
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Boosting Asynchronous Decentralized Learning
with Model Fragmentation

Anonymous Author(s)
Abstract

Decentralized learning (DL) is an emerging technique that allows
nodes on the web to collaboratively train machine learning models
without sharing raw data. Dealing with stragglers, i.e., nodes with
slower compute or communication than others, is a key challenge in
DL. We presentDivShare, a novel asynchronous DL algorithm that
achieves fast model convergence in the presence of communication
stragglers. DivShare achieves this by having nodes fragment their
models into parameter subsets and send, in parallel to computation,
each subset to a random sample of other nodes instead of sequen-
tially exchanging full models. The transfer of smaller fragments
allows more efficient usage of the collective bandwidth and enables
nodes with slow network links to quickly contribute with at least
some of their model parameters. By theoretically proving the con-
vergence of DivShare, we provide, to the best of our knowledge,
the first formal proof of convergence for a DL algorithm that ac-
counts for the effects of asynchronous communication with delays.
We experimentally evaluate DivShare against two state-of-the-art
DL baselines, AD-PSGD and Swift, and with two standard datasets,
CIFAR-10 and MovieLens. We find that DivShare with communi-
cation stragglers lowers time-to-accuracy by up to 3.9× compared
to AD-PSGD on the CIFAR-10 dataset. Compared to baselines, Di-
vShare also achieves up to 19.4% better accuracy and 9.5% lower
test loss on the CIFAR-10 and MovieLens datasets, respectively.

CCS Concepts

• Computing methodologies→ Distributed artificial intelli-

gence; Distributed algorithms.

Keywords

Decentralized Learning, Collaborative Machine Learning, Asyn-
chronous Decentralized Learning, Communication Stragglers

ACM Reference Format:

Anonymous Author(s). 2024. Boosting Asynchronous Decentralized Learn-
ing with Model Fragmentation. In . ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Decentralized learning (DL) is a collaborative learning framework
that allows nodes on the web to train a machine learning (ML)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

model without sharing their private datasets with others and with-
out the involvement of a centralized coordinating entity (e.g., a
server) [38]. During each round of DL, nodes independently train
their models using their private dataset. Based on a specified com-
munication topology, the updated local models are then exchanged
with neighbors over the Internet and aggregated at each recipient
node. The aggregated model serves as the starting point for the
next round, and this process continues until convergence. This ap-
proach enables web-based applications, such as recommender sys-
tems [6, 13, 40] or social media [10, 27], to collaboratively leverage
the capabilities of ML models in a privacy-preserving and scalable
manner. Notable DL algorithms include Asynchronous decentral-
ized parallel stochastic gradient descent (AD-PSGD) [39], Gossip
learning (GL) [47], and Epidemic learning (EL) [12].

It is natural for nodes in any real-world network to have different
computation and communication speeds. While the focus on DL
has been surging due to its wide range of applicability [7], most
existing works in DL consider a synchronous system without the
presence of stragglers, i.e., nodes with slower compute or commu-
nication speeds than others [9, 12, 18, 39, 43, 54]. In synchronous
DL approaches such stragglers can significantly prolong the time
required for model convergence as the duration of a single round
is typically determined by the slowest node [38]. Ensuring quick
model convergence in the presence of stragglers and reducing their
impact is crucial to improving the practicality of DL systems.

This work deals with communication stragglers in DL. This form
of system heterogeneity is particularly present in web-based sys-
tems where nodes are geographically distributed and inherently
have variable network speeds, resulting in delayed communica-
tions [20]. For instance, the network speeds of web-connected mo-
bile devices can differ by up to two orders of magnitude [35]. Even
when nodes are deployed over cross-region AWS instances, their
network bandwidth can vary by up to 20× [20].

0 2 4 6 8 10 12
20

40

60

Wall-clock time [min]

Te
st
ac
cu
ra
cy
[%
]

Impact of stragglers

Swift, no stragglers Swift, with stragglers
AD-PSGD, no stragglers AD-PSGD, with stragglers

Figure 1: The convergence plots for AD-PSGD and Swift on

CIFAR-10, with and without communication stragglers.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Full model

Send
Send

fragments

DL (AD-PSGD, Swift ...) DivShare

Nodes

Figure 2: Model sharing in DL (left) and DivShare (right),

from the perspective of a single node. DivShare fragments

models and sends each fragment to randomly selected nodes.

In the context of DL, this variability in communication speed
results in slower model convergence. In most DL algorithms, a
node sends its full model to a few other nodes (Fig. 2, left). Nodes
with slow network links require more time to transfer larger mod-
els, which can lead to two negative outcomes for their parameter
updates: (i) they are received later and become stale by the time
they are merged, or (ii) they are ignored entirely as the recipient
proceeds with aggregation without waiting for the contributions
of slow nodes. Additionally, from the perspective of a sending
node with a fast network link, a slow recipient can block valuable
bandwidth. In many DL algorithms, a recipient only proceeds with
aggregation after receiving the full model. Rather than communi-
cating with faster nodes, the sender must wait, further exacerbating
the straggling effect and hindering system performance.

We highlight the impact of communication stragglers in DL
with an experiment where we measure the model convergence
of AD-PSGD [39] and Swift [9], two state-of-the-art asynchro-
nous DL algorithms, in a 60-node network. We consider an image
classification task with the CIFAR-10 dataset [34] and use a non
independent and identically distributed (non-IID) data partition-
ing [14, 42]. Fig. 1 shows the test accuracy of AD-PSGD and Swift
over time, without communication stragglers (green curves) and
with communication stragglers (red curves) where half of the nodes
have 5× slower network speeds than others. For both AD-PSGD
and Swift, we observe a significant reduction in model conver-
gence speeds. To reach 56 % test accuracy, AD-PSGD and Swift
require 1.9× and 2.2× more time, respectively, in the presence of
communication stragglers compared to when they are absent.

To address this issue, we introduce DivShare: a novel asynchro-
nous DL algorithm. DivShare converges faster and achieves better
test accuracy compared to state-of-the-art baselines in the presence
of communication stragglers. Specifically, after finishing their local
training (computation), nodes in DivShare fragment their models
into small pieces and share each fragment independently with a
random set of other nodes (Fig. 2, right). Transferring smaller frag-
ments allows nodes with slow network links to quickly contribute
at least with some of their model parameters. Furthermore, the
independent dissemination of fragments to random sets of nodes
enables more efficient use of the collective bandwidth as model
parameters reach a bigger stretch of the network. As a result, Di-
vShare exhibits stronger straggler resilience and attains higher
model accuracy compared to other asynchronous DL schemes.

Contributions. Our work makes the following contributions:

(1) We introduce DivShare, a novel asynchronous DL ap-
proach that enhances robustness against communication
stragglers by leveraging model fragmentation (Sec. 3).

(2) We provide a theoretical proof of the convergence guaran-
tee for DivShare (Sec. 4). To the best of our knowledge, we
are the first to present a formal convergence analysis in DL
that captures the effect of asynchronous communication
with delays. In particular, the convergence rate is influenced
by the number of participating nodes, the properties of the
local objective functions and initialization conditions, the
parameter-wise communication rates, and the communica-
tion delays in the network.

(3) We implement and evaluate DivShare on two standard
learning tasks (image classification with CIFAR-10 [34] and
recommendation with MovieLens [21]) and against two
state-of-the-art asynchronous DL baselines: AD-PSGD and
Swift (Sec. 5). We demonstrate that DivShare is much
more resilient to the presence of communication stragglers
compared to the competitors and show thatDivShare, with
communication stragglers, speeds up the time to reach a
target accuracy by up to 3.9× compared to AD-PSGD on the
CIFAR-10 dataset. Compared to both baselines, DivShare
also achieves up to 19.4% better accuracy and 9.5% lower test
loss on the CIFAR-10 and MovieLens datasets, respectively.

2 Background and preliminaries

This work focuses on a scenario where multiple nodes collabo-
ratively train ML models. This approach is often referred to as
collaborative machine learning (CML) [48, 52]. In CML algorithms,
each node maintains a local model and a private dataset. The pri-
vate dataset is used to compute model updates and remains on the
node’s device throughout the entire training process.

2.1 Synchronous and asynchronous DL

Decentralized learning (DL) [4, 38, 44] is a type of CML algorithm
in which nodes exchange model updates directly with other nodes.
The majority of DL algorithms are synchronous, meaning they rely
on global rounds where nodes perform computations in parallel,
followed by communication with neighbors. In each round, nodes
generally train their model using local data, exchange them with
neighbors, and aggregate them before starting the next round. This
synchronized process ensures consistency and predictable model
convergence since the system progresses in synchronized rounds.
However, this process also introduces inefficiencies in the pres-
ence of slower nodes (stragglers) as the system needs to wait for
the slowest node to complete its computation and communication
before progressing to the next round [17]. Thus, synchronous DL
approaches can suffer from significant delays, particularly in set-
tings with high variability in computing or communication speeds.

In contrast, asynchronous DL algorithms forego the notion of
synchronized rounds allowing nodes to make progress indepen-
dently [3]. Thus, faster nodes can continue updating and sending
their models independently, which helps to mitigate the delays
caused by stragglers. Designing asynchronous DL algorithms is a
recent and emerging area of research [5, 9, 17, 41]. However, this
asynchrony introduces new challenges. For instance, slower nodes

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Boosting Asynchronous Decentralized Learning with Model Fragmentation Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Train... Train Train ...

...

...

Training Aggregate

Train Train Train ...

...

Node Ni (fast communication)

Send
Fragment

Unsent
Fragment

Time

Node Nj (slow communication)

Time

Fragment
Model

Figure 3: Timeline of computation and communication op-

erations in DivShare during three local rounds, from the

perspective of a node with fast (top) and slow (bottom) com-

munication. Fragments are the same number of bytes, but

their transfer times may vary based on the recipient.

spread possibly outdated model updates and slow down conver-
gence for the entire network. The performance of local models can
also get biased towards the faster nodes as their parameters are
shared and mixed faster than those of the slower nodes.

2.2 System model

Our study specifically tackles the issue of communication delays in
DL. We assume a setting where geo-distributed nodes communicate
their locally trained models at their own pace independent of each
other. We design DivShare to be deployed within a permissioned
network setting where node participation is static. This assumption
is consistent with the observation that DL is commonly used in
enterprise settings, where participation is often controlled [7, 8, 12].
Nodes also remain online throughout the training process. Further-
more, we assume that nodes in DivShare faithfully execute the
algorithm and consider threats such as privacy or poisoning attacks
beyond scope. For clarity and presentation, we assume the nodes
have comparable computation infrastructure that allows them to
compute (e.g., perform their local training and model aggregation)
at the same speed. We further discuss this aspect in Appendix E.

3 Design of DivShare

We first describe the high-level operations of DivShare in Sec. 3.1
and then provide a detailed algorithm description in the remaining
subsections. A summary of notations is provided in Appendix A.

3.1 DivShare in a nutshell

The main idea of DivShare is that nodes fragment their model
and send these fragments to a diverse, random set of other nodes.
Sharing models at a finer granularity allows communication strag-
glers to contribute at least some of the model parameters quickly
while still allowing nodes with fast communication to disseminate
all their model fragments. Fragmentation is also motivated by our

observations that, for an equal amount of communication, sending
smaller model parts to more nodes results in quicker convergence
than sending full models to a few nodes (see Sec. 5.3). We illustrate
the workflow of DivShare in Fig. 3 where we show a timeline of
operations for two nodes: 𝑁𝑖 with fast and 𝑁 𝑗 with slower commu-
nication speeds. The computation and communication operations
are shown in the top and bottom rows for each node, respectively,
where the 𝑘th local round of node 𝑁𝑖 is denoted by 𝑡𝑖

𝑘
.

During a local round, each node maintains a receive buffer for
received model parameters and a send queue for model fragments
paired with destination identifiers, awaiting transmission. In each
round, independently of others, a node 𝑁𝑖 : (i) aggregates the model
fragments received in local round 𝑡𝑖

𝑘−1 (purple in Fig. 3); (ii) carries
out SGD steps for local training (green); (iii) fragments the updated
model to share in the next round (yellow); and (iv) clears the
send queue and adds new pairs of model fragments and receiver
identifiers. During steps (ii) and (iii), 𝑁𝑖 continues communicating
fragments of its model from local round 𝑡𝑖

𝑘−1 at its own pace.
Each blue block in Fig. 3 indicates the transfer of a fragment

to another node. We note that node 𝑁 𝑗 with slow communication
speedsmay onlymanage to send a few fragments before it computes
freshly updated model fragments, which then causes a flush of the
send queue. This scenario is illustrated in Fig. 3, where unsent
fragments are shown in red.

3.2 Problem formulation

Decentralized learning. We consider a set of 𝑛 ≥ 2 nodes N =
{𝑁1, . . . , 𝑁𝑛}, where 𝑁𝑖 denotes the 𝑖th node in the network for
every 𝑖 ∈ [𝑛], who participate in this collaborative framework to
train their models. Z denoting the space of all data points, for
each 𝑖 ∈ [𝑛], let 𝑍𝑖 ⊂ Z, with |𝑍𝑖 |< ∞, be the local dataset of
𝑁𝑖 . Let 𝑁𝑖 ’s data be sampled from a distribution D (𝑖) overZ and
this may differ from the data distributions of other nodes (i.e., for
each 𝑧 ∈ 𝑍𝑖 , 𝑧 ∼ D (𝑖)). Staying consistent with the standard DL
algorithms, we allow each node to have their local loss functions
that they wish to optimize with their personal data. In particular,
setting 𝑑 ∈ N as the size of the parameter space of the models, for
every 𝑖 ∈ [𝑛], let 𝑓 (𝑖) : R𝑑 × Z ↦→ R≥0 be the loss function of
node 𝑁𝑖 and it aims to train a model 𝑥 that minimizes 𝑓 (𝑖) (𝑥) =
E𝑧∼D (𝑖)

[
𝑓 (𝑖) (𝑥, 𝑧)

]
. In practice, in every local round 𝑘 , for its local

training, each node independently samples a subset, referred to as
a mini-batch, of points from their personal dataset and seeks to
minimize the average loss for that mini-batch by doing SGD steps
with a learning rate 𝜂 > 0. Hence, for any 𝑖 ∈ [𝑛], letting 𝜉 (𝑘)

𝑖 to
be the mini-batch sampled by 𝑁𝑖 in its local round 𝑡𝑖

𝑘
, we abuse

the notation of 𝑁𝑖 ’s local loss for a single data point to denote the
average loss for the entire mini-batch 𝜉 (𝑘)

𝑖 computed for any model
𝑥 ∈ R𝑑 given by 𝑓 (𝑖) (𝑥, 𝜉 (𝑘)

𝑖) = 1
|𝜉 (𝑘)
𝑖 |

∑
𝑧∈𝜉 (𝑘)

𝑖
𝑓 (𝑖) (𝑥, 𝑧). The training

objective of DivShare is to collaboratively train the optimal model
𝑥∗ ∈ R𝑑 that minimizes the global average loss:

𝑥∗ = arg min
𝑥∈R𝑑

𝐹 (𝑥), where 𝐹 (𝑥) =
∑︁
𝑖∈[𝑛]

𝑓 (𝑖) (𝑥).

Asynchronous framework. For any given 𝑖 ∈ [𝑛] and 𝑘 =
1, 2, . . ., while local rounds 𝑡𝑖0 < 𝑡𝑖1, . . . capture each node’s progress

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 1: Local rounds in DivShare from the perspec-
tive of node 𝑁𝑖
1 Initialize 𝑥 (𝑖,0)
2 for 𝑘 = 1, . . . , 𝜏 do
3 𝑥 (𝑖,𝑘) ← aggregate 𝑥 (𝑖,𝑘−1) and parameters in InQueue
4 InQueue[𝑗]← ∅ for 𝑗 in 𝑖𝑛𝑄𝑢𝑒𝑢𝑒 .keys()
5 𝜉

(𝑘)
𝑖 ← mini-batch sampled from 𝑍𝑖

6 𝑥 (𝑖,𝑘,0) = 𝑥 (𝑖,𝑘)
7 for ℎ = 1, . . . , 𝐻 do

8 𝑥 (𝑖,𝑘,ℎ) ← 𝑥 (𝑖,𝑘,ℎ−1) − 𝜂∇𝑓 (𝑖)
(
𝑥 (𝑖,𝑘,ℎ−1), 𝜉 (𝑘)

𝑖

)
9 fragmentModel

(
𝑥 (𝑖,𝑘,𝐻)

)
// See Alg. 2

10 return 𝑥 (𝑖,𝜏)

Algorithm 2: Model fragmentation in DivShare from the
perspective of node 𝑁𝑖
Require :Fragmentation fraction Ω, nodes N , number of

fragment recipients 𝐽 , sending queue OutQueue
1 Procedure fragmentModel(𝑥):
2 OutQueue← ∅
3 Fragment 𝑥 into

⌈ 1
Ω
⌉
fragments

4 for each fragment 𝑓 do
5 𝑆 ← Sample 𝐽 random nodes from N
6 for each sampled node 𝑁 𝑗 in 𝑆 do

7 OutQueue.add((𝑗, 𝑓))
8 shuffle(OutQueue)

in its compute operations and communication (as described in
Sec. 3.1), we introduce the notion of global rounds to track the
network’s overall training progress. Similar to the formalization
made by Even et al. [17], we define global rounds𝑇0 < 𝑇1 . . . , where
at each 𝑇𝑘 , a non-empty subset of nodes update their models (i.e.,
aggregate received models, perform local SGD steps, and fragment
the updated model). Between two global rounds, 𝑇𝑘 and 𝑇𝑘+1, none
to plenty of communication may asynchronously occur between
nodes. We assume that communication times between any pair of
nodes are independent and directional. That is, for any two nodes
𝑁𝑖 , 𝑁 𝑗 ∈ N , the time it takes for 𝑁𝑖 to communicate with 𝑁 𝑗 may
differ from the time it takes for 𝑁 𝑗 to communicate with 𝑁𝑖 .

In order to lay down the algorithmic workflow of DivShare, for
every 𝑖 ∈ [𝑛], let the model held by node 𝑁𝑖 in global round 𝑇𝑘 for
𝑘 ∈ {0, 1, . . .} be denoted by 𝑥 (𝑖,𝑘) ∈ R𝑑 with 𝑥 (𝑖,𝑘)𝜄 being the 𝜄th
parameter of 𝑥 (𝑖,𝑘) for each 𝜄 ∈ [𝑑].

3.3 The DivShare algorithm

We now formally describe the DivShare algorithm from the per-
spective of node 𝑁𝑖 . A node in DivShare executes three processes
in parallel and independently of other nodes: (𝑖) model aggrega-
tion, training and fragmentation (computation tasks, see Alg. 1 and
Alg. 2), (𝑖𝑖) model receiving (Alg. 3), and (𝑖𝑖𝑖) model sending (Alg. 3).
As mentioned before, each node keeps track of a receive buffer with
incoming model fragments it has received during a local round,

referred to as InQueue, and a send queue with model fragment and
node destination pairs, referred to as OutQueue.

Computation tasks. We formalize the computation tasks that
a node 𝑁𝑖 ∈ N conducts in Alg. 1. 𝑁𝑖 first initializes model 𝑥 (𝑖,0) ,
and all nodes independently do this model initialization. In each
of the 𝑘 = 1, . . . ,𝑇 local rounds, where 𝑇 is a system parameter,
𝑁𝑖 first performs parameter-wise aggregation of all parameters in
𝑥 (𝑖,𝑘−1) and all received fragments present in InQueue that were
received in the previous round with uniform weights (Line 3). We
note that the count of each received parameter by 𝑁𝑖 may differ.
𝑁𝑖 then resets InQueue (Line 4) and starts updating its model by
performing 𝐻 local SGD steps using a mini-batch sampled from its
local dataset. The resulting model 𝑥 (𝑖,𝑘) is then fragmented (Line 9),
and the fragments are shared with other nodes in parallel to the
computation during the next local round (as shown in Fig. 3).

Alg. 2 outlines how nodes in DivShare fragment their models
and fill the send queue. Model fragmentation is dictated by the
fragmentation fraction Ω, which specifies the granularity at which
a model is fragmented. Specifically, a model is fragmented in

⌈ 1
Ω
⌉

fragments. This resembles random sparsification, a technique used
in CML to reduce communication costs [8, 23, 31, 53]. For each
fragment 𝑓 , we uniformly randomly sample 𝐽 other nodes to send
this fragment to (Line 5), and add each recipient node 𝑁 𝑗 and the
corresponding fragment as tuple (𝑗, 𝑓) to sending queue. Finally,
we shuffle the order of (destination, fragment) pairs in the sending
queue. This shuffling is important to ensure that slow nodes send
diverse sets of model parameters within a single, local round. While
we uniformly random shuffle the sending queue in our experiments,
we acknowledge that different shuffling strategies can be used, e.g.,
we could prioritize the sending of more important parameters as
done in sparsification [2, 15, 30].

Communication tasks. For every 𝑖, 𝑗 ∈ [𝑛] with 𝑖 ̸= 𝑗 , when
receiving a model fragment 𝑓 from 𝑁 𝑗 , 𝑁𝑖 adds the parameters
in 𝑓 to the receive buffer InQueue, associated with node 𝑁 𝑗 . If a
parameter 𝜄 is received twice from 𝑁 𝑗 during a particular local
round, the older parameter 𝐼𝑛𝑄𝑢𝑒𝑢𝑒[𝑗][𝜄] will be replaced with the
latest one. In addition, 𝑁𝑖 runs a sending loop where it continuously
sends information in OutQueue. Specifically, 𝑁𝑖 pops the tuple (𝑗, 𝑓)
from OutQueue and sends fragment 𝑓 to node 𝑁 𝑗 . Due to space
constraints, we provide the associated logic in Alg. 3 in Appendix D.

4 Convergence analysis

In this section, we theoretically analyze the convergence guarantees
of DivShare from the perspective of the global rounds. As discussed
in previous works on asynchronous decentralized optimization [17,
32], in order to allow the nodes to hold heterogeneous data and their
individual local objective functions, we need to make assumptions
on the computation sampling. In particular, recalling that this work
focuses on communication straggling in the network, we assume
computation homogeneity i.e., every node computes in each round.

Notations. ∥·∥ denotes the Euclidean norm for a vector and the
spectral norm for a matrix. A function 𝑓 is convex if for each 𝑥,𝑦
and subgradient 𝑔 ∈ 𝜕𝑓 (𝑥), 𝑓 (𝑦) ≥ 𝑓 (𝑥)+ ⟨𝑔,𝑦−𝑥⟩. When 𝑓 and 𝑓 (𝑖)
are convex, we do not necessarily assume they are differentiable,
but we abuse notation and use ∇𝑓 (𝑥, 𝜉) and ∇𝑓 (𝑖) (𝑥) to denote an
arbitrary subgradient at 𝑥 . 𝑓 is 𝐵-Lipschitz-continuous if for any

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Boosting Asynchronous Decentralized Learning with Model Fragmentation Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝑥,𝑦 ∈ R𝑑 and 𝑧 ∈ Z, |𝑓 (𝑥, 𝑧) − 𝑓 (𝑦, 𝑧)|≤ 𝐵∥𝑥 − 𝑦∥. 𝑓 is 𝐿-smooth if
it is differentiable and its gradient is 𝐿-Lipschitz-continuous.

We assume that in each round every node independently con-
nects with other nodes to share each of its model fragments. In
particular, for any 𝑖, 𝑗 ∈ [𝑛], let the probability that 𝑁 𝑗 shares each
of its model fragments with 𝑁𝑖 be 𝐽

𝑛−1 , making 𝐽 the expected
number of nodes that receive each of 𝑁 𝑗 ’s model parameters.

To capture the effect of communication stragglers, let 𝑘 𝑗𝑖 de-
note the number of global rounds it takes for node 𝑁 𝑗 to send
one of its model fragments to node 𝑁𝑖 . Consequently, define 𝐾𝑗 =
max1≤𝑖≤𝑛 𝑘 𝑗𝑖 as the maximum delay for node 𝑁 𝑗 to communicate
with its neighbors, 𝐾 = max1≤ 𝑗≤𝑛 𝐾𝑗 as the global maximum com-
munication delay, and 𝑇 = ∑

1≤ 𝑗≤𝑛 𝐾𝑗 as the total communication
delay. We assume 𝐾 (and, therefore, 𝑇) to be finite. For any 𝜄 ∈ [𝑑],
the model update 𝑥 (𝑖,𝑘)𝜄 is aggregated as:

𝑥
(𝑖,𝑘)
𝜄 = 1

1 + 𝑅𝑖,𝑘𝜄

∑︁
1≤ 𝑗≤𝑛

𝑥
(𝑗,𝑘−𝑘 𝑗𝑖)
𝜄 1

(
𝐴
𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖
𝜄

)
(1)

where 𝑅𝑖,𝑘𝜄 = ∑
1≤ 𝑗≤𝑛,𝑗 ̸=𝑖 1

(
𝐴
𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖
𝜄

)
with 𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖𝜄 being the

event where 𝑁 𝑗 shared its model parameter 𝜄 in a fragment with
𝑁𝑖 in round 𝑘 − 𝑘 𝑗𝑖 . Note that 1 + 𝑅𝑖,𝑘𝜄 is the normalization factor
and is always greater than 1 as the buffer always contains the 𝑁𝑖 ’s
own model.

We refer to 𝑋𝑘𝜄 =
(
𝑥
(𝑖,𝑘−𝑘𝑖)
𝜄

)
1≤𝑖≤𝑛,

1≤𝑘𝑖≤𝐾𝑖

as the sliding window of

the network-wide 𝜄th model parameter containing all the informa-
tion needed to generate a new global step in the algorithm, we
enable ourselves to write losses on the sliding window as the vec-
tor of the losses. This communication step can be encoded by a
random matrix𝑊 𝑘

𝜄 representing the shift of the sliding window
from

(
𝑥
(𝑖,𝑘−𝑘𝑖)
𝜄

)
1≤𝑖≤𝑛,

1≤𝑘𝑖≤𝐾𝑖

to
(
𝑥
(𝑖,𝑘+1−𝑘𝑖)
𝜄

)
1≤𝑖≤𝑛,

1≤𝑘𝑖≤𝐾𝑖

by generating a

new step using Eq. (1). Setting 𝛼 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖𝜄 =
1
(
𝐴

𝑗,𝑘−𝑘𝑗𝑖 ,𝑖
𝜄

)
1+𝑅𝑖,𝑘𝜄

as the initial

weight, for every 𝑖, 𝑗 ∈ [𝑛] and 1 ≤ 𝑘 𝑗 ≤ 𝐾𝑗 , formally𝑊 𝑘
𝜄 can be

expressed as:(
𝑊 𝑘
𝜄

)
(𝑖,𝑘𝑖),(𝑗,𝑘 𝑗)

=

𝛿𝑖, 𝑗𝛿𝑘𝑖−1,𝑘 𝑗

1
1+𝑅𝑖,𝑘𝜄

if 2 ≤ 𝑘𝑖 ≤ 𝐾𝑖
𝛿𝑘 𝑗 ,𝑘 𝑗𝑖𝛼

𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖
𝜄 when 𝑘𝑖 = 1

(2)

where, for any𝛼, 𝛽 ∈ R,𝛿𝛼,𝛽 is equal to 1when𝛼 = 𝛽 , or 0 otherwise.

For any 𝑘 ≥ 𝐾 and �̃� ≥ 1, let𝑊 (𝑘 :𝑘+�̃�−1)
𝜄 =

(
𝑊 𝑘+�̃�−1
𝜄 . . .𝑊 𝑘

𝜄

)
.

To develop the theoretical study of convergence of DivShare,
in addition to assuming the existence of the minimum of the loss
function 𝐹 , wemake the standard set of assumptions (Assumptions 1
to 3) that are widespread in related works [8, 16, 17] and introduce
Assumption 4 that is specific to the environment with asynchronous
and delayed communication that we are considering.

Assumption 1 (Condition on the objective). Denoting the minimum
loss over the entire model space as 𝐹 ∗ = min𝑥∈R𝑑 𝐹 (𝑥), let ∆ be an
upper bound on the initial suboptimality, i.e., ∆ ≥

𝐹 (
𝑋 (0)

)
− 𝐹 ∗1

,
and let𝐷 be an upper bound on the initial distance to the minimizer,
i.e., 𝐷 ≥ min

𝑋 (𝐾) − (𝑥∗)1

, where 𝑥∗ = arg min𝑥∈R𝑑 𝐹 (𝑥) is the

model that minimizes the loss and is assumed to exist.

Assumption 2 (Condition on gradients). There exists 𝜎2 > 0 such
that for all 𝑥 ∈ R𝑑 , 𝑖 ∈ [𝑛], we have E𝜉∼D (𝑖)

[
∇𝑓 (𝑖) (𝑥 , 𝜉)

]
=

∇𝑓 (𝑖) (𝑥) and E𝜉∼D (𝑖)
[

∇𝑓 (𝑖) (𝑥 , 𝜉) − ∇𝑓 (𝑖) (𝑥)

2
]
≤ 𝜎2.

Assumption 3 (Heterogeneous setting). There exists 𝜁 2 > 0 such
that the population variance is bounded above by 𝜁 2, i.e., for all
𝑥 ∈ R𝑑 , we have ∑

𝑖∈[𝑛]

∇𝑓 (𝑖) (𝑥) − ∇𝐹 (𝑥)

2
≤ 𝜁 2.

Assumption 4 (Straggling-communication balance). For any 𝑖 ∈ [𝑛]
and 𝑘 ∈ Z≥0, let 𝛼(1) = E

[
1

1+𝑅𝑖,𝑘
]

= 𝑛−1
𝐽 𝑛

(
1 −

(
1 − 𝐽

𝑛−1

)𝑛)
and

𝛼 = 1
𝑛−1

(
1 − 𝛼(1)

)
. Then we assume that (𝑇 − 𝑛)

(
(𝛼𝑛)2

𝑇 + 𝛼2
(1)

)
< 1.

Remark 1. Observing that 𝑇 − 𝑛 equals 0 when the system is syn-
chronous and increases as the sum of the delays grows, it effectively
parameterizes the total amount of straggling in the system. On the
other hand, the term

(
(𝛼𝑛)2

𝑇 + 𝛼2
(1)

)
can be interpreted as the commu-

nication rate – it decreases as 𝐽 , the expected number of neighbors
to which a node sends each of its model parameters, increases.
This implies that communication speeds up as nodes engage in
more frequent interactions within the network. Assumption 4 es-
sentially strikes a balance by bounding the combined effects of
straggling and the communication rate in the network. Appendix G
discusses the asymptotic properties of Assumption 4 and provides
analytical insights into the relationship between the average com-
munication delays and the number of nodes in the network. This,
in turn, demonstrates the practicality of adopting Assumption 4 in
real-world settings and highlights the robustness of DivShare in
handling communication stragglers.

Theorem 1 (Convergence of DivShare). Under Assumptions 1 to 4

and if 𝑓 (𝑖) is 𝐿-smooth for all 𝑖 ∈ [𝑛], then E
[

1
�̃�

∑
𝑘<�̃�

∇𝐹 (
𝑋𝑘

)

2
]

= O
©­­«
(
�̂�

(
𝜎2 + 𝜁 2)
�̃�

) 1
2

+
(
𝑛�̂�

√︁
𝜎2Λ + 𝜁 2Λ2

�̃�

) 2
3

+
�̂�

(
𝑛−

1
2 + Λ

)
𝑛�̃�

ª®®¬ ,
where 𝜆2 = ∥E [𝑊] Π𝐹 ∥ with Π𝐹 being the canonical projector on
𝐹 = 1⊥, Λ = (𝛼 |log(𝜆2) | + (1 − 𝛼) log(𝑇)) 𝛼−1 |log(𝜆2) |−2, and �̂� =
𝐿∆. In the interest of space, the proof is postponed to Appendix F.

Remark 2. Th. 1 essentially shows how fast the average model of
all the nodes parameter-wise converges. First, the slowest term,
number-of-steps wise, does not depend on Λ thus on the delays,
achieving the sub-linear rate of O

(
1/

√︁
�̃�

)
rounds, optimal for SGD,

we achieve this by considering the convergence over a time sliding-
window. For the numerators of the second and third terms, the rate
is encoded in Assumption 4 with the coefficient Λ going to zero as
(𝑇 − 𝑛)

(
(𝛼𝑛)2

𝑇 + 𝛼2
(1)

)
goes to 0 (see Eq. (4) in Appendix F).

5 Evaluation

We now describe our experimental setup (Sec. 5.1), compare Di-
vShare to baselines (Sec. 5.2), evaluate the sensitivity of DivShare
to its parameters (Sec. 5.3), and quantify the performance of Di-
vShare and baselines in real-world network conditions (Sec. 5.4).

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

5.1 Experimental setup

Implementation. We implement DivShare in Python 3.8 over
DecentralizePy [14] and PyTorch 2.1.1 [49] to emulate DL nodes.
For emulating communication stragglers, we used the Kollaps [19]
network simulator to control the latency and bandwidth of each
network link. The source code will be made available on GitHub.

Network setup. We conduct experiments with 60 nodes that
can communicate with all other nodes. Unless otherwise stated, we
group nodes into fast and straggler nodes. We set a fixed bandwidth
and latency (1 ms) for all fast nodes. The mean bandwidth of fast
nodes is set at 60 MiB/s and 200 MiB/s for all the experiments
involving the CIFAR-10 and MovieLens dataset, respectively. To
systematically study the effect of varying degrees of straggling, we
introduce a (communication) straggling factor 𝑓𝑠 . The bandwidth
of the straggler nodes is sampled from a normal distribution with
a mean 𝑓𝑠 times lower than the bandwidth of fast nodes and a
standard deviation of 0.5.

Baselines. We compare DivShare to two state-of-the-art asyn-
chronous DL algorithms: Swift [9] and AD-PSGD [39]. AD-PSGD
is a standard asynchronous DL algorithm where nodes, similar to
DivShare, independently progress in local rounds. In each local
round of AD-PSGD, a node 𝑁𝑖 updates its model and selects a sin-
gle neighbor 𝑁 𝑗 , after which 𝑁𝑖 and 𝑁 𝑗 bilaterally average their
local models. Swift also allows nodes to work at their own speed.
However, unlike AD-PSGD, Swift operates in a wait-free manner,
i.e., nodes do not wait for simultaneous averaging among nodes.
Instead, a node asynchronously aggregatesmultiplemodels it has re-
ceived from its neighbors, eliminating the need for synchronization.
Moreover, Swift uses a non-symmetric and non-doubly stochastic
communication matrix, updated dynamically during training.

For DivShare, we use a fragmentation fraction Ω = 0.1, unless
specified otherwise. Thus, each node splits its model into 10 equally-
sized fragments before sending these to other nodes (see Alg. 2). We
set a degree of 𝐽 = ⌈log2(𝑛)⌉ = 6 for DivShare, a common choice
in random topologies [12], i.e., each node sends each fragment to 6
other nodes every local round. We use the same model exchange
characteristics for Swift, i.e., each node sends its full model to 6
other nodes every local round.

Task.We evaluate DivShare and baselines over two common
learning tasks: image classification and recommendation. For the
former, we use the CIFAR-10 [34] dataset and a GN-LeNet model [24,
37]. We introduce label heterogeneity by splitting the dataset into
small shards and assigning each node a uniform share of the shards [14,
15, 42]. This partitioning ensures that each node receives the same
number of training samples, but the number of shards allows us
to control the heterogeneity: the higher the number of shards, the
more uniform the label distribution becomes. Unless stated other-
wise, we assign 5 shards to each node. For the recommendation
task, we use the MovieLens 100K [21] dataset and a matrix factor-
ization model [33]. For CIFAR-10, we report the average top-1 test
accuracy, while for MovieLens, we report the MSE loss between
the actual and predicted ratings. We run each experiment 3 times
with different seeds and present the averaged results. We provide
additional experiment details in Appendix B.

0 4 8 12
20

40

60

Te
st
ac
cu
ra
cy
[%
] Without stragglers

DivShare Swift AD-PSGD

0 4 8 12
20

40

60

With stragglers

0 4
1

2

3

Wall-clock time [min]

Te
st
lo
ss

0 4
1

2

3

CIFAR-10

MovieLens

Figure 4: The model utility of DivShare and the baselines

over time, with and without stragglers on CIFAR-10 (↑ is
better) and MovieLens (↓ is better).

5.2 Convergence of DivShare against baselines

We first evaluate the convergence of DivShare against the base-
lines. Fig. 4 shows the evolution of model utility over time, for
both CIFAR-10 and MovieLens, in a setting without stragglers (with
𝑓𝑠 = 1) and where half of the nodes are stragglers (with 𝑓𝑠 = 5). Both
baselines show comparable performance in all settings. We also
observe that communication stragglers significantly slow the con-
vergence of both AD-PSGD and Swift. Specifically, in the presence
of communication stragglers, the baselines reach 12.5% and 10.2%
worsemodel utilities in CIFAR-10 andMovieLens, respectively, com-
pared to the scenario without stragglers. DivShare outperforms
both baselines in terms of the speed of convergence and model test
utility across both datasets. The superior performance of DivShare
is especially evident in the presence of stragglers, achieving up to
19.4% relatively better accuracy and 9.5% lower test loss for the
CIFAR-10 and MovieLens datasets, respectively. We attribute this
to the ability of DivShare to effectively aggregate models in small
fragments and use the available bandwidth effectively.

5.3 Sensitivity analysis

In the following, we analyze the effect of the straggling factor 𝑓𝑠 ,
varying levels of non-IIDness, and the fragmentation fraction Ω on
the performance of DivShare and baselines.

Varying the degree of communication straggling. We next
explore the effect of the straggling factor 𝑓𝑠 and varying number of
stragglers on the performance of AD-PSGD and DivShare. Fig. 5
shows the heatmaps for the (a) final test accuracy after 15 min and
(b) wall-clock time to achieve 60% test accuracy on CIFAR-10 for a
varying number of stragglers and increasing 𝑓𝑠 . Similar to Fig. 4, we
observe that communication stragglers hinder the convergence of
AD-PSGD. With only 𝑛/8 (7 of the 60) nodes being communication
stragglers, increasing 𝑓𝑠 from 1 to 5 increases the time to reach
the target accuracy by 43.4%. AD-PSGD is unable to attain the
target accuracy of 60% with 𝑛/2 (30 out of 60) communication

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Boosting Asynchronous Decentralized Learning with Model Fragmentation Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

1 2 3 4 5

𝑛/2

𝑛/4

𝑛/8

65.2

65.4

65.3

63.5

64.9

65

62.5

63.7

65

59.9

62.8

64.1

56.4

60.9

63.5

N
um

be
r
of

st
ra
gg
le
rs

(a) Accuracy after convergence [%]

60

65

70

1 2 3 4 5

𝑛/2

𝑛/4

𝑛/8

5.3

5.3

5.3

7.6

5.7

5.7

9.8

7.6

6.4

12.1

8.3

6.4

∞

11

7.6

(b) Time to 60% accuracy [min]

5
10
15
20

1 2 3 4 5

𝑛/2

𝑛/4

𝑛/8

67.8

68.7

68.9

69.2

69.2

69.1

69

68.7

68.9

68.7

67.6

69

68.4

68.7

68.8

Straggling factor (𝑓𝑠)

60

65

70

1 2 3 4 5

𝑛/2

𝑛/4

𝑛/8

2.4

2.4

2.4

2.4

2.4

2.4

2.8

2.8

2.4

2.8

2.8

2.8

3.2

2.8

2.8 5
10
15
20

AD-PSGD

DivShare

Darker is better

Figure 5: (a) Accuracy after convergence and (b) time to 60%
accuracy on CIFAR-10. A time to accuracy of∞means that

AD-PSGD did not reach the target accuracy.

stragglers. In contrast, DivShare displays minimal deviation from
an ideal setting without stragglers as the number of stragglers and
𝑓𝑠 increases. As shown in Fig. 5(a), DivShare consistently achieves
better test accuracy compared to AD-PSGD and shows a speedup
of at least 2.2× over AD-PSGD. In the case of 15 stragglers (𝑛/4)
and 𝑓𝑠 = 5, DivShare achieves a speedup of 3.9× over AD-PSGD to
reach the same accuracy. Experiments with the MovieLens dataset
shows similar trends and are provided in Appendix C. To conclude,
DivShare retains its strong performance even when half of the
nodes are up to 5× slower in communication than the others.

Effect of data heterogeneity. We analyze the effect of varying
levels of data heterogeneity and 𝑓𝑠 on the time-to-accuracy speedup
in DivShare. Fig. 6(a) shows the heatmap of the speedup due to
fragmentation, i.e., the percentage improvement in the time to reach
60% test accuracy for 𝑓𝑠 = 0.1 vs. 𝑓𝑠 = 1 with 30 stragglers. Each row
represents decreasing data heterogeneity, with 10 being almost IID.
Fig. 6(a) reveals that fragmentation in DivShare is advantageous
at all data heterogeneity levels and straggling factors. However, the
speedup owing to fragmentation is amplified at high heterogeneity
levels and high levels of straggling, achieving a speedup of up to 84%.
In other words, as the learning task gets more difficult, DivShare
shows more efficiency and resilience to stragglers.

Limits of fragmentation. The granularity of fragmentation,
controlled by Ω, is an important parameter in DivShare. To un-
derstand the limits of fragmentation in DivShare, we evaluate
DivShare with different values of Ω, ranging from 0.01 to 1, 30
stragglers, and 𝑓𝑠 = 5. Fig. 6(b and c) shows the time required to
reach a target accuracy of 60% on CIFAR-10 without and with strag-
glers. In both cases, as we decrease the Ω from 1, i.e., as nodes start
sending smaller fragments, the convergence speed improves until
Ω = 0.1. With a low Ω value, each node potentially sends a frag-
ment to all other nodes. While further decreasing Ω does not alter
the dissemination of information, it does increase the number of
messages flowing in the system. Therefore, at fragmentation factors
< 0.1, we see a rapid increase in the time to convergence due to

the large number of messages leading to network congestion and
overhead in the case without stragglers. The effect is ameliorated
in the scenario with stragglers (Fig. 6(c)) since the straggling nodes
rarely send out all the fragments in a round.

Varying the straggling factor and fragmentation fraction.

We assess the effects of varying 𝑓𝑠 on the attained model utility and
the time until 60% accuracy is reached on CIFAR-10, for baselines
and DivShare with varying fragmentation fractions. Fig. 6(d and
e) show the final accuracy and the wall-clock time to 60% test ac-
curacy, respectively, on CIFAR-10 for DivShare and the baselines.
Intuitively, the attained final accuracy and the convergence rate
deteriorate for the baselines AD-PSGD and Swift as 𝑓𝑠 increases.
We observe the same trend for DivShare at higher fragmentation
factors (resulting in less granular fragments). DivShare with a
fragmentation factor of 0.1, however, demonstrates strong robust-
ness to stragglers, achieving almost the same accuracy across the
spectrum at a small increase in the time to target accuracy.

In summary, we observe in Fig. 6(a-d) a sweet spot for Ω in
DivShare around 𝐽/𝑛, corresponding to 0.1 in our experiment
setup. For this value, DivShare exhibits the highest model utility
and convergence speeds on the CIFAR-10 dataset.

5.4 Real-world network evaluation

So far, we have evaluated DivShare and baselines by emulating
communication stragglers using the straggling factor 𝑓𝑠 . We next
evaluate DivShare in a real-world scenario using realistic network
characteristics reported in the work of Gramoli et al. [20]. This
work provides a bandwidth and latency matrix between each pair
of 10 AWS regions [20]. We integrate these matrices in our experi-
ment setup and place 6 random nodes in each region. Fig. 7 shows
the model convergence for CIFAR-10 (left) and MovieLens (right)
for DivShare and baselines. This figure shows that DivShare
outperforms AD-PSGD and Swift on both datasets in terms of
convergence time. This is particularly evident on the CIFAR-10
dataset, where DivShare reaches 60% accuracy, 35.6% faster than
baselines. Fig. 7 thus demonstrates that DivShare outperforms the
baselines in real-world networks as well.

6 Related work

Synchronous DL. Most DL algorithms are synchronous and tend
to perform sub-optimally when faced with variance in comput-
ing and communication speed of nodes. Decentralized parallel
stochastic gradient descent (D-PSGD) [38] remains a widely used
synchronous DL baseline, where nodes perform model updates in
lockstep. In order to improve model convergence time, numerous
approaches optimize the communication topology before training
begins [36, 51, 57] or dynamically throughout training [12]. Di-
vShare employs a randomized communication strategy instead of
a fixed topology, allowing nodes to share model fragments with
potentially any other node.

Asynchronous DL. Asynchronous DL approaches have gained
attention as they improve resource utilization. Early works in asyn-
chronous optimization focus on improving convergence rates in
distributed settings [3, 46, 56]. Asynchronous methods have more
recently also been applied to DL. Solutions like AD-PSGD [39],

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

1 2 3 4 5

3
5
7
10

48.1

37.9

34.8

25.7

64.1

52.3

37.7

42.2

77.8

59.7

52

43.4

75.7

69.6

59.2

55.6

73.9

84

63.6

59.1

Straggling factor (𝑓𝑠)

D
at
a
he

te
ro
ge
ne
it
y

Speedup in time to accuracy
due to fragmentation [%]

40

60

80

0 0.5 1
2

3

4

Fragmentation fraction (Ω)

T
TA

60
%
[m

in
]

DivShare, no
stragglers, 𝑓𝑠 = 1

0 0.5 1

4

8

16

T
TA

60
%
[m

in
]

DivShare, with
stragglers, 𝑓𝑠 = 5

1 2 3 4 5

60

65

70

Straggling factor (𝑓𝑠)

Fi
na

la
cc
ur
ac
y
[%
] Final accuracy

DivShare, no frag., Ω = 1 DivShare, Ω = 0.1
DivShare, Ω = 0.2 DivShare, Ω = 0.5
Swift AD-PSGD

1 2 3 4 5
2

4

8

16

W
al
l-
cl
oc
k
ti
m
e
[m

in
]

TTA 60%

(a) (b) (c) (d) (e)

non-iid

iid

Figure 6: (a) Speedup in DivShare due to fragmentation at different levels of data heterogeneity. Darker is better. (b) and (c)
Impact of the fragment fraction Ω on time to accuracy (TTA) with and without stragglers (lowest TTA is achieved around

Ω = 0.1). (d) and (e) Impact of the straggling factor on the final accuracy and time to target accuracy for DivShare and baselines.

0 5 10

40

60

Wall-clock time [min]

Te
st
ac
cu
ra
cy
[%
]

CIFAR-10

DivShare Swift AD-PSGD

0 2 4 6
1

1.5
2

2.5

Wall-clock time [min]

Te
st
lo
ss

MovieLens

(a) (b)

Figure 7: The model utility of DivShare and baselines over

time, under real-world network conditions [20].

SwarmSGD [43] and Swift [9] have tackled this problem by allow-
ing nodes to perform updates independently, thereby avoiding idle
time and speeding up convergence. Gossip learning (GL) is another
DL approach where nodes periodically update their model, send it
to another random node in the network, and use a staleness-aware
aggregation method to merge model updates [22, 47]. Asynchro-
nous DL has also been explored in wireless and edge computing
where system heterogeneity is common [28, 29]. Many of the works
mentioned above assume idealized communication scenarios [56],
which can lead to sub-optimal performance under real-world con-
ditions such as network latency and bandwidth. In contrast, our
work is targeted to real-world geo-distributed networks.

Asynchrony is also a popular research topic in federated learn-
ing (FL) [55]. Asynchronous FL systems such as FedBuff [45],
Payapa [26], Fleet [11], and REFL [1] use staleness-aware param-
eter aggregation, ensuring that updates from slower devices do
not adversely affect model performance. In these systems, aggre-
gation is performed by a parameter server, whereas DivShare is
decentralized and leverages peer-to-peer communication.

Sparsification. Model fragmentation in DivShare is conceptu-
ally similar to sparsification techniques [2, 50]. These techniques
reduce the communication load by sharing only a subset of model
parameters. In DivShare, nodes share a varying number of model
parameters in a single local round, depending on their computing

and communication speed. This differs from sparsification, where
typically a fixed portion of parameters is sent per round. Model
fragmentation has also been used to improve privacy in DL [8]. Di-
vShare instead uses fragmentation to optimize model convergence
and add resilience to communication stragglers.

7 Final remarks

We presented DivShare, a novel and asynchronous DL algorithm
that improves performance and convergence speed, especially in
networks having communication stragglers. The key idea is that
each node fragments its model and sends each fragment to a ran-
dom set of nodes instead of sending the full model. We theoretically
proved the convergence of DivShare using a novel technique, mak-
ing it the first formal convergence analysis in DL to incorporate
asynchronous communication with stragglers. Finally, we empir-
ically demonstrated with two learning tasks that DivShare can
achieve up to 2.2× speedup and 19.4% better accuracy in the pres-
ence of data heterogeneity and up to half of the network straggling.

Number of messages. Fragmentation of models in DivShare
allows straggling nodes to contribute their locally trained models
to the network. While DivShare has the same communication
cost as other DL approaches in terms of bytes transferred, the
benefits come at the cost of an increased number of messages sent
by the nodes. Since the nodes transfer large models in DL training,
the increased latency due to the number of messages does not
negatively affect real-world systems, as shown in Sec. 5.4. More
advanced fragmentation methods can be used to reduce the number
of messages, which is an interesting avenue for future research.

No synchronization barriers. In this work, we assumed DL
nodes to have similar hardware and hence, similar compute speeds.
However, DivShare has no synchronization barriers. In our ex-
periments, all nodes run DivShare with similar hardware, but the
OS scheduling and jitter introduce small drifts in the speeds of the
nodes. We observed that nodes can be up to a few local rounds
apart in DivShare. Therefore, DivShare can handle communica-
tion stragglers without synchronization barriers and uniform com-
putation speeds, as shown in Sec. 5. Handling nodes with vastly
different computation speeds is interesting future work.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Boosting Asynchronous Decentralized Learning with Model Fragmentation Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] AhmedMAbdelmoniem, Atal Narayan Sahu, Marco Canini, and Suhaib A Fahmy.
Refl: Resource-efficient federated learning. In Proceedings of the Eighteenth
European Conference on Computer Systems, pages 215–232, 2023.

[2] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Kon-
stantinov, and Cédric Renggli. The convergence of sparsified gradient methods.
In NeurIPS, 2018.

[3] Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson,
and Michael G Rabbat. Advances in asynchronous parallel and distributed
optimization. Proceedings of the IEEE, 108(11):2013–2031, 2020.

[4] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic
gradient push for distributed deep learning. In ICML, 2019.

[5] Mahmoud S Assran and Michael G Rabbat. Asynchronous gradient push. IEEE
Transactions on Automatic Control, 66(1):168–183, 2020.

[6] Yacine Belal, Aurélien Bellet, Sonia Ben Mokhtar, and Vlad Nitu. Pepper: Empow-
ering user-centric recommender systems over gossip learning. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 6(3):1–27,
2022.

[7] Enrique Tomás Martínez Beltrán, Mario Quiles Pérez, Pedro Miguel Sánchez
Sánchez, Sergio López Bernal, Gérôme Bovet, Manuel Gil Pérez, Grego-
rio Martínez Pérez, and Alberto Huertas Celdrán. Decentralized federated learn-
ing: Fundamentals, state of the art, frameworks, trends, and challenges. IEEE
Communications Surveys & Tutorials, 2023.

[8] Sayan Biswas, Mathieu Even, Anne-Marie Kermarrec, Laurent Massoulie, Rafael
Pires, Rishi Sharma, and Martijn de Vos. Noiseless privacy-preserving decentral-
ized learning. arXiv preprint arXiv:2404.09536, 2024.

[9] Marco Bornstein, Tahseen Rabbani, Evan Wang, Amrit Singh Bedi, and Furong
Huang. Swift: Rapid decentralized federated learning via wait-free model com-
munication. In The Eleventh International Conference on Learning Representations
(ICLR), 2023.

[10] Yikuan Chen, Li Liang, and Wei Gao. Fedadsn: Anomaly detection for social
networks under decentralized federated learning. In 2022 International Conference
on Communications, Computing, Cybersecurity, and Informatics (CCCI), pages
111–117. IEEE, 2022.

[11] Georgios Damaskinos, Rachid Guerraoui, Anne-Marie Kermarrec, Vlad Nitu,
Rhicheek Patra, and Francois Taiani. Fleet: Online federated learning via staleness
awareness and performance prediction. ACM Transactions on Intelligent Systems
and Technology (TIST), 13(5):1–30, 2022.

[12] Martijn De Vos, Sadegh Farhadkhani, Rachid Guerraoui, Anne-Marie Kermarrec,
Rafael Pires, and Rishi Sharma. Epidemic learning: Boosting decentralized
learning with randomized communication. In Advances in Neural Information
Processing Systems, volume 36, pages 36132–36164, 2023.

[13] Akash Dhasade, Nevena Dresevic, Anne-Marie Kermarrec, and Rafael Pires. TEE-
based decentralized recommender systems: The raw data sharing redemption.
In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS
’22), pages 447–458, 2022.

[14] Akash Dhasade, Anne-Marie Kermarrec, Rafael Pires, Rishi Sharma, and Milos
Vujasinovic. Decentralized learning made easy with DecentralizePy. In 3rd
Workshop on Machine Learning and Systems, EuroMLSys ’23, 2023.

[15] Akash Dhasade, Anne-Marie Kermarrec, Rafael Pires, Rishi Sharma, Milos Vu-
jasinovic, and JeffreyWigger. Get more for less in decentralized learning systems.
In ICDCS, 2023.

[16] Mathieu Even. Stochastic gradient descent under Markovian sampling schemes.
In ICML, volume 202, 2023.

[17] Mathieu Even, Anastasia Koloskova, and Laurent Massoulié. Asynchronous sgd
on graphs: a unified framework for asynchronous decentralized and federated
optimization. In AISTATS, 2024.

[18] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic
approximation methods for nonconvex stochastic composite optimization. Math.
Program., 155(1–2):267–305, jan 2016.

[19] Paulo Gouveia, João Neves, Carlos Segarra, Luca Liechti, Shady Issa, Valerio
Schiavoni, and Miguel Matos. Kollaps: decentralized and dynamic topology
emulation. In Proceedings of the Fifteenth European Conference on Computer
Systems, EuroSys ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[20] Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, Chris Natoli, and Gauthier
Voron. Diablo: A benchmark suite for blockchains. In Proceedings of the Eighteenth
European Conference on Computer Systems, EuroSys ’23, page 540–556, New York,
NY, USA, 2023. Association for Computing Machinery.

[21] Grouplens. Movielens datasets, 2021.
[22] István Hegedűs, Gábor Danner, and Márk Jelasity. Gossip learning as a de-

centralized alternative to federated learning. In Distributed Applications and
Interoperable Systems: 19th IFIP WG 6.1 International Conference, DAIS 2019, Held
as Part of the 14th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17–21, 2019, Proceed-
ings 19, pages 74–90. Springer, 2019.

[23] István Hegedűs, Gábor Danner, and Márk Jelasity. Decentralized learning works:
An empirical comparison of gossip learning and federated learning. Journal of
Parallel and Distributed Computing, 148:109–124, 2021.

[24] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B. Gibbons. The non-
iid data quagmire of decentralized machine learning. In Proceedings of the 37th
International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

[25] De Huang, Jonathan Niles-Weed, Joel A. Tropp, and Rachel Ward. Matrix concen-
tration for products. Foundations of Computational Mathematics, 22(6):1767–1799,
2022.

[26] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan
Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas,
et al. Papaya: Practical, private, and scalable federated learning. Proceedings of
Machine Learning and Systems, 4:814–832, 2022.

[27] Eunjeong Jeong and Marios Kountouris. Personalized decentralized federated
learning with knowledge distillation. In ICC 2023-IEEE International Conference
on Communications, pages 1982–1987. IEEE, 2023.

[28] Eunjeong Jeong and Marios Kountouris. Draco: Decentralized asynchronous
federated learning over continuous row-stochastic network matrices. arXiv
preprint arXiv:2406.13533, 2024.

[29] Eunjeong Jeong, Matteo Zecchin, and Marios Kountouris. Asynchronous decen-
tralized learning over unreliable wireless networks. In ICC 2022-IEEE Interna-
tional Conference on Communications, pages 607–612. IEEE, 2022.

[30] Anastasia Koloskova, Tao Lin, Sebastian U Stich, and Martin Jaggi. Decentralized
deep learning with arbitrary communication compression. In ICLR, 2020.

[31] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic
optimization and gossip algorithms with compressed communication. In ICML,
2019.

[32] Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Sharper convergence
guarantees for asynchronous sgd for distributed and federated learning. In
Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc.

[33] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8), 2009.

[34] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. 55(5),
2014.

[35] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha
Madhyastha, and Mosharaf Chowdhury. Fedscale: Benchmarking model and
system performance of federated learning at scale. In International conference on
machine learning, pages 11814–11827. PMLR, 2022.

[36] Batiste Le Bars, Aurélien Bellet, Marc Tommasi, Erick Lavoie, and A Kermarrec.
Refined convergence and topology learning for decentralized optimization with
heterogeneous data. In Workshop on Federated Learning: Recent Advances and
New Challenges (in Conjunction with NeurIPS 2022), 2022.

[37] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[38] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can
decentralized algorithms outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent. Advances in neural information
processing systems, 30, 2017.

[39] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized
parallel stochastic gradient descent. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 3043–3052. PMLR, 10–15 Jul
2018.

[40] Jing Long, Tong Chen, Quoc Viet Hung Nguyen, Guandong Xu, Kai Zheng,
and Hongzhi Yin. Model-agnostic decentralized collaborative learning for on-
device poi recommendation. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 423–432,
2023.

[41] Qinyi Luo, Jiaao He, Youwei Zhuo, and Xuehai Qian. Prague: High-performance
heterogeneity-aware asynchronous decentralized training. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 401–416, 2020.

[42] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In AISTATS. PMLR, 2017.

[43] Giorgi Nadiradze, Amirmojtaba Sabour, Peter Davies, Shigang Li, and Dan Alis-
tarh. Asynchronous decentralized sgdwith quantized and local updates. Advances
in Neural Information Processing Systems, 34:6829–6842, 2021.

[44] Angelia Nedić and Alex Olshevsky. Stochastic gradient-push for strongly convex
functions on time-varying directed graphs. IEEE Transactions on Automatic
Control, 61(12), 2016.

[45] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat,
Mani Malek, and Dzmitry Huba. Federated learning with buffered asynchronous
aggregation. In International Conference on Artificial Intelligence and Statistics,
pages 3581–3607. PMLR, 2022.

[46] Ivano Notarnicola and Giuseppe Notarstefano. Asynchronous distributed opti-
mization via randomized dual proximal gradient. IEEE Transactions on Automatic

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Control, 62(5):2095–2106, 2016.
[47] Róbert Ormándi, István Hegedűs, and Márk Jelasity. Gossip learning with linear

models on fully distributed data. Concurrency and Computation: Practice and
Experience, 25(4):556–571, 2013.

[48] Dario Pasquini, Mathilde Raynal, and Carmela Troncoso. On the (in) security
of peer-to-peer decentralized machine learning. In 2023 IEEE Symposium on
Security and Privacy (SP), pages 418–436, 2023.

[49] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep learning library. NeurIPS,
32, 2019.

[50] Max Ryabinin, Eduard Gorbunov, Vsevolod Plokhotnyuk, and Gennady Pekhi-
menko. Moshpit sgd: Communication-efficient decentralized training on hetero-
geneous unreliable devices. Advances in Neural Information Processing Systems,
34:18195–18211, 2021.

[51] Zhuoqing Song, Weijian Li, Kexin Jin, Lei Shi, Ming Yan, Wotao Yin, and Kun
Yuan. Communication-efficient topologies for decentralized learning with 𝑜(1)
consensus rate. Advances in Neural Information Processing Systems, 35:1073–1085,
2022.

[52] Elif Ustundag Soykan, Leyli Karaçay, Ferhat Karakoç, and Emrah Tomur. A survey
and guideline on privacy enhancing technologies for collaborative machine
learning. IEEE Access, 10, 2022.

[53] Zhenheng Tang, Shaohuai Shi, and Xiaowen Chu. Communication-efficient
decentralized learning with sparsification and adaptive peer selection. In 2020
IEEE 40th International Conference on Distributed Computing Systems (ICDCS),
2020.

[54] Jianyu Wang, Anit Kumar Sahu, Zhouyi Yang, Gauri Joshi, and Soummya Kar.
Matcha: Speeding up decentralized sgd via matching decomposition sampling.
In 2019 Sixth Indian Control Conference (ICC), pages 299–300, 2019.

[55] Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. Asynchronous
federated learning on heterogeneous devices: A survey. Computer Science Review,
50:100595, 2023.

[56] Minyi Zhong and Christos G Cassandras. Asynchronous distributed optimization
with event-driven communication. IEEE Transactions on Automatic Control,
55(12):2735–2750, 2010.

[57] Mingyang Zhou, Gang Liu, KeZhong Lu, Rui Mao, and Hao Liao. Accelerating
the decentralized federated learning via manipulating edges. In Proceedings of
the ACM on Web Conference 2024, pages 2945–2954, 2024.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Boosting Asynchronous Decentralized Learning with Model Fragmentation Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A Table of notations

Notation Description

N Set of all nodes in the network
𝑛 Total number of nodes (i.e., |N |)
𝑁𝑖 Node 𝑖 for 𝑖 = 1, . . . , 𝑛
D (𝑖) Data distribution of 𝑁𝑖
𝑍𝑖 Local dataset of 𝑁𝑖
𝑓 (𝑖) Local loss function of 𝑁𝑖
𝐹 Global average loss
{𝑡𝑖0, 𝑡𝑖1, . . .} Local rounds of 𝑁𝑖
𝜉

(𝑘)
𝑖 Mini-batch sampled by 𝑁𝑖 in 𝑘th local round
𝜂 Learning rate used for local SGD steps
𝐻 No. of local SGD steps performed by each node
{𝑇0,𝑇1 . . .} Global rounds tracking progress of all nodes
𝑑 size of the parameter space of the models
𝑥 (𝑖,𝑘) 𝑁𝑖 ’s model in global round 𝑇𝑘
𝑥
(𝑖,𝑘)
𝜄 𝜄th parameter of 𝑥 (𝑖,𝑘) for all 𝜄 ∈ [𝑑]

Ω Fragmentation fraction for each node
𝐽 No. of nodes each model fragment is shared with
𝑓𝑠 Straggling factor
𝑇 Total communication delay (w.r.t. global rounds)
𝐾 Global maximum communication delay
𝑋

(𝑘)
𝜄 Sliding window of network-wide 𝜄th model pa-

rameter used to generate global round 𝑇𝑘

B Experimental details

Table 1 provides a summary of the datasets we used for our evalu-
ation in Sec. 5, along with various hyperparameters and settings.
We perform experiments on respectively 5 and 10 hyperthreading-
enabled machines, for CIFAR-10 and MovieLens, respectively. Each
machine is equipped with 32 dual Intel(R) Xeon(R) CPU E5-2630
v3 @ 2.40GHz cores. The network speeds of fast nodes, along with
number of rounds and batch size, were tuned (i) to reach the best
performances, (ii) such that in a system without stragglers, the time
to send all the messages from a node is the time to perform one com-
putation round, enabling us, when there are stragglers, to highlight
the straggling effect and the delays induced in the network. Fig. 8
shows how the bandwidth of network links change in the presence
of communication stragglers. The nodes can simultaneously receive
messages from multiple nodes with the total bandwidth capped by
the network link.

C Additional experiments

Fig. 9 shows the heatmap for the loss after convergence and time
to a target loss for DivShare and AD-PSGD on MovieLens. The
experimental setup is the same as described in Appendix B. We
vary the number of stragglers in the network and the degree of
straggling. Similar to the results in the main text (Sec. 5.3), we
observe that DivShare outperforms the baselines, and the gains
become more significant as the task becomes more difficult (high
straggling).

D Communication logic of DivShare

We provide the communication logic of DivShare in Alg. 3. This
logic shows the procedure called when a node 𝑁𝑖 receives a model
fragment from 𝑁 𝑗 . We also show the sending loop, which is con-
tinuously executed by 𝑁𝑖 . The sending loop obtains a fragment 𝑓
and the index of the recipient node 𝑗 from the OutQueue and then
sends 𝑓 to node 𝑁 𝑗 .

Algorithm 3: Communication logic in DivShare from the
perspective of node 𝑁𝑖
1 Procedure onReceiveFragment(𝑓 , 𝑗):
2 // We received fragment 𝑓 from node 𝑁 𝑗

3 for Parameter 𝜄 in 𝑓 do
4 InQueue[𝑗][𝜄]← 𝜄

5 Sending Loop

6 (𝑗, 𝑓)← OutQueue.pop()
7 Send fragment 𝑓 to node 𝑁 𝑗
8 End Loop

Node
1

Node
2

Node
3

Node
4

Node
1

Node
2

Node
3

Node
4

No communication
stragglers

Asynchronous setting : Node 1 is a
communication straggler

Network link with speed s Network link with reduced speed

Figure 8: Example of how the network speeds of fast and

straggling nodes are changed in our experiments. In a net-

work without stragglers (left), all network links have a band-

width of 𝑠. When node 1 becomes a straggler (right), the

bandwidth capacity of its network links are reduced to
𝑠
𝑓𝑠

where 𝑓𝑠 is the straggling factor.

E Uniform compute speeds

As the focus of DivShare is on communication stragglers, we fo-
cus on a setting where nodes have uniform compute speeds. We
argue that in DL environments, it is feasible to control the hard-
ware characteristics of nodes, especially in enterprise networks
where our framework is designed to operate. Nodes can purchase
similar hardware or standardize on specific processing units, thus
achieving roughly uniform compute speeds. Network speeds, how-
ever, are inherently more challenging to control due to factors like
network congestion and geographical distances. This assumption
has enabled the theoretical analysis presented in Sec. 4.

DivShare can function in heterogeneous computing environ-
ments as well. Each node 𝑖 can set the time between two executive

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 1: Summary of datasets and associated hyperparameters used in our evaluation.

Task Dataset Model 𝜂 b

Training Number of rounds Number of Fast nodes

Samples per iteration Iterations Network speed

Image Classification CIFAR-10 GN-LeNet 0.050 8 50 000 128 350 60 Mbps
Recommendation MovieLens Matrix Factorization 0.050 2 70 000 400 650 200 Mbps

1 2 3 4 5

𝑛/2

𝑛/4

𝑛/8

1.17

1.16

1.17

1.16

1.16

1.16

1.17

1.16

1.16

1.21

1.17

1.16

1.26

1.2

1.16

N
um

be
r
of

st
ra
gg
le
rs

(a) Loss after convergence

1.15

1.2

1.25

1 2 3 4 5

𝑛/2

𝑛/4

𝑛/8

3.4

3.4

3.4

4.7

4.1

3.5

5.1

4.5

4

6.7

5.1

4.5

6.7

6.1

5

(b) Time to 1.25 loss [min]

4
5
6

1 2 3 4 5

𝑛/2

𝑛/4

𝑛/8

1.16

1.16

1.15

1.15

1.18

1.16

1.16

1.17

1.15

1.16

1.16

1.16

1.17

1.16

1.18

Straggling factor (𝑓𝑠)

1.15

1.2

1.25

1 2 3 4 5

𝑛/2

𝑛/4

𝑛/8

3.3

3.3

3.2

3.6

3.3

3.3

3.9

3.4

3.5

3.9

3.4

3.2

4.2

3.8

3.3 4
5
6

AD-PSGD

DivShare

Darker is better

Figure 9: (a) Final test loss after convergence and (b) time to

1.25 test loss on MovieLens with 𝑛 = 60.

local rounds 𝑡𝑖
𝑘
and 𝑡𝑖

𝑘+1 to the time that the slowest node in the
network requires to update its model. Even if a node with fast com-
puting speed finishes training before the next local round starts,
it can send its model fragments to other nodes. This approach,
however, can introduce idle compute or communication time. We
leave a theoretical and experimental analysis in settings with both
compute and communication stragglers for future work.

F Proof of Theorem 1

We first derive Lem. 2 that shows that the communication matrix
of DivShare satisfies Ergodic mixing and this, in turn, acts as a
crucial intermediate step leading to our main result.

Lemma 2 (Ergodic mixing of DivShare). If Assumptions 3 and 4
hold, we have 𝜆2 < 1 and, for every 𝜌 ∈ (0, 1), setting

𝑘𝜌 =
©­­«
√︃

2 log(𝑇) 1−𝛼
𝛼 +

√︃
2 log(𝑇) 1−𝛼

𝛼 + 8 log(𝜆2) log(1 − 𝜌)
2|log(𝜆2) |

ª®®¬
2

,

we have, for every �̃� ≥ 𝑘𝜌 , 𝑘 ≥ 𝐾 , and 𝑋 ∈ R𝑇 :

E

[

𝑊 (𝑘 :𝑘+�̃�−1)
𝜄 𝑋 − 𝑋

2
]
≤ (1 − 𝜌)2

𝑋 − 𝑋

2
.

Proof Lemma 2. Our goal is to show that:
∀𝜌 ∈ (0, 1), ∃�̃� ∈ N ,∀𝑘 ≥ 𝐾,∀𝑋 ∈ R𝑇

E

[

𝑊 (𝑘 :𝑘+�̃�−1)
𝜄 𝑋 − 𝑋

2
]
≤ (1 − 𝜌)2

𝑋 − 𝑋

2

Let 𝐹 = 1⊥, Π𝐹 the canonical projector on 𝐹 (respectively Π1 the
projector on R1) we have for 𝑋 ∈ R𝑇 , 𝑘 ≥ 𝐾

𝑊 𝑘𝑋 − 𝑋 =𝑊 𝑘
(
𝑋 − 𝑋

)
Let’s remark that for 𝑋 ∈ R𝑇 , Π𝐹

(
𝑋 − 𝑋

)
=

(
𝑋 − 𝑋

)
and that for

all 𝑘 ≥ 𝐾 ,𝑊 𝑘 and Π1 commute so that:

∀�̃� ∈ N ,∀𝑘 ≥ 𝐾,∀𝑋 ∈ R𝑇 :

𝑊 𝑘+�̃�−1
𝜄 . . .𝑊 𝑘+1

𝜄 𝑊 𝑘
𝜄

(
𝑋 − 𝑋

)
=𝑊 𝑘+�̃�−1

𝜄 . . .𝑊 𝑘+1
𝜄 𝑊 𝑘

𝜄 Π𝐹
(
𝑋 − 𝑋

)
=

(
𝑊 𝑘+�̃�−1
𝜄 (Π𝐹 + Π1)

)
. . .

(
𝑊 𝑘+1
𝜄 (Π𝐹 + Π1)

) (
𝑊 𝑘
𝜄 Π𝐹

) (
𝑋 − 𝑋

)
=

(
𝑊 𝑘+�̃�−1
𝜄 Π𝐹

)
. . .

(
𝑊 𝑘
𝜄 Π𝐹

) (
𝑋 − 𝑋

)
.

[using Π1Π𝐹 = 0] (3)

Therefore, an equivalent property is to show that:

∀𝜌 ∈ (0, 1), ∃�̃� ∈ N ,∀𝑘 ≥ 𝐾,∀𝑋 ∈ R𝑇

E

[

(𝑊 𝑘+�̃�−1
𝜄 Π𝐹

)
...

(
𝑊 𝑘
𝜄 Π𝐹

) (
𝑋 − 𝑋

)

2]
≤ (1 − 𝜌)2

𝑋 − 𝑋

2

By abuse of notation, let us omit the subscript 𝜄 index in the
proof since the reasoning is parameter-independent. Additionally,
we note that𝑊 (𝑘 :𝑘+�̃�−1) is the product of �̃� 𝑖 .𝑖 .𝑑 random stochastic
matrices that are asymmetric and not doubly-stochastic; this makes
the analysis to be more involved. Let𝑊 be an 𝑖 .𝑖 .𝑑 copy of them.

The sketch of the proof is the following: first, we look at the
expected value and the variance of the matrix𝑊 . Then we will use
concentration inequalities to draw a result on the spectral norm of
the product𝑊 (𝑘 :𝑘+�̃�−1).

As E [𝑊] is a stochastic matrix, we start by computing the ex-
pected values of the random elements. We remark that (𝛼 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖)
and (𝑅𝑖,𝑘)𝑖∈[𝑛],𝑘≥𝐾 , for all 𝑖, 𝑗 ∈ [𝑛], 𝑗 ̸= 𝑖, 𝑘 ≥ 𝐾 , are identically dis-
tributed as well. Moreover, we observe that 𝑅𝑖,𝑘 ∼ Bin(𝑛 − 1, 𝐽

𝑛−1).
Therefore,

E

[
1

1 + 𝑅𝑖,𝑘

]
=
𝑛−1∑︁
𝑘=0

1
𝑘 + 1

(
𝑛 − 1
𝑘

) (
𝐽

𝑛 − 1

)𝑘 (
1 − 𝐽

𝑛 − 1

)𝑛−1−𝑘

= 𝑛 − 1
𝐽𝑛

𝑛−1∑︁
𝑘=0

(
𝑛

𝑘 + 1

) (
𝐽

𝑛 − 1

)𝑘+1 (
1 − 𝐽

𝑛 − 1

)𝑛−1−𝑘

= 𝑛 − 1
𝐽𝑛

(
1 −

(
1 − 𝐽

𝑛 − 1

)𝑛)
= 𝛼(1) .

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Boosting Asynchronous Decentralized Learning with Model Fragmentation Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Then using𝑅𝑖,𝑘 = E
[
𝑅𝑖,𝑘 |𝑅𝑖,𝑘

]
= ∑

1≤ 𝑗 ′≤𝑛,𝑗 ′ ̸=𝑖
E

[
1(𝐴 𝑗

′,𝑘−𝑘 𝑗 ′𝑖 ,𝑖)|𝑅𝑖,𝑘
]

=

(𝑛 − 1)E
[
1(𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖 |𝑅𝑖,𝑘

]
, we deduce that E

[
𝛼 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖

]
= E

[
1

1 + 𝑅𝑖,𝑘
E

[
1(𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖)|𝑅𝑖,𝑘

]]
= E

[
1

1 + 𝑅𝑖,𝑘
𝑅𝑖,𝑘

𝑛 − 1

]
= 1
𝑛 − 1

(
1 − E

[
1

1 + 𝑅𝑖,𝑘

])
= 1
𝑛 − 1

(
1 − 𝑛 − 1

𝐽𝑛

(
1 −

(
1 − 𝐽

𝑛 − 1

)𝑛))
=

1 − 𝛼(1)
𝑛 − 1 = 𝛼

Now looking at E [𝑊] Π𝐹 , since Π𝐹 =
(
𝛿𝑖, 𝑗𝛿𝑘𝑖 ,𝑘 𝑗 − 1

𝑇

)
𝑖,𝑘𝑖 , 𝑗,𝑘 𝑗

, we
can expand the elements of the product as:
∀𝑖, 𝑗 ∈ [𝑛],∀1 ≤ 𝑘 𝑗 ≤ 𝐾𝑗 :

(E [𝑊] Π𝐹)(𝑖,𝑘𝑖),(𝑗,𝑘 𝑗) =



∑
𝑙,𝑘𝑙 𝛿𝑖,𝑙𝛿𝑘𝑖−1,𝑘𝑙𝛼(1)

(
𝛿𝑙, 𝑗𝛿𝑘𝑙 ,𝑘 𝑗 − 1

𝑇

)
= 𝛼(1)

(
𝛿𝑖, 𝑗𝛿𝑘𝑖−1,𝑘 𝑗 − 1

𝑇

)
for 2 ≤ 𝑘𝑖 ≤ 𝐾𝑖∑

𝑙,𝑘𝑙 𝛿𝑘𝑙 ,𝑘𝑙𝑖𝛼

(
𝛿𝑙, 𝑗𝛿𝑘𝑙 ,𝑘 𝑗 − 1

𝑇

)
= 𝛼

(
𝛿𝑘 𝑗𝑖 ,𝑘 𝑗 − 𝑛

𝑇

)
for 𝑘𝑖 = 1

We can now compute the Frobenius norm of this matrix:∑︁
𝑖,𝑘𝑖 , 𝑗,𝑘 𝑗

(E [𝑊] Π𝐹)2(𝑖,𝑘𝑖),(𝑗,𝑘 𝑗)

=
∑︁
𝑖, 𝑗

∑︁
𝑘 𝑗

𝛼2
(
𝛿𝑘 𝑗𝑖 ,𝑘 𝑗 −

𝑛

𝑇

)2
+

∑︁
𝑖,𝑘𝑖≥2

∑︁
𝑗,𝑘 𝑗

𝛼2
(1)

(
𝛿𝑖, 𝑗𝛿𝑘𝑖−1,𝑘 𝑗 −

1
𝑇

)2

=
∑︁
𝑖, 𝑗
𝛼2

((
1 − 𝑛

𝑇

)2
+ (𝐾𝑗 − 1)𝑛

2

𝑇 2

)
+

∑︁
𝑖,𝑘𝑖≥2

𝛼2
(1)

((
1 − 1

𝑇

)2
+ 𝑇 − 1

𝑇 2

)
= (𝛼𝑛)2

(
𝑇 − 𝑛
𝑇

)
+ 𝛼2

(1)

(
𝑇 − 𝑛 − 2 + 2𝑛 + 1

𝑇
− 1 + 𝑛

𝑇 2

)
≤ (𝑇 − 𝑛)

(
(𝛼𝑛)2
𝑇

+ 𝛼2
(1)

)
(4)

Using Assumption 4, we have∑
(𝑖,𝑘𝑖),(𝑗,𝑘 𝑗) (E [𝑊] Π𝐹)2(𝑖,𝑘𝑖),(𝑗,𝑘 𝑗) < 1,

implying 𝜆2 = ∥E [𝑊] Π𝐹 ∥ < 1.We now compare ∥E [𝑊] Π𝐹 ∥2 and
E

[∥𝑊Π𝐹 − E [𝑊] Π𝐹 ∥2
]
. For𝑋 ∈ 𝐹 , on the one hand, ∥E [𝑊] 𝑋 ∥2

=
∑︁
𝑖∈[𝑛]

(
𝛼(1)𝑋𝑖,1 +

∑︁
𝑗 ̸=𝑖

𝛼𝑋 𝑗,𝑘 𝑗𝑖

)2

+
∑︁

1≤𝑘≤𝐾𝑖−1
𝑋 2
𝑖,𝑘

=
∑︁
𝑖∈[𝑛]

(
𝛼2

(1) + 1
)
𝑋 2
𝑖,1 +

∑︁
𝑗 ̸=𝑖

𝛼2𝑋 2
𝑗,𝑘 𝑗𝑖

+ 2
∑︁
𝑗 ̸=𝑗 ′ ̸=𝑖

𝛼2𝑋 𝑗,𝑘 𝑗𝑖𝑋 𝑗 ′,𝑘 𝑗 ′𝑖 + 2
∑︁
𝑗 ̸=𝑖

𝛼(1)𝛼𝑋𝑖,1𝑋 𝑗,𝑘 𝑗𝑖 +
∑︁

2≤𝑘≤𝐾𝑖−1
𝑋 2
𝑖,𝑘 .

On the other hand, E
[∥(𝑊 − E [𝑊])𝑋 ∥2]

= E

∑︁
𝑖∈[𝑛]

((
𝑊(𝑖,1),(𝑖,1) − 𝛼(1)

)
𝑋𝑖,1 +

∑︁
𝑗 ̸=𝑖

(
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖) − 𝛼

)
𝑋 𝑗,𝑘 𝑗

)2
=

∑︁
𝑖∈[𝑛]

E

[(
𝑊(𝑖,1),(𝑖,1) − 𝛼(1)

)2
]
𝑋 2
𝑖,1 +

∑︁
𝑗 ̸=𝑖
E

[(
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖) − 𝛼

)2
]
𝑋 2
𝑗,𝑘 𝑗𝑖

+ 2
∑︁
𝑗 ̸=𝑗 ′ ̸=𝑖

E
[(
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖) − 𝛼

) (
𝑊(𝑖,1),(𝑗 ′,𝑘 𝑗 ′𝑖) − 𝛼

)]
𝑋 𝑗,𝑘 𝑗𝑖𝑋 𝑗 ′,𝑘 𝑗 ′𝑖

+ 2
∑︁
𝑗 ̸=𝑖
E

[(
𝑊(𝑖,1),(𝑖,1) − 𝛼(1)

) (
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖) − 𝛼

)]
𝑋𝑖,1𝑋 𝑗,𝑘 𝑗𝑖 . (5)

Using linearity of the expectation, we individually bound all the
terms that appear in Eq. (5):

E

[(
𝑊(𝑖,1),(𝑖,1) − 𝛼(1)

)2
]

= E
[
𝑊 2

(𝑖,1),(𝑖,1)

]
≤ 1 (6)

E

[(
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖) − 𝛼

)2
]

= E
[

𝑅𝑖(
1 + 𝑅𝑖

)2
1

𝑛 − 1

]
− 𝛼2

≤ E
[

1
1 + 𝑅𝑖

1
𝑛 − 1

]
− 𝛼2 ≤ 𝛼 (1 − 𝛼) ≤ 1 − 𝛼

𝛼
𝛼2 (7)

E
[(
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖) − 𝛼

) (
𝑊(𝑖,1),(𝑗 ′,𝑘 𝑗 ′𝑖) − 𝛼

)]
with 𝑗 ̸= 𝑗 ′ ̸= 𝑖

= E
[
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖)𝑊(𝑖,1),(𝑗 ′,𝑘 𝑗 ′𝑖)

]
− 𝛼2 (8)

Using the same line of reasoning,
(
𝑅𝑖,𝑘

)2
= E

[(
𝑅𝑖,𝑘

)2
|𝑅𝑖,𝑘

]
=

∑︁
𝑗 ̸=𝑗 ′ ̸=𝑖

E
[
1(𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖)1(𝐴 𝑗

′,𝑘−𝑘 𝑗 ′𝑖 ,𝑖)|𝑅𝑖,𝑘
]

+
∑︁
𝑗 ̸=𝑖
E

[
1(𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖)2 |𝑅𝑖,𝑘

]
= (𝑛 − 1)(𝑛 − 2)E

[
1(𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖1(𝐴 𝑗

′,𝑘−𝑘 𝑗 ′𝑖 ,𝑖)|𝑅𝑖,𝑘
]

+ 𝑛E
[
1(𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖)|𝑅𝑖,𝑘

]
Thus, we get E

[(
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖) − 𝛼

) (
𝑊(𝑖,1),(𝑗 ′,𝑘 𝑗 ′𝑖) − 𝛼

)]
= E

[
1

(𝑛 − 1)(𝑛 − 2)
(𝑅𝑖)2 − 𝑅𝑖
(1 + 𝑅𝑖)2

]
− 𝛼2

≤ 𝛼

𝑛 − 2 − 𝛼
2 ≤ 𝛼2 . (9)

As 𝛼 is an increasing function of 𝐽 , maximum value for the RHS in
Eq. (9) is 1/𝑛 for 𝐽 = 𝑛 − 1. Finally, we have:

E
[(
𝑊(𝑖,1),(𝑖,1) − 𝛼(1)

) (
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖) − 𝛼

)]
= E

[
𝑅𝑖

(1 + 𝑅𝑖)2(𝑛 − 1)

]
− 𝛼𝛼(1)

≤ 𝛼(1)(1 − 𝛼(1)
𝑛 − 1 ≤ 1 − 𝛼(1)

𝛼(1)
𝛼𝛼(1) (10)

Combining Eq. (6) to (10), we obtain the overall upper bound as:

E
[∥(𝑊 − E [𝑊])𝑋 ∥2] ≤ max

(1 − 𝛼(1)
𝛼(1)

,
1 − 𝛼
𝛼

)
∥E [𝑊] 𝑋 ∥2

Moreover, using the fact that 𝛼 ≤ 𝛼(1) and that 𝑥 ↦→ 1−𝑥
𝑥 is decreas-

ing, we have E
[∥𝑊Π𝐹 − E [𝑊Π𝐹] ∥2

] ≤ 1−𝛼
𝛼 ∥E [𝑊Π𝐹] ∥2. Hence,

applying Corr. 5.4. from [25], we get that for all �̃� ∈ N , 𝑘 ≥ 𝐾 :

E
[

(𝑊 𝑘+�̃�−1

𝜄 Π𝐹
)
...

(
𝑊 𝑘
𝜄 Π𝐹

)

]
≤ exp

{√︁
�̃�

√︂
2 log(𝑇) 1 − 𝛼

𝛼
+ �̃� log(𝜆2)

}
.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Let 0 < 𝜌 < 1. Then for

𝑘𝜌 ≥
©­­«
√︃

2 log(𝑇) 1−𝛼
𝛼 +

√︃
2 log(𝑇) 1−𝛼

𝛼 + 8 log(𝜆2) log(1 − 𝜌)
2|log(𝜆2) |

ª®®¬
2

,

for every 𝑘 ≥ 𝐾 and 𝑋 ∈ R𝑇 , we finally have:

E

[

(𝑊 𝑘+�̃�−1
𝜄 Π𝐹

)
...

(
𝑊 𝑘
𝜄 Π𝐹

) (
𝑋 − 𝑋

)

2]
≤ E

[

(𝑊 𝑘+�̃�−1
𝜄 Π𝐹

)
...

(
𝑊 𝑘
𝜄 Π𝐹

)

]2

𝑋 − 𝑋

2

≤ (1 − 𝜌)2

𝑋 − 𝑋

2

, concluding the proof of Lem. 2.

Now we proceed to prove the theoretical convergence guarantees
of DivShare.
Proof Theorem 1. Using Lem. 2 and under Assumptions 1 to 4,
we apply Theorem 4.2 from [17] and have:

E

[
1
�̃�

∑︁
𝑘<�̃�

∇𝐹 (
𝑋𝑘

)

2
]

= O
©­­«
𝐿∆

(
1√
𝑛

+ 𝑒𝑘𝜌
(𝑒−1)𝜌

)
�̃�𝑛

+
(
𝐿∆

(
𝜎2 + 𝜁 2)
�̃�

) 1
2

+
©­­­­«
𝑛𝐿∆

√︂
𝜎2 𝑒𝑘𝜌

(𝑒−1)𝜌 + 𝜁 2
(
𝑒𝑘𝜌

(𝑒−1)𝜌

)2

�̃�

ª®®®®¬
2
3 ª®®®®®¬
.

In order to get the best bound, we reduce to the following opti-
mization problem:

min
0 <𝜌<1

𝑒𝑘𝜌

(𝑒 − 1)𝜌

= 𝑒

𝑒 − 1
1
𝜌

©­­«
√︃

2 log(𝑇) 1−𝛼
𝛼 +

√︃
2 log(𝑇) 1−𝛼

𝛼 + 8 log(𝜆2) log(1 − 𝜌)
2|log(𝜆2)|

ª®®¬
2

We have:
𝜙(𝜌)

= 𝑒

𝑒 − 1
1
𝜌

©­­«
√︃

2 log(𝑇) 1−𝛼
𝛼 +

√︃
2 log(𝑇) 1−𝛼

𝛼 + 8 log(𝜆2) log(1 − 𝜌)
2|log(𝜆2)|

ª®®¬
2

≤ 𝑒

2(𝑒 − 1)|log(𝜆2)|2
1
𝜌

(
2 log(𝑇) 1 − 𝛼

𝛼
+ 2 log(𝑇) 1 − 𝛼

𝛼

+ 8 log(𝜆2) log(1 − 𝜌)
)2

≤ 2𝑒 log(𝑇)(1 − 𝛼)
(𝑒 − 1)𝛼 |log(𝜆2)|2

(
1
𝜌

+ 2𝛼 log(𝜆2)
log(𝑇)(1 − 𝛼)

log(1 − 𝜌)
𝜌

)
The function 𝜌 ↦→ 1

𝜌 − 𝑎
log(1−𝜌)

𝜌 with 𝑎 > 0 has a minimum on 𝜌
such as 𝜌

1−𝜌 + log(1 − 𝜌) = 1
𝑎 .

Choosing to evaluate in 𝜌 = 1
1+𝑎 with 𝑎 = 2𝛼 |log(𝜆2) |

log(𝑇)(1−𝛼) and using

log
(
1 + 1

𝑎

)
≤ 1
𝑎 :

min
0 <𝜌<1

𝜙(𝜌) ≤ 4𝑒
(𝑒 − 1)|log(𝜆2)|𝑎 (1 + 2𝑎) ≤ 4𝑒

(𝑒 − 1)|log(𝜆2)|

(
1
𝑎

+ 2
)

≤ 8𝑒
(𝑒 − 1)

2𝛼 |log(𝜆2)| + (1 − 𝛼) log(𝑇)
2𝛼 |log(𝜆2)|2

≤ 8𝑒
(𝑒 − 1)

𝛼 |log(𝜆2)| + (1 − 𝛼) log(𝑇)
𝛼 |log(𝜆2)|2

which concludes the proof. □

G Discussion on Assumption 4

Assumption 4 establishes a link between the effects of straggling
and the communication rate in the network. In this section, we
analyze the asymptotic properties of this assumption to confirm
that DivShare under Assumption 4 is adaptable to a wide range of
real-world scenarios. Assumption 4 can be rewritten as:

𝑇 ≤ 𝑇 where

𝑇 = 1
2𝛼2

(1)

(
𝑛𝛼2

(1) + 1 − (𝑛𝛼)2 +
√︂(

𝑛𝛼2
(1) + 1 − (𝑛𝛼)2

)2
+ 4𝛼2𝛼2

(1)𝑛
3

)
.

Full communication. For 𝐽 = 𝑛 − 1, we get:

𝑇 − 𝑛 = 𝑛
3
2

√︂
1 + 1

4𝑛 −
𝑛

2
Thus the maximum average straggling per node goes to infinity as
the system scales as:

𝑇 − 𝑛
𝑛

=
√
𝑛 − 1

2 + 1
2
√
𝑛

+𝑂
(

1
𝑛
√
𝑛

)
Partial communication. For 𝐽 = log(𝑛), a parameter chosen in
other works on random topology [8, 12] and in our experimental
setup, we get: 𝑇 − 𝑛 ∼ log(𝑛)2. In other words, depending on the
communication rate chosen, if 𝑇 − 𝑛 = 𝑜

(
𝑇 − 𝑛

)
, the coefficients

of the numerators of the second and third terms in Th. 1 go to 0 as
the system scales, enabling speed-ups and better convergence.

14

	Abstract
	1 Introduction
	2 Background and preliminaries
	2.1 Synchronous and asynchronous DL
	2.2 System model

	3 Design of DivShare
	3.1 DivShare in a nutshell
	3.2 Problem formulation
	3.3 The DivShare algorithm

	4 Convergence analysis
	5 Evaluation
	5.1 Experimental setup
	5.2 Convergence of DivShare against baselines
	5.3 Sensitivity analysis
	5.4 Real-world network evaluation

	6 Related work
	7 Final remarks
	References
	A Table of notations
	B Experimental details
	C Additional experiments
	D Communication logic of DivShare
	E Uniform compute speeds
	F Proof of Theorem 1
	G Discussion on Assumption 4

