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Abstract

Semantic editing of images is a fundamental goal of computer vision. While generative
adversarial networks (GANs) are gaining attention for their ability to produce high-quality
images, they do not provide an inherent way to edit images semantically. Recent studies
have investigated how to manipulate the latent variable to determine the images to be
generated. However, methods that assume linear semantic arithmetic have limitations in
the quality of image editing. Also, methods that discover nonlinear semantic pathways
provide editing that is non-commutative, in other words, inconsistent when applied in
different orders. This paper proposes a method for discovering semantic commutative
vector fields. We theoretically demonstrate that thanks to commutativity, multiple editing
along the vector fields depend only on the quantities of editing, not on the order of the
editing. We also experimentally demonstrated that the nonlinear and commutative nature
of editing provides higher quality editing than previous methods.
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1. Introduction

The generation and editing of realistic images are one of the fundamental goals in the field
of computer vision. Generative adversarial networks (GANs) (Goodfellow et al., 2014) have
emerged as a major image generation approach because of the quality of their generated
images (Karras et al., 2019, 2020, 2021). However, GANs do not inherently have a way
of semantic image editing. Several studies aimed to discover a vector corresponding to
an attribute of images and to edit images by adding the attribute vector to the latent
variables (Voynov and Babenko, 2020; Härkönen et al., 2020; Shen and Zhou, 2021). These
studies introduce the strong assumption of a linear semantic arithmetic on the latent space
(see the first column of Table 1), limiting in the quality of image editing. Other studies
have proposed to find an attribute vector field in the latent space (Tzelepis et al., 2021;
Choi et al., 2022; Ramesh et al., 2018). These methods edit images by integrating a latent
variable along the vector field. This approach seems elegant, but edits of different attributes
are non-commutative in general. That is, what we get is different when we edit one attribute
(denoted by e1) and then edit another (denoted by e2) or when we edit in the reverse order
(see the second column of Table 1). This property becomes problematic when one wants to
edit various attributes of the same image repeatedly. In contrast, linear arithmetic on the
latent space ensures that edits of different attributes are commutative.

To overcome this dilemma, we propose CurvilinearGANSpace, which discovers a set of
commutative and nonlinear attribute vector fields in pretrained GANs’ latent spaces.
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Table 1: Comparison of Our Proposal against Related Methods.

Linear arithmetic Vector fields Proposed

Global coordinate oblique (only local) curvilinear
Nonlinear edit 7 3 3
Commutative edit 3 7 3

Conceptual diagram

e1

e2
e1

e2
e1

e2

2. Methods

2.1. Background

Let X and Z denote an image space and a GAN latent space, respectively. The generator G
of GANs is a mapping from the latent space Z to the image space X ; given a latent variable
z ∈ Z, the generator produces an image x ∈ X as x = G(z). We assume the latent space Z
to be an N -dimensional space. Let {zi}Ni=1 denote the coordinate system (i.e., the basis) on
a neighborhood of the point z ∈ Z. Let X denote the set of all vector fields on the latent
space Z. Let Xk ∈ X denote a vector field on the latent space Z indexed by k, that is,
Xk : Z → TzZ, where TzZ is the tangent space of the latent space Z at the point z. Then,
at the point z, the coordinate system on tangent space TzZ is denoted by { ∂

∂zi
}Ni=1, and a

vector field Xk is expressed as Xk(z) =
∑N

i=1X
i
k(z)

∂
∂zi

for smooth functions Xi
k : Z → R.

When considering a method that assumes attribute vector fields (e.g., Tzelepis et al.
(2021); Choi et al. (2022); Ramesh et al. (2018)), an edit of an attribute k of an image x is
done by integrating a latent variable z along the corresponding vector field Xk; the edited
image is given by x′ = G(z′) for z′ = z+

∫ t
0 Xk(z(τ))dτ = φtk(z), where φtk denotes the flow

that arises from the vector field Xk. Edits of two attributes k and l are commutative if and
only if two flows are commutative, that is, φsl ◦ φtk = φtk ◦ φsl for any s, t ∈ R at any point
z ∈ Z. In general, two vector fields are non-commutative, and hence two edits are non-
commutative (Lee, 2012). A method that assumes linear attribute arithmetic (e.g., Voynov
and Babenko (2020); Härkönen et al. (2020); Shen and Zhou (2021)) can be regarded as a
special case. Using an attribute vector ak independent of the position z, a vector field can be
defined as Xk(z) ≡ ak, and then its flow is φtk(z) =

∫ t
0 akdτ = t ak. Edits are commutative,

but the quality of image editing is limited due to the linearity.

2.2. CurvilinearGANSpace

We introduce the following theorem of differential geometry (see Lee (2012) for example).

Theorem 1 Let vector fields X1, X2, . . . , XN on an N -dimensional space Z be linearly
independent and commutative on an open set U ⊂ Z. At each z ∈ U , there exists a smooth
coordinate chart { ∂

∂si
}Ni=1 centered at z such that ∂

∂si
= Xi.

Roughly speaking, a set of linearly independent and commutative vector fields is compatible
with a set of vector fields along the axes of a coordinate system up to geometric transfor-
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mation. Hence, we consider the case where the open set U in Theorem 1 is not a proper
subset but equal to the latent space Z.

We prepare an N -dimensional Euclidean space V and name it the Cartesianized latent
space. Its coordinate system {vi}Ni=1 is a global Cartesian coordinate system. Let ek denote
the k-th element of the standard basis, and the vector filed X̃k corresponding to the attribute
k is defined as X̃k := ek for ek := ∂

∂vk
. The flow ψk : R×V → V the arises from the vector

filed X̃k is given by ψtk(v) := v+
∫ τ

0 ekdτ = v+t ek. Obviously, the flows ψk are commutative
because ψsl ◦ψtk(v) = v+ t ek + s el = ψtk ◦ψsl (v). We introduce a smooth bijective mapping
f : Z → V, z 7→ v, corresponding to the coordinate chart in Theorem 1. We define a
flow φtk that edits the attribute k on the latent space Z as φtk := f−1 ◦ ψtk ◦ f . A vector
field Xk on the latent space Z is implicitly defined by pushforwarding the vector field X̃k

on the Cartesianized latent space V; in particular, Xk(z) = (f−1)∗(X̃k) = ∂f−1(v)
∂v ek at

the point z for v = f(z). Then, one can generate an edited image x′ = G(z′) using the
generator G. A coordinate system defined by a bijective transformation of a Cartesian
coordinate is called a curvilinear coordinate (Arfken et al., 2012). Hence, we name this
method CurvilinearGANSpace.

CurvilinearGANSpace is a commutative special case of method that assumes attribute
vector fields (e.g., Choi et al. (2022); Ramesh et al. (2018); Tzelepis et al. (2021)). At
the same time, it is a nonlinear generalization of method that assumes attribute arithmetic
(e.g., Voynov and Babenko (2020); Härkönen et al. (2020); Shen and Zhou (2021)); Curvilin-
earGANSpace enjoys the advantages of both methods; the nonlinearity and commutativity.

3. Experiments and Results

Experimental Settings The proposed methodology is available for any framework that
manipulates the latent variables. This paper focuses on the unsupervised learning frame-
work proposed by Voynov and Babenko (2020). We used CelebA-HQ (Liu et al., 2015) as
the dataset, StyleGAN2 (Karras et al., 2020) for the GANs, and ResNet-18 (He et al., 2016)
for the reconstructor used in the learning framework. For a smooth bijective mapping f ,
we employ a continuous normalizing flow (CNF) (Chen et al., 2018). For comparison, we
also evaluated a method that assumes a linear arithmetic (Voynov and Babenko, 2020) and
a method that assumes vector fields called WarpedGANSpace (Tzelepis et al., 2021). To
clarify the difference, we will refer to the former method as LinearGANSpace, hereafter.
We used their pretrained models.

Evaluation Metrics Even when editing an attribute k of a latent variable z by a change
amount t, it is not guaranteed that the same attribute k of the image x is edited by the same
amount t. Hence, we normalized the change amount t for the latent variable z by the change
amount for the generated image x, following the measurements by a separate attribute
predictor Ak(·). We used CelebA-HQ attributes classifier for smiling and bangs (Jiang et al.,
2021) and Hopenet for face direction (yaw) (Doosti et al., 2020). As well as attributes,
we used ArcFace for the identity score I(·, ·), evaluating whether two images are of the
same person (Deng et al., 2019). We defined commutativity error of attributes k+l to
evaluate how commutative image editing. It is the error when edits of these two attributes
k and l are applied in different orders; namely, |Ak(G(φtk(φ

t
l(z))))−Ak(G(φtl(φ

t
k(z))))| and
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Table 2: Results of StyleGAN2. S: Smiling, B: Bangs, Y: Yaw.

Commutativity Error [%] Identity Error [%]

S+B S+Y B+Y S B Y

LinearGANSpace 00.05 00.04 00.04 0.02 00.03 0.06 14.36 14.70 17.64
WarpedGANSpace 21.67 24.47 13.47 2.79 19.94 4.68 05.29 22.05 07.01
CurvilinearGANSpace (proposed) 00.25 00.17 00.27 0.36 00.20 0.31 04.98 09.29 10.19

LinearGANSpace

WarpedGANSpace

CurvilinearGANSpace (proposed)

Original +Smiling +Yaw +Bangs −Smiling −Yaw −Bangs Original

Figure 1: Visualization results.

|Al(G(φtk(φ
t
l(z)))) − Al(G(φtl(φ

t
k(z))))|. We also defined identity error of attribute k to

evaluate the editing quality. It measures how much an edit of the attribute k reduces the
identity score; namely, 1 − I(G(z), G(φtk(z))). We set the change amount of every edit to
t = 0.1 for the smiling and bangs attribute and t = 5 degrees for the yaw attribute. We
divided the commutativity errors by the change amount t and showed them in percentages.

Results We summarized the numerical results in Table 2. WarpedGANSpace produced
the commutativity errors of at least 2.79 % and often more than 10 %. Those of Lin-
earGANSpace and the proposed CurvilinearGANSpace were always less than 0.5 %; while
not exactly zero due to numerical and rounding errors, they are negligible. Hence, as ex-
pected, edits by WarpedGANSpace are not commutative, and edits by LinearGANSpace
and CurvilinearGANSpace are commutative. CurvilinearGANSpace produced the lowest
identity errors for smiling and bangs attributes and the second lowest one for the yaw
attribute. Hence, we can say that it learned disentangled representations better.

We showed an example image with a sequence of edits in Fig. 1. The amount of change
was set to double to make the change easier to find; +Smiling indicates that t = +0.2 and
k = Smiling. LinearGANSpace’s image editing quality is clearly inferior. The image editing
qualities of WarpedGANSpace and CurvilinearGANSpace are competitive. After six edits,
the change amounts should cancel out, and the attributes should return to their original
values. LinearGANSpace and CurvilinearGANSpace show the expected results. However,
the edited result of WarpedGANSpace shows that the woman’s mouth opening has not
returned to its original state; edits by WarpedGANSpace are not commutative. Therefore,
we conclude that CurvilinearGANSpace enjoys the advantages of both of previous methods;
the nonlinearity and commutativity.
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