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ABSTRACT

Variational physics-informed neural networks (VPINNs), with h and p-refinement,
show promise over conventional PINNs. But existing frameworks are computa-
tionally inefficient and unable to deal with complex meshes. As such, VPINNs
have had limited application when it comes to practical problems in science and
engineering. In the present work, we propose a novel VPINNs framework, that
achieves up to a 100x speed-up over SOTA codes. We demonstrate the flexibility
of this framework by solving different forward and inverse problems on complex
geometries, and by applying VPINNs to vector-valued partial differential equa-
tions.

1 INTRODUCTION

In recent years, PINNs have been a popular technique to solve forward and inverse problems related
to differential equations(Haghighat et al., 2021; Mao et al., 2020). PINNs approximate the solution
of a PDE using a deep neural network, which is optimized my minimizing the residual of the PDE
(Raissi et al., 2019). Since their introduction, several variants of PINNs have been proposed, which
exploit different architectures or numerics to obtain better solutions (Cuomo et al., 2022). One such
extension uses the variational form of the differential equations and numerical integration to com-
pute the loss (Kharazmi et al., 2019; Khodayi-Mehr & Zavlanos, 2020). While several works have
demonstrated than variational PINNs (VPINNs) to be more accurate than vanilla PINNs, particularly
with h and p-refinement (hp-VPINNS), the vast majority of VPINN applications to date have only
been limited to scalar problems in small domains with limited flexibility in the type of geometry
that can be used (Kharazmi et al., 2021; Yang & Foster, 2021; Radin et al., 2023). One reason for
this is the poor computational efficiency of VPINNs, where most implementations calculate the total
loss by looping through each cell. Moreover, the simple reference transformation used in existing
implementations means that they can only be applied to geometries that can be decomposed into
rectangular cells. As a result, solutions of coupled equations on complex meshes, for example the
one shown in Fig. 1, are infeasible in state-of-the-art hp-VPINNs codes.

Figure 1: Mesh for a spur gear with 14,000 quad cells.
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In this work, we propose a novel implementation of hp-VPINNs based on mapped finite elements
(Wilbrandt et al., 2017), that vectorizes cell-based loops and replaces them with tensor calculations.
This leads to considerable speed-ups by leveraging GPU computing, and lends itself to solutions on
virtually any geometry that traditional techniques like the finite element method can handle.

2 METHODOLOGY

We present the mathematical preliminaries of both PINNs and hp-VPINNs in A. Assuming our
domain is decomposed into Ncells cells, each having Nquad quadrature points and Ntest test functions,
we compute the variational loss in a manner shown in Fig. 2a. We calculate the derivatives of the
test functions, Jacobians and the quadrature weights once, since these do no change while training
the network, and assemble them into a pre-multiplier matrix. However, when dealing with skewed
cells in complex geometries, the Jacobian may vary at different quadrature points for each test
function. By implementing a bilinear transformation to map the gradients of the test function from
the reference cell to the actual cell, as shown in Fig. 2b, we can handle any complex geometry
that can be decomposed into quadrilateral cells, without the need for a uniform mesh. Hence, by
stacking the pre-multiplier matrices for each cell, we obtain a third-order tensor with dimensions
Ncells × Ntest × Nquad. We collect all the quadrature points from each cell and pass it through the
neural network go, thereby obtaining the solutions at all points in a single forward pass, and the
gradients of the solutions in a single backward pass. The solution gradients are assembled into a
two-dimensional matrix of dimensions Nquad × Ncells. This approach guarantees that the gradient
computations for every cell across the domain are performed in a single backward pass through the
neural network, instead of being repeated Ncells times as in existing implementation of hp-VPINNs.
A detailed description of the bilinear transformation can be found in B

(a) FastVPINNs algorithm schematic
(b) Bilinear Transformation

Figure 2: (a) Tensor-based computation of the variational loss. (b) Bilinear transformations to
handle reference transformations for quadrilateral cell.

3 RESULTS

In the following section, we examine the performance of FastVPINNs in terms of speed and ac-
curacy. We use an NVIDIA RTX A6000 GPU with 48GB of device memory for training. The
NVIDIA-Modulus library(NVIDIA Modulus) was used for PINNs results, while the code available
on (Kharazmi, 2023) was used for obtaining a baseline performance for hp-VPINNs. For our test
functions, we use Jacobi polynomials, denoted as Pn for degree n, such that Pn = Pn+1 − Pn−1.

3.1 FORWARD PROBLEMS WITH THE TWO-DIMENSIONAL POISSON’S EQUATION

We first demonstrate the performance of our code, with h and p-refinement, on forward problems by
solving the two-dimensional Poisson equation on the unit square, with the given forcing function,

−∆u(x, y) = −2ω2 sin (ωx) sin (ωy) (x, y) ∈ Ω = [0, 1]2,

u(0, ·) = u(·, 0) = 0
(1)

This problem has the exact solution

u(x, y) = − sin(ωx) sin(ωy) (2)
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(a) h-refinement (b) p-refinement

Figure 3: (a) Effect of h-refinement on accuracy. The first, second, and third columns are the domain
decomposition, fastVPINN solution, and point-wise test error, respectively. From top to bottom:
N elem = 1, N elem = 64. For each cell, we use 80 × 80 quadrature points and 5 test functions in
each direction. (b) Effect of p-refinement on accuracy on 1 cell. The first and second columns are
the fastVPINN solution and point-wise test error, respectively. From top to bottom: Ntest = 5 × 5
and Ntest = 20 × 20. The cell has 80 × 80 total quadrature points

For a test case with ω = 4π, Fig. 3 shows that our framework exhibits improvement in the accuracy
of the solution using h and p-refinement, as expected from any hp-VPINNs solver. We then illustrate
the efficiency of our framework with that of PINNs (utilizing the Nvidia-Modulus Library, as shown
in Modulus (2023) and hp-VPINNs (as shown in Kharazmi (2023)) in Fig. 4. Fig. 4a compares the
median time per epoch required for solving Eq. 1 as the number of cells increases, with each cell
having 25 quadrature points in total and 5 test functions in each direction. For a fair comparison, the
PINNs solution is obtained using the same number of residual points, and we show our results for
both FP32 and FP64 precision. We can see that the existing hp-VPINNs code scales linearly as the
number of residual points increases, whereas the time required by our framework remains largely
constant, offering up to a 100x speed-up. Further, in Fig. 4b, we show that our code consistently
converges faster than PINNs, with the improvements being more noticeable as the solution frequency
increases. We observe that our code is faster than PINNs, which could be because we skip the
backward pass to compute second derivatives for calculating the loss.

3.2 FORWARD PROBLEMS ON A COMPLEX GEOMETRY WITH THE TWO-DIMENSIONAL
CONVECTION-DIFFUSION EQUATION

To demonstrate the application of our framework to complex geometries, we solve the convection-
diffusion equation given in Eq. 3 on the mesh shown in Fig. 1.

−ε∆u+ b · ∇u = f, x ∈ Ω (3)

where,
f = 50 sinx+ cosx; ϵ = 1; b = [0.1, 0]T ;

Fig. 5 shows that our code manages to achieve reasonable accuracy even on a complex mesh with
a large number of cells, which was thus far infeasible for hp-VPINNs codes.

3.3 FORWARD PROBLEMS WITH THE TWO-DIMENSIONAL INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS

Since existing codes do not scale very well, as is evident from Fig. 4a, hp-VPINNs have not been
applied to more complex problems in science that are of practical interest, like the incompressible
Navier-Stokes equation. We present a novel application of hp-VPINNs to this problem, using our
fastVPINNs framework, for the solution of the Kovasznay flow and lid-driven cavity flow. Fig. 6
shows that our framework can solve such coupled flow problems with relatively good accuracy.

To complete the discussion of our hp-VPINNs framework, we demonstrate that it is equally capable
in solving inverse problems as shown in Section 3.4
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(a)

(b)

Figure 4: (a) (i) Variation of computational time with the number of quadrature (residual) points,
plotted against the median time taken per epoch; (ii) Comparison of computational time between
hp-VPINNs and fastVPINNs for varying numbers of cells. (b) Comparison between PINNs and
fastVPINNS of total time taken to reach a target mean absolute error for different solution frequen-
cies.

Figure 5: Solution of the convection-diffusion equation on a mesh for a spur gear with 14,192 quad
cells. (a) Exact Solution. (b) Predicted Solution. (c) Point-wise error

(a) Kovasznay flow
(b) Lid-driven cavity

Figure 6: Preliminary solutions for the two-dimensional Navier-Stokes equations: (a) The Kovasz-
nay flow for Re=40 and (b) Lid-driven cavity flow for Re=1 and lid velocity = 1.
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3.4 INVERSE PROBLEMS: ESTIMATING THE DIFFUSION COEFFICIENT FOR THE
TWO-DIMENSIONAL CONVECTION DIFFUSION PROBLEM

To complete the discussion of our framework, we show that it is equally capable in solving inverse
problems on complex meshes. We add a sensor loss to our loss function by generating data from a
finite cell solver for the problem shown in in Eq. 4.

−
(

∂

∂x

(
ϵ(x, y)

∂u

∂x

)
+

∂

∂y

(
ϵ(x, y)

∂u

∂y

))
+ bx

∂u

∂x
+ by

∂u

∂y
= f, x ∈ Ω (4)

where,
f = 10; ϵactual(x, y) = 0.5 (sinx+ cos y) ; bx = 1.0; by = 0.0;

We then predict the unknown spatially varying diffusion coefficient and the solution, as shown in
Fig. 7.

Figure 7: Exact and predicted solution and diffusion parameter for the inverse problem on a unit
circle. (a) Exact solution(u) obtained from FEM(ParMooN). (b) Predicted Solution FastVPINN. (c)
Absolute error: FEM vs FastVPINN solution. (d) Exact diffusion parameter(ϵactual). (e) Predicted
diffusion parameter by FastVPINN(ϵpredicted) (f) Absolute error: ϵactual vs ϵpredicted
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A PRELIMINARIES

A.1 GOVERNING EQUATIONS

Consider a two-dimensional steady-state Poisson equation:

−∆u(x) = f(x), in Ω ⊆ R2,

u(x) = g(x), on ∂Ω.
(5)

Here, x ∈ Ω, ε represents the diffusion coefficient. In addition, f(x) is a known source function
with appropriate smoothness. The Dirichlet boundary condition u(x) = g(x) is imposed on the
domain boundary ∂Ω.

A.2 HP-VARIATIONAL PHYSICS INFORMED NEURAL NETWORK

In this section, we initially establish the variational form of the Poisson equation equation 5, fol-
lowed by introducing the Variational Physics Informed Neural Network. Let H1(Ω) denote the
conventional Sobolev space, and define

V :=
{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
.

The subsequent procedure consists of taking the equation equation 5, multiplying it by v ∈ V ,
integrating over Ω, and then utilizing integration by parts on the second derivative term. For more
detailed information, please refer to (Ganesan & Tobiska (2017)). Consequently, the variational
representation of the Poisson equation can be formulated as:

Find u ∈ V such that,
a(u, v) = f(v) for all v ∈ V,

where
a(u, v) :=

∫
Ω

∇u · ∇v dx, f(v) :=

∫
Ω

fv dx. (6)

The domain Ω is then divided into an array of non-overlapping cells, labeled as Kk, where
k = 1, 2, . . . , Ncells, ensuring that the complete union

⋃Ncells
k=1 Kk = Ω covers the entire domain Ω.

In this context, we define Vh as a finite-dimensional subspace of V , spanned by the basis functions
ϕh := {ϕj(x)}, j = 1, 2, . . . , Ntest, where Ntest indicates the total number of basis functions in Vh.
As a result, the discretized variational formulation related to equation equation 6 can be written as
follows,

Find uh ∈ Vh such that,
ah(uh, v) = fh(v) for all v ∈ Vh, (7)

where

ah(uh, v) :=

Ncells∑
k=1

∫
Kk

∇uh · ∇v dK, fh(v) :=

Ncells∑
k=1

∫
Kk

fv dK.

These integrals can be approximated by employing a quadrature rule, leading to∫
Kk

∇uh · ∇v dK ≈
Nquad∑
q=1

wq ∇uh(xq) · ∇v(xq) ,

∫
Kk

fv dK ≈
Nquad∑
q=1

wq f(xq) v(xq) .

Here, Nquad is the number of quadrature points in a element.

The hp-Variational Physics Informed Neural Networks (hp-VPINNs) framework, as presented by
Kharazmi et al. (2021), utilizes specific test functions vk, where k ranges from 1 to N elem, that are
localized and defined within individual non-overlapping element across the domain.

vk =

{
vp ̸= 0, over Kk,
0, elsewhere.
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Here, vp represents a polynomial function of degree p. This selection of test and solution spaces
results in a Petrov-Galerkin finite element method. Specifically, uh is estimated by uNN(x;W, b),
which is the neural network solution, whereas the test function vh is a predetermined polynomial
function. By utilizing these functions, we establish the element-wise residual of the variational
form equation 7 with uNN(x;W, b) as

Wk(x;W, b) =

∫
Kk

(∇uNN(x;W, b) · ∇vk − f vk) dK.

B(x;W, b) = uNN(x;W, b)− g(x), on ∂Ω.

(8)

Further, define the variational loss by

Lv(W, b) =
1

Ncells

Ncells∑
k=1

|Wk(x;W, b)|2

Lb(W, b) =
1

ND

ND∑
d=1

|B(x;W, b)|2 ,

and the cost function of the neural network in hp-VPINN as
LVPINN(W, b) = Lv + τLb. (9)

Here, Lb is the Dirichlet boundary loss as expressed in equation 8 and τ is a scaling factor applied
to control the penalty on the boundary term.

B BILINEAR TRANSFORMATION

Let b0(−1,−1), b1(1,−1), b2(1, 1), b3(−1, 1) be the vertices of the reference element K̂, see Fig-
ure 2b. For any function u(X), we denote u(X) = u(Fk(X̂)) = û(X̂). Further, the derivatives of
the function, ∂u/∂x and ∂u/∂y on the original element can be obtained in terms of the derivatives
defined on the refernce element ∂û/∂ξ and ∂û/∂η as follows:

û(X̂) = û(F−1
k (X)) = u(X), (10)

∂û

∂ξ
=

∂u

∂x

∂x

∂ξ
+

∂u

∂y

∂y

∂ξ
, (11)

∂û

∂η
=

∂u

∂x

∂x

∂η
+

∂u

∂y

∂y

∂η
. (12)

we can express this relation as,[
∂û
∂ξ

∂û
∂η

]
=

[
(xc1 + xc3η) (yc1 + yc3η)

(xc2 + xc3ξ) (yc2 + yc3ξ)

][
∂u
∂x

∂u
∂y

]
.

where,

xc0 =
(x0 + x1 + x2 + x3)

4
, xc1 =

(−x0 + x1 + x2 − x3)

4
,

xc2 =
(−x0 − x1 + x2 + x3)

4
, xc3 =

(x0 − x1 + x2 − x3)

4
,

yc0 =
(y0 + y1 + y2 + y3)

4
, yc1 =

(−y0 + y1 + y2 − y3)

4
,

yc2 =
(−y0 − y1 + y2 + y3)

4
, yc3 =

(y0 − y1 + y2 − y3)

4
,

Finally, we have Finally, we have[
∂u
∂x

∂u
∂y

]
=

1

D

[
(yc2 + yc3ξ) −(yc1 + yc3η)

−(xc2 + xc3η) (xc1 + xc3ξ)

][
∂û
∂ξ

∂û
∂η

]
,

where, D is the determinant of the Jacobian matrix
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