TOPOLOGICAL POSITIONAL ENCODING

Anonymous authors

Paper under double-blind review

Abstract

Unlike words in sentences, nodes in general graphs do not have canonical positional information. As a result, the local message-passing framework of popular graph neural networks (GNNs) fails to leverage possibly relevant global structures for the task at hand. In this context, positional encoding methods emerge as an efficient approach to enrich the representational power of GNNs, helping them break node symmetries in input graphs. Similarly, multiscale topological descriptors based on persistent homology have also been integrated into GNNs to boost their expressivity. However, it remains unclear how positional encoding interplays with PH-based topological features and whether we can align the two to improve expressivity further. We address this issue with a novel notion of topological positional encoding (ToPE) that amalgamates the strengths of persistence homology and positional encoding. We establish that ToPE has provable expressivity benefits. Strong empirical assessments further underscore the effectiveness of the proposed method on several graph and language processing applications, including molecular property prediction, out-of-distribution generalization, and synthetic tree tasks.

023

000

001 002 003

004

006

008 009

010

011

012

013

014

015

016

017

018

019

021

025 026

1 INTRODUCTION

027 028

Many natural systems, such as social networks (Freeman, 2004) and proteins (Jha et al., 2022), exhibit 029 complex relational structures often represented as graphs. To tackle prediction problems in these domains, graph neural networks (GNNs) (Scarselli et al., 2009; Bronstein et al., 2017; Hamilton 031 et al., 2017; Velickovic et al., 2017) have become the dominant approach, leading to breakthroughs in diverse applications such as drug discovery (Gilmer et al., 2017b; Stokes et al., 2020; Satorras 033 et al., 2021), simulation of physical systems (Cranmer et al., 2019; Sanchez-Gonzalez et al., 2020), 034 algorithmic reasoning (Dudzik et al., 2023; Jurss et al., 2023), and recommender systems (Ying et al., 2018). Despite this success, most GNNs have rather limited expressivity — they are at most as powerful as the 1-Weisfeiler-Lehman (1-WL) test (Weisfeiler & Leman, 1968) in distinguishing non-isomorphic graphs (Xu et al., 2019; Morris et al., 2019). This inherent limitation has prompted 037 the development of more expressive GNNs by leveraging, e.g., topological features (Horn et al., 2022), random features (Sato et al., 2021), higher-order message passing (Morris et al., 2019), and structural/positional encodings (Li et al., 2020; You et al., 2019; Wang et al., 2022). 040

Inspired by the success of positional encodings (PEs) in Transformers (Vaswani et al., 2017) for 041 sequences, several positional encoders for graphs have been proposed (You et al., 2019; Dwivedi et al., 042 2021; Wang et al., 2022; Huang et al., 2023). For instance, spectral methods exploit global structure 043 via the eigendecomposition of the graph Laplacian (Lim et al., 2022; Kreuzer et al., 2021; Huang et al., 044 2023). However, these encodings suffer from inherent ambiguities due to sign flips, basis changes, stability, and eigenvalue multiplicities. Recent efforts have addressed sign and basis symmetries (Lim 046 et al., 2022; Wang et al., 2022) and stability with respect to graph perturbations (Huang et al., 2023). 047 However, a common drawback persists: most methods partition the Laplacian eigenvalue/eigenvector 048 space and utilize only the partitioned eigenvalues/eigenvectors. This approach discards valuable information contained in the remaining eigenvalues and eigenvectors. Another class of methods leverage relative distances (e.g., computed from random walk diffusion) to anchor-nodes to capture structural 051 information (Dwivedi et al., 2021; Eliasof et al., 2023; Ying et al., 2021; You et al., 2019; Li et al., 2020). Despite these advances, existing methods fail to extract detailed multiscale topological infor-052 mation, such as the persistence of connected components and independent cycles (i.e., 0- and 1-dim topological invariants), which may be relevant to downstream tasks and potentially more expressive. Persistent homology (PH) (Edelsbrunner et al., 2002) is the cornerstone of topological data analysis and offers a powerful framework to capture multi-scale topological information from data. In the context of graphs, PH has been recently used, e.g., to boost the expressive and representational power of GNNs (Horn et al., 2022; Immonen et al., 2023; Carriere et al., 2020; Verma et al., 2024). However, integrating PH-based topological descriptors into graph positional encoders remains unexplored.

In this work, we explore persistent homology on graphs to build expressive positional encoders. In particular, we present Topological Position Encoding (ToPE) — a multilayered encoding scheme that builds on top of prior positional encoders and the message-passing paradigm (Gilmer et al., 2017a) to obtain filtering functions used to compute persistent topological features (i.e., persistence diagrams). The resulting node-level topological embeddings are fed to downstream GNN layers. Notably, ToPE is very flexible as it can be combined with any PE method and addresses the limitations of current methods by leveraging more nuanced, fine-grained topological information captured by PH.

We theoretically analyze ToPE and establish its improved expressive power in comparison to popular PE methods such as the Laplacian PE (Dwivedi et al., 2021). We also show the stability of ToPE's filtration functions and describe its representational power in terms of the k-WL hierarchy. To demonstrate the effectiveness of our proposal, we conduct rigorous empirical evaluations on various tasks, including molecule property prediction, out-of-distribution generalization, and synthetic tree tasks.

071 In sum, our main contributions are:

073

074

075

076

077

078

079

080

081

082

084

086

087

096 097

098

- 1. (**Methodology**) We propose Topological Positional Encoding (ToPE), unifying general positional encoding schemes with persistent homology on graphs;
- 2. (**Theory**) We establish a series of theoretical results to support our methodological contribution. In particular, we demonstrate the superior expressive power of ToPE compared to its base positional encoders, and ToPE's relationship with the k-WL isomorphism test;
- 3. (**Empirical**) Our empirical assessment shows that ToPE outperforms the competing baselines across diverse tasks such as molecular property prediction, out-of-distribution generalization tasks, and synthetic tree tasks. We also conduct an ablation study to measure the impact of adopting learnable vs. non-learnable filtering functions.

2 BACKGROUND

In this section, we overview prior graph positional encoding methods, the *k*-dim Weisfeiler-Leman test, and some basic notions in persistent homology for graph data.

Notation. We define a graph as a tuple G = (V, E, x), where $V = \{1, ..., n\}$ is the set of nodes, $E \subseteq V \times V$ is the set of edges, and the function $x : V \to \mathbb{R}^{d_x}$ assigns a color (or d_x -dimensional feature vector) to nodes $v \in V$ — for convenience, hereafter, we denote the feature vector of vby x_v . We denote the adjacency matrix of G by $A \in \{0,1\}^{n \times n}$, i.e., A_{ij} is one if $(i,j) \in E$ and zero otherwise. We use D to represent the diagonal degree matrix of G, i.e., $D_{ii} = \sum_j A_{ij}$. We define the normalized Laplacian of G as $\Delta = I_n - D^{-1/2}AD^{-1/2}$ and its random walk Laplacian as $\Delta_{\text{RW}} = D^{-1}A$, where I_n is the *n*-dimensional identity matrix. The set of neighbors of a node v is denoted by $\mathcal{N}(v) = \{u \in V : (v, u) \in E\}$. Furthermore, we use $\{\!\{\cdot\}\!\}$ to denote multisets.

2.1 GRAPH POSITIONAL ENCODING

Given a graph G, a positional encoder acts on A (adjacency matrix of G) to obtain an embedding matrix $P \in \mathbb{R}^{n \times k}$, where the v-th row of P comprise the positional feature of node v, denoted by p_v . Integrating PEs into message-passing GNNs (Gilmer et al., 2017a; Xu et al., 2019) enables them to learn intricate relationships between nodes based on positional information, ultimately enhancing their representational power. Although several PE methods (Dwivedi et al., 2021; Li et al., 2020; Lim et al., 2022; Wang et al., 2022; Bo et al., 2023) have been proposed, most approaches build upon:

• Laplacian PE (Dwivedi & Bresson, 2020): This approach employs the idea of Laplacian eigenmaps (Belkin & Niyogi, 2003) as PE. In particular, let $\Delta = U\Lambda U^{\top}$, where $U \in \mathbb{R}^{n \times n}$ is an orthonormal matrix with eigenvectors u_1, \ldots, u_n and the matrix $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ comprises the corresponding eigenvalues (or spectrum) of Δ , with $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Then, Laplacian PE uses the k smallest (non-trivial) eigenvectors as positional encodings, i.e., $p_v = [u_{1,v}, u_{2,v}, \dots, u_{k,v}]$ for all $v \in V$. We note that this corresponds to the solution to: $\max_{P \in \mathbb{R}^{n \times k}} \operatorname{trace}(P^{\top} \Delta P)$ subject to $P^{\top} DP = I_k$.

- Distance PE (Li et al., 2020): Let $S \subseteq V$ be a target subset of vertices. Distance PE learns node features for each node v based on distances from v to elements in S (You et al., 2019). The distances comprise either random walk probabilities or generalized PageRank scores (Pal et al., 2017; Mialon et al., 2021). Formally, using sum-pooling, Distance PE computes $p_v = \sum_{s \in S} f(d_G(v, s))$ with $d_G(v, s) = [(\Delta_{\text{RW}})_{vs}, (\Delta_{\text{RW}}^2)_{vs}, \dots, (\Delta_{\text{RW}}^k)_{vs}]$ or $d_G(v, s) = (\sum_{i=1}^k \gamma_i \Delta_{\text{RW}}^i)_{vs}$, where $\gamma_i \in \mathbb{R}$ and $f(\cdot)$ is a multilayer perceptron.
 - Random walk PE (Dwivedi et al., 2021): This approach captures node proximity through the random walk diffusion process and can be viewed as a simplified version of Distance PE. In particular, Dwivedi et al. (2021) adopt $p_v = [(\Delta_{RW})_{vv}, (\Delta_{RW}^2)_{vv}, \dots, (\Delta_{RW}^k)_{vv}].$

121 Dwivedi et al. (2021) also propose *learnable structural and positional encodings* (LSPE) as a general 122 framework that builds upon base positional encoders (e.g., LapPE). More specifically, the key idea 123 of LPSE lies at decoupling positional and structural representations and learn them using message-124 passing layers. Formally, starting from $x_v^0 = x_v$ and $p_v^0 = p_v \ \forall v \in V$, LSPE recursively updates 125 positional and node embeddings as

126

118

119

120

127

$$x_v^{\ell+1} = \operatorname{Upd}_\ell^x \left(x_v^\ell, p_v^\ell, \operatorname{Agg}_\ell^x (\{\!\!\{ x_u^\ell, p_u^\ell : u \in \mathcal{N}(v) \}\!\!\}) \right), \quad \forall v \in V,$$

$$x_v^{\ell+1} = \operatorname{Upd}_\ell^p \left(x_v^\ell \wedge \operatorname{Agg}_\ell^p (\{\!\!\{ x_u^\ell, p_u^\ell : u \in \mathcal{N}(v) \}\!\!\}) \right) \quad \forall v \in V,$$

128

$$p_v^{\ell+1} = \operatorname{Upd}_{\ell}^p \left(p_v^{\ell}, \operatorname{Agg}_{\ell}^p (\{\!\!\{ p_u^{\ell} : u \in \mathcal{N}(v) \}\!\!\}) \right), \quad \forall v \in V,$$

where $\operatorname{Agg}_{\ell}^{p}$ and $\operatorname{Agg}_{\ell}^{x}$ are arbitrary order-invariant functions, and $\operatorname{Upd}_{\ell}^{x}$ and $\operatorname{Upd}_{\ell}^{p}$ are arbitrary functions (often multilayer perceptrons, MLPs). After iterative updating, the final layer node embeddings are concatenated with the final positional ones, i.e., $\{[x_{v}^{L}, p_{v}^{L}]\}_{v}$, and then leveraged for downstream tasks, such as node classification, graph classification, or link prediction.

133 134 135

151

152

2.2 *k*-dim Weisfeiler-Leman test

The Weisfeiler–Leman test (1-WL), also known as the color refinement algorithm (Weisfeiler & Leman, 1968), aims to determine if two graphs are isomorphic. It does so by iteratively assigning colors to nodes. Initially, nodes receive labels based on their features. In each iteration, nodes sharing the same label get distinct labels if their sets of similarly labeled neighbors differ. Termination happens when label counts diverge between graphs, indicating non-isomorphism.

141 Due to the shortcomings of the 1-WL in distinguishing non-isomorphic graphs, Babai (1979); 142 Immerman & Lander (1990) introduced a more powerful variant known as k-dim (folklore) We-143 isfeiler-Leman algorithm. In this approach, k-FWL colors subgraphs instead of a single node. 144 Specifically, given a graph G, it colors tuples from $V(G)^k$ for $k \ge 1$ instead of nodes and defines 145 neighborhoods between these tuples. Formally, let G be a graph, and let $k \ge 2$. If $\mathbf{v} \in V(G)^k$, then 146 $G[\mathbf{v}]$ is the subgraph induced by the components of \mathbf{v} , where the nodes are labeled with integers from 147 $\{1, ..., k\}$ corresponding to indices of \mathbf{v} .

In each iteration $i \ge 0$, the algorithm computes a *coloring* $C_i^k : V(G)^k \to \mathbb{N}$, and in the initial iteration (i = 0) two tuples **v** and **w** in $V(G)^k$ get the same color if the map $v_i \to w_i$ induces an isomorphism between $G[\mathbf{v}]$ and $G[\mathbf{w}]$. For i > 0, the algorithm proceeds as,

$$C_{i+1}^{k}(\mathbf{v}) = \text{RELABEL}\left((C_{i}^{k}(\mathbf{v}), M(\mathbf{v}))\right)$$
(1)

where the multi-set $M(\mathbf{v}) = \{\!\!\{C_i^k(\phi_1(\mathbf{v}, w)), \dots, C_i^k(\phi_k(\mathbf{v}, w)) \mid w \in V(G)\}\!\}$ and $\phi_j(\mathbf{v}, w) = \{v_1, \dots, v_{j-1}, w, v_{j+1}, w_k\}$. The $\phi_j(\mathbf{v}, w)$ replaces the *j*-th component of the tuple \mathbf{v} with the node w. Consequently, two tuples are adjacent or *j*-neighbors (with respect to a node w) if they differ in the *j*th component (or are equal, in the case of self-loops). The algorithm iterates until convergence, i.e., $C_i^k(\mathbf{v}) = C_i^k(\mathbf{w}) \iff C_{i+1}^k(\mathbf{v}) = C_{i+1}^k(\mathbf{w})$ for all \mathbf{v} , defining the stable partition induced by C_i^k , define $C_\infty^k(\mathbf{v}) = C_i^k(\mathbf{v})$. The algorithm then proceeds analogously to the 1-WL.

We say that the k-FWL distinguishes two graphs G and H if their color histograms differ. This means there exist a color c in the image of C_{∞}^k such that G and H have distinct numbers of node tuples of color c. Morris et al. (2023) also describe another variant of k-WL known as k-dim (oblivious) WL algorithm. The key distinction between the two lies in aggregating over different neighborhoods. In this case, for each position $j \in [k]$ we obtain a set of |V(G)| neighbors by replacing v_j by $w \in V$. A hash for position j is obtained using these colors, and the overall color is obtained by aggregating the hashed colors across all k positions (and v's color from previous iteration). We utilize the former variant throughout the paper and refer to Morris et al. (2023); Huang & Villar (2021) for a thorough discussion of the algorithm and its properties.

167 168

169

2.3 PERSISTENT HOMOLOGY ON GRAPHS

170 A key notion in persistent homology is that of filtration. In this regard, a *filtration* of a graph Gis a finite nested sequence of subgraphs of G, i.e., $\emptyset = G_0 \subset G_1 \subset ... \subset G$. A popular choice 171 to obtain a filtration consists of considering sublevel sets of a function defined on the vertices of 172 a graph. In particular, let $f: V \to \mathbb{R}$ be a filtering function and G_{α} be the subraph of G induced 173 by the vertex set $V_{\alpha} = \{v : f(v) \leq \alpha\}$ for $\alpha \in \mathbb{R}$. By varying α from $-\infty$ to ∞ , we obtain a 174 sub-level filtration of G. Importantly, we can monitor the emergence and vanishing of topological 175 characteristics (e.g., connected components, loops, voids) throughout a filtration, which is the core 176 idea of PH. More specifically, if a topological feature first appears in G_{α_b} and disappears in G_{α_d} , 177 then we encode its persistence as a pair (α_b, α_d) ; if a feature does not disappear, then its persistence 178 is (α_b, ∞) . The collection of all pairs forms a multiset that we call *persistence diagram*. We use \mathcal{D}^i 179 to denote the persistence diagram for *i*-dim topological features. For a formal treatment of PH, we 180 refer to Edelsbrunner & Harer (2010) and Hensel et al. (2021).

181 In graph learning, persistent homology has been harnessed to enhance the expressive power of GNNs. 182 Horn et al. (2022) introduced TOGL, a general framework for integrating topological features derived 183 from PH into GNN layers. TOGL employs a learnable function (a multilayer perceptron, MLP) on 184 node features / colors to obtain graph filtrations, which we refer to as vertex-color (VC) filtrations. 185 Importantly, Immonen et al. (2023) characterized the expressive power of VC filtrations via the 186 notions of *color-separating sets* and *component-wise colors*. Formally, a color-separating set for a pair of graphs G = (V, E, x) and G' = (V', E', x') is a set of colors Q such that the subgraphs 187 induced by $V \setminus \{w \in V \mid x_w \in Q\}$ and $V' \setminus \{w \in V' \mid x'_w \in Q\}$ have distinct component-wise colors 188 - defined as the multiset comprising the set of node colors of each connected components. Immonen 189 et al. (2023) introduced RePHINE, a new topological descriptor that employs vertex and edge-color 190 filtering functions to enhance the expressiveness of persistence diagrams from VC filtrations. 191

192 193

194

199

200

205

3 TOPOLOGICAL POSITIONAL ENCODING

In this section, we introduce *topological positional encodings* (ToPE, in short). ToPE builds on top of
 existing graph PE methods, leveraging them to obtain detailed topological information of graphs via
 persistent homology. Here, we also analyze stability and expressivity properties of our proposal.

3.1 Method

PE-based message passing. Let $p_v \in \mathbb{R}^d$ be a base PE (e.g., Laplacian PE) for a node $v \in V(G)$. We first propagate positional embeddings over the graph following a vanilla message-passing procedure. In particular, starting from $p_v^0 = p_v$ for all v, we recursively update the positional embeddings as

$$p_v^{\ell+1} = \operatorname{Upd}_{\ell}^p \left(p_v^{\ell}, \operatorname{Agg}_{\ell}^p (\{\!\!\{ p_u^{\ell} : u \in \mathcal{N}(v) \}\!\!\}) \right) \quad \forall v \in V,$$

$$(2)$$

where $\operatorname{Agg}_{\ell}^{p}$ is an order-invariant function and $\operatorname{Upd}_{\ell}^{p}$ is an arbitrary update function at layer ℓ . Similarly to LSPE, ToPE decouples positional and feature propagation steps.

Using PEs to induce graph filtrations. The second step in ToPE consists of using the positional encodings $\{p_v^\ell\}_v$ as node features to compute vertex-color (or edge-color) filtrations (Horn et al., 2022; Immonen et al., 2023). More specifically, we define the filtration function at layer ℓ as the map $p_v^\ell \mapsto f^\ell(p_v^\ell) \in \mathbb{R}$ to obtain a sub-level filtration induced by f^ℓ , i.e., given the graph G = (V, E, x), we build $G_\alpha = (V_\alpha, E_\alpha, x)$ at filtration step α by setting $V_\alpha = \{v \in V : f^\ell(p_v^\ell) \le \alpha\}$ and $E_\alpha = \{(u, v) \in E : \max\{f^\ell(p_u^\ell), f^\ell(p_v^\ell)\} \le \alpha\}$. For simplicity, we have adopted only one filtration function per layer, although multiple ones can be considered. From the filtration $\{G_\alpha\}_\alpha$, we compute its 0-dim persistence diagram at layer ℓ , denoted by \mathcal{D}_{ℓ}^0 .

Figure 1: **Overview of ToPE.** At each layer ℓ , the node embeddings $\{x_u^{\ell-1}\}_u$ are updated using the positional embeddings $\{p_u^{\ell-1}\}_u$ and the topological embeddings $\{r_u^{\ell-1}\}_u$ as described in Eq. 3. The position embeddings $\{p_u^{\ell-1}\}_u$ are updated and then leading to the computation of persistance diagrams \mathcal{D}^0 leading to topological embeddings $\{r_u^\ell\}_u$. In readout phase, the final layer node embeddings $\{x_u^L\}_u$ are combined with the topological embeddings $\{r_u^\ell\}_{u,\ell}$ for various tasks.

We note that our design also accommodate other descriptors. For instance, one may also compute
RePHINE diagrams (Immonen et al., 2023) or extended persistence diagrams (Carriere et al., 2020).
The key idea here consists of using base positional features to obtain filtering functions.

Obtaining topological embeddings. Importantly, we can associate persistence pairs in \mathcal{D}_{ℓ}^{0} with nodes in V(G) — there is a bijection from \mathcal{D}_{ℓ}^{0} to V, which was also explored in (Horn et al., 2022). Let t_{v}^{ℓ} be the tuple in \mathcal{D}_{ℓ}^{0} associated with node v. Then, we vectorize each element t_{v}^{ℓ} using an MLP ϕ_{ℓ} to obtain the embeddings $r_{v}^{\ell} = \phi_{\ell}(t_{v}^{\ell})$ for all $v \in V(G)$. We refer to r_{v}^{ℓ} as the *topological embedding* associated with the base PE p_{v}^{ℓ} .

Integrating PEs and topological embeddings into GNNs. A simple strategy to integrate PEs and topological embeddings into GNNs is to combine (e.g., concatenate or add) them with GNN node embeddings $\{x_v^\ell\}_v$. Then, the resulting GNN's message-passing procedure at layer ℓ becomes

$$x_v^{\ell+1} = \operatorname{Upd}_{\ell}^x \left([x_v^{\ell} \parallel p_v^{\ell} \parallel r_v^{\ell}], \operatorname{Agg}_{\ell}(\{\!\!\{ [x_u^{\ell} \parallel p_u^{\ell} \parallel r_u^{\ell}] : u \in \mathcal{N}(v) \}\!\!\}) \right) \quad \forall v \in V.$$

(3)

Achieving class predictions. For graph classification, as usual, we apply a readout function (e.g., sum or mean) to the embeddings at the last GNN layer, L, to obtain a graph-level embedding x_G , i.e., $x_G = \text{Readout}(\{x_v^L\}_v)$. Similarly to LSPE, we can also concatenate positional embeddings p_v^L with node representations x_v^L before applying the readout function. Then, we combine x_G with a global topological embedding $\text{Pool}(\{r_v^\ell\}_{\ell,v})$ and send the resulting vector through an MLP to achieve graph-level predictions — Pool is either a global mean or addition operator.

Figure 1 describes the architectural steps of our method. Importantly, our framework is versatile and
 can accommodate any selection of base (initial) positional encoding as well as various topological
 descriptors (e.g., RePHINE) and message-passing GNNs.

258 3.2 ANALYSIS

We now report results on the stability and expressiviness of leveraging persistent homology to obtain topological positional encodings. All proofs can be found in Appendix B.

Put simply, stability of a method describes that a slight perturbation in the input induces only a minor
change in the output. Thus, in a stable positional encoding method, a small perturbation in the input
graph should correspond to a small flutuation in the positional encoding. This notion is formalized in
Definition 1, following Wang et al. (2022); Huang et al. (2023).

Definition 1 (Stable PE). Let G and G' be two graphs with n nodes and corresponding Laplacians Δ and Δ' . A PE method Ψ_{PE} is stable if there exists c, $L_{\Psi} > 0$, such that

268 269

242

246

247

257

$$||\Psi_{\rm PE}(\Delta) - P_*\Psi_{\rm PE}(\Delta')||_F \le L_{\Psi}||\Delta - P_*\Delta'P_*^{\top}||_F^c,\tag{4}$$

where $P_* = \arg \min_{P \in \Pi(n)} \|\Delta - P\Delta'P^\top\|_F^c$ and $\Pi(n)$ is the set of the n-by-n permutation matrices.

Our next result (Proposition 1) states the stability of the filtering functions used in ToPE composed to base PE methods.
 272

Proposition 1. Let Δ and Δ' be two graph Laplacians. If Ψ_{PE} is stable, then there exist constants $c, L_f > 0$ such that:

$$||f(\Psi_{\rm PE}(\Delta)) - P_*f(\Psi_{\rm PE}(\Delta'))||_F \le L_f ||\Delta - P_*\Delta' P_*^\top||_F^c$$
(5)

where $P_* = \arg \min_{P \in \Pi(n)} \|\Delta - P\Delta' P^\top\|_F^c$, $\Pi(n)$ is the set of the n-by-n permutation matrices, and f is the filtration function used by ToPE to compute topological features.

We now establish theoretical results on the expressive power of building blocks used in ToPE. Lemma 1 shows that defining filtering functions on positional encodings results in 0-dim persistence diagrams that are at least as expressive as the positional encodings in distinguishing non-isomorphic graphs. In other words, we do not lose expressive power by relying only on 0-dim diagrams.

Lemma 1. Let $G = (V, E, \cdot)$ and $G' = (V', E', \cdot)$ be two graphs with associated positional encodings $Z = \{\!\{p_v\}\!\}_{v \in V}$ and $Z' = \{\!\{p'_v\}\!\}_{v \in V'}$ obtained from any base PE method. If $Z \neq Z'$, then there exists a vertex-color filtration on the attributed graphs $\tilde{G} = (V, E, p)$ and $\tilde{G}' = (V', E', p')$ such that $\mathcal{D}^0(\tilde{G}) \neq \mathcal{D}^0(\tilde{G}')$.

In Proposition 2, we show that PH-based topological encodings (i.e., ToPE) are strictly more expressive than a concrete and popular PE method — Laplacian PEs.

Proposition 2. Consider base Laplacian PE positional encodings relying on a fixed number of smallest eigenvalue/eigenvector pairs of graph Laplacians. There are pairs of graphs that Laplacian PE cannot distinguish but ToPE can. The converse does not hold.

The expressive power of 0-dim diagrams from vertex-color filtrations is fully characterized by the notion of color-separating sets, as outlined by Immonen et al. (2023). Since ToPE combines GNNs with PH, we also provide results on the connection between color-separating sets and the k-WL hierarchy. Proposition 3 shows that whenever k-FWL distinguishes two graphs, there exists a filtration that produces 0-dim persistence diagrams for these graphs, or equivalently, there is a color-separating set. We also provide an explicit coloring for the graphs based on the stable colorings from k-FWL.

Proposition 3. If k-FWL deems two graphs G = (V, E, x) and G' = (V', E', x') non-isomorphic with stable colorings $C_{\infty} : V^k \to \mathbb{N}$ and $C'_{\infty} : V'^k \to \mathbb{N}$, then $Q = \emptyset$ is a trivial color-separating set for the associated graphs $\tilde{G} = (V, E, \tilde{x})$ and $\tilde{G}' = (V', E', \tilde{x}')$, with $\tilde{x}(u) = \text{hash}(\{C_{\infty}(v) : u \in v, v \in V^k\})$ for all $u \in V$ and $\tilde{x}'(u) = \text{hash}(\{C'_{\infty}(v) : u \in v, v \in V'^k\})$ for all $u \in V$.

We note that Proposition 3 strengthens the results by Rieck (2023) (Proposition 5) in two ways. First, we show how to harness k-FWL to find an specific filtering function that leads to separable diagrams — in fact, given the proposed coloring, separability holds for any injective vertex-color function. Also, with our scheme, even 0-dim diagrams are different, while Proposition 5 in (Rieck, 2023) provides that k - 1 or k-dim diagrams are different.

309 310

311

293

273

274 275 276

4 EXPERIMENTS

We assess the performance of ToPE on diverse and challenging tasks. In Section 4.1, we assess its effectiveness in predicting properties of drug molecules and performing real-world graph classification. Section 4.2 delves into ToPE's robustness by benchmarking its ability to handle domain shifts in data. Finally, Section 4.3 showcases the generalizability of ToPE by evaluating its performance on synthetic tree-structured tasks.

317

Implementation. ToPE is implemented in PyTorch (Paszke et al., 2019) and utilise the same training configuration as the competing baselines. More details in Appendix C.

320

Baselines. To empirically demonstrate the effectiveness of our method, we compared it against existing positional encoding approaches on various tasks. We utilized several established baselines for graph tasks: (i) No positional encodings, (ii) SignNet (Lim et al., 2022), (iii) PEG (Wang et al., 2022), (iv) LapPE & RWPE (Dwivedi et al., 2021), and (v) SPE (Huang et al., 2023). In order to

Domain	PE method	Diagram	ID-Val ↑	ID-Test↑	OOD-Val \uparrow	OOD-Test ↑
	-	-	$92.92_{\pm 0.14}$	$92.89_{\pm0.14}$	$71.02_{\pm 0.79}$	$71.68_{\pm 1.10}$
	PEG	- VC RePHINE	$\begin{array}{c} 92.51_{\pm 0.17} \\ 92.62_{\pm 0.19} \\ 92.42_{\pm 0.27} \end{array}$	$\begin{array}{c} 92.57_{\pm 0.22} \\ 92.75_{\pm 0.49} \\ 92.35_{\pm 0.19} \end{array}$	$\begin{array}{c} 70.86_{\pm 0.44} \\ 71.62_{\pm 0.57} \\ 72.02_{\pm 0.51} \end{array}$	$\begin{array}{c} 71.98_{\pm 0.65} \\ 72.13_{\pm 0.93} \\ \textbf{72.33}_{\pm 1.03} \end{array}$
Assay	SignNet	- VC RePHINE	$\begin{array}{c} 92.26_{\pm 0.21} \\ 91.66_{\pm 0.39} \\ 91.36_{\pm 0.31} \end{array}$	$\begin{array}{c} 92.43_{\pm 0.27} \\ 92.73_{\pm 0.28} \\ 92.15_{\pm 0.29} \end{array}$	$\begin{array}{c} 70.16_{\pm 0.56} \\ 70.37_{\pm 0.69} \\ 69.47_{\pm 0.43} \end{array}$	$\begin{array}{c} 72.27_{\pm 0.97} \\ 73.07_{\pm 1.07} \\ \textbf{73.87}_{\pm 1.32} \end{array}$
	SPE	- VC RePHINE	$\begin{array}{c} 92.84_{\pm 0.20} \\ 92.78_{\pm 0.96} \\ 92.16_{\pm 0.37} \end{array}$	$\begin{array}{c} 92.94_{\pm 0.15} \\ 92.49_{\pm 0.58} \\ 93.12_{\pm 0.91} \end{array}$	$71.26_{\pm 0.62} \\ 71.78_{\pm 0.64} \\ 72.33_{\pm 0.93}$	$\begin{array}{c} 72.53 {\scriptstyle \pm 0.66} \\ 72.91 {\scriptstyle \pm 1.16} \\ \textbf{73.11} {\scriptstyle \pm 1.07} \end{array}$
	-	-	$96.56_{\pm 0.10}$	$87.95_{\pm 0.20}$	$79.07_{\pm 0.97}$	$68.00_{\pm 0.60}$
	PEG	- VC RePHINE	$\begin{array}{c} 95.65_{\pm 0.29} \\ 96.65_{\pm 0.31} \\ 96.94_{\pm 0.62} \end{array}$	$\begin{array}{c} 86.20_{\pm 0.14} \\ 86.44_{\pm 0.81} \\ 86.54_{\pm 0.77} \end{array}$	$\begin{array}{c} 79.17_{\pm 0.29} \\ 79.79_{\pm 0.47} \\ 79.40_{\pm 0.35} \end{array}$	$\begin{array}{c} 69.15_{\pm 0.75} \\ \textbf{70.12}_{\pm 0.52} \\ 69.31_{\pm 0.97} \end{array}$
Scaffold	SignNet	- VC RePHINE	$\begin{array}{c} 95.48 _{\pm 0.34} \\ 93.03 _{\pm 0.57} \\ 93.35 _{\pm 0.56} \end{array}$	$\begin{array}{c} 86.73 _{\pm 0.56} \\ 83.65 _{\pm 0.77} \\ 85.05 _{\pm 0.79} \end{array}$	$\begin{array}{c} 77.81 _{\pm 0.70} \\ 74.73 _{\pm 0.65} \\ 75.05 _{\pm 1.04} \end{array}$	$\begin{array}{c} 66.43 \scriptstyle{\pm 1.06} \\ 67.37 \scriptstyle{\pm 1.12} \\ \textbf{68.03} \scriptstyle{\pm 1.34} \end{array}$
	SPE	- VC RePHINE	$\begin{array}{c} 96.32_{\pm 0.28} \\ 96.57_{\pm 0.43} \\ 96.87_{\pm 0.76} \end{array}$	$\begin{array}{c} 88.12_{\pm 0.41} \\ 88.37_{\pm 0.82} \\ 89.98_{\pm 1.05} \end{array}$	$\begin{array}{c} 80.03_{\pm 0.58} \\ 80.56_{\pm 0.65} \\ 80.76_{\pm 0.87} \end{array}$	$\begin{array}{c} 69.64_{\pm 0.49} \\ \textbf{70.92}_{\pm 0.92} \\ 70.46_{\pm 0.79} \end{array}$

Table 1: AUC-ROC results. DrugOOD Benchmark and baselines are taken from Huang et al. (2023).
 ToPE outperforms the competing baselines in achieving better scores for OOD-Test.

compute the topological descriptors via persistence homology, we utilized (i) Vertex Color (VC) (Horn et al., 2022) and (ii) RePHINE (Immonen et al., 2023) as learnable methods to compute the diagrams. For the synthetic tree tasks, we compared our method against these positional encoding approaches: (i) Sinusodial (Gehring et al., 2017), (ii) Relative (Shaw et al., 2018)n and (iii) RoPE (Su et al., 2024) positional embedding methods.

356 357 358

359

352

353

354

355

326 327 328

4.1 DRUG MOLECULE PROPERTY PREDICTION AND GRAPH CLASSIFICATION

360 We used ZINC (Dwivedi et al., 2023) and Alchemy (Chen et al., 2019) datasets which comprises of 361 quantum mechanical properties of drug molecules, with the main goal of predicting these properties. 362 We followed the data preparation strategy of Huang et al. (2023) and utilised the same GIN as base model with training, validation and test splits. For graph classification tasks, we employed 363 two datasets: OGBG-MOLTOX21 (Huang et al., 2017; Wu et al., 2018) and OGBG-MOLPCBA 364 (Wang et al., 2012; Wu et al., 2018). OGBG-MOLTOX21 is a multi-task binary classification dataset containing 7.8k graphs, where the goal is to predict toxicity across 12 measurements for 366 each molecule. OGBG-MOLPCBA is a larger dataset with 437.9k graphs, focusing on predicting 367 activity/inactivity labels for 128 bioassays. To ensure consistent comparisons, we followed the data 368 preparation steps outlined by Dwivedi et al. (2021) and used Gated-GCN as the base architecture. 369

370

Evaluation Results. Figure 2 presents the test Mean Absolute Error (MAE) between our model's
 predictions and the ground truth values for the ZINC and Alchemy datasets (property prediction tasks).
 It also showcases the results on the OGBG-MOLTOX21 and OGBG-MOLPCBA datasets (graph
 classification tasks). Notably, our method consistently outperforms competing baselines, particularly
 on the ZINC and MOLPCBA datasets, demonstrating significant improvements. Furthermore,
 incorporating ToPE with the PEG baseline consistently leads to the largest decrease in MAE across
 ZINC. This highlights the effectiveness of our approach in capturing richer and more informative
 graph representations.

Figure 2: **Test MAE and graph classification results**. Integration of ToPE into general position encoding schemes leads to better downstream performance across diverse datasets.

4.2 OUT OF DISTRIBUTION PREDICTION

To evaluate our method's ability to handle domain shifts, we employed the DrugOOD, an out-ofdistribution (OOD) benchmark (Ji et al., 2023). We focused on the ligand-based affinity prediction task to assess drug activity. DrugOOD introduces two types of distribution shifts: (i) Assay, denoting the assay to which the data point belongs, and (ii) Scaffold, representing the core structure of molecules. The DrugOOD dataset is divided into five parts: training set, in-distribution (ID) validation/test sets, and out-of-distribution (OOD) validation/test sets. The OOD sets have different underlying distributions compared to the ID sets, allowing us to assess generalizability to unseen data.

Table 2: Synthetic Tree tasks. Perplexity (PPL) \downarrow on various synthetic tree tasks.

Scheme	Diagram	C_3		Reorder		Сору	
Serie	Diagram	breadth	depth	breadth	depth	breadth	depth
Sinusodial	None	2.47	2.90	6.93	7.11	1.14	5.76
	VC	2.42	2.75	6.80	7.21	1.10	5.47
	RePHINE	2.33	2.64	6.75	7.51	1.00	5.32
Relative	None	1.85	2.62	6.00	7.72	1.10	5.94
	VC	1.53	2.42	5.92	8.11	1.01	5.04
	RePHINE	1.70	2.31	6.12	7.97	1.00	4.82
RoPE	None	1.84	2.52	4.93	6.63	1.85	3.17
	VC	1.65	1.94	4.76	5.24	1.14	2.35
	RePHINE	1.59	1.77	4.49	4.70	1.00	2.05

Superior OOD Generalizability. Table 1 summarizes the AUC-ROC scores for different methods.
 Interestingly, all models achieve similar performance on the in-distribution test set (ID-Test). However, performance drops for all methods on the out-of-distribution test set (OOD-Test). This highlights the challenge of generalizing to unseen data. Notably, our method exhibits the best performance on the OOD-Test set. This demonstrates the effectiveness of our approach in capturing features relevant for generalizability, even when encountering unseen data distributions.

4.3 SYNTHETIC TREE TASKS

We explored three synthetic tree-tasks involving binary branching trees: (i) Tree-copy, analogous to a sequence copy-task; (ii) Tree-rotation, where the output tree mirrors the input, interchanging left and right children; and (iii) Algebraic expression reduction, where input trees represent complex expressions from the cyclic group C_3 , and the model is tasked with performing a single reduction step, i.e., reducing all depth-1 subtrees into leaves. We followed the data-preparation strategy of Kogkalidis et al. (2023) and utilized same splits and hyperparameters.

Improved Performance on Tree Tasks. Table 2 presents the Perplexity (PPL) scores for all methods on the synthetic tree tasks. Our method consistently achieves lower PPL scores compared to

PE method	Diagram	ZINC			
	_	0.1878 ± 0.012	PE method	Diagram	Alchem
PEG	VC-I	0.1432 ± 0.023		-	5.90 ±0.4
	VC	0.1256 ± 0.017	PEG	VC	6.45 ± 1.2
	RePHINE	0.1082 ± 0.022		RePHINE	6.51 ± 0.9
	-	0.0693 ±0.004		-	16.70 ±1.
SPE	VC-I	0.0608 ±0.013	SPE	VC	18.70 ±1.
	VC	0.0599 ±0.010		RePHINE	19.10 ±1.
	RePHINE	0.0588 ± 0.007			

Table 3: Identity filtrations (left) and Runtime Comparisons (right).

the baseline across all tasks. This indicates that incorporating our approach on top of a positional encoding method leads to improved performance on downstream tasks. This finding highlights the versatility of our method, demonstrating its effectiveness across various data domains, including those involving tree-structured data.

5 ABLATIONS

Identity Filtrations. We investigated the impact of learnable versus non-learnable filtrations in vertex-color (VC) PH method. The persistence diagrams capture the evolving topological features of the data as it is continuously simplified. We compared using positional encodings directly via an identity filtration function (VC-I), to define filtration values for computing persistence diagrams, against a learned filtration function. Table 3 showcases the results alongside comparisons with learnable variants (VC & RePHINE) on ZINC dataset. We observe that using the positional encodings as filtration values to compute the persistence diagrams improves the performance. This is further enhanced by learning a parameterized filtration function, highlighting the method's increased expressiveness.

Runtime Comparison. We conducted an ablation study to investigate the computational cost of our method. We measured the time (in seconds) per epoch to train different models on a single V100 GPU. The results for various persistent homology and positional encoding methods are shown in Table 3 over the Alchemy dataset. We observe that SPE introduces additional computational overhead due to its more intensive computations compared to the simpler positional encoding such as PEG. However, adding topological positional encoding (ToPE) on top of these methods does not significantly increase computational complexity, demonstrating the efficiency of our method.

467 468

432

433

444 445

446

447

448 449 450

451 452

453

454

455

456

457

458

459

460 461

462

463

464

465

466

469 470

CONCLUSION, BROADER IMPACT AND LIMITATIONS 6

471 We introduce Topological Positional Encoding (ToPE), a novel method that unifies the power of 472 persistent homology (PH) with general positional encoding methods. ToPE leverages rich topological 473 information to enhance the expressivity of GNNs by combining the strengths of persistence homology 474 and positional encoding. We theoretically establish ToPE's improved expressive power compared 475 to Laplacian positional encoding and characterize its representational capabilities within the k-WL 476 hierarchy. Our extensive empirical evaluations across diverse tasks demonstrate ToPE's effectiveness, showing significant improvements over existing methods. 477

478 While ToPE offers substantial advantages, there are limitations to address. The computational cost 479 associated with persistent homology computations remains an area for exploration. Additionally, this 480 work is currently restricted to graphs that are 1-dim simplicial complexes, limiting its applicability 481 to higher-order structural relationships. Extending ToPE to handle general higher-order complexes 482 presents a promising direction for future research, potentially enabling the capture of more sophisti-483 cated topological features. In conclusion, we believe our work paves the road for many advancements in boosting the representational power of GNNs. By establishing a bridge between topological data 484 analysis and positional encodings, ToPE opens new possibilities for developing more effective and 485 expressive graph learning architectures.

486 REPRODUCIBILITY STATEMENT

The Appendix C provides extensive detail about the dataset used, the method's parameterization, and training details. We have utilized open source datasets and libraries for implementation.

492 493 REFERENCES

488

489

490 491

500

- L Babai. Lectures on graph isomorphism. In *Mimeographed lecture notes*, pp. 3319–3336, 1979. 3
- Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. *Neural Computation*, 15:1373–1396, 2003. 2
- Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet transformers. *arXiv preprint arXiv:2303.01028*, 2023. 2
- Kirill Brilliantov, Amauri Souza, and Vikas Garg. Compositional pac-bayes: Generalization of gnns with persistence and beyond. *Advances in Neural Information Processing Systems*, 37, 2024. 14
- Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep learning: going beyond euclidean data. *IEEE Signal Processing Magazine*, 34(4):18–42, 2017. 1
- Mathieu Carriere, Frederic Chazal, Yuichi Ike, Theo Lacombe, Martin Royer, and Yuhei Umeda. PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures. In *Artificial Intelligence and Statistics (AISTATS)*, 2020. 2, 5, 14
- Gabriele Cesa and Arash Behboodi. Algebraic topological networks via the persistent local homology
 sheaf. *arXiv preprint arXiv:2311.10156*, 2023. 14
- Guangyong Chen, Pengfei Chen, Chang-Yu Hsieh, Chee-Kong Lee, Benben Liao, Renjie Liao, Weiwen Liu, Jiezhong Qiu, Qiming Sun, Jie Tang, et al. Alchemy: A quantum chemistry dataset for benchmarking ai models. *arXiv preprint arXiv:1906.09427*, 2019. 7
- Miles D Cranmer, Rui Xu, Peter Battaglia, and Shirley Ho. Learning symbolic physics with graph
 networks. *arXiv preprint arXiv:1909.05862*, 2019. 1
- Andrew Joseph Dudzik, Tamara von Glehn, Razvan Pascanu, and Petar Velickovic. Asynchronous algorithmic alignment with cocycles. In *The Second Learning on Graphs Conference*, 2023. 1
- Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
 arXiv e-print:2012.09699, 2020. 2
- Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
 Graph neural networks with learnable structural and positional representations. *arXiv preprint arXiv:2110.07875*, 2021. 1, 2, 3, 6, 7, 14, 15
- Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
 Xavier Bresson. Benchmarking graph neural networks. *Journal of Machine Learning Research*, 24 (43):1–48, 2023. 7
- Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification. *Discrete & Computational Geometry*, 28(4), 2002. 2
- H. Edelsbrunner and J. Harer. *Computational Topology an Introduction*. American Mathematical
 Society, 2010. 4
- Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, and Haggai Maron.
 Graph positional encoding via random feature propagation. In *International Conference on Machine Learning*, pp. 9202–9223. PMLR, 2023. 1, 14
- Linton Freeman. The development of social network analysis. A Study in the Sociology of Science, 1 (687):159–167, 2004. 1

540 541	Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional sequence to sequence learning. In <i>International conference on machine learning</i> , pp. 1243–1252.
542	PMLR, 2017. 7
543	
544 545	J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum chemistry. In <i>International Conference on Machine Learning (ICML)</i> , 2017a. 2, 14
546 547	J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum chemistry. In <i>International Conference on Machine Learning (ICML)</i> , 2017b. 1
549 550	Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. <i>Advances in neural information processing systems</i> , 30, 2017. 1
551 552	Felix Hensel, Michael Moor, and Bastian Rieck. A survey of topological machine learning methods. <i>Frontiers in Artificial Intelligence</i> , 4, 2021. 4
554 555 555	M. Horn, E. De Brouwer, M. Moor, Y. Moreau, B. Rieck, and K. Borgwardt. Topological graph neural networks. 2022. 1, 2, 4, 5, 7, 14
557 558 559	Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its variants. In <i>ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</i> , pp. 8533–8537. IEEE, 2021. 4
560 561 562	Ruili Huang, Menghang Xia, DT Nguyen, et al. Editorial: Tox21 challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental toxicants and drugs. front environ sci 5: 3. <i>Front. Environ. Sci</i> , 5(3):5, 2017. 7
563 564 565 566	Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan Li. On the stability of expressive positional encodings for graph neural networks. <i>arXiv preprint arXiv:2310.02579</i> , 2023. 1, 5, 6, 7, 14, 15
567 568 569	Neil Immerman and Eric Lander. <i>Describing graphs: A first-order approach to graph canonization</i> . Springer, 1990. 3
570 571 572	Johanna Immonen, Amauri Souza, and Vikas Garg. Going beyond persistent homology using persistent homology. <i>Advances in Neural Information Processing Systems</i> , 36, 2023. 2, 4, 5, 6, 7, 14, 15
573 574 575	Kanchan Jha, Sriparna Saha, and Hiteshi Singh. Prediction of protein–protein interaction using graph neural networks. <i>Scientific Reports</i> , 12(1):8360, 2022. 1
576 577 578 579	Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Lanqing Li, Long-Kai Huang, Tingyang Xu, Yu Rong, Jie Ren, Ding Xue, et al. Drugood: Out-of-distribution dataset curator and benchmark for ai-aided drug discovery–a focus on affinity prediction problems with noise annotations. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 37, pp. 8023–8031, 2023. 8
580 581 582	Jonas Jurss, Dulhan Hansaja Jayalath, and Petar Velickovic. Recursive algorithmic reasoning. In <i>The Second Learning on Graphs Conference</i> , 2023. 1
583 584	T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In <i>International Conference on Learning Representations (ICLR)</i> , 2017. 15
586 587	Konstantinos Kogkalidis, Jean-Philippe Bernardy, and Vikas Garg. Algebraic positional encodings. <i>arXiv preprint arXiv:2312.16045</i> , 2023. 8, 16
588 589 590 591	Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Letourneau, and Prudencio Tossou. Rethinking graph transformers with spectral attention. <i>Advances in Neural Information Processing</i> <i>Systems</i> , 34:21618–21629, 2021. 1, 14
592 593	Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably more powerful neural networks for graph representation learning. <i>Advances in Neural Information Processing Systems</i> , 33:4465–4478, 2020. 1, 2, 3, 14

594 595 596	Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. <i>arXiv</i> preprint arXiv:2202.13013, 2022. 1, 2, 6, 14
597 598 599 600	Sohir Maskey, Ali Parviz, Maximilian Thiessen, Hannes Stark, Ylli Sadikaj, and Haggai Maron. Generalized laplacian positional encoding for graph representation learning. <i>arXiv preprint</i> <i>arXiv:2210.15956</i> , 2022. 14
601 602 603	Gregoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph structure in transformers. <i>arXiv preprint arXiv:2106.05667</i> , 2021. 3
604 605 606	Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In <i>Proceedings of the AAAI conference on artificial intelligence</i> , volume 33, pp. 4602–4609, 2019. 1
607 608 609	Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe, Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so far. <i>The Journal of Machine Learning Research</i> , 24(1):15865–15923, 2023. 3, 4
610 611 612 613	Siddharth Pal, Terrence J Moore, Ram Ramanathan, and Ananthram Swami. Comparative topological signatures of growing collaboration networks. In <i>8th Conference on Complex Networks</i> , pp. 201–209, 2017. 3
614 615 616 617	Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. <i>Advances in neural information processing systems</i> , 32, 2019. 6
618 619 620	Bastian Rieck. On the expressivity of persistent homology in graph learning. <i>arXiv preprint arXiv:2302.09826</i> , 2023. 6, 14
621 622	Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W. Battaglia. Learning to simulate complex physics with graph networks. <i>ArXiv e-prints</i> , 2020. 1
624 625	R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural networks. In <i>SIAM International Conference on Data Mining (SDM)</i> , 2021. 1
626 627 628	Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks. In <i>International Conference on Machine Learning</i> , 2021. 1
629 630	Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. <i>IEEE Transactions on Neural Networks</i> , 20(1):61–80, 2009. 1
631 632 633	Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. <i>arXiv preprint arXiv:1803.02155</i> , 2018. 7
634 635 636	Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al. A deep learning approach to antibiotic discovery. <i>Cell</i> , 180(4):688–702, 2020. 1
637 638 639	Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. <i>Neurocomputing</i> , 568:127063, 2024. 7
640 641 642	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. <i>Advances in neural information processing systems</i> , 30, 2017. 1
643 644 645	Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. <i>arXiv preprint arXiv:1710.10903</i> , 2017. 1, 14
646 647	Yogesh Verma, Amauri H Souza, and Vikas Garg. Topological neural networks go persistent, equivariant, and continuous. In <i>International Conference on Machine Learning</i> , pp. 49388–49407, 2024. 2, 14

648 649 650	Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding for more powerful graph neural networks. <i>arXiv preprint arXiv:2203.00199</i> , 2022. 1, 2, 5, 6, 14
651 652	Minghua Wang, Yan HU, Ziyun Huang, Di Wang, and Jinhui Xu. Persistent local homology in graph learning. <i>Transactions on Machine Learning Research</i> , 2024. 14
653 654 655	Yanli Wang, Jewen Xiao, Tugba O Suzek, Jian Zhang, Jiyao Wang, Zhigang Zhou, Lianyi Han, Karen Karapetyan, Svetlana Dracheva, Benjamin A Shoemaker, et al. Pubchem's bioassay database. <i>Nucleic acids research</i> , 40(D1):D400–D412, 2012. 7
657 658	Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra which appears therein. <i>nti, Series</i> , 2(9):12–16, 1968. 1, 3
659 660 661	Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. <i>Chemical science</i> , 9(2):513–530, 2018. 7
662 663 664	K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In <i>International Conference on Learning Representations (ICLR)</i> , 2019. 1, 2, 14
665 666 667	Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu. Do transformers really perform bad for graph representation? <i>ArXiv e-prints</i> , 2021. 1, 14
668 669 670 671	R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph convolutional neural networks for web-scale recommender systems. In <i>International Conference on Knowledge Discovery & Data Mining (KDD)</i> , 2018. 1
672 673 674	Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In <i>International conference on machine learning</i> , pp. 7134–7143. PMLR, 2019. 1, 3
675 676 677	
678 679	
680 681 682	
683 684	
685 686 687	
688 689	
690 691 692	
693 694	
695 696	
698 699	
700 701	

A RELATED WORKS

703 704

Graph positional encodings. Positional encodings enhance representations in Graph Neural 705 Networks (GNNs) (Gilmer et al., 2017a; Xu et al., 2019; Velickovic et al., 2017) by incorporating 706 relational information between nodes based on their positions. Several approaches have been 707 developed to achieve this, including Laplacian-based methods that utilize the graph laplacian (Dwivedi 708 et al., 2021; Kreuzer et al., 2021; Maskey et al., 2022; Lim et al., 2022; Wang et al., 2022; Huang et al., 709 2023), random walk-based techniques that leverage walks on graphs (Dwivedi et al., 2021; Eliasof 710 et al., 2023), and PageRank-inspired approaches that compute auxiliary distances (Ying et al., 2021; Li et al., 2020). However, these methods partition the Laplacian eigenvalue/eigenvector space and 711 utilize only the partitioned eigenvalues/eigenvectors, disregarding the valuable information contained 712 in the remaining eigenvalues and eigenvectors. To address this limitation, we propose complementing 713 the existing approaches with topological descriptors based on persistent homology, which can capture 714 additional structural information from the graph.

715 716 717

718

719

720

721

722

723 724

725 726

727 728

729

734

740

Persistent homology on graphs Persistence homology methods (Horn et al., 2022; Carriere et al., 2020; Immonen et al., 2023) from topological data analysis have made rapid strides, providing topological descriptors that augment GNNs (Cesa & Behboodi, 2023; Verma et al., 2024) with persistent information to obtain more powerful representations, enhancing the expressivity (Rieck, 2023; Wang et al., 2024) and generalizability (Brilliantov et al., 2024). However, these methods have not been analyzed in regards with positional encodings in graphs, and the unification of these topological descriptors with positional encodings remains an unexplored frontier.

B PROOFS

B.1 PROOF OF PROPOSITION 1

The proof follows from the Lipschitz continuity of the filtering function $f(\cdot)$, which we parametrize using an MLP and, therefore, is Lipschitz continuous. We know from Definition 1 that

$$||\Psi_{\rm PE}(\Delta) - P_*\Psi_{\rm PE}(\Delta')||_F^c \le L_{\Psi} \cdot ||\Delta - P_*\Delta'P_*^\top||_F^c.$$
(6)

We note that $f(\cdot)$ is a row-wise function. Thus, we have that $f(P_*\Psi_{\rm PE}(\Delta')) = P_*f(\Psi_{\rm PE}(\Delta'))$. Then, it follows that

$$||f(\Psi_{\rm PE}(\Delta)) - P_*f(\Psi_{\rm PE}(\Delta'))||_F^c \le L_m ||\Psi_{\rm PE}(\Delta) - P_*\Psi_{\rm PE}(\Delta')||_F^c \tag{7}$$

$$\leq L_m L_\Psi \cdot ||\Delta - P_* \Delta' P_*^\top||_F^c \tag{8}$$

where the last inequality comes from the stability of the base positional encoder $\Psi_{\rm PE}$.

741 B.2 PROOF OF PROPOSITION 2

To prove the Proposition 2, it suffices to i) show a pair of graphs that have same n smallest eigenvalue and eigenvector pairs, ii) show that persistence diagrams for those two graphs are different.

T45 Let K_i denote the complete graph with *i* nodes. Consider a graph $G = \bigcup_{i=1}^{n/2} K_1 \cup K_3$ — here K₁ $\cup K_3$ denotes a graph with two components comprising one isolated node and a triangle. Also, consider $G' = \bigcup_{i=1}^{n/2} (K_1 \cup K_1 \cup K_1 \cup K_1)$ — i.e., 4n/2 isolated nodes. The *n* smallest eigenvalues corresponding to *G* are all equal to 0 with the identical constant eigenvector. Similarly, *G'* has the same eigenvalues with identical constant eigenvectors. Therefore, Laplacian PE relying on fixed *n* smallest eigenvalue/eigenvector pairs, cannot distinguish these graphs.

By leveraging Theorem 1 from Immonen et al. (2023), since the number of connected components in *G* and *G'* are different, they necessarily have different 0-dimensional persistence diagrams i.e., $\mathcal{D}^0(G) \neq \mathcal{D}^0(G')$ for any color-filtration function over vertices. This difference in persistence diagrams allows us to distinguish between the graphs despite their identical *n* smallest eigenvalues and eigenvectors.

756 B.3 PROOF OF LEMMA 1

To prove the Lemma 1, it suffices to show that the persistance diagram pairs obtained when using Z, Z' as vertex colors are different.

Consider $G = (V, E, \cdot)$ and $G' = (V', E', \cdot)$ be two graphs with associated positional encodings $Z = \{\!\{p_v\}\!\}_{v \in V}$ and $Z' = \{\!\{p'_v\}\!\}_{v \in V'}$ obtained from any base PE method. We utilize the positional encodings as vertex colors (or filtration values), on the attributed graphs $\tilde{G} = (V, E, p)$ and $\tilde{G}' = (V', E', p')$ to obtain 0-dim persistance diagrams.

If the positional encodings of \tilde{G} and \tilde{G}' are different, i.e., $Z \neq Z'$, this corresponds to having distinct multisets of vertex colors for the graphs. Hence, by leveraging Lemma 5 in Immonen et al. (2023), the multisets of birth times would be different for persistence diagrams, leading to $\mathcal{D}^{0}(\tilde{G}) \neq \mathcal{D}^{0}(\tilde{G}')$.

B.4 PROOF OF PROPOSITION 3

Consider two graphs G = (V, E, x) and G' = (V', E', x') that are deemed non-isomorphic by *k*-FWL with stable colorings, $C_{\infty} : V^k \to \mathbb{N}$ and $C'_{\infty} : V'^k \to \mathbb{N}$.

Then we can use hash functions $\tilde{x}(u) = \operatorname{hash}(\{C_{\infty}(v) : u \in v, v \in V^k\})$ for all $u \in V$ and 773 $\tilde{x}'(u) = \operatorname{hash}(\{C'_{\infty}(v) : u \in v, v \in V'^k\})$ for all $u \in V'$, to project the colorings from k-tuple of 774 nodes to obtain node colors in the associated set of graphs $\tilde{G} = (V, E, \tilde{x})$ and $\tilde{G}' = (V', E', \tilde{x}')$. 775 Since, hash functions are injective in nature, and G and G' can be distinguished via k-FWL, then 776 there exists color of a tuple $\mathbf{v}_w \in V^k$ such that $C_{\infty}(\mathbf{v}_w) \neq C'_{\infty}(\mathbf{v}'_w), \forall \mathbf{v}'_w \in V'^k$. Then, any 777 node in $v \in \mathbf{v}_w$ (note that $v \in V$) will have a color that is not in nodes of V', i.e., $\tilde{x}_v \neq \tilde{x}'_u$ for all 778 $u \in V'$. This will provide us with different node colors for the associated graphs \tilde{G} and \tilde{G}' . Hence, 779 by leveraging the definition of color-separating sets from Immonen et al. (2023), $Q = \phi$ is a trivial color-separating set for graphs G and G'. 781

782 783

784 785

786 787

788

768 769

770

C IMPLEMENTATION DETAILS

Below are the implementation details. We trained all the methods on a single NVIDIA V100 GPU.

C.1 DRUG MOLECULE PROPERTY PREDICTION AND GRAPH CLASSIFICATION

We adhered to the precise hyperparameters and training configuration outlined in Huang et al. (2023)
for predicting drug molecule properties and in Dwivedi et al. (2021) for classifying real-world graphs
in our experiments. For graph classification, we used Gated-GCN (Kipf & Welling, 2017) as our base
model. To compute the Persistence Homology (PH) diagrams, we employed the learnable PH method
proposed by Immonen et al. (2023). The PH layers operated exclusively on the position encoding
features of every layer with the following specified hyperparameters in Table 4.

Hyperparameter	Meaning	Value
PH embed dim	Latent dimension of PH features	64
Num Filt	Number of filtrations	8
Hiden Filtration	Hidden dimension of filtration functions	16

Table 4: Default hyperparameters for RePHINE/VC method

805

806

C.2 OUT OF DISTRIBUTION PREDICTION

We adhered to the precise hyperparameters and training configuration outlined in Huang et al. (2023)
 for Drug OOD benchmark. To compute the Persistence Homology (PH) diagrams, we employed the
 learnable PH method proposed by Immonen et al. (2023). The PH layers operated exclusively on the
 position encoding features of every layer with the following specified hyperparameters in Table 4.

810 C.3 SYNTHETIC TREE TASKS 811

817

812 We created the synthetic tree dataset by sampling random trees of maximum depths from a discretized 813 normal $\mathcal{N}(7,1)$ and followed similar training setup as described in Kogkalidis et al. (2023). We adhered to the hyper-parameters and training configuration used in Kogkalidis et al. (2023) and 814 employed the PH-layers on top of the position encoding features with an additional layer to update 815 position encodings, using hyper-parameters described in Table 5. 816

Нуре	rparameter	Meaning	Value
PH e	embed dim	Latent dimension of PH features	64
TTT T	Num Filt	Number of filtrations	8
Hider	n Filtration	Hidden dimension of filtration functions	128