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Abstract
Group-invariant probability distributions appear
in many data-generative models in machine learn-
ing, such as graphs, point clouds, and images.
In practice, one often needs to estimate diver-
gences between such distributions. In this work,
we study how the inherent invariances, with re-
spect to any smooth action of a Lie group on a
manifold, improve sample complexity when es-
timating the 1-Wasserstein distance, the Sobolev
Integral Probability Metrics (Sobolev IPMs), the
Maximum Mean Discrepancy (MMD), and also
the complexity of the density estimation problem
(in the L2 and L∞ distance). Our results indicate
a two-fold gain: (1) reducing the sample complex-
ity by a multiplicative factor corresponding to the
group size (for finite groups) or the normalized
volume of the quotient space (for groups of pos-
itive dimension); (2) improving the exponent in
the convergence rate (for groups of positive di-
mension). These results are completely new for
groups of positive dimension and extend recent
bounds for finite group actions.

1. Introduction
Estimating the optimal transportation distance (Villani,
2021; Villani et al., 2009; Santambrogio, 2015) between
probability measures is a fundamental problem in statistics,
with many applications in machine learning, from Genera-
tive Adversarial Networks (GANs) (Goodfellow et al., 2020;
Arjovsky et al., 2017; Salimans et al., 2018; Mallasto et al.,
2019) to domain adaptation and generalization (Flamary
et al., 2016; Courty et al., 2014; Chuang et al., 2021), geo-
metric data processing (e.g., Wasserstein barycenters (Cuturi
& Doucet, 2014) and intrinsic dimension estimation (Block
et al., 2022)), biomedical research (Zhang et al., 2021), and
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control and dynamical systems (Bunne, 2023).

Estimating the 1-Wasserstein distance is known to be a
difficult task in general, and it suffers from the curse of
dimensionality (Tsybakov, 2009). The slow convergence
rate is generally unimprovable, as there exist probability
measures that are difficult to estimate. However, in many
applications (e.g., graphs, point clouds, molecules, spectral
data), the underlying probability measures are invariant with
respect to a group action on the input space. As observed in
recent works (Birrell et al., 2022; Chen et al., 2023), consid-
ering the group invariances in the mathematical model can
help improve the convergence rate of the 1-Wasserstein dis-
tance and the Sobolev Integral Probability Metrics (Sobolev
IPMs), with applications, e.g., to generative models for in-
variant data.

In this paper, we study the sample complexity gain of
invariances for estimating probability measures in the 1-
Wasserstein distance, the Sobolev IPMs, the Maximum
Mean Discrepancy (MMD), and also for the density es-
timation problem (in L2 and L∞ distance). We consider
probability measures supported on a given1 connected com-
pact smooth manifold M that are invariant with respect to
a smooth action of a Lie group G on M. In this general
setting, given a (Borel) probability measure µ, supported on
the manifold M, we prove that there exists an estimator µ̃
(as a function of n i.i.d. samples from µ), such that

E[D(µ, µ̃)] ≲
(δG
n

)κG

, (1)

where D can be replaced by the 1-Wasserstein distance,
Sobolev IPMs, MMD, and also the L2(M) and L∞(M)
distance between distributions (the density estimation prob-
lem in L2(M) and L∞(M)). The exponent κG and the
factor δG depend on the distribution’s smoothness proper-
ties and the quotient space’s dimension and volume.

The new sample complexity bound shows two different
aspects of gain of invariances. First, the quantity κG is
observed to be a non-increasing function of the quotient

1Throughout this paper, we always assume that the underlying
space is a known manifold; this is distinguished from a related
body of work on estimating distributions supported on unknown
low-dimensional embedded manifolds (Divol, 2022).
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Table 1. Summary of the main results.

Divergence Measure δG κG

1-Wasserstein Distance (Theorem 1) vol(M/G) 1/d
1-Wasserstein Distance (s-smooth, Theorem 2) vol(M/G) (s+ 1)/(2s+ d)
Sobolev IPMs (α < d/2, Theorem 3) vol(M/G) (s+ α)/(2s+ d)
Sobolev IPMs (α > d/2, MMD regime, Theorem 4) Z(α;G) 1/2
Density Estimation in L2 Distance (Theorem 5) vol(M/G) s/(2s+ d)

Density Estimation in L∞ Distance (s > d/2, Theorem 6) (vol(M/G))
2s

s−d/2 (s− d/2)/(2s+ d)

*For any divergence measure D in the table, we prove that there exists an estimator µ̃, as a function of n i.i.d. samples from µ,
such that E[D(µ, µ̃)] ≲

(
δG
n

)κG

. Sobolev IPMs use the Sobolev space Hα(M) as test functions, for some α ≥ 0. Moreover,

dµ/dx ∈ Hs(M) for some s ≥ 0. Also, d denotes the dimension of the quotient space M/G, and Z(α;G) is the zeta function of
the manifold when it is restricted to the invariant eigenfunction of the Laplace-Beltrami operator with respect to the group G.

space’s dimension d, so compared to the general case (i.e.,
without invariances, G = {idG}), the exponent is improved,
as d can be potentially as small as dim(M)− dim(G).

Second, the factor δG is a non-decreasing function of the
quotient space’s volume vol(M/G), which can be poten-
tially much smaller than vol(M). For instance, it can
be vol(M)/|G| for finite groups. In particular, we have
δG = vol(M/G) for estimating the 1-Wasserstein distance.
Therefore, for finite groups (i.e., dim(G) = 0), we may
view the gain of invariances for sample complexity (com-
pared to the general case) as replacing the number of sam-
ples n by n× |G| in the classical convergence rate of the 1-
Wasserstein distance estimation (without invariances). This
is intuitively reasonable: the gain of invariances for finite
groups is that each sample effectively conveys the informa-
tion of |G| samples when comparing the invariant case to
the general case. Our result proves this intuition formally.

The upper bound proved in this paper is completely new for
groups of positive dimension. For finite groups, it extends a
recent result for submanifolds (of full dimension) of Rd un-
der 1-Lipschitz group actions (Chen et al., 2023) to arbitrary
manifolds and arbitrary Lie groups.

We further study the convergence rate of estimating prob-
ability divergences for smooth distributions. Indeed, for
probability measures having a density with respect to the
uniform distribution on the manifold, with square-integrable
derivatives up to order s (known as being in the Sobolev
space Hs(M)), we prove upper bounds on the convergence
rate that exhibit the same two-fold gain for the sample com-
plexity as discussed above, namely a factor in the effective
number of samples, and an improvement in the exponent.
Note that all the proven upper bounds in the paper reduce to
the known tight bounds on estimating without invariances if
we set G = {idG} (i.e., the trivial group).

Our findings cannot be derived immediately from known
results on estimating the 1-Wasserstein distance or Sobolev
IPMs. Instead of the idea of using covering numbers, which

are used in a recent work (Chen et al., 2023), we use a
Fourier approach to bounding the error. Specifically, we use
the theory of the Laplace-Beltrami operator on manifolds,
and via a new version of Weyl’s law, which captures the
sparsity of the Fourier series on manifolds, as well as ideas
from differential geometry and Fourier analysis, we prove
the main result.

In short, in this paper, we make the following contributions:

• We prove convergence rates for estimating the 1-
Wasserstein distance for any invariant probability mea-
sure to a smooth Lie group action on a connected com-
pact manifold (Theorem 1). Moreover, we extend this
result to smooth distributions under invariances (Theo-
rem 2).

• We prove convergence rates for estimating the Sobolev
IPMs (Theorem 3) and the Maximum Mean Discrep-
ancy (MMD, Theorem 4) under group invariances.

• We prove convergence rates for the density estimation
problem in the L2(M) and L∞(M) distance under
invariances (Theorem 5 and Theorem 6).

2. Related Work
Optimal transportation has been an extensive area of re-
search for the last few decades (Villani, 2021; Villani et al.,
2009). The Kantorovich duality (Kantorovich, 2006) al-
lows the dual formulation of the optimal transportation
problem used in this paper. The study of the convergence
rate of the 1-Wasserstein distance is a classical problem
(Tsybakov, 2009; Fournier & Guillin, 2015; Weed & Bach,
2019; Boissard & Le Gouic, 2014; Singh et al., 2018; Lei,
2020; Butkovsky, 2014; Panaretos & Zemel, 2019; Arjovsky
et al., 2017; Mroueh et al., 2017; Mena & Niles-Weed, 2019;
Rigollet & Stromme, 2022; Genevay et al., 2019). Canas
& Rosasco (2012) use the 1-Wasserstein distance for learn-
ing probability measures on manifolds. The computational
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aspects of optimal transport in machine learning are also
addressed in (Peyré et al., 2019).

Group-invariant probability measures have many applica-
tions in machine learning; for example, in addition to what
was presented in the previous section, in group equivariant
GANs (Dey et al., 2020; Birrell et al., 2022), normalizing
flow (Biloš & Günnemann, 2021) and equivariant flows
(Köhler et al., 2019).

In a recent paper, Chen et al. (2023) studied the gain of
invariances for estimating the 1-Wasserstein distance, and
they proved upper bounds on the convergence rate for fi-
nite groups with 1-Lipschitz actions of submanifolds (of full
dimension) of Rd, while our rates hold for any group (includ-
ing groups of positive dimension), and any manifold, thus
extending the previous results. In another closely related
work, the gain of group invariances is investigated for the
kernel ridge regression problem on manifolds (Tahmasebi
& Jegelka, 2023). While we study completely different di-
vergence estimation problems here, we follow the approach
proposed in (Tahmasebi & Jegelka, 2023) to use the Laplace-
Beltrami operator (i.e., Fourier basis) to study the benefits
of invariances. For more on the benefits of invariances, see
(Bietti et al., 2021).

It is known that the convergence rate of estimating the 1-
Wasserstein distance can be improved if the densities are
smooth (Singh & Póczos, 2018; Fournier & Guillin, 2015;
Liang, 2021; Niles-Weed & Berthet, 2022). The study of
convergence rates of the Sobolev IPMs for smooth distri-
butions has applications, e.g., in Sobolev GANs (Mroueh
et al., 2017). See (Fukumizu et al., 2007; Gretton et al.,
2006; 2007; Smola et al., 2007; Gretton et al., 2012; Ander-
son et al., 2019; Tolstikhin et al., 2017; 2016; Sriperumbudur
et al., 2011; 2010) for the study of achievable convergence
rates and other properties of MMDs and (Hendriks, 1990)
for the density estimation problem (without invariances).

3. Preliminaries
Let M denote an arbitrary compact, connected, and smooth
manifold without boundary2. Let P(M) denote the set of
Borel probability measures on M, and also let Lip(M)
denote the set of all measurable functions f : M → R such
that |f(x) − f(y)| ≤ dist(x, y), for all x, y ∈ M, where
dist(., .) denotes the geodesic distance between points on
M.

Definition 1. The 1-Wasserstein distance between any two
µ, ν ∈ P(M) is defined as follows:

W1(µ, ν) := sup
f∈Lip(M)

{∫
M
fdµ−

∫
M
fdν

}
. (2)

2The results can also be generalized to manifolds with bound-
aries. But we consider boundaryless manifolds here for simplicity.

For any (unknown) probability measures µ, ν ∈
P(M), assume that we are given independent samples
X1, X2, . . . , Xn

i.i.d.∼ µ and Y1, Y2, . . . , Yn
i.i.d.∼ ν. The goal

is to estimate D(µ, ν), where D denotes a metric distance
between distributions (such as the 1-Wasserstein distance or
a Sobolev Integral Probability Metric), using the 2n indepen-
dent samples. Note that given estimations of the (unknown)
probability measures µ, ν as a function of their i.i.d. sam-
ples, such as µ̃, ν̃, one can estimate D(µ, ν) by the triangle
inequality3:

|D(µ̃, ν̃)−D(µ, ν)| ≤ D(µ, µ̃) +D(ν, ν̃). (3)

Thus, D(µ̃, ν̃) gives an estimation of the true distance
D(µ, ν). This means that to study the convergence of the
probability divergences D(µ, ν), one just needs to prove
an upper bound on D(µ, µ̃) for any probability measure
µ ∈ P(M). In particular, we can focus on the problem of
estimating probability measures from samples in the D(., .)
distance, and study the effects of group invariances on its
sample complexity.

Let G be an arbitrary Lie group acting smoothly on M.
Without loss of generality, we assume that M is equipped
with a Riemannian metric g such that the action of G is iso-
metric on M with respect to g; see (Tahmasebi & Jegelka,
2023) for more details. A probability measure µ ∈ P(M)
is called G-invariant if for any Borel set A ⊆ M and all
τ ∈ G, one has µ(A) = µ(τA). For example, the uniform
distribution on (M, g) is invariant with respect to any iso-
metric group action. Without loss of generality and just
for simplicity, in this paper, we assume that vol(M) = 1,
and we denote the volume element on the manifold by
dx := d volg(x).

4. Main Results
This section presents our main results on bounding D(µ, µ̃)
under invariances. We start with the 1-Wasserstein distance
for arbitrary probability measures (Theorem 1) and then
state the results for smooth distributions (Theorem 2). Then,
we study the sample complexity of Sobolev IPMs (Theorem
3) and MMDs (Theorem 4). Finally, we state our results
for the density estimation problem in the L2(M) distance
(Theorem 5) and in the L∞(M) distance (Theorem 6).

4.1. 1-Wasserstein Distance

For any probability measure µ ∈ P(M), assume that
we are given samples X1, X2, . . . , Xn

i.i.d.∼ µ. Let
µ̂ := 1

n

∑n
i=1 δXi

denote the empirical measure given
X1, X2, . . . , Xn, where δx denotes the Dirac measure sup-
ported on x ∈ M. The empirical measure µ̂ is probably the
most straightforward way to generate an estimator of µ from

3For more on tightness of this upper bound, see (Liang, 2019).
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samples. However, for G-invariant µ, the empirical measure
µ̂ is not necessarily G-invariant. To address this issue, we
introduce and use a modified empirical measure, where the
estimation is restricted to only the non-trivial parts of the
Fourier transform of the measure (see the proof of Theo-
rem 1), as for measures that exhibit invariance, parts of the
spectrum that correspond to non-invariant functions are zero.
Thus, the modified empirical measure is always G-invariant.
The first result of this paper is the following theorem on
the convergence of the 1-Wasserstein distance for arbitrary
(Borel) probability measures using the modified empirical
measure.

Theorem 1 (Convergence rate of the 1-Wasserstein distance
under invariances). For any G-invariant probability mea-
sure µ ∈ P(M), there exists an estimator µ̃ ∈ P(M), as a
function of n i.i.d. samples X1, X2 . . . , Xn ∼ µ, such that

E[W1(µ, µ̃)] ≲
(vol(M/G)

n

) 1
d

, (4)

where vol(M/G) is the volume of the quotient space M/G,
and d := dim(M/G) ≥ 3. Also, the constant can only
depend on the manifold M. Consequently, one has

E[|W1(µ̃, ν̃)−W1(µ, ν)|] ≲
(vol(M/G)

n

) 1
d

, (5)

for any G-invariant probability measures µ, ν ∈ P(M).

In proving this theorem, there are some complications to
overcome. For instance, even though we used the notation
dim(M/G) and vol(M/G), we notice that the quotient
space M/G is not necessarily a manifold. Also, it may
exhibit boundary, even though M is assumed to be bound-
aryless; this can make the Fourier approach inapplicable
to this problem (Tahmasebi & Jegelka, 2023). To address
this issue, we define dim(M/G) (or vol(M/G)) as the
dimension (or the volume) of the principal part of the quo-
tient space. The principal part, denoted as M0/G, is a
connected dense subset of M/G, such that it has a man-
ifold structure inherited from M. Since it is a manifold,
one can define its dimension/volume in a natural way. It
is guaranteed that the principal part exists, and is unique,
under the assumptions of this paper. Besides the principal
part, M/G is only a disjoint union of finitely many other
manifolds, all of lower dimension than the principal part.
Note that vol(M/G) is defined with respect to the dimen-
sion of the quotient space dim(M/G), so it is nonzero even
if dim(M/G) < dim(M).

To compare the convergence rate with the general case (i.e.,
not necessarily G-invariant probability measures), note that
if G = {idG}, then the convergence rate is E[W1(µ, µ̂)] ≲(

vol(M)
n

) 1
dim(M)

, as expected from the standard results for
arbitrary probability measures (Fournier & Guillin, 2015).

This shows that the sample complexity of estimating the
1-Wasserstein distance is improved under invariances; (1)
the new exponent is 1

d with d = dim(M/G), which can be
potentially much greater than 1

dim(M) , (2) the number of
samples n is multiplied by vol(M)/ vol(M/G). For finite
groups, if the action on M is effective4, then Theorem 1
shows that

E[W1(µ, µ̂)] ≲
(vol(M)

n|G|

) 1
dim(M)

. (6)

This could be interpreted as each sample being worth the
same as |G| samples under invariances compared to the
general (non-invariant) case. This improves a recent result
on the convergence of the 1-Wasserstein metric under in-
variances (Chen et al., 2023). Chen et al. (2023) prove that
this rate is achievable for finite group actions on a compact
submanifold (of full dimension) of the Euclidean space Rd.
However, our result is more general, holding for arbitrary
smooth compact manifolds, including spheres, tori, and
hyperbolic spaces, and also for arbitrary groups, not neces-
sarily finite groups. Indeed, to the best of our knowledge,
the improvement in the exponent is new for the convergence
of the 1-Wasserstein distance under invariances.

Let us observe the result of Theorem 1 in the following
example.

Example 1. Consider a point cloud as a set
{p1, p2, . . . , pm} ⊆ (R/Z)3 of m points on 3-torus.
For fixed m, we can think of each point cloud as a point on
the manifold (R/Z)3m. Point clouds are assumed to be
unchanged under a change of coordinates for all the points:

{p1, p2, . . . , pm} ∼= {Ap1, Ap2, . . . , Apm}, (7)

for any orthogonal matrix A. Also, permuting the points
will not change the point clouds. Let G denote the group of
invariances for point clouds defined on (R/Z)3m as above.
Then, by Theorem 1, the gain of invariances (i.e., estimating
the 1-Wasserstein distance on point clouds by considering
the invariances of the problem) is (1) improving the exponent
from 3m to 3m − 6, and (2) multiplying the number of
samples n by m!.

Proof sketch for Theorem 1. In this part, we give a quick
proof sketch for Theorem 1. The complete proof is available
in Appendix B.

To prove the theorem, we focus on an approach for upper
bounding the 1-Wasserstein distance using the orthonormal
basis ϕℓ ∈ L2(M), ℓ = 0, 1, . . ., of eigenfunctions of the
Laplace-Beltrami operator on M in L2(M) (see Appendix

4The action of a group G on a manifold M is called effective
if any idG ̸= τ ∈ G corresponds to a non-trivial bijection on M.

4



Sample Complexity Bounds for Estimating Probability Divergences under Invariances

A for more details). This allows us to conclude that

W 2
1 (µ, ν) ≤

∞∑
ℓ=1

(µℓ − νℓ)
2

λℓ
, (8)

where µℓ =
∫
M ϕℓdµ for each ℓ (defined similarly for ν),

and λℓ, ℓ = 0, 1, . . ., are the eigenvalues of the Laplace-
Beltrami operator on M. This approach shows that to up-
per bound the 1-Wasserstein distance, all we need is to
know how sparse the sequence µℓ, ℓ = 0, 1, . . ., is for a
G-invariant probability measure µ. To this end, we use
recent results on quantifying the sparsity of the series for G-
invariant functions defined on a connected compact smooth
manifold (M, g) (Tahmasebi & Jegelka, 2023).

However, it turns out that using this method cannot guar-
antee a finite convergence rate since high-frequency com-
ponents in the sum accumulate a lot of noise for empirical
measures. To solve this issue, we use a mollifier function
with exponential tail decay (in the Laplace-Beltrami basis)
and use the theory of heat kernels on manifolds to achieve
the final result. Further detailed explanations are provided
in Appendix B, where the complete proof is presented.

4.2. 1-Wasserstein Distance for Smooth Densities

Assume that µ ∈ P(M) is absolutely continuous
with respect to the uniform probability measure dx =

1
vol(M)d volg(x) on (M, g). Assume that dµ

dx ∈ Hs(M),
for some s ≥ 0, where Hs(M) denotes the Sobolev space
of real-valued measurable functions on (M, g) with square-
integrable derivatives up to order s. In this special case, the
probability measure is smoother as s grows.

It turns out that in this special case, the convergence rate of
estimating the 1-Wasserstein distance as a function of the
number of samples can be improved using a new estimator
µ̃ (which is different from the modified empirical estimator
µ̂). The following theorem states the main result for smooth
distributions.

Theorem 2 (Convergence rate of the 1-Wasserstein dis-
tance for smooth distributions under invariances). For
any G-invariant probability measure µ ∈ P(M) with
dµ
dx ∈ Hs(M) for some s ≥ 0, there exists an esti-
mator µ̃ ∈ P(M), as a function of n i.i.d. samples
X1, X2 . . . , Xn ∼ µ, such that

E[W1(µ,µ̃)] ≲
(vol(M/G)

n

) s+1
2s+d

∥∥∥dµ
dx

∥∥∥ d−2
2s+d

Hs(M)
,

where vol(M/G) is the volume of the quotient space M/G
and d := dim(M/G) ≥ 3.

Theorem 2 shows that the gain of invariances for estimating
the 1-Wasserstein distance for smooth distributions under
invariances follows the same behavior as before, for any

s ≥ 0. The two-fold gain is observed in the exponent and
the multiplicative factor. The new upper bound’s exponent
interpolates between the worst-case exponent 1/ dim(M)
and 1/2. As s grows, the exponent converges to 1/2, as
expected. Moreover, if G = {idG}, the bound reduces
to the known convergence rate of 1-Wasserstein distance
estimation under smoothness (without invariances) (Liang,
2021; Niles-Weed & Berthet, 2022).

Proof sketch for Theorem 2. To define the estimator µ̃,
we need to review some facts about manifolds. The set
of square-integrable G-invariant functions on a connected,
compact, smooth manifold M has an orthonormal basis
ϕinv
ℓ ∈ L2(M), ℓ = 0, 1, . . . that consists of the eigen-

functions of the Laplace-Beltrami operator on M (see Ap-
pendix A for more details). For example, for the circle
M = S1, these functions correspond to the sinusoidal waves
that are invariant under the group action. Given n samples
X1, X2, . . . , Xn, the Borel measure µ̃ is defined using its
Radon-Nikodym derivative with respect to the uniform prob-
ability measure on (M, g) as follows:

dµ̃

dx
:=

1

n

T−1∑
ℓ=0

n∑
i=1

ϕinv
ℓ (Xi)ϕ

inv
ℓ , (9)

where T is a fixed positive integer (to be set). For any T , µ̃
is a Borel measure, but generally, it can be a signed measure.
We can then take the closest probability measure to µ̃ in the
1-Wasserstein distance as the final estimation for µ. With a
slight abuse of notation, we denote the final output of the
algorithm by µ̃ again.

The parameter T indicates when the sum is terminated. Note
that estimating the higher-order coefficients in the Fourier
basis requires many samples, and so if the Fourier coef-
ficients decay quickly, one can neglect them and truncate
the sum at a finite T with a small error. Indeed, choosing
a higher number T of eigenfunctions reduces the bias of
the estimator, but it also increases the variance due to the
randomness of sampling and the difficulty of estimating the
higher-order terms. Therefore, optimizing T to balance the
bias and variance terms, according to the problem’s param-
eters, allows us to achieve the best algorithm of this type
(in terms of the convergence rate). Note that the decay of
the Fourier coefficients is provided using the Sobolev space
assumption (see Appendix C more details). We follow this
approach to prove Theorem 2.

4.3. Sobolev Integral Probability Metrics (Sobolev
IPMs)

Sobolev Integral Probability Metrics (IPMs) are a family of
integral probability metrics (Müller, 1997; Sriperumbudur
et al., 2012) that use the Sobolev space Hα(M) as the set
of test functions to define a divergence between probability
measures.
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Definition 2 (Sobolev IPMs). For any α ≥ 0, the Sobolev
IPM with parameter α is defined as

Dα(µ, ν) := sup
f∈Hα(M)

∥f∥Hα(M)≤1

{
Ex∼µ[f(x)]− Ex∼ν [f(x)]

}
,

for any (Borel) probability measures µ, ν ∈ P(M).

Here, we study the sample complexity of estimating Sobolev
IPMs under invariances, where we assume that we have sam-
ples from a smooth probability measure µ; more precisely,
dµ
dx ∈ Hs(M) for some s ≥ 0. Note that for α > d/2, the
Sobolev IPMs are special cases of the Maximum Mean Dis-
crepancies (MMDs) with the Reproducing Kernel Hilbert
Space (RKHS) Hα(M). Since we cover the convergence
rates of MMDs in the next section, we focus on the non-
MMD regime where α ≤ d/2.

Theorem 3 (Convergence rate of Sobolev IPMs under in-
variances). Consider a G-invariant probability measure
µ ∈ P(M) with dµ

dx ∈ Hs(M) for some s ≥ 0.

• If α < d/2, then there exists an estimator µ̃ ∈ P(M),
as a function of n i.i.d. samples X1, X2 . . . , Xn ∼ µ,
such that

E[Dα(µ, µ̃)] ≲
(vol(M/G)

n

) s+α
2s+d

∥∥∥dµ
dx

∥∥∥ d−2α
2s+d

Hs(M)
,

where the constant only depends on the manifold and
vol(M/G) is the volume of the quotient space M/G
with d := dim(M/G).

• If α = d/2, then there exists an estimator µ̃ ∈ P(M)
such that

E[Dα(µ,µ̃)] ≲

√
vol(M/G) log(n)

n
.

We note that the same two-fold gain is observed in the
convergence of the Sobolev IPMs when α ≤ d/2.

The convergence results behave differently in the three
regimes. First, if α < d/2, it extends the 1-Wasserstein
distance convergence rate for smooth distributions to the
Sobolev IPMs. Second, if α > d/2, as we will see in the
next section, the rate saturates at O(n−1/2). Finally, in
the third convergence regime where α = d/2, we get a
convergence rate of the order O(

√
log(n)/n).

Remark 1. While Theorem 3 holds when (at least) dµ
dx ∈

L2(M), we can extend it to all (Borel) probability measures
(for which the rate corresponds to s = 0), by the same
approach as the proof of Theorem 1.

Proof sketch for Theorem 3. We follow the same approach
as Theorem 2. Here, the coefficients of the test functions

f ∈ Hα(M) in the Laplace-Beltrami basis can be upper
bounded using the parameter α (by the definition of Sobolev
spaces). Then, we use an appropriate frequency T , as a
function of α, to simultaneously minimize the bias and
variance terms.

4.4. Maximum Mean Discrepancy (MMD)

The Maximum Mean Discrepancy (MMD) is an integral
probability metric associated with a Positive Definite Sym-
metric (PDS) kernel, where the set of test functions is a
Reproducing Kernel Hilbert Space (RKHS) (Berlinet &
Thomas-Agnan, 2011).
Definition 3. For any PDS kernel K : M×M → R with
an RKHS denoted by H, define

DH(µ, ν) := sup
f∈H

∥f∥H≤1

{
Ex∼µ[f(x)]− Ex∼ν [f(x)]

}
,

for any (Borel) probability measures µ, ν ∈ P(M).

Note that when α > d/2, the Sobolev IPMs are MMDs,
since in that case, Hα(M) is an RKHS (Sobolev Inequal-
ity). For simplicity, we assume that the PDS kernel K is
diagonalizable in the Laplace-Beltrami basis:

K(x, y) =

∞∑
ℓ=0

ξℓϕℓ(x)ϕℓ(y), (10)

for some ξℓ ∈ R. This holds, for example, for the dot-
product kernels on the sphere Sd−1 as well as all Sobolev
spaces Hα(M) with α > d/2.

To study the gain of invariances for estimating MMDs, we
need to define a quantity that measures how many eigen-
functions can take non-zero coefficients when restricted to
the G-invariant functions. This weighted quantity must also
depend on the kernel decomposition in the Laplace-Beltrami
operator. To this end, define

Tr(K;G) :=

∞∑
λ ̸=0

m(λ;G)|ξℓ(λ)|, (11)

where the sum is over all the eigenvalues of the Laplace-
Beltrami operator on the manifold (M, g), and m(λ;G)
denotes the multiplicity of the eigenvalue λ when restricted
to invariant eigenfunctions (see Appendix A for more de-
tails).

The following theorem related the quantity Tr(K;G) to
the sample complexity gain of invariances for the MMD
estimation problem.
Theorem 4. Consider a G-invariant probability measure
µ ∈ P(M) with dµ

dx ∈ H. Then, there exists an estimator
µ̃ ∈ P(M) such that

E[DH(µ, µ̂)] ≤
√

Tr(K;G)

n
. (12)
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This allows us to immediately conclude the following result
for the Sobolev IPMs with α > d/2 (i.e., the MMD regime).

Corollary 1 (Gain of invariances for the Sobolev IPMs
in the MMD regime). For any α > d/2, there exists an
estimator µ̃ ∈ P(M) such that

E[Dα(µ,µ̃)] ≤
√

Z(α;G)

n
,

where Z(α;G) is the zeta function associated with the Lie
group action G on the manifold M:

Z(α;G) :=
∑
λ̸=0

m(λ;G)λ−α. (13)

Note that if α > d/2 (i.e., the MMD regime), the exponent
is always 1

2 and it does not depend on the group of invari-
ances. Moreover, the gain of invariances in this case can
intuitively be understood as having effectively

n× Z(α)

Z(α;G)
(14)

samples instead of n samples, where Z(α) is the original
zeta function of the manifold (achieved via the trivial group
G = {idG}). Therefore, the quantity Z(α)/Z(α;G) rep-
resents the sample complexity gain of invariances in the
kernel regime.

We provide an example to see how the behavior of the
quantity Z(α)/Z(α;G) can depend on more delicate infor-
mation about the group action (i.e., more than the dimension
of the group and the volume of the quotient space).

Example 2. Consider the unit circle S1 with the round
metric. Note that if we parameterize functions defined on S1
as functions of the angle θ ∈ [0, 2π), then the eigenfunctions
of the Laplace-Beltrami operator on S1 are the sinusoidal
functions:

ϕk(θ) = exp(ikθ) with λ = k2; k ∈ Z. (15)

This allows us to compute the zeta function of the unit circle
as

Z(α) =

∞∑
λ ̸=0

m(λ)λ−α = 2

∞∑
k=1

k−2α = 2ζ(2α), (16)

where ζ denotes the Riemann zeta function.

Now consider the finite group of rotations around the center:
G :=

{
2πj
|G| : j ∈ Z

}
. An eigenfunction ϕk is invariant with

respect to the action of G if and only if we have

ϕk(θ) = ϕk

(
θ +

2πj

|G|

)
, (17)

for any θ ∈ [0, 2π) and j ∈ Z. This is equivalent to having
k divide |G|. Thus, we get

Z(α;G) =

∞∑
λ̸=0

m(λ;G)λ−α = 2|G|−2α
∞∑
k=1

k−2α (18)

= 2|G|−2αζ(2α). (19)

This shows that the gain of invariances in sample complexity,
in this case, is to have effectively

n× |G|2α (20)

many samples instead of n samples. Note that α > d/2 in
the MMD regime. Therefore, this example shows how the
multiplicative gain can be improved from |G| to |G|2α in
the MMD regime, which is in contrast to the problem of esti-
mating Sobolev IPMs in the non-MMD regime (Theorem 3).
Example 3. Let Td = [0, 1]d denote the d-dimensional
flat torus, and consider the isometric action of the group
G = Tdim(G) with the circular shift on the first dim(G)
coordinates of Td; for any τ ∈ G and x ∈ Td:

τx :=
(
τ1 + x1, τ2 + x2, . . . , τdim(G) + xdim(G), (21)

xdim(G)+1, . . . , xd
)
, (22)

where the coordinates are summed modulo one. Consider
the heat kernel on Td, defined as:

Kβ(x, y) =
∑

0 ̸=v∈Zd

exp(−β∥v∥22 + 2πi⟨v, x+ y⟩).

Note that

Tr(Kβ ;G) =
∑

0̸=v∈Zd−dim(G)

exp(−β∥v∥22) (23)

= Θ
(d−dim(G))
β − 1, (24)

where

Θβ :=
∑
v∈Z

exp(−βv2) > 1. (25)

This shows that the gain of having invariances with respect
to the group G for estimating the MMD with the heat kernel
is to have effectively

n× Tr(K; {idG})
Tr(K;G)

= n×
Θd

β − 1

Θ
d−dim(G)
β − 1

≈ n×Θ
dim(G)
β ,

many samples, instead of n. This shows that the gain of
invariances can exponentially depend on the Lie group di-
mension dim(G) while estimating MMDs.

Proof sketch for Theorem 4. The spectrum of the test
functions f ∈ H, in the Laplace-Beltrami basis, decays
quickly in the MMD case, and it can be shown that we can
take T → ∞, and use a similar approach to Theorem 3 to
prove the convergence result.
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4.5. Density Estimation in L2(M)

In this section, we present convergence results for estimating
probability density functions dµ

dx in L2(M) distance while
having n i.i.d. samples from µ ∈ P(M).

Theorem 5 (Convergence rate for density estimation
in L2(M) distance under invariances). Consider a G-
invariant probability measure µ ∈ P(M) with dµ

dx ∈
Hs(M). Then, there exists an estimator µ̃ ∈ P(M) such
that

E
[∥∥∥dµ̃
dx

−dµ
dx

∥∥∥
L2(M)

]
≲

(vol(M/G)

n

) s
2s+d

∥∥∥dµ
dx

∥∥∥ d
2s+d

L2(M)
,

where the constant only depends on the manifold and
vol(M/G) denotes the volume of the quotient space M/G
with d := dim(M/G) ≥ 3.

We observe that the density estimation problem in the
L2(M) distance exploits the same two-fold gain as pre-
vious cases.

4.6. Density Estimation in L∞(M)

In this part, we study the gain of group invariances for the
density estimation problem in the L∞(M) distance.

Theorem 6 (Convergence rate for density estimation in
L∞(M) under invariances). Consider a G-invariant prob-
ability measure µ ∈ P(M) with dµ

dx ∈ Hs(M) for some
s > d/2. Then, there exists an estimator µ̃ ∈ P(M), such
that

E
[∥∥∥dµ̃
dx

−dµ
dx

∥∥∥
L∞(M)

]
≲

( (vol(M/G))
2s

s−d/2

n

) s−d/2
2s+d

∥∥∥dµ
dx

∥∥∥ d
s+d/2

Hs(M)
,

where the constant only depends on the manifold.

Note that here we only get a convergence result if s > d/2;
otherwise, the density dµ

dx is not necessarily bounded, since
Hs(M) contains unbounded functions in that case (Sobolev
inequality).

Remark 2. Note that in the density estimation in L2(M)
distance, for finite groups, the effective number of samples
is n×|G|, as intuitively expected (for all s, d). However, for
the L∞(M) distance, better rates are achievable according
to Theorem 6. For instance, let us take d = 4 and s = 6;
then, for finite groups, the convergence rate becomes

E
[∥∥∥dµ̃
dx

−dµ
dx

∥∥∥
L∞(M)

]
≲

( 1

n|G|3
)1/4

. (26)

This shows that the effective number of samples can poten-
tially be more than the linear gain, i.e., in this example, we
have an effective number of samples n× |G|3.

Figure 1. The sample complexity gain of estimation the Sobolev
IPM with α = 1 for invariant distributions.

We also notice that in this paper we used a specific simple
algorithm to achieve the bound for the density estimation
in L∞(M), and it can be improved when there is no in-
variances (Uppal et al., 2019). We leave the problem of
proving tighter bounds for this case under invariances to
future works.

5. Experiments
To observe the gain of invariances, we conduct a simple
experiment on the following synthetic dataset. The input
space is the six-dimensional flat torus T6 = [0, 1]6, and the
group of invariances acts as the circular shifts on the last
two coordinates; see Example 3 for more details about this
action. We consider a non-invariant distribution µnon and an
invariant distribution µinv in this setting as follows. Samples
from the non-invariant distribution are generated based on
the sum of three i.i.d. random variablesX = X1+X2+X3,
each chosen uniformly from [0, 1/3]6. Moreover, samples
from the invariant distribution such as (X,X5, X6) are gen-
erated based on the sum of four i.i.d. random variables,
denoted by X = X1 + X2 + X3 + X4, each chosen uni-
formly from [0, 0.25]4, and for the last two coordinates,
X5, X6 are chosen uniformly from [0, 1]. With this specific
choice, one can show that the distributions of µnon and µinv
both lie in the Sobolev space with s = 6.

The convergence rates for estimating the Sobolev IPM with
α = 1 are shown in Figure 5, where we used the proposed
estimators in the paper to achieve the results. Indeed, we
didn’t optimize the parameter T , and just used a fixed reg-
ularization parameter, which leads to having parallel plots
in the logarithmic scale. Still, the gain of invariances is
evident. We also report the convergence rates for the full
data augmentation setting in the plot. Note that even though
the group of invariances here has infinitely many elements,
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we can report the full data augmentation results using the
Fourier approach. The results show that full data augmen-
tation is not enough to achieve the performance of the in-
variant estimator that is used in the paper. This shows the
crucial role of regularization (i.e., balancing the bias and
variance terms) in the problem.

6. Conclusion
In this paper, we studied the sample complexity gain of
group invariances for estimating various divergence mea-
sures on manifolds, given a number of i.i.d. samples. We
extended the recent theoretical results for finite group ac-
tions on submanifolds (of full dimension) of Rd to arbi-
trary manifolds (including spheres, tori, hyperbolic spaces,
etc.), and arbitrary groups (including groups of positive di-
mension). The gain of invariances in sample complexity
is two-fold: improving the exponent and multiplying the
number of samples by a factor depending on the group of
invariances. We also studied faster convergence rates for
smooth distributions and showed a similar gain in that case.
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A. Preliminaries for Proofs
This section reviews some essential preliminaries on group actions on manifolds (Tahmasebi & Jegelka, 2023). We consider
a compact connected boundaryless smooth Riemannian manifold (M, g) with dimension dim(M). The Riemannian metric
g allows us to define the volume element d volg(x) on M, and without loss of generality, we assume that it is normalized
such that vol(M) =

∫
M d volg(x) = 1. The volume element is also denoted by dx whenever the choice of the Riemannian

metric is evident from the context.

The Laplace-Beltrami operator ∆g is the unique continuous operator satisfying the integration by parts formula:∫
M
⟨∇gϕ(x),∇gψ(x)⟩L2(M)d volg(x) =

∫
M

∆gϕ(x)ψ(x)d volg(x), (27)

for any smooth function ϕ, ψ : M → R. One can see that the Euclidean Laplacian ∆ =
∑

i ∂
2
i satisfies this definition by

Green’s identities.

The Laplace-Beltrami operator eigenfunctions, denoted by ϕℓ, ℓ = 0, 1, . . ., are the the sequence of functions satisfying
the equation ∆gϕ+ λℓϕ = 0 on the manifold M, where 0 = λ0 < λ1 ≤ λ2 ≤ . . . denote the eigenvalues of (−∆g). Let
us assume that ∥ϕℓ∥L2(M) =

∫
M ϕ2ℓ(x)d volg(x) = 1, i.e., the eigenfunctions are normalized in L2(M). One important

property of the Laplace-Beltrami eigenfunctions it that they constitute a basis for the function space L2(M).

It can be shown that the sequence λℓ → ∞ as ℓ → ∞, thus it does not accumulate around any finite number. Moreover,
according to the celebrated Weyl’s law, the density of eigenvalues is given by the following asymptotic formula:

N(λ) := #{λℓ ≤ λ} =
ωdim(M)

(2π)dim(M)
vol(M)λdim(M)/2 +O(λ(dim(M)−1)/2), (28)

where ωdim(M) is the volume of the unit dim(M)-dimensional ball in the Euclidean space Rdim(M) (with the usual metric).
Even more, one can show that Weyl’s law holds locally around each point on the manifold:

Nx(λ) :=
∑
λℓ≤λ

ϕ2ℓ(x) =
ωdim(M)

(2π)dim(M)
vol(M)λdim(M)/2 +O(λ(dim(M)−1)/2), (29)

where the error term is uniformly bounded for all x ∈ M. Note that integrating the above formula on the manifolds gives
the original version of Weyl’s law.

A Lie group G acts on M isometrically if for all τ ∈ G, the corresponding map x 7→ τx on the manifold is an isometry. A
function f : M → M is called G−invariant, if and only if one has f(x) = f(τx), for all τ ∈ G, in L2(M).

For any function f ∈ L2(M), one has f =
∑∞

ℓ=0⟨f, ϕℓ⟩L2(M)ϕℓ. However, for any G-invariant function, one can show
that many coefficients in the above series are a priory known to be zero. Indeed, for any eigenspace of the Laplace-Beltrami
operator, such as Vλ, with eigenvalue λ, there exists a subspace Vλ,G ⊆ Vλ such that all G-invariant functions f ∈ Vλ can be
written as a linear combination of functions in Vλ,G (Tahmasebi & Jegelka, 2023). Without loss of generality, we assume that
the eigenfunctions ϕℓ are chosen such that for any λ there exists a subset of {ϕℓ : ℓ = 0, 1, . . .} that forms an orthonormal
basis for Vλ,G. Let 1G(ℓ) indicate whether ϕℓ ∈ Vλ,G (with one) or not (with zero). Let Nx(λ;G) :=

∑
ℓ:λℓ≤λ 1G(ℓ)ϕ

2
ℓ(x).

We are interested in asymptotic estimation formulae for Nx(λ;G) to study the gain of invariances. Note that if G = {idG},
then Weyl’s law provides such estimation. The following theorem shows how to extend it to non-trivial groups.

Theorem 7 (Local Weyl’s law for G-invariant functions, (Tahmasebi & Jegelka, 2023)). For any Lie group G acting
smoothly on a connected compact boundaryless manifold M, one has for all x ∈ M,

Nx(λ;G) =
∑

ℓ:λℓ≤λ

1G(ℓ)ϕ
2
ℓ(x) =

ωd

(2π)d
vol(M/G)λd/2 +O(λ(d−1)/2), (30)

where d := dim(M/G) and vol(M/G) denote the dimension and the volume of the principal part of the quotient space,
respectively. Note that one always has Nx(λ;G) ≤ Nx(λ).

A Hilbert space H ⊆ L2(M) is called a Reproducing Kernel Hilbert Spaces (RKHS) if and only if for any x ∈ M
and f ∈ H, one has |f(x)| ≤ Cx∥f∥H for some constant Cx < ∞. Associated with H, there exists a PDS kernel

12



Sample Complexity Bounds for Estimating Probability Divergences under Invariances

K : M×M → R , and according to Mercer’s theorem, it can be diagonalized in some basis in L2(M). In this paper, for
the sake of simplicity, we consider kernels that can be diagonalized in the Laplace-Beltrami basis as follows:

K(x, y) =

∞∑
ℓ=0

ξℓϕℓ(x)ϕℓ(y), (31)

for some coefficients ξℓ ∈ R. This includes dot-product kernels over spheres. We further assume that the coefficients, for
each ℓ, only depend on λℓ, thus we can denote them as ξ(λ), too. A set of sufficient conditions for kernels on manifolds to
satisfy such types of diagonalization is given in (Tahmasebi & Jegelka, 2023).

We also use the following definition of Sobolev spaces Hs(M) for any s ≥ 0:

Hs(M) :=
{
f ∈ L2(M) : ∥f∥2Hs(M) := ⟨f, ϕ0⟩2L2(M) +

∞∑
ℓ=1

λsℓ⟨f, ϕℓ⟩2L2(M) <∞
}
. (32)

Sobolev spaces are indeed Hilbert spaces under the following inner product:

⟨f1, f2⟩2Hs(M) := ⟨f1, ϕ0⟩L2(M)⟨f2, ϕ0⟩L2(M) +

∞∑
ℓ=1

λsℓ⟨f1, ϕℓ⟩L2(M)⟨f2, ϕℓ⟩L2(M). (33)

Note that Sobolev spaces are Reproducing Kernel Hilbert Spaces if and only if s > d/2 (Tahmasebi & Jegelka, 2023). For
any 0 ≤ α ≤ β <∞, one has Hβ(M) ⊆ Hα(M) ⊆ L2(M). Moreover, H0(M) = L2(M).

B. Proof of Theorem 1
Theorem 1 (Convergence rate of the 1-Wasserstein distance under invariances). For any G-invariant probability measure
µ ∈ P(M), there exists an estimator µ̃ ∈ P(M), as a function of n i.i.d. samples X1, X2 . . . , Xn ∼ µ, such that

E[W1(µ, µ̃)] ≲
(vol(M/G)

n

) 1
d

, (4)

where vol(M/G) is the volume of the quotient space M/G, and d := dim(M/G) ≥ 3. Also, the constant can only depend
on the manifold M. Consequently, one has

E[|W1(µ̃, ν̃)−W1(µ, ν)|] ≲
(vol(M/G)

n

) 1
d

, (5)

for any G-invariant probability measures µ, ν ∈ P(M).

Proof. Let ϕℓ, ℓ = 0, 1, . . ., denote the eigenfunctions of the Laplace-Beltrami operator, corresponding to the eigenvalues
0 = λ0 < λ1 ≤ λ2 ≤ . . .. Each eigenspace is denoted by Vλℓ

, and its subspace of G-invariant eigenfunctions is denoted
by Vλℓ,G (see Appendix A for more details). For any probability measure µ ∈ P(M), define µℓ =

∫
M ϕℓdµ for each

ℓ = 0, 1, . . ., and note that µ0 = 1. Let dx = 1
vol(M)d volg(x) denote the uniform measure on the manifold and define the

inner-product in L2(M) with respect to the measure d volg(x). If a probability measure µ is absolutely continuous with
respect to the uniform measure, then dµ

dx denotes its Radon-Nikodym derivative.

Lemma 1. Consider two Borel measures µ, ν ∈ P(M) with
∫
M dµ =

∫
M dν = 1. Also, assume that dµ

dx ,
dν
dx ∈ L2(M)

with vol(M) = 1. Then,

W1(µ, ν) ≤ D1(µ, ν), (34)

where D1(µ, ν) is the Sobolev IPM with parameter α = 1.

Proof. Note that Lip(M) ⊂ L2(M). By Rademacher’s theorem (Evans & Gariepy, 2015), any f ∈ Lip(M) is differen-
tiable almost everywhere, and thus |∇gf(x)|g ≤ 1 for almost every x ∈ M. Therefore,

∥∇gf∥2L2(M) ≤
∫
M

|∇gf(x)|2gdvolg(x) ≤
∫
M
dvolg(x) = 1. (35)

13



Sample Complexity Bounds for Estimating Probability Divergences under Invariances

For any f ∈ L2(M), one can write f =
∑∞

ℓ=0 fℓϕℓ with fℓ := ⟨f, ϕℓ⟩L2(M). Thus, we have

W1(µ, ν) = sup
f∈Lip(M)

{∫
M
fdµ−

∫
M
fdν

}
(36)

≤ sup
f∈L2(M)

∥∇gf∥2
L2(M)

≤1

{∫
M
fdµ−

∫
M
fdν

}
. (37)

Now note that since µ0 = ν0, one can restrict the above optimization problem to functions with f0 = 0. For those functions,
we have ∥f∥H1(M) = ∥∇gf∥L2(M) = 1, and thus we have

W1(µ, ν) ≤ sup
f∈H1(M)

∥f∥H1(M)≤1

{∫
M
fdµ−

∫
M
fdν

}
= D1(µ, ν). (38)

To prove Theorem 1, we use Lemma 1. First, note that it is impossible to immediately apply Lemma 1 since the unknown
measure µ is not necessarily absolutely continuous with respect to the uniform measure on the manifold. Nevertheless, let
us define the sequence

µ̃ℓ :=
1

n

n∑
i=1

1G(ℓ)ϕℓ(Xi), (39)

for each ℓ = 0, 1, . . ..

Given the probability measure µ ∈ P(M), define the twisted measure µ⋆ as follows:

dµ⋆

dx
=

∞∑
ℓ=0

exp(−σλℓ)µℓϕℓ, (40)

where σ is a fixed positive constant (to be set later). Note that for a fixed σ, the new measure µ⋆ is absolutely continuous
with respect to the uniform measure. Indeed, its density is even smooth (i.e., having smooth derivatives with arbitrary
orders), since the tail of the above summation goes to zero exponentially fast as ℓ→ ∞. Also, note that

∫
M dµ⋆ = 1, and

with a bit more consideration, we can observe that µ⋆ is a probability measure. Let us also define µ̃⋆ similarly, where µℓ is
replaced with its empirical estimation as above. Thus, the measure µ̃⋆ is computable from the given samples.

There is also another interpretation for the probability measure µ⋆. Let X ∼ µ denote a sample from µ, and consider the
heat diffusion corresponding to the Brownian motion on the manifold, started from X and stopped at time t = σ. The
Brownian motion is assumed to be independent of the sample X , and it can be shown that the law of the process at time
t = σ is the probability measure µ⋆. Therefore, this gives a natural coupling between the two measures µ and µ⋆.

Hence, we can write

W1(µ, µ̃⋆) ≤W1(µ, µ⋆) +W1(µ⋆, µ̃⋆) (41)

≤ C
√
σ +W1(µ⋆, µ̃⋆), (42)

where we use the fact that for any probability measure ν ∈ P(M), one has W1(ν, ν⋆) ≤ W2(ν, ν⋆) ≤ C
√
σ for some

constant C depending on the manifold. The last inequality is due to the fact that the law of the Brownian motion on the
manifold at time t = σ behaves (locally) similarly to the Gaussian distribution on Euclidean spaces.

Let us now bound E[W1(µ⋆, µ̃⋆)]. Since the two measures µ⋆, µ̃⋆ are absolutely continuous with respect to the uniform
measure on the manifold, we can use Lemma 1 and Lemma 2; thus,

E[W1(µ⋆, µ̃⋆)] ≤

√√√√E
[ ∞∑
ℓ=1

exp(−2σλℓ)
(µℓ − µ̃ℓ)2

λℓ

]
. (43)
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Let us define

R(λ) := E
[ ∑
ℓ:λℓ≤λ

(µℓ − µ̃ℓ)
2
]
, (44)

and note that we can rewrite Equation (43) as follows:

E[W1(µ⋆, µ̃⋆)] ≤

√∫ ∞

0+
exp(−2σλ)

dR(λ)

λ
, (45)

where the above formula must be understood as a Riemann-Stieltjes integral.

Using integration by parts and Lemma 3, we have∫ ∞

0+
exp(−2σλ)

dR(λ)

λ
= exp(−2σλ)

R(λ)

λ

∣∣∣∞
0+︸ ︷︷ ︸

=0

+

∫ ∞

0+
R(λ)

2σλ+ 1

λ2
exp(−2σλ)dλ. (46)

Now we use Lemma 3 and Theorem 7 to find an upper bound on the above integral:∫ ∞

0+
R(λ)

2σλ+ 1

λ2
exp(−2σλ)dλ ≲

1

n

∫ ∞

0+

ωd

(2π)d
vol(M/G)λd/2

2σλ+ 1

λ2
exp(−2σλ)dλ (47)

=
1

n

ωd

(2π)d
vol(M/G)

∫ ∞

0+
(2σλd/2−1 + λd/2−2) exp(−2σλ)dλ. (48)

By a change of variables in the above integral, we conclude that∫ ∞

0+
R(λ)

2σλ+ 1

λ2
exp(−2σλ)dλ ≲

vol(M/G)

n
σ1−d/2. (49)

Therefore,

E[W1(µ, µ̃⋆)] ≲
√
σ +

√
vol(M/G)

n
σ(2−d)/4. (50)

To minimize the above upper bound, we consider the function p(σ) =
√
σ +

√
vol(M/G)

n σ(2−d)/4 for σ ∈ (0,∞) that
achieves its minimum at

σ = σopt =
(
(1− d/2)2

vol(M/G)

n

)2/d

, (51)

and thus we have

E[W1(µ, µ̃⋆)] ≲
(vol(M/G)

n

)1/d

, (52)

which completes the proof.

C. Proof of Theorem 2
Theorem 2 (Convergence rate of the 1-Wasserstein distance for smooth distributions under invariances). For anyG-invariant
probability measure µ ∈ P(M) with dµ

dx ∈ Hs(M) for some s ≥ 0, there exists an estimator µ̃ ∈ P(M), as a function of
n i.i.d. samples X1, X2 . . . , Xn ∼ µ, such that

E[W1(µ,µ̃)] ≲
(vol(M/G)

n

) s+1
2s+d

∥∥∥dµ
dx

∥∥∥ d−2
2s+d

Hs(M)
,

where vol(M/G) is the volume of the quotient space M/G and d := dim(M/G) ≥ 3.
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Proof. According to Lemma 1, we have the upper bound

W1(µ, ν) ≤ D1(µ, ν), (53)

for any measures dµ
dx ,

dν
dx ∈ L2(M). Now consider the estimator µ⋆ for µ, for which we are given n i.i.d samples, defined in

the proof of Theorem 3. From the assumption, we have dµ
dx ∈ Hs(M) and clearly, dµ̃

dx ∈ Hs(M) (from its own definition).
Thus, we can use the proof of Theorem 3 specified to α = 1 to achieve the result for the 1-Wasserstein distance of smooth
distributions.

D. Proof of Theorem 3
Theorem 3 (Convergence rate of Sobolev IPMs under invariances). Consider a G-invariant probability measure µ ∈ P(M)
with dµ

dx ∈ Hs(M) for some s ≥ 0.

• If α < d/2, then there exists an estimator µ̃ ∈ P(M), as a function of n i.i.d. samples X1, X2 . . . , Xn ∼ µ, such that

E[Dα(µ, µ̃)] ≲
(vol(M/G)

n

) s+α
2s+d

∥∥∥dµ
dx

∥∥∥ d−2α
2s+d

Hs(M)
,

where the constant only depends on the manifold and vol(M/G) is the volume of the quotient space M/G with
d := dim(M/G).

• If α = d/2, then there exists an estimator µ̃ ∈ P(M) such that

E[Dα(µ,µ̃)] ≲

√
vol(M/G) log(n)

n
.

Proof. We first need to prove the following upper bound on the Sobolev IPMs.

Lemma 2. For Borel measures µ, ν with
∫
M dµ =

∫
M dµ = 1, such that dµ

dx ,
dν
dx ∈ L2(M) and assuming vol(M) = 1,

one has

D2
α(µ, ν) =

∞∑
ℓ=1

(µℓ − νℓ)
2

λαℓ
, (54)

for any α ≥ 0, where µℓ = Ex∼µ[ϕℓ(x)] and νℓ = Ex∼ν [ϕℓ(x)] for any ℓ.

Proof. Any function f ∈ Hα(M) can be written as f =
∑∞

ℓ=0 fℓϕℓ with ∥f∥2Hα(M) = f20 +
∑∞

ℓ=1 λ
α
ℓ f

2
ℓ <∞. From the

definition,

Dα(µ, ν) = sup
f∈Hα(M)

∥f∥Hα(M)≤1

{∫
M
fdµ−

∫
M
fdν

}
(55)

= sup
f∈Hα(M)

∥f∥Hα(M)≤1

{∫
M
f
dµ

dx
dx−

∫
M
f
dν

dx
dx

}
(56)

= sup
f∈Hα(M)

∥f∥Hα(M)≤1

〈
f,
dµ

dx
− dν

dx

〉
L2(M)

(57)

= sup
f∈Hα(M)

∥f∥Hα(M)≤1

∞∑
ℓ=0

fℓ(µℓ − νℓ) (58)

(a)
= sup

f∈Hα(M)
∥f∥Hα(M)≤1

∞∑
ℓ=1

λ
α/2
ℓ fℓ ×

(µℓ − νℓ)

λ
α/2
ℓ

(59)
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(b)
= sup

f∈Hα(M)
∥f∥Hα(M)≤1

√√√√√√
∞∑
ℓ=1

λαℓ f
2
ℓ︸ ︷︷ ︸

≤1

×

√√√√ ∞∑
ℓ=1

(µℓ − νℓ)2

λαℓ
(60)

=

√√√√ ∞∑
ℓ=1

(µℓ − νℓ)2

λαℓ
, (61)

where (a) is due to the fact that µ0 = ν0 = 1, and (b) follows from the Cauchy–Schwarz inequality.

Proof of Theorem 3. Given i.i.d. samples from a probability measure µ with ∥dµ
dx∥Hs(M) <∞, we propose the following

estimator. First, fix a parameter T (to be set later) and let 1G(ℓ;T ) = 1G(ℓ)1{ℓ < T} for any ℓ = 0, 1, . . .. Then, define
the sequence

µ̃ℓ :=
1

n

n∑
i=1

1G(ℓ;T )ϕℓ(Xi), (62)

for each ℓ and let dµ̃
dx :=

∑∞
ℓ=0 µ̃ℓϕℓ. The measure µ̃ is thus well-defined, and

∫
M dµ̃ = 1, but it is not necessarily a

probability measure since it can be a signed measure. However, due to the truncation of the sum at T , we have dµ̃
dx ∈ Hs(M).

Define a new probability measure µ⋆ as

µ⋆ = argmin
ν∈P(M)

Dα(ν, µ̃). (63)

This shows that by the triangle inequality

Dα(µ, µ
⋆) ≤ Dα(µ, µ̃) +Dα(µ̃, µ

⋆) ≤ 2Dα(µ, µ̃), (64)

where in above, we used the definition of the probability measure µ⋆.

We claim that the estimated probability measure achieves the convergence rate claimed in the theorem. To this end, we need
to prove upper bounds on E[Dα(µ, µ̃)]. According to Lemma 2, one has

E[Dα(µ, µ
⋆)] ≤ 2E[Dα(µ, µ̃)] (65)

≤ 2
√
E[D2

α(µ, µ̃)] (66)

= 2

√√√√E
[ ∞∑
ℓ=1

(µℓ − µ̃ℓ)2

λαℓ

]
. (67)

Note that

E
[ ∞∑
ℓ=1

(µℓ − µ̃ℓ)
2

λαℓ

]
= E

[ T−1∑
ℓ=1

(µℓ − µ̃ℓ)
2

λαℓ

]
+ E

[∑
ℓ≥T

(µℓ − µ̃ℓ)
2

λαℓ

]
(68)

= E
[ T−1∑

ℓ=1

(µℓ − µ̃ℓ)
2

λαℓ

]
︸ ︷︷ ︸

(I)

+
∑
ℓ≥T

µ2
ℓ

λαℓ︸ ︷︷ ︸
(II)

, (69)

since µ̃ℓ = 0 for ℓ > T .

To upper bound the second term, we write∑
ℓ≥T

µ2
ℓ

λαℓ
=

∑
ℓ>T

µ2
ℓλ

s
ℓλ

−(s+α)
ℓ ≤ λ

−(s+α)
T

∑
ℓ≥T

µ2
ℓλ

s
ℓ ≤ λ

−(s+α)
T

∥∥∥dµ
dx

∥∥∥2
Hs(M)

. (70)

To bound the first term, we need to use the following lemma.
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Lemma 3. One has

R(λ) := E
[ ∑
ℓ:λℓ≤λ

(µℓ − µ̃ℓ)
2
]
≤ 1

n
Ex∼µ

[
Nx(λ;G)

]
, (71)

where Nx(λ;G) is defined in Theorem 7.

Proof. Note that the coefficients µ̃ℓ are empirical estimates of µℓ given n i.i.d. samples; thus

R(λT ) = E
[ ∑
ℓ:λℓ≤λT

(µℓ − µ̃ℓ)
2
]
=

1

n

{ ∑
ℓ:λℓ≤λT

1G(ℓ)
(
Ex∼µ[ϕ

2
ℓ(x)]− (Ex∼µ[ϕℓ(x)])

2
)}

(72)

≤ 1

n
Ex∼µ

[ ∑
ℓ:λℓ≤λT

1G(ℓ)ϕ
2
ℓ(x)

]
(73)

≤ 1

n
Ex∼µ

[
Nx(λT ;G)

]
. (74)

We use Lemma 3 to complete the proof. First, note that

E
[ T−1∑

ℓ=1

(µℓ − µ̃ℓ)
2

λαℓ

]
≤

∫ λT

0+

dR(λ)

λα
, (75)

where R(λ) is defined in Lemma 3 and dR(λ) denotes the Stieltjes measure corresponding to R(λ). By integration by parts,
one has

E
[ T−1∑

ℓ=1

(µℓ − µ̃ℓ)
2

λαℓ

]
≤

∫ λT

0+

dR(λ)

λα
=
R(λ)

λα

∣∣∣λT

0+
+ α

∫ λT

0+

R(λ)

λα+1
dλ. (76)

Now assume α < d/2. By Theorem 7 and Lemma 3, we have

E
[ T−1∑

ℓ=1

(µℓ − µ̃ℓ)
2

λαℓ

]
≤ R(λT )

λαT
+ α

∫ λT

0+

R(λ)

λα+1
dλ (77)

≤ 1

n

{ ωd

(2π)d
vol(M/G)λ

d/2−α
T +O(λ

(d−1)/2−α
T ) (78)

+ α

∫ λT

0+

{ ωd

(2π)d
vol(M/G)λ

d/2−α−1
T +O(λ

(d−1)/2−α−1
T )

}
dλ

}
(79)

≲
1

n

(
1 +

α

d/2− α

) ωd

(2π)d
vol(M/G)λ

d/2−α
T , (80)

where in ≲ the constant is absolute. Plugging in this estimation into Equation (69) results in

E
[ ∞∑
ℓ=1

(µℓ − µ̃ℓ)
2

λαℓ

]
≲

1

n

d/2

d/2− α

ωd

(2π)d
vol(M/G)λ

d/2−α
T + λ

−(s+α)
T

∥∥∥dµ
dx

∥∥∥2
Hs(M)

. (81)

We can choose the parameter λT ∈ (0,∞) to minimize the above upper bound.

Note that the function p(λ) = caλ
−a + cbλ

b with a, b, ca, cb > 0 is minimized for λ ∈ (0,∞) when

λ = λopt :=
(aca
bcb

)1/(a+b)

. (82)

Taking a = s+ α, b = d/2− α, and

ca =
∥∥∥dµ
dx

∥∥∥2
Hs(M)

, cb =
1

n

d/2

d/2− α

ωd

(2π)d
vol(M/G), (83)
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suggests to take

λT =
{(

(s+ α)∥dµ/dx∥2Hs(M)

)/( d

2n

ωd

(2π)d
vol(M/G)

)}1/(s+d/2)

. (84)

Therefore, we have the following upper bound

E
[ ∞∑
ℓ=1

(µℓ − µ̃ℓ)
2

λαℓ

]
(85)

≲
1

n

d/2

d/2− α

ωd

(2π)d
vol(M/G)

{(
(s+ α)∥dµ/dx∥2Hs(M)

)/( d

2n

ωd

(2π)d
vol(M/G)

)}(d/2−α)/(s+d/2)

(86)

+
∥∥∥dµ
dx

∥∥∥2
Hs(M)

{(
(s+ α)∥dµ/dx∥2Hα(M)

)/( d

2n

ωd

(2π)d
vol(M/G)

)}−(s+α)/(s+d/2)

, (87)

which shows that

E
[ ∞∑
ℓ=1

(µℓ − µ̃ℓ)
2

λαℓ

]
≲

(vol(M/G)

n

) s+α
s+d/2

∥∥∥dµ
dx

∥∥∥ d−2α
s+d/2

Hs(M)
. (88)

This completes the proof for α < d/2, since

E[Dα(µ, µ
⋆)] ≤ 2

√√√√E
[ ∞∑
ℓ=1

(µℓ − µ̃ℓ)2

λαℓ

]
≲

(vol(M/G)

n

) s+α
2s+d

∥∥∥dµ
dx

∥∥∥ d−2α
2s+d

Hs(M)
. (89)

Now, we study the case where α = d/2. By Theorem 7 and Lemma 3, we have

E
[ T−1∑

ℓ=1

(µℓ − µ̃ℓ)
2

λαℓ

]
≤ R(λT )

λαT
+ α

∫ λT

0+

R(λ)

λα+1
dλ (90)

≤ α

n

∫ λT

λ1

ωd

(2π)d
vol(M/G)

dλ

λ
+O(1/n) (91)

=
α

n

ωd

(2π)d
vol(M/G) ln(λT ) +O(1/n). (92)

Thus, from Equation (69) we have

E
[ ∞∑
ℓ=1

(µℓ − µ̃ℓ)
2

λαℓ

]
≲
α

n

ωd

(2π)d
vol(M/G) ln(λT ) + λ

−(s+α)
T

∥∥∥dµ
dx

∥∥∥2
Hs(M)

+O(1/n). (93)

To minimize the above upper bound as a function of λT , we consider the function p(λ) = caλ
−a + cb ln(λ) and assume

that cb is small enough. Note that the minimum of p(λ) for λ ∈ (0,∞) is achieved when

λ = λopt :=
(aca
cb

)1/a

. (94)

This means that for a = s+ α, ca = ∥dµ/dx∥2Hs(M), and cb = α
n

ωd

(2π)d
vol(M/G), we can take

λT =
{(

(s+ α)∥dµ/dx∥2Hs(M)

)/(α
n

ωd

(2π)d
vol(M/G)

)}1/(s+d/2)

, (95)

to achieve

E
[ ∞∑
ℓ=1

(µℓ − µ̃ℓ)
2

λαℓ

]
≲

d log(n)

(2s+ d)n

ωd

(2π)d
vol(M/G) +O(1/n). (96)

This completes the proof for α = d/2, since

E[Dα(µ, µ
⋆)] ≤ 2

√√√√E
[ ∞∑
ℓ=1

(µℓ − µ̃ℓ)2

λαℓ

]
≲

√
vol(M/G) log(n)

n
. (97)
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E. Proof of Theorem 4
Theorem 4. Consider a G-invariant probability measure µ ∈ P(M) with dµ

dx ∈ H. Then, there exists an estimator
µ̃ ∈ P(M) such that

E[DH(µ, µ̂)] ≤
√

Tr(K;G)

n
. (12)

Proof. Note that a function f ∈ H can be written as f =
∑∞

ℓ=0 fℓϕℓ such that ∥f∥2H =
∑∞

ℓ=0
f2
ℓ

ξℓ
< ∞. Thus, for any

probability measures µ, ν such that dµ
dx ,

dν
dx ∈ H, we have

DH(µ, ν) := sup
f∈H

∥f∥H≤1

{
Ex∼µ[f(x)]− Ex∼ν [f(x)]

}
(98)

= sup
f∈H

∥f∥H≤1

{ ∞∑
ℓ=1

fℓ(µℓ − νℓ)
}
=

√√√√ ∞∑
ℓ=1

ξℓ(µℓ − νℓ)2. (99)

Now consider the estimator µ̃ that is defined similar to the proof of Theorem 1; we have

µ̃ℓ :=
1

n

n∑
i=1

1G(ℓ)ϕℓ(Xi), (100)

for each ℓ = 0, 1, . . ., and µ̃ denotes the measure5 for which Ex∼µ̃[ϕℓ(x)] = µ̃ℓ. Assume that ξℓ depends only on λℓ, and
thus denote it by ξ(λ). Using Lemma 3 and integration by parts, we have

E[DH(µ, µ̃)] ≤
√
E[DH(µ, µ̃)2] =

√√√√E
[ ∞∑
ℓ=1

ξℓ(µℓ − µ̃ℓ)2
]

(101)

=

√∫ ∞

0+
ξ(λ)dR(λ) (102)

≤

√
1

n

∫ ∞

0+
ξ(λ)dNx(λ;G), (103)

which holds when ξ(λ) is non-increasing. Now, note that∫ ∞

0+
ξ(λ)dNx(λ;G) =

∞∑
ℓ=1

1G(ℓ)ξ(λℓ), (104)

and this completes the proof.

F. Proof of Theorem 5
Theorem 5 (Convergence rate for density estimation in L2(M) distance under invariances). Consider a G-invariant
probability measure µ ∈ P(M) with dµ

dx ∈ Hs(M). Then, there exists an estimator µ̃ ∈ P(M) such that

E
[∥∥∥dµ̃
dx

−dµ
dx

∥∥∥
L2(M)

]
≲

(vol(M/G)

n

) s
2s+d

∥∥∥dµ
dx

∥∥∥ d
2s+d

L2(M)
,

where the constant only depends on the manifold and vol(M/G) denotes the volume of the quotient space M/G with
d := dim(M/G) ≥ 3.

5Indeed, one can also achieve the convergence rate by truncating the sum over λℓ < T with appropriate T to make the estimation
computable.
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Proof. For any two probability measures µ, ν such that dµ
dx ,

dν
dx ∈ L2(M), we have

D0(µ, ν) = sup
f∈L2(M)

∥h∥f2(M)=1

Eµ[f ]− Eν [f ] (105)

= sup
f∈L2(M)

∥f∥L2(M)=1

⟨f, dµ
dx

− dν

dx
⟩L2(M) (106)

=
∥∥∥dµ
dx

− dν

dx

∥∥∥
L2(M)

. (107)

Therefore, we can use the estimator in the proof of Theorem 3 for α = 0 to achieve the desired result.

G. Proof of Theorem 6
Theorem 6 (Convergence rate for density estimation in L∞(M) under invariances). Consider a G-invariant probability
measure µ ∈ P(M) with dµ

dx ∈ Hs(M) for some s > d/2. Then, there exists an estimator µ̃ ∈ P(M), such that

E
[∥∥∥dµ̃
dx

−dµ
dx

∥∥∥
L∞(M)

]
≲

( (vol(M/G))
2s

s−d/2

n

) s−d/2
2s+d

∥∥∥dµ
dx

∥∥∥ d
s+d/2

Hs(M)
,

where the constant only depends on the manifold.

Proof. Consider the estimator µ̃ proposed in the proof of Theorem 3 with a parameter T (to be set). Let µT denote the
measure obtained by truncating the sum corresponding to µ at T . Note that for the estimator µ̃ we have

E
[∥∥∥dµ̃
dx

− dµ

dx

∥∥∥
L∞(M)

]
≤ E

[∥∥∥dµ̃
dx

− dµT

dx

∥∥∥
L∞(M)

]
︸ ︷︷ ︸

(I)

+
∥∥∥dµT

dx
− dµ

dx

∥∥∥
L∞(M)︸ ︷︷ ︸

(II)

. (108)

To bound the first term, we use the Cauchy–Schwarz inequality for low degree functions; see the following lemma.

Lemma 4. Assume that f ∈ L2(M) and f =
∑T

ℓ=0 fℓ1G(ℓ)ϕℓ. Then,

∥f∥L∞(M) ≤ ∥f∥L2(M)

√
sup
x∈M

Nx(λ;G). (109)

Proof. By Theorem 7, we have

∥f∥L∞(M) = sup
x∈M

|f(x)| = sup
x∈M

∣∣∣ T∑
ℓ=0

fℓ1G(ℓ)ϕℓ

∣∣∣ (110)

≤

√√√√ T∑
ℓ=0

f2ℓ

√√√√ sup
x∈M

T∑
ℓ=0

1G(ℓ)ϕℓ(x)2 (111)

≤ ∥f∥L2(M)

√
sup
x∈M

Nx(λ;G). (112)

Now we use the above lemma and Lemma 3 to write

E
[∥∥∥dµ̃
dx

− dµT

dx

∥∥∥
L∞(M)

]
≤

√
sup
x∈M

Nx(λT ;G)E
[∥∥∥dµ̃
dx

− dµT

dx

∥∥∥
L2(M)

]
(113)
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≤

√
1

n
sup
x∈M

Nx(λT ;G)× Ex∼µ[Nx(λT ;G)]. (114)

To bound the second term, we have∥∥∥dµT

dx
− dµ

dx

∥∥∥
L∞(M)

= sup
x∈M

∣∣∣∑
ℓ>T

µℓ1G(ℓ)ϕℓ

∣∣∣ (115)

= sup
x∈M

∣∣∣∑
ℓ>T

µℓ1G(ℓ)λ
s/2
ℓ ϕℓλ

−s/2
ℓ

∣∣∣ (116)

≤
√∑

ℓ>T

µ2
ℓλ

s
ℓ

√
sup
x∈M

∑
ℓ>T

1G(ℓ)ϕ2ℓλ
−s
ℓ (117)

≤ ∥f∥Hs(M)

√
sup
x∈M

∑
ℓ>T

1G(ℓ)ϕ2ℓλ
−s
ℓ . (118)

Note that

sup
x∈M

∑
ℓ>T

1G(ℓ)ϕ
2
ℓλ

−s
ℓ = sup

x∈M

∫ ∞

λT

λ−s
ℓ dNx(λ;G) (119)

≤ d

d− 2s

ωd

(2π)d
vol(M/G)λ

d/2−s
T . (120)

Thus, we combine the two terms and obtain

E
[∥∥∥dµ̃
dx

− dµ

dx

∥∥∥
L∞(M)

]
≤

√
1

n
sup
x∈M

Nx(λ;G)× Ex∼µ[Nx(λ;G)] + ∥f∥Hs(M)

√
d

d− 2s

ωd

(2π)d
vol(M/G)λ

d/2−s
T

≲
1√
n
vol(M/G)λ

d/2
T + ∥f∥Hs(M)

√
vol(M/G)λ

d/4−s/2
T .

By minimizing the above upper bound as a function of λT , we obtain the desired result.
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