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Abstract

We propose a novel gradient-based online optimization framework for solving
stochastic programming problems that frequently arise in the context of cyber-
physical and robotic systems. We establish the connection between our algorithms
and the cyber-physical systems through the classic two-degree-of-freedom control
loop. We also incorporate an approximate model of the dynamics as prior knowl-
edge into the learning process, and characterize the impact of modeling errors in
the system dynamics on the convergence rate of the algorithms. We show that
even rough estimates of the dynamics can significantly improve the convergence
of our algorithms. Finally, we evaluate our algorithms in simulations of a flexible
beam and a four-legged walking robot. A supplementary video is available at:
https://youtu.be/OLVvKGba7PA.

1 Introduction

The increasing availability of sensors across various domains has led to the generation of vast volumes
of data, ideal for analysis and training. However, a significant challenge arises from the traditional
“Sampling-Training-Deployment" mode of machine learning algorithms. Once trained, most models
remain static during deployment, unable to benefit from the continuous influx of new data. This
limitation means that models risk becoming outdated as the environment evolves and new information
emerges, leaving a substantial amount of potentially valuable data unused. This not only hinders
improvements in performance but also falls short of enabling systems to continuously learn, adapt,
and improve. Moreover, retraining models from scratch with new data is neither an economical nor a
long-term solution. This issue is particularly prevalent in robotics, where deployed models struggle
to adapt to ever-changing environments and continuous streams of new information and data.

In the field of machine learning, a strategy that incorporates streaming data is known as online
learning, which aims to minimize the expected regret as follows Bubeck (2012); Neu (2015):

Regret (A) = E

[
T∑

t=1

f (ωt; ζt)

]
−min

ω∈Ω
E

[
T∑

t=1

f (ω; ζt)

]
, ζt

i.i.d.∼ D, (1)

where A denotes the specific online optimization algorithm that is used to minimize the regret and f
are stochastic loss functions, where the random variable ζt is independently and identically sampled
from the unknown distribution D. The expectation is taken with respect to the loss functions and
the decision variables ωt ∈ Ω. The decision variables ωt are generated by the algorithm A from a
closed and convex set Ω ⊆ Rnω , where nω ∈ N+ denotes the number of decision variables ω. In
addition, T denotes the total number of iterations. Intuitively, we claim that an online optimization
algorithm A performs well if the regret induced by this algorithm is sub-linear as a function of T
(i.e., Regret (A) = o (T )), since this implies that on average, the algorithm performs as well as the
best fixed decision variables ω⋆ = argminω∈Ω E

[∑T
t=1 f (ω; ζt)

]
in hindsight. Therefore, when T
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is large enough or tends to infinity, online learning can cope with continually growing streams of data
at the algorithm level, so that the decision variables ωt continuously improve performance.

The loss functions f are typically assumed to be convex and bounded Hazan (2022); Shalev-Shwartz
(2012); Hall & Willett (2015). However, one of the primary objectives of this article is to bridge
the gap between theory and practice, enabling online learning algorithms to be deployed on cyber-
physical systems. Therefore, in this article, we abandon the convexity assumption and instead rely
on a more general smoothness assumption. Furthermore, we connect our proposed algorithms with
cyber-physical systems and provide a quantitative analysis of their performance.

1.1 Related work

Online learning in cyber-physical systems and robotics - often framed as online control - has largely
focused on linear systems with quadratic costs, leading to the classic LQR setting. Early approaches
estimate system parameters online and solve the LQR via robust control, achieving sublinear regret
bounds: O(T 1/2) (Abbasi-Yadkori et al., 2011; Cohen et al., 2019), O(T 2/3) (Dean et al., 2018), and
nearly O(T 1/2) even with partial observability (Mania et al., 2019). Model-free alternatives (Abbasi-
Yadkori et al., 2018) trade off performance for generality, attaining O(T 2/3+ξ) regret for any small
ϵ > 0.

Recent works have explored adversarial settings, with either adversarial costs (Abbasi-Yadkori et al.,
2014; Cohen et al., 2018) or adversarial disturbances (Agarwal et al., 2019; Hazan et al., 2020; Yan
et al., 2023), achieving regret between O(log2 T ) and O(T 3/4) depending on assumptions. All of
these regret bounds scale with the system dimension.

Moving beyond linearity, Gradu et al. (2022) propose local linearization and adaptive regret for
nonlinear systems, achieving O(OPT1/2), where OPT denotes the cost of the best policy in hindsight
over the entire horizon. Separately, Ho et al. (2021) avoid exact system identification by learning
control under model uncertainty, showing finite-mistake guarantees. Most relevant to our work, Lin
et al. (2024) propose a unified framework for nonlinear systems with Gaussian noise, combining
online system estimation and policy optimization, and obtain a local regret bound of O(T 5/6), which
better captures convergence in nonconvex settings. A detailed comparison of our work and related
results is summarized in Table 1 in Appendix A.

1.2 Structure

This article follows the structure outlined below: In Sec. 2, we will establish the connection between
our algorithms and real-world cyber-physical systems through the classic two-degrees-of-freedom
control loop, and provide a detailed formulation of the stochastic programming problem addressed in
this article. Subsequently, in Sec. 3 we will propose an algorithmic framework to solve this problem,
and derive the update schemes for our gradient descent algorithm in both open-loop and closed-loop
systems. In Sec. 4, we will discuss the assumptions required for proving the convergence results,
and characterize convergence rates in the presence of modeling errors. In Sec. 5, our algorithms are
applied to various cyber-physical and robotic systems, including a flexible beam and a four-legged
walking robot. The article concludes with a summary in Sec. 6.

2 Problem formulation

We start with the classic two-degree-of-freedom control loop as shown in Fig. 1, which has extensive
applications in machine learning within the context of robotics. We can contrast our approach of
learning feedforward and feedback controllers to reinforcement learning (RL), where the objective
is to learn a feedback controller (policy) that minimizes a designated reward function (Sutton &
Barto, 2018; Li, 2018). In contrast to RL, which is often based on approximately solving the Bellman
equation, we do not use any dynamic programming strategy in our approach.

We consider a specific form of (1), which is tailored to cyber-physical and robotic systems. We
incorporate the system dynamics through the mapping G and parameterize actions (or control input)
ut via the function π, which include feedforward and feedback actions in the classic control loop.
Our aim is to optimize performance by choosing the variable ω that parameterizes the function π
and determines the actions. The dynamics G and the action parameterization π are both incorporated
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Figure 1: The figure shows the classic two-degree-of-freedom control loop, which includes a
feedforward controller and a feedback controller. The variable nd denotes a disturbance, which will
subsequently be used to obtain an approximate gradient G (ut).

as constraints to establish the connection between our algorithms and the cyber-physical systems.
Consequently, (1) is reformulated as follows:

Eζt

[
T∑

t=1

l (yt; ζt)

]
−min

ω∈Ω
Eζt

[
T∑

t=1

l (y⋆t ; ζt)

]
s.t. yt = G (s0, ut; ζt) , y

⋆
t = G (s0, u

⋆
t ; ζt)

ut = π (ωt, yt; ζt) , u
⋆
t = π (ω, y⋆t ; ζt) , ζt

i.i.d.∼ pζ ,

(2)

where the constraints implicitly define yt as a function of ωt, s0 and ζt, the superscript (·)⋆ denotes
the optimal value. The implicit equation arises due to the fact that feedback loops may potentially be
present, and we assume that yt exists and is well defined. The initial state of the cyber-physical system
is denoted by s0 ∈ S ⊂ Rns . The vectors ut = (ut,1, . . . , ut,q) and yt = (yt,1, . . . , yt,q) denote the
input and output sequences of the system, where ut,i ∈ U ⊂ Rm and yt,i ∈ Y ⊂ Rn, i = 1, . . . , q
represent the input and output at a certain time point i and at iteration t of the learning process.
The mapping G (·, ·; ζ) : S × Uq → Yq transforms a sequence of inputs into a sequence of outputs
and represents the input-output behavior of the cyber-physical system. The input-output behavior
is not necessarily deterministic, due to process, measurement, and actuation uncertainty, which is
modeled with the random variable ζt. In practice, the mapping G is typically unknown and may
exhibit a high degree of nonlinearity, for example due to friction in the joints of a robot. The mapping
π (·, yt; ζ) : Ω → Uq describes how the decision variables ωt affect the controls ut. The feasible set
Ω ⊂ Rnω is assumed to be closed and convex.

In (2), the function l (·; ζ) : Yq → R describes the stochastic loss function, for example, tracking
error, execution time, energy consumption, etc. To simplify the subsequent derivations and without
loss of generality, we consider a specific form of l that models a trajectory tracking task:

l (yt; yref,t) :=
1

2
|G (s0, ut; yref,t)− yref,t|2 , yref,t

i.i.d.∼ pyref , t = 1, . . . , T. (3)

where the random variable ζ denotes the reference trajectory yref ∈ Yq that the system is required to
track. This notation inherently suggests that the reference trajectory yref evolves in correspondence
with the progression of iterations. Concurrently, at each iteration, the reference trajectory is randomly
sampled from a fixed yet unknown distribution pyref . For example, in the context of training a robot
for table tennis, pyref is determined by the trajectories experienced by the end-effector during ball
interception (Ma et al., 2022, 2023; Tobuschat et al., 2023). This implies that when solving (2) we
have identified a nonlinear feedforward and feedback controller that yields accurate trajectory tracking
for any yref ∼ pyref . For simplification and without compromising generality (we could extend the
function π to also account for s0), we assume that the system consistently initializes from an identical
state prior to each iteration t of the learning process. As such, the initial state s0 can be fixed and
omitted. For example, in the experiments with the ping-pong robot we drive the robot back to a rest
position after each iteration of the online learning with a simple proportional-integral-derivative (PID)
controller.
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Algorithm 1 Online-Quasi Newton Method

Input: initial parameters ω1, constant ϵ and α, iterations T , step length {ηt}Tt=1
for t = 1 to T do

Sampling: ζ ∼ pζ → ζt
Implementation: G (s0, π (ωt, yt; ζt) ; ζt) → yt
Evaluation: l (yt; ζt)
Approximation: Lt ≈ ∂yt/∂ωt

Hessian Calculation: Λt =
1
ϵLT

t∇2
yl (yt; ζt)Lt +

α
ϵ ∇ωπ (ωt, yt; ζt)∇ωπ (ωt, yt; ζt)

T
+ I;

At =
1
t

∑t
k=1 Λk

Update: ωt+1 = ωt − ηtA
†
tLT

t∇yl (yt; ζt)
end for

3 Stochastic online optimization

To address the online optimization problem (2), we propose Algorithm 1, which depending on the
choice of ϵ represents either an online gradient descent or an online quasi-Newton method. The
Moore–Penrose inverse is denoted by (·)†.

We note that in Algorithm 1, the majority of variables can be obtained through measurement or
simple calculations, except for the gradient of the outputs yt with respect to the decision variables
ωt. The difficulty mainly arises from two aspects: 1. The dynamic behavior of the system G is
unknown. 2. Due to the presence of the feedback loop, yt is defined as an implicit function. This
means that we must consider the effect of the feedback loop during the learning process. The former
aspect can be addressed using various techniques such as system identification and finite difference
estimation (Ljung, 2010; Pintelon & Schoukens, 2012; Carè et al., 2018; Tsiamis & Pappas, 2019;
Campi & Weyer, 2002). In this article, we adopt a black-box representation for G, avoiding any
explicit characterization of its internal dynamics. Although the dynamic characteristics of G are
unknown, we assume that G is differentiable with respect to u. Furthermore, we adopt the following
notational convention: G (ut) represents an approximation of the gradient of the mapping G with
respect to u, more precisely, G (ut) denotes an approximation of ∂G(s0,u;ζ)/∂u|u=ut

1. In Sec. 5,
we will demonstrate that even a rough approximation of ∂G(s0,u;ζ)/∂u|u=ut

can serve as valuable
prior knowledge, significantly improving the convergence rate of our algorithms. In the following
subsection we will focus on analyzing the impact of the feedback loop in the learning process, and
derive the update scheme.

3.1 Impact of the feedback loop

In our approach, we use πff and πfb to represent the parameterized feedforward and feedback networks,
respectively, and ωff and ωfb to denote their corresponding parameters. Then, the relation between yt
and ut in (2) can be reformulated as follows:

ut = πff (ωff,t; ζt) + πfb (ωfb,t; yt − ζt) , yt = G (s0, ut; ζt) , ζt
i.i.d.∼ pζ , (4)

that is, the input ut is the combination of a feedforward part πff that does not depend on yt and a
feedback part πfb that depends on the deviation of yt from the reference trajectory ζt. Due to the
inclusion of feedback πfb, the calculation of the gradient in Algorithm 1 becomes more complex
and less intuitive compared to the open-loop situation where πfb = 0. Hence, we will demonstrate
the computation of the gradients ∂y/∂ωff and ∂y/∂ωfb in the closed-loop system and discuss their
implications. The critical aspect to note at this point is that (4) defines an implicit equation for
yt and also ut. We should therefore think of yt and ut as functions of ωff, ωfb and ζt, that is,
u = u (ωff, ωfb; ζ), y = y (ωff, ωfb; ζ). The gradient of the loss function l with respect to the
parameters can be calculated as ∇ωf (ω; ζ) =

[
∂yT

∂ωff

∂yT

∂ωfb

]
∇yl (y; ζ).

By combining the two equations in (4) we get a single implicit equation for y. The differential ∂y/∂ωff

can now be obtained by differentiating the implicit equation with respect to ωff (implicit function
1The gradient approximation G (ut) may depend on the realization of ζt. However, in order to simplify the

notation we omit the dependency.
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theorem):

∂y

∂ωff
=

∂G (u; ζ)

∂u

∣∣∣∣
u=πff+πfb

∂πff (ωff; ζ)

∂ωff
+

∂G (u; ζ)

∂u

∣∣∣∣
u=πff+πfb

∂πfb (ωfb; ζ
◦)

∂ζ◦

∣∣∣∣
ζ◦=G(u;ζ)−ζ

∂y

∂ωff
.

This can be rearranged to

∂y

∂ωff
=

(
I− ∂G (u; ζ)

∂u

∂πfb (ωfb; ζ
◦)

∂ζ◦

∣∣∣∣
ζ◦=G(u;ζ)−ζ

)†
∂G (u; ζ)

∂u

∂πff (ωff; ζ)

∂ωff
. (5)

The expression ∂y/∂ωfb can be derived with a similar argument and results in(
I− ∂G (u; ζ)

∂u

∂πfb (ωfb; ζ
◦)

∂ζ◦

∣∣∣∣
ζ◦=G(u;ζ)−ζ

)†
∂G (u; ζ)

∂u

∂πfb (ωfb; ζ
◦)

∂ωfb

∣∣∣∣
ζ◦=G(u;ζ)−ζ

. (6)

We observe that the term ∂G(u;ζ)/∂u consistently represents the gradient of the open-loop system and,
as previously mentioned, can be approximated using the estimate G (u). This approximation renders
the terms ∂y/∂ωff and ∂y/∂ωfb computable. We also note that the feedback controller may reduce the
effect of estimation errors in G on the resulting gradient estimates. Indeed, if ∂πfb(ωfb;ζ

◦)/∂ζ◦ is large,
both expressions reduce to

∂πfb (ωfb; ζ
◦)†

∂ζ◦
∂πfb (ωfb; ζ

◦)
∂ωfb

,
∂πfb (ωfb; ζ

◦)†

∂ζ◦
∂πff (ωff; ζ)

∂ωff
,

respectively, which means that ∇f is approximately independent of G for large ∂πfb(ωfb;ζ
◦)/∂ζ◦. If the

feedback gain is small, however, ∂y/∂ωff and ∂y/∂ωfb reduce to

∂G (s0, u; ζ)

∂u

πff (ωff; ζ)

∂ωff
,

∂G (s0, u; ζ)

∂u

πfb (ωfb; ζ
◦)

∂ωfb
.

Moving forward, we will briefly show that the term(
I− ∂G (u; ζ)

∂u

∂πfb (ωfb; ζ
◦)

∂ζ◦

)†
∂G (u; ζ)

∂u
(7)

is the gradient of the closed-loop system with respect to the external input nd (see Fig. 1). This
finding enables us to directly derive gradient estimation approaches for the closed-loop system by
performing stochastic finite difference, which will be denoted as G◦ (ωff, ωfb, ζ). We perform the
following calculations (implicit function theorem):

∂y

∂nd
=

∂G (u; ζ)

∂u

∣∣∣∣
u=πff+πfb

+
∂G (u; ζ)

∂u

∣∣∣∣
u=πff+πfb

∂πfb (ωfb; ζ
◦)

∂ζ◦

∣∣∣∣
ζ◦=G(u;ζ)−ζ

∂y

∂nd
,

which results in
∂y

∂nd
=

(
I− ∂G (u; ζ)

∂u

∂πfb (ωfb; ζ
◦)

∂ζ◦

)†
∂G (u; ζ)

∂u
.

Intuitively, ∂y/∂nd describes the sensitivity of y in closed-loop to changes in u.

Consequently, the terms ∂y/∂ωff and ∂y/∂ωfb, apart from being derived from (5) and (6), can also be
obtained through the following more direct approach

∂y

∂ωff
= G◦ (ωff, ωfb, ζ)

∂πff (ωff; ζ)

∂ωff
,

∂y

∂ωfb
= G◦ (ωff, ωfb, ζ)

∂πfb (ωfb; ζ
◦)

∂ωfb
,

thereby allowing for direct computations if G◦ is known. As we will highlight with experiments
in Sec. 5, G◦ (ωff, ωfb, ζ) can be estimated by performing stochastic rollouts with different random
perturbations nd (stochastic finite difference).
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4 Convergence guarantees

In this section, we summarize the convergence guarantees of Algorithm 1 under the following
assumptions:
Assumption 1 (L-Smoothness). Let the loss functions f (·; ζ) : Ω → R be L-smooth, that is,

|∇f (v; ζ)−∇f (ω; ζ)| ≤ L |v − ω| ,
for all ω, v ∈ Ω.
Assumption 2 (Bounded Variance). There exists a constant H ≥ 0 such that for all ω ∈ Ω the
following inequalities hold:

Eζ

[
|∇f (ω; ζ)|2

]
≤ H2, Eζ

[
|F (ω; ζ)|2

]
≤ H2,

where F (ω; ζ) denotes the estimated gradient of f (ω; ζ) induced by G (u), while ∇f (ω; ζ) denotes
the true gradient, that is,

F (ω; ζ) =
∂l (y; ζ)

∂y

(
I− G (u)

∂π (ω, y; ζ)

∂y

)†
G (u)

∂π (ω, y; ζ)

∂ω
,

∇f (ω; ζ) =
∂l (y; ζ)

∂y

(
I− ∂G (s0, u; ζ)

∂u

∂π (ω, y; ζ)

∂y

)†
∂G (s0, u; ζ)

∂u

∂π (ω, y; ζ)

∂ω
.

Assumption 3 (Bounded Hessian). Given a sequence of single pseudo-Hessians Λt obtained ac-
cording to Algorithm 1, there exists a constant λ ≥ 1 such that for all t = 1, . . . , T the following
inequalities hold:

1 ≤ λmin (Λt) ≤ λmax (Λt) ≤ λ,

where λmin and λmax denote the minimum and maximum eigenvalues of a matrix, respectively.

In this work, we abandon the convexity assumption of the objective function f with respect to ω
and employ a more general smoothness assumption instead (see Assumption 1). Assumption 1
and Assumption 2 are standard in non-convex optimization (Bottou et al., 2018). We note that the
non-convexity of the objective function f arises from the nonlinear dynamics of the cyber-physical
systems, while the function l (y; ζ) can still be chosen to be convex. Thereby, all additive terms in Λt

in Assumption 3 are guaranteed to be positive semi-definite. Furthermore, the matrix Λt depends
on the parameter ϵ, which can always be chosen large enough, such that Assumption 3 is satisfied.
Beyond this, we also make the following assumption on the modeling errors of our gradient estimate:
Assumption 4 (Modeling Error). Let the parameters ωt evolve according to Algorithm 1. There
exists a constant κ ∈ [0, 1) such that for all t = 1, . . . , T the following inequality holds:

|Eζ [F (ωt; ζ)|ωt]− Eζ [∇f (ωt; ζ)|ωt]|2 ≤ κ2

λ
|Eζ [∇f (ωt; ζ)|ωt]|2 . (8)

In fact, the parameter λ arises from choosing the ℓ2-norm in (8). If the inequality (8) is expressed
in the metric |·|A−1

t
, the factor 1/λ can be avoided, where | · |A−1

t
denotes the metric induced by the

positive definite matrix A−1
t , that is, |x|2A−1

t
:= sup|x|≤1 x

TA−1
t x. Then, we have the subsequent

conclusions for Algorithm 1:
Theorem 5. Let the loss functions f (·; ζ) : Ω → R satisfy Assumption 1 and Assumption 2, and let
the pseudo-Hessian At satisfy Assumption 3. Let the estimate G (ut) satisfy Assumption 4, and let the
step size be chosen as η =

√
2F (ω1)/LH2T . Then the following inequality holds:

1

T

T∑
t=1

Eζ1:T

[
|∇F (ωt)|2A−1

t

]
≤
√

2LH2F (ω1)

(1− κ)
2
T

+
λH2 (lnT + 2)

(1− κ)T
, (9)

where F (ω) := Eζ [f (ω; ζ)].

From the above conclusion, it is evident that even when using approximate gradients and avoiding
convexity assumptions, the expected value of the average of the squared gradients still converges
at a rate comparable to many popular stochastic optimization algorithms (Bottou et al., 2018). We
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note that, due to the unavailability of ∂G(s0,u;ζ)/∂u in practical scenarios, the convergence rate of
Algorithm 1 needs to be characterized using the modeling error modulus κ, and the convergence rate
is governed by 1/1−κ. If the modeling error modulus κ reaches one, the results become trivial since
the right-hand side in (9) becomes arbitrarily large. When the modeling error modulus κ is zero,
it implies that the estimate G (u) has no bias. The intuitive representation of Assumption 4 in two-
dimensional space is illustrated in Fig. 2. The expectation of the gradient estimate Eζ [F (ωt; ζ)|ωt]
lies within the open ball with center Eζ [∇f (ωt; ζ)|ωt] and radius |Eζ [∇f(ωt;ζ)|ωt]|/

√
λ. This im-

plies that Assumption 4 constrains the estimate Eζ [F (ωt; ζ)|ωt] both in magnitude and direction.
Therefore, the parameter κ provides a reference for evaluating the quality of the obtained estimates.

ωx

ωy

Eζ [∇f (ωt; ζ)|ωt]

|Eζ [∇f(ωt;ζ)|ωt]|√
λ

|Eζ [∇f (ωt; ζ)|ωt]|

Eζ [F (ωt; ζ)|ωt]

Figure 2: This figure illustrates the geometric
meaning of the modeling error modulus κ in two-
dimensional space. The expectation of the gra-
dient estimate Eζ [F (ωt; ζ)|ωt] lies within the
open ball with center Eζ [∇f (ωt; ζ)|ωt] and ra-
dius |Eζ [∇f(ωt;ζ)|ωt]|/

√
λ.

We observe that by selecting a sufficiently
large ϵ, the upper bound λ approaches one,
thereby transforming Algorithm 1 from a New-
ton method to a gradient descent method. This
suggests that by adjusting the value of ϵ, we can
enable the algorithm to switch between Newton
and gradient descent methodologies, leading to
the following corollary:
Corollary 6. Let the assumptions of Theorem 5
be satisfied and let ϵ → +∞. Then, the follow-
ing inequality holds:

1

T

T∑
t=1

Eζ1:T

[
|∇F (ωt)|2

]
≤ ℏ1√

T
+
ℏ2 lnT

T
+
2ℏ2
T

,

where ℏ1 = λ
√

2LH2F (ω1)/1−κ and ℏ2 =
λ2H2

/1−κ.

Next, we will reveal the connection between
online learning (1) and stochastic optimiza-
tion (2), and provide the corresponding conver-
gence guarantee. Prior to this, we make the
following additional assumption:
Assumption 7 (Polyak-Łojasiewicz Inequality).
There exists a constant µ > 0 and an exponent
θ ∈ (0, 1) such that for all ω ∈ Ω, |∇F (ω)|2 ≥
2µ (F (ω)− F (ω⋆))

2θ.

Following this assumption, we have the conclusion (Ma et al., 2024):
Definition 8. The radius of the minimum ω⋆ ∈ Ω is defined as D := supω̂∈Ω |F (ω̂)− F (ω⋆)|,
where ω⋆ := argminω∈Ω F (ω) denotes the global optimum.
Corollary 9. Let the assumptions in Theorem 5 be satisfied, and let Assumption 7 hold. Then, for
any ϵ > 0, the following results hold:

1. When θ ∈ (0, 1/2], the expected regret satisfies the inequality:

Eζ1:T

[
T∑

t=1

f (ωt; ζt)

]
−min

ω∈Ω
Eζ1:T

[
T∑

t=1

f (ω; ζt)

]
≤ ℏ1

√
T + ℏ2 lnT + 2ℏ2
2µD2θ−1

.

In addition, let δ ∈ (0, 1), then the following inequality on the online regret holds with
probability 1− δ:

T∑
t=1

f (ωt; ζt)−min
ω∈Ω

T∑
t=1

f (ω; ζt) ≤
ℏ1
√
T + ℏ2 lnT + 2ℏ2
2µD2θ−1δ

.

2. When θ ∈ (1/2, 1), the expected regret satisfies the inequality:

Eζ1:T

[
T∑

t=1

f (ωt; ζt)

]
−min

ω∈Ω
Eζ1:T

[
T∑

t=1

f (ω; ζt)

]
≤ T 1− 1

4θ

[(
ℏ1
2µ

) 1
2θ

+ 2

(
ℏ2
2µ

) 1
2θ

]
.
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In addition, let δ ∈ (0, 1), then the following inequality on the online regret holds with
probability 1− δ:

T∑
t=1

f (ωt; ζt)−min
ω∈Ω

T∑
t=1

f (ω; ζt) ≤
T 1− 1

4θ

δ

[(
ℏ1
2µ

) 1
2θ

+ 2

(
ℏ2
2µ

) 1
2θ

]
.

5 Experiments

In this section, we will demonstrate the effectiveness of our algorithms through experiments conducted
on various cyber-physical systems. We highlight that even shallow networks work well with our
algorithms. Depending on different scenarios, we will employ an appropriate method to obtain
gradient estimates G (u) or G◦.

5.1 Cantilever beam

d

l

τ

Figure 3: Deformation of the cantilever beam un-
der the active torque and an external disturbance
d, where the dashed line represents the position of
the cantilever beam when at rest.

We consider a flexible cantilever beam (Fig. 3)
with the left end hinged and actuated by a torque
τ applied at the joint. The beam has a total
rest length l. Our goal is to use Algorithm 1
to online learn the parameters of the networks
πff and πfb, minimizing the tracking error of the
end-effector |y − yref| for reference trajectories
sampled from an unknown distribution pyref . The
output y denotes the vertical displacement of the
beam tip. While many RL algorithms struggle
with high-dimensional continuous systems, our
method efficiently handles a system with 100
hidden states. The beam dynamics are implemented in Matlab/Simulink with increased nonlinearity,
making the task highly challenging.

All reference trajectories are randomly sampled at each iteration from a fixed but unknown distribution,
as detailed in Sec. B.1. These trajectories span a wide range, not limited to small deformations. Our
experiments demonstrate that the networks trained by Algorithm 1 generalize well across the entire
support of pyref . To support training, we estimate the system gradient G using system identification in
the frequency domain (Pintelon & Schoukens, 2012), which yields a static approximation. We also
compute the closed-loop gradient G◦ (ωff, ωfb, ζ) via (7) (see Sec. B.2 for details). Two versions of
the feedforward policy πff are considered: a linear model (π1

ff) and a ReLU-activated nonlinear model
(π2

ff), both paired with a fixed linear feedback network πfb (see Sec. B.3).

The experimental setups and results can be found in Sec. B.4. In a noise-free environment, trajectory
tracking can be viewed as a purely feedforward control task. Therefore, in Experiments 1-4, we
employ only the feedforward network πff and adjust the parameter ϵ, allowing Algorithm 1 to
transition between gradient descent (ϵ → ∞) and the quasi-Newton method (ϵ < ∞). Through these
experiments, we explore the convergence rates of different networks and investigate the influence of
different algorithms on convergence as well as their robustness to the selection of hyper-parameters.
Subsequently, we intentionally introduce noise nd to the inputs of the system (see Fig. 1), rendering
the pure feedforward network ineffective for the task at hand (see Experiment 5). Experiment 6
demonstrates the ability of the combined feedforward and feedback control (πff and πfb) to resist noise
in online learning. We evaluate the performance of all the obtained parameterized networks trained in
different experiments on a newly generated test data set previously unseen by our algorithms (see the
average loss in Table 3), in order to investigate the generalization capability of the networks. Although
we only utilize shallow networks and a linear static gradient estimate G (which, unsurprisingly, is
a very poor estimate), the algorithms still perform well using either gradient descent method or
quasi-Newton method, reflecting its strong robustness to modeling errors.

5.2 Four-legged robot

We evaluate our method using the widely adopted Ant model (Schulman et al., 2018), simulated in
Isaac Gym (Makoviychuk et al., 2021) for efficient large-scale parallel rollouts. Unlike standard RL
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benchmarks that maximize forward velocity, our goal is to track arbitrary reference trajectories of the
torso’s center of mass. As no system noise is added, this task reduces to pure feedforward control,
and we use only a feedforward policy πff (i.e., πfb = 0).

In this experiment, we can only measure and observe the information about the torso, which includes
the position of the torso, its orientation represented by a quaternion, and the translational and
angular velocities of the torso. The ant moves on a rough and infinitely flat plane, therefore the
reference trajectories contain only three components: the planar position of the torso, i.e., the x and
y coordinates, and the yaw, which is the rotation of the torso around the z-axis. The method for
generating the reference trajectories can be found in Sec. C.1.

In the context of the ant model, which is a system characterized by contacts and non- smooth motion,
employing system identification methods as described in Sec. 5.1 is not applicable. Fortunately, the
powerful parallel simulation capability of the Isaac Gym environment allows us to easily estimate
the system gradient G (ut) using a stochastic finite difference method (see Sec. C.2).

We recognize that the learning of the motion of the ant, without any prior knowledge, is a challenging
task. Compared to the experiments in Sec. 5.1, the learning of the motion present the following
differences and difficulties: First, due to the contacts and interactions between the ant and the
environment, the motion of the ant is non-smooth, and accordingly, its gradients are discontinuous
(though still assumed to be bounded). Second, the states of the ant are not fully observable. In fact, in
this experiment only the information about the torso is assumed to be measurable and observable,
including its positions, orientations, and corresponding velocities and angular velocities. This means
that changes in control inputs do not necessarily cause changes in the outputs. For instance, when
one of the legs is not in contact with the ground, the positional change of this leg caused by input
variation will not affect the posture of the torso. Third, walking, as a periodic behavior, should
follow specific gaits and frequencies. Training a network model from scratch may lead to the ant
exhibiting anomalous behaviors. Based on the aforementioned perspectives, we make adjustments to
the network structure and use a pre-trained linear model to provide prior knowledge of ant motion
patterns. For more detailed information, please refer to Sec. C.3.

The experimental setups and results can be found in Sec. C.4. We note that the loss of both algorithms
eventually converges to the same level with the same rate. However, it is important to emphasize that
to ensure the convergence of the gradient descent method, its step size ηt must be carefully designed.
In contrast, the quasi-Newton method demonstrates much stronger robustness to the step size selection.
Finally, through this experiment, we demonstrate that in such complex cyber-physical system, even
with a poor gradient estimate, our algorithms still ensure convergence and exhibit high robustness to
modeling errors. It is important to emphasize that, unlike RL, which optimizes a feedback policy
to enable the ant to move forward as fast as possible, our algorithms learn a feedforward model πff
that allows the ant to track any reference trajectories sampled from the distribution pyref , thereby truly
enabling it to learn the skill of walking. Additionally, our algorithms are capable of continuously
improving the tracking performance of the feedforward network through online learning during
deployment.

6 Conclusion

In this article, we propose a novel gradient-based online learning framework operating under the
assumptions that the loss functions are smooth but not necessarily convex. Thanks to gradient
information that is incorporated within the algorithm, we obtain a sample efficient online learning
approach that is applicable to cyber-physical and robotic systems. The framework presented in this
article includes a stochastic optimization algorithm, various designs for neural networks and input
structures for feedforward and feedback control scenarios. We have not only theoretically proven the
convergence of the algorithm without relying on convexity, but also evaluated the effectiveness of our
proposed framework through simulation experiments. These experiments highlight fast convergence
of our algorithms and robustness against modeling errors. Furthermore, they provide empirical
evidence that this algorithm can be deployed in real-world applications in the future.
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A comparison with prior work

Table 1 provides a side-by-side summary of our results and representative baselines for online control.

B Cantilever beam

B.1 Reference trajectory

We randomly generate the reference trajectory based on the following principles: 1. Over a time span
of Tsim seconds, the trajectory starts from rest and eventually returns to its initial position, and remains
still for an additional 0.5 s. 2. Apart from the starting and ending points (y0 and yT ), two other
time points, ta and tb, will be randomly selected within the time duration Tsim. The displacements
(ya and yb) and velocities (va and vb) at these moments will also be randomly generated, with the
accelerations being set to zero. 3. The four points are connected using trajectories that minimize
jerk2 (Geering, 2007; Piazzi & Visioli, 1997). The values of the various parameters are summarized
in Table 2.

Fig. 4 illustrates the sampling procedure for the reference trajectories along with 400 samples. The
total duration is set to Tsim = 5.5 s. The red dashed boxes indicate the spatial and temporal distribution
range of the points ya and yb, respectively.

0 1 2 3 4 5

−1

0

1

y0 yT
ya

yb

va

vb

Time t in s

D
is
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la
ce
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t
∆
y
in

m

Figure 4: The figure illustrates the range of reference trajectories used for training, where the gray
lines are composed of 400 randomly sampled reference trajectories. The red dashed boxes indicate
the spatial and temporal distribution range of the points ya and yb, respectively.

B.2 Gradient estimate

To estimate the gradient of the system G with respect to the inputs u, we first excite the model in
Simulink with an excitation signal ranging from 0Hz to 4Hz, with an interval of 0.1Hz to get a
linear transfer function. The resulting system response in the frequency domain and the estimated
linear transfer function are shown in Fig. 5. Then, we use the obtained transfer function to construct a
linear approximation of ∂G(s0,u;ζ)/∂u, which is denoted by G. For the specific construction method,
please refer to Ma et al. (2022, 2023).

B.3 Model structure

The structure of the networks is illustrated in Fig. 6. The policy network πff takes in a horizon of h1

steps in the past and h2 steps in the future to produce the input uk,ff at time k (see Fig. 6a), while πfb
takes only h1 steps in the past to produce uk,fb (see Fig. 6b). In instances where the horizon surpasses
the range of the reference trajectory, we employ a zero-padding strategy to compensate for the absent
elements.

2Jerk is defined as the derivative of acceleration, that is, the third derivative of displacement.
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Table 2: Summary of the parameters used for generating reference trajectories
Parameter Distribution Unit

ta Uniform(1.2, 1.8) s
tb Uniform(2.9, 3.5) s

ya, yb Uniform(−0.2, 0.2) m
va, vb Uniform(−2.0, 2.0) m/s
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(a) Amplitude diagram
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(b) Phase diagram

Figure 5: The figure displays the amplitude diagram (left) and phase diagram (right) of the system
response in the frequency domain. Crosses represent the measured data obtained through system
identification in frequency domain, while the solid line represents the fitted transfer function. The
nonlinearity system is denoted by circles in the amplitude diagram.

B.4 Results

The overview of different experiments is presented in Table 3. In each experiment, we train the
parameterized networks for 1000 iterations. The average loss δt is given by

δt =
1

t

t∑
k=1

l (yk; yref,k) , t = 1, . . . , T.

The convergence results of Experiments 1 and 3 are illustrated in Fig. 7a, while the results of
Experiments 2 and 4 are shown in Fig. 7b. In Experiment 5, we artificially introduce noise nd to
render the purely feedforward control ineffective in trajectory tracking and introduce a feedback
controller in Experiment 6 to reject noise, with the convergence results shown in Fig. 7c.

B.5 Benchmarks with other Approaches

We compare the performance of several algorithms from related work with our proposed methods in
this experiment. The results are shown in Fig. 8. Specifically, the Robust Adaptive Control (RAC)
algorithm is based on the work of Dean et al. (2018), the Adversarial Control via System Identification
(ACSI) algorithm is based on the work of Hazan et al. (2020); Agarwal et al. (2019), and the Online
Non-Stochastic Control (ONSC) algorithm is based on the work of Yan et al. (2023) where the
different subscripts indicate the number of random perturbations used for estimating the linear model.
Fig. 8a illustrates the performance of different algorithms on the same fixed trajectory. We observe
that all algorithms eventually converge, but our methods exhibit both faster convergence rates and
better final performance. Fig. 8b shows the performance under a fixed number of experiments. We find
that only our quasi-Newton method outperforms the fixed best linear controller. The ACSI algorithm
does not adapt well to this setting and shows no signs of convergence. For the ONSC algorithm,
increasing the number of perturbations used for model estimation slightly improves performance, but
also significantly increases computational complexity.
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(a) structure of input, output and network for πff
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Figure 6: The figure illustrates the input, output, and network structures of both πff and πfb. The
feedforward network πff, which is a fully connected network, utilizes the reference trajectory at time
k, as well as the reference trajectories for the horizons of h1 and h2 before and after this time, as
its input. The output is the corresponding feedforward input uk,ff at time k. On the other hand, the
feedback network πfb, a linear network, employs the trajectory difference for a horizon of h1 units
leading up to time k as its input. The output is the respective feedback input uk,fb at time k. The
trajectory difference is defined as the difference between the output trajectory and the reference
trajectory.

Table 3: Overview of parameters, network configurations, and experimental results.

No. Model(s) Noise h1 h2
Hidden
Neurons ϵ α η

Average
Loss

1 π1
ff × 100 100 - +∞ - 0.1 6.90× 10−3

2 π1
ff × 100 100 - 1.0 0.1 15.0 6.30× 10−3

3 π2
ff × 100 100 40 +∞ - 0.1 8.27× 10−4

4 π2
ff × 100 100 40 1.0 0.1 15.0 3.19× 10−4

5 π2
ff

√
100 100 40 1.0 0.1 15.0 1.10× 10−3

6 π2
ff

πfb

√ 100
25

100
-

40
- 1.0 0.1 15 4.65× 10−4

C Four-legged robot

C.1 Reference trajectory

Fig. 9 displays the distribution of the reference trajectories used for tracking. We take one of the
sampled trajectories as an example to illustrate the general rules for generating reference trajectories.
The trajectories are generated over a time duration of Tsim = 4 s. The starting point p0 is fixed at
the point [0, 0]T in the x-y plane at time t0 = 0 s, and the initial velocity v0 is also fixed at 1m s−1

directed along the positive x-axis. Next, we uniformly generate the point p1 within a disk centered
around p0 with radii of 2m and 2.5m, and an angular span of ±60◦ centered around v0 (see the red
dashed disk). The velocity v1 at p1 is also set to 1m s−1, in the direction of the line from p0 to p1.
The time t1 for generating p1 is uniformly within a range of ±0.3 s centered around t = 2 s. Based
on the point p1, the point p2 and its corresponding velocity v2 are generated in the same manner, with
the time point t2 = 4 s being fixed for p2. The acceleration at each point is set to zero. Finally, we
connect these three points using a trajectory that minimizes jerk.
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Figure 7: This figure depicts the convergence results δt, t = 1, . . . , 1000 of different experiments.
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Figure 8: The figure presents the trajectory tracking results of different algorithms. The left plot de-
picts tracking performance for a single fixed trajectory, whereas the right plot shows the performance
across multiple randomly sampled trajectories.

C.2 Gradient estimate

At each iteration, we run nenv (here nenv = 2000) identical environments in parallel in addition to
the nominal environment. The nominal input ut, t = 1, . . . , T , is fed into the nominal environment,
yielding the corresponding nominal output yt. For the remaining parallel environments, normally
distributed noise nd with a mean of zero and a variance of one is added to the nominal input ut (see
Fig. 1), denoted as ũt,i, i = 1, . . . , nenv, resulting in the respective outputs ỹt,i. Finally, we estimate
the system gradient G (ut) using least squares3:

G (ut)
T
=


(ũt,1 − ut)

T

(ũt,2 − ut)
T

...
(ũt,nenv − ut)

T


† 

(ỹt,1 − yt)
T

(ỹt,2 − yt)
T

...
(ỹt,nenv − yt)

T

 ,

where we stack all inputs and outputs by columns respectively.

3In the experiment, only the ants that remain upright until the end are considered for estimating the gradient.
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Figure 9: The left subfigure shows the area generated by 500 randomly sampled reference trajectories
used for tracking (depicted as grey lines), along with an example reference trajectory to illustrate
the rules for generating trajectories (shown as a black line). The red dashed disks represent the
distribution range for the position of the next point in the x-y plane, assuming the previous point
is determined. The radial gap of the disk is 0.5m, with an angular span ± 60◦ centered around the
tangent direction at the previous point. The right subfigure illustrates the temporal evolution of the
example reference trajectory, showing its x, y, and yaw components. The time points for generating
points p0 and p2 are fixed. The grey areas in the right subfigures represent the time range for point
p1, which is centered around t = 2 s with a permissible deviation of ±0.3 s.

C.3 Neural network with pre-trained motion patterns

In order to enable online learning with the ant model, we parameterize our networks as follows:

πff (ωff; ζ) = Uϕ
(
ωff;V

Tζ
)
, πfb = 0,

where the matrices U ∈ Rmq×nσ and V ∈ Rnq×nσ represent linear transformation to a lower
dimensional latent space and ϕ : Rnωff × Rnσ → Rmq is a neural network comprising one hidden
layer.

The matrices U and V are obtained through the singular value decomposition of the matrix R:

R = Udiag (σ)V T,

where the matrix R is derived by solving the following ridge regression:

min
R∈Rmq×nq

1

2

nILC∑
i=1

|uref,i −Ryref,i|2 +
ρ

2
∥R∥2F ,

where ρ is a positive constant, and ∥·∥F denotes the Frobenius norm. The ideal input uref represents
the input required for accurately tracking a given reference trajectory yref. The ideal input is unknown,
and we therefore employ iterative learning control (ILC) to approximate it (Ma et al., 2022; Hofer
et al., 2019; Zughaibi et al., 2021; Mueller et al., 2012; Schoellig et al., 2012; Zughaibi et al., 2024).
The variable nILC denotes the number of pre-trained trajectories using ILC. In this experiment,
we sample 50 reference trajectories and get their corresponding ideal inputs using ILC, and each
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Table 4: Parameters for training the ant model.

No. Model nσ
Hidden
Neurons ϵ α η

1 πff 90 45 +∞ - Diminishing
2 πff 45 20 0.1 0.5 0.1

reference trajectory takes 200 to 300 iterations to obtain the ideal inputs. We then use 45 trajectories
(90%) along with their ideal inputs to perform ridge regression. Fig. 10 displays the distribution
composed of all 50 reference trajectories used for pre-training in the left subfigure, whereas the right
subfigure showcases the final training result of ILC for one reference trajectory as an example. The
right subfigures illustrate the tracking performance of the corresponding x, y, and yaw components
of this trajectory. We note that the tracking of the x and y components by the ILC is very effective;
however, due to the presence of collisions, the tracking of the yaw component is slightly less accurate.
Nevertheless, we consider this as a sufficiently good ideal input for tracking the given reference
trajectory, which is able to capture the motion patterns.

0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

p0

p2

x in m

y
in

m

reference
output

(a) distribution of trajectories for ILC

0 1 2 3 4

0

1

2

3

Time t in s

x
in

m
reference
output

(b) trajectory of x

0 1 2 3 4

−0.5

0

0.5

Time t in s

y
in

m

reference
output

(c) trajectory of y

0 1 2 3 4

−60
−40
−20

0
20

Time t in s

θ
in

d
eg
re
e reference

output

(d) trajectory of yaw

Figure 10: The left subfigure shows the distribution of 50 randomly sampled reference trajectories
used for pre-training (represented by gray lines), and illustrates the tracking performance of ILC with
one of these trajectories (depicted as a black line). The right subfigures demonstrate the tracking
performance of the ILC for the particular trajectory in the x, y, and yaw components.

C.4 Results

In this experiment, we use a fully connected network with only one hidden layer containing 20
neurons. The hidden layer employs the ReLU activation function, while the output layer does not have
an activation function. We employ different methods to train the network, and the parameters are
shown in Table 4.

The two experiments were conducted with over 1500 and 3500 iterations, respectively, and their
convergence results are shown in Fig. 11.

18



100 101 102 103

100

101

Iteration

L
os
s

quasi-Newton
gradient descent

Figure 11: The figure shows the convergence results of the gradient descent and quasi-Newton
method. The gray line represents the average loss of the gradient descent method, and the black line
indicates the average loss of the quasi-Newton method.
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