure 2 for MSE. We can notice very similar, positive results of the BALLAST
methods.
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