Process- Verified Reinforcement Learning for
Theorem Proving via Lean

Minsu Kim' Se-Young Yun'
IKAIST Al
{minsu_kim, yunseyoungl}@kaist.ac.kr

Abstract

Current reinforcement learning from verifiable rewards (RLVR) relies on sparse bi-
nary outcomes, whereas symbolic proof assistants can provide fine-grained, struc-
tured feedback. In this work, we demonstrate that the Lean proof assistant itself
can serve as a symbolic process oracle, providing verified rewards at both the out-
come level and the fine-grained tactic level during training. Proof attempts are
parsed into tactic sequences, and Lean’s elaboration marks both locally sound
steps and the earliest failing step, yielding dense, verifier-grounded credit sig-
nals rooted in type theory. We incorporate these structured signals into a GRPO-
style reinforcement learning objective with first-error propagation and first-token
credit methods that balances outcome- and process-level advantages.Experiments
with STP-Lean and DeepSeek-Prover-V1.5 show that tactic-level supervision out-
performs outcome-only baselines in most settings, delivering improvements on
benchmarks such as MiniF2F and ProofNet. Beyond empirical gains, our study
highlights a broader perspective: symbolic proof assistants are not only verifiers
at evaluation time, but can also act as process-level reward oracles during train-
ing. This opens a path toward reinforcement learning frameworks that combine
the scalability of language models with the reliability of symbolic verification for
formal reasoning.

1 Introduction

Automated theorem proving (ATP) is a long-standing goal of AI [29]. Unlike natural language (NL)
reasoning-often ambiguous-formal proofs in systems such as Lean, Isabelle, and Coq provide pre-
cise, checkable derivations grounded in logic and type theory [B, 00, 16, 13, P&, 3T]. In this setting,
Lean proofs are sequences of tactics; the prover verifies local steps and whole proofs, offering a
principled middle ground between automation and human guidance.

Large language models (LLMs) have made progress on mathematical reasoning via instruction tun-
ing and Reinforcement Learning with Human Feedback (RLHF) [Z, B4, 5], and recent RL work
encourages longer reasoning chains [14, 32]. However, outcome-only rewards are sparse [[I], and
process-based reward models (PRMs) raise questions about how to define steps, labels, and super-
vision [54, '], I2]. In formal proving, ITPs can supply verifiable signals beyond final correctness,
yet most prior uses of Lean focus on data augmentation, step checking at inference or whole-proof
verification during training without leveraging tactic-level structure [, &0, 20, &2, D6, 51, 50, [7].

We propose to use Lean as a symbolic process oracle during Reinforcement Learning (RL) training:
for each generated proof, Lean returns (i) a global outcome and (ii) tactic-level feedback from info
trees and error logs. We convert these signals into structured process rewards and map them to
tokens, integrating outcome and tactic advantages into a GRPO-style objective. This yields precise,
type-theoretic credit assignment without auxiliary PRMs or NL chain-of-thought. Empirically, this

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: .

verifier-guided RL improves MiniF2F and ProofNet over outcome-only Reinforcement Learning
(RL) and supervised baselines. Our key contributions are as follows:

* Symbolic verifier as process oracle reward. We formalized the use of the Lean proof as-
sistant as a symbolic verifier of reasoning processes, parsing proofs into tactic-level reward.

* Symbolic verifier-guided RL. We integrate outcome- and tactic-level rewards derived
from Lean into an RL framework, providing dense and verifiable credit assignment.

» Stable improvements on benchmarks. On MiniF2F and ProofNet, our approach outper-
forms both outcome-only RL and vanilla baselines in most settings, yielding more stable
and robust gains without NL notation or external PRM.

N
.) Lean Feedback C ined Advantage
uestion —> Policy Model d - .

WER Process (Tactic - level)

I EM PRO!

Outcome Reward - Whole Proof Correctness verified by Lean
2(Y) =1 (Pass))

T2: apply...

g(Y) =0 (Fail)
Parsing ™ LEAN
T3:linarith..| Messages
— > Process (tactic - level) - parsed tactics with first-error propagation policy

First error -> all later steps tretead as wrong

T1: intro... T2: apply... {'I'B:Iinarith...} [TA: simp... ‘ { T5: ring... }

Figure 1: Overall framework for combining outcome and tactic level rewards via Lean: the proof Y’
is parsed into tactics 71, . . ., T5, with Lean providing outcome feedback ¢g(Y") and step-level errors
(e.g., failure at T3 invalidates later tactics). Rewards are then assigned to the first token of each
tactic.

2 Preliminaries
2.1 Leand

In Lean, a goal is reduced to subgoals by a sequence of tactics. For given mathematical proof, each
tactic is parsed and elaborated, producing structured info trees including proof states, errors and its
positions. The kernel then validates type-theoretic correctness of the whole proof.

Formally, let be a theorem statement and Y a Lean proof. Let) be the set of proofs and
T the set of tactics. The Lean compiler parses Y into TacSet(Y) C 7, TacSet(Y) = {T |
T is a tactic parsed from Y }. Sorting tactics by starting position yields (71, T3, ..., Tn(y)) where
N(Y') is the number of tactic of Y, in order to align with the LLMs autoregressive generation.
Each tactic T; comprises corresponding tokens y; in Y. Tactics are represented as Abstract Syntax
Tree (AST) nodes carrying structure and metadata (errors, proof states, indices). If a tactic does
not appear in the error log, it means Lean elaborated successfully and is locally sound; however,
proof-level success still requires all subsequent goals to be passed.

Define the parsing function f : Y — T* by f(Y) = (T1,...,Tn(y)). Define a global score
g:Y —[0,1] with g(Y) = 1 if and only if Y verifies, else 0. For per-tactic scoring, ¢ : {(Y,T) |
Y eV, T € TacSet(Y)} — {1,dy,ds} as
1, ifg(Y)=1,
o(Y,T) =< d1, elseif g(Y) = 0and T has no errors in Lean,
da, elseif g(Y) = 0 and T contains errors.

Thus,
Lean: Y — {0,1} x (T x {1,d1,d2})",

Lean(Y) = ((Y), [(T1, (Y, 1)), -, (Tnvys 0(Y: Tn iy V) pov =iy

STn(yy)”

2.2 Tactic-Level MDP

We model tactic generation as an MDP M = (S, A, r, F, m). States S are proof prefixes; actions
A = T are tactics; rewards 7 : S x A — R are tactic-level; transitions are deterministic concatena-

tions: s;41 = F'(s;,a;) = 5; @ a;. Lean feedback affects r, not F. EOS states Sierm are absorbing;
m is the initial state. In Section B we instantiate 7 using the outcome g and the tactic signal (.

Background on credit assignment is provided in Appendix G.

3 Method

3.1 Define Tactic-level Rewards

We leverage Lean’s parsing and elaboration (Sec.) to turn each generated proof Y into (i) a binary
outcome g(Y") and (ii) tactic-level feedback (Y, T') over f(Y) = (T1,...,Tn(y)). Assume that,
analogous to the GRPO training rollout framework, given a question ¢, an LLM generates a group
of responses {Y7, Y, ..., Ys}. The outcome reward is

Toutcome (Yi) = g(¥3).
For a GRPO-style group of responses {Yi}iG:l, the outcome advantage for any token y; ; is
g(Yi) — mean(g(Yl), e ,g(Yg))
std(g(Y1), -+, 9(Ya)) '
To obtain dense, verifier-grounded signals, we apply a first-error propagation as [26, 22]: once the

earliest failing tactic T is found, all T}, with k > j are treated as erroneous for reward assignment.
Concretely,

Aoutcome, i, t

dy, ¢g(Y)=0andk > j,
Let j = min{é : T; contains an error}. (Y,T}) =< dy, g(Y)=0andk < j and no error,
1, g)=1
Given Y; = {T; 1,T; 2, ...} with stateaction pair (s;,a;) = (prefix upto T; j_1, T; ;), the process
reward and advantage are
rproccss(sjv aj) = Tprocess, i,j — SO(Y;; Cri,j)a Aproccss, i,5 — Tprocess, i,j_mean(g(yl)a cee 7g(YG)) .

The batch mean of g serves as a difficulty-aware baseline, penalizing misses more on easy batches
and less on hard ones.

3.2 Integrating Lean into Tactic-based Reinforcement Learning

‘We combine outcome- and tactic-level signals within GRPO by mapping tactic advantages to the first
token of each tactic (the tactic keyword), which most directly determines subsequent proof structure:

Ai,t = Aoutcome,iﬂ‘, + 1{t: ﬁrSt(T’i,s(i,t))} 'Aprocess,i,s(i,t)v

where s(1, t) indexes the tactic containing token ¢ and first(7; ;) indicates the first token of the tactic.
The overall objective is

L(0) = Equp(Q), {¥i}&, ~roy (V1)

G Vi 1
é Z{ﬁ ZHlin(ﬂi,t Ait, Clip(/h‘,t7 1—¢ 1+ e) Ai,t) - B Dk [Wa I 7Tref] }:| . M
i=1 =1

with p; ; = M This keeps GRPOs simplicity while mitigating reward sparsity via
’ ﬂeold(yi,th,Yi,q)

Lean-derived tactic advantages and enforcing sound credit through first-error propagation. Empiri-
cally, computing returns was unnecessary and less stable; the above normalized, mixed (outcome +
tactic) advantages yielded more reliable optimization. (See Appendix). The overall framework is

shown in Figure 0.
4 Experiments
4.1 Experimental Setup

We train on a 10k random sample of STP dataset and evaluate on MiniF2F and ProofNet. Baselines
are STP-Lean and DeepSeek-Prover-V1.5-SFT. Further details are in Appendix O.

Model Model size Budget MiniF2F-Test ProofNet-Test
Whole-Proof Generation Methods
DeepSeek-Prover-V1.5-SFT [A4] 7B 32 46.2% +£0.2 14.3% £0.3
64 47.5% + 0.1 15.05% + 1
DeepSeek-Prover-V1.5-RL [49] 7B 32 48% £ 0 16% + 1
64 48.8% +£04 17.4% +£0.6
Goedel-Prover-SFT [9] 7B 32 56.9% +£0.4 15.6% +£0.5
64 57.9% £ 0.5 16.7% + 0
STP-Lean [13] 7B 32 55.9% £ 0.2 17.2% +0
64 56.7% £ 0.2 19.1% +0.4
STP-Lean + Ours 7B 32 571% + 0.8 18.6% + 0.3
64 59.2% + 0.5 19% £ 0.3
DeepSeek-Prover-V1.5 + STP 7B 32 54.9% +0.7 16.8% +0.3
64 57.2% £ 0.2 17.7% + 0
DeepSeek-Prover-V1.5 + STP + Ours 7B 32 56.3% £ 0.6 17.6% +£0.8
64 57.8% +0.4 18.5% + 0.3
Tree Search Methods
Lean-STaR 7B 64 x 1 x 50 46.3% -
InternLM?2-Math-Plus-7B [52] 7B 1 x 32 x 100 48.8% -
InternLM2.5-StepProver 7B 4x32x600 585%=+0.9 -
DeepSeek-Prover-V1.5-RL + RMaxTS [2Y] 7B 3,200 55.0% £ 0.7 21.5% +0.8

Table 1: Budgets for whole-proof methods denote the sample budget (N) per problem; for tree-
search methods, budgets denote the authors reported search expansions counts. All our GRPO-style
runs use the same STP subset, generations per query, and a 15s Lean timeout.

4.2 Main Results

Table 0 shows consistent gains from Lean-guided tactic rewards on MiniF2F and ProofNet. For
STP-Lean, we see up to +2.5pp (MiniF2F pass@64) and +1.4pp (ProofNet pass@32), with only a
minor —0.1pp drop. DeepSeek-Prover-V1.5 also improves steadily across benchmarks.

In Table O, outcome-only GRPO shows only marginal improvements, especially, no gain on
ProofNet-Test in DeepSeek-Prover, showing the limits of sparse binary feedback. In contrast, tactic-
level credit yields denser, verifier-grounded signals and more reliable improvements (e.g., +2.5pp
vs. +1.2pp on MiniF2F pass@64). These benefits come with negligible overhead, since Lean verifi-
cation is already required for both outcome and tactic rewards.

Finally, compared to search-based frameork, our single-shot training achieves comparable accuracy
(59.2% vs. 58.5% on MiniF2F pass@64) while avoiding heavy inference-time search.

Model Model Size Budget MiniF2F - Test ProofNet - Test
STP + Outcome only (GRPO) 7B 32 55.7% + 1 17.4% £ 0.6
64 57.9% +0.5 19% +0.3
STP + Tactic only 7B 32 55.6% £ 0.6 18.3% +0
64 56.8% +£0.6 17.9% + 0.8
STP + Outcome+Tactic RL (ours) 7B 32 571% + 0.8 18.6% + 0.3
64 59.2% £ 0.5 19% + 0.3
DeepSeek-Prover-V1.5 + Outcome only (GRPO) 7B 32 55.3% £04 16.8% +0.8
64 57.4% +0.4 17.6% +0.8
DeepSeek-Tactic only 7B 32 54.9% £ 0.7 16.8% +0.8
64 57.8% + 1 17.6% + 0.3
DeepSeek-Prover-V1.5 + Outcome+Tactic RL (ours) 7B 32 56.3% + 0.6 17.6% +0.8
64 57.8% + 0.4 18.5% +0.3

Table 2: Ablation study of STP-Lean with various verifier methods on MiniF2F-Test and ProofNet-

Test benchmarks.

4.3 Analysis

The Tables and figures for analyzing our methods, detailed analysis and ablation for verification
timeout and qualitative analysis are in Appendix A

The Role of Qutcome and Tactic Rewards. As shown in Figure Di(a,b), outcome-only RL suffers
from sparse binary feedback, leading to slow gains and early plateaus. Tactic-only training is dense
but lacks a global signal, converging prematurely. Combining both yields faster progress and higher
accuracy: outcome rewards enforce proof-level success, while tactic rewards give step-level credit.
As Table [, only their integration consistently improves across benchmarks.

Entropy and Proof Length. Fine-grained rewards guide exploration more efficiently rather than
broadening it. Outcome+tactic models converge to lower entropy (Figure P(c)), showing more deci-
sive policies without mode collapse. Proof length remains stable across methods (Figure B(d)), so
it shows that gains are not due to trivial output lengthening but to denser feedback steering toward
efficient proof strategies.

Tactic to Token Level Credit Assignment. We tested how to map tactic advantages to tokens: (i)
all tokens, (ii) last token, (iii) entropy-based token selection, and (iv) first token only. As Table 3
shows, only the first-token strategy yields consistent improvements. This aligns with Lean semantics:
the first token is the tactic keyword (e.g., intro, apply), which defines proof strategy and subgoal
structure, making it the most informative supervision point.

Reward Strategy for Tactic-level Feedback. As shown in Table B, tactic rewards are most effec-
tive when they (i) respect sequential dependency, (ii) adapt to task difficulty, and (iii) distinguish
partially correct from erroneous steps. Removing first-error propagation reduces accuracy, since tac-
tics after the first error occur in invalid states. Dropping difficulty normalization destabilizes learn-
ing, and collapsing d; = d» yields inconsistent outcomesimprovements on MiniF2F but declines on
ProofNet. Together, these elements provide more stable and semantically faithful training signals.
Sensitivity analysis (Appendix H) further confirms that separating d; and dy improves robustness
over the GRPO baseline, with the strongest gains on MiniF2F.

5 Conclusion

We introduced a reinforcement learning framework that uses the Lean proof assistant as a process-
level reward oracle. Unlike prior outcome-only methods, our approach leverages Leans parsing
and validation to provide both global outcome signals and fine-grained tactic rewards, integrated
into a GRPO objective. This enables denser, verifiable credit assignment: outcome rewards enforce
proof-level success, while tactic rewards guide step-level reasoning. Experiments on STP-Lean and
DeepSeek-Prover-V1.5 show general improvements on MiniF2F and ProofNet, with stable gains
achieved by assigning tactic rewards to the first token of each tactic and first error propagation
method. Overall, proof assistants can serve not only as checkers at inference but also as structured
feedback sources during training, pointing toward more stable and effective RL for reasoning.

Acknowledgements

This work was supported by the Institute of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korean government (MSIT) [No. RS-2022-11220311, De-
velopment of Goal-Oriented Reinforcement Learning Techniques for Contact-Rich Robotic Manip-
ulation of Everyday Objects, 90%] and [No. 2019-0-00075, Artificial Intelligence Graduate School
Program (KAIST), 10%].

References

[1] AlphaProof and AlphaGeometry teams. Ai achieves silver-medal standard solving interna-
tional mathematical olympiad problems. Google DeepMind Blog, July 2024. Accessed: 17
April 2025.

[2] Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir
Radev, and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-
level mathematics, 2023.

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language
model for mathematics, 2024.

Kaito Baba, Chaoran Liu, Shuhei Kurita, and Akiyoshi Sannai. Prover agent: An agent-based
framework for formal mathematical proofs, 2025.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova Dassarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, John
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
dez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Ols-
son, Dario Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Christopher Olah, Benjamin
Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning
from human feedback. ArXiv, abs/2204.05862, 2022.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judica€l Courant, Jean-Christophe Filliatre,
Eduardo Giménez, Hugo Herbelin, Gérard Huet, César Mufioz, Chetan Murthy, Catherine
Parent-vigouroux, Christine Paulin-Mohring, Amokrane Saibi, and Benjamin Werner. The coq
proof assistant reference manual : Version 6.1. 06 1997.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
ers, 2020.

Meng Cao, Shuyuan Zhang, Xiao-Wen Chang, and Doina Precup. Scar: Shapley credit assign-
ment for more efficient rlhf, 2025.

Alex J. Chan, Hao Sun, Samuel Holt, and Mihaela van der Schaar. Dense reward for free in
reinforcement learning from human feedback, 2024.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5(3):114-115, 1940.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan,
Tianyu Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo
Wang, Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou,
and Ning Ding. Process reinforcement through implicit rewards, 2025.

Leonardo Mendonga de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob
von Raumer. The lean theorem prover (system description). In CADE, 2015.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,
Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong
Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan

Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao
Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang
Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X.
Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao
Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,
Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang,
and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in 1llms via reinforcement
learning, 2025.

[15] Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing
and proving, 2025.

[16] Melvin Fitting. First-order logic and automated theorem proving (2nd ed.). Springer-Verlag,
Berlin, Heidelberg, 1996.

[17] Xingguang Ji, Yahui Liu, Qi Wang, Jingyuan Zhang, Yang Yue, Rui Shi, Chenxi Sun, Fuzheng
Zhang, Guorui Zhou, and Kun Gai. Leanabell-prover-v2: Verifier-integrated reasoning for
formal theorem proving via reinforcement learning, 2025.

[18] Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Tim-
othée Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs, 2023.

[19] Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning
through refined credit assignment, 2024.

[20] Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat,
Gabriel Ebner, Aurélien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural
theorem proving, 2022.

[21] Chengpeng Li, Zhengyang Tang, Ziniu Li, Mingfeng Xue, Keqin Bao, Tian Ding, Ruoyu Sun,
Benyou Wang, Xiang Wang, Junyang Lin, and Dayiheng Liu. Cort: Code-integrated reasoning
within thinking, 2025.

[22] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.

[23] Haohan Lin, Zhiging Sun, Sean Welleck, and Yiming Yang. Lean-star: Learning to interleave
thinking and proving, 2025.

[24] Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou
Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover: A frontier model for open-source
automated theorem proving, 2025.

[25] Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang,
Yihan Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu
Yang, Hongzhou Lin, Yejin Choi, Danqgi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2:
Scaling formal theorem proving with scaffolded data synthesis and self-correction, 2025.

[26] Jiangiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao
Shen, Hui Jin, Jipeng Zhang, Haiming Wang, Zhicheng Yang, Jing Tang, and Zhijiang Guo.
Process-driven autoformalization in lean 4, 2024.

[27]

(28]

[29]

[30]

[31]

[32]

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan
Li, Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical
reasoning in language models by automated process supervision, 2024.

Leonardo Moura and Sebastian Ullrich. The Lean 4 Theorem Prover and Programming Lan-
guage, pages 625-635. 07 2021.

A. Newell, J. C. Shaw, and H. A. Simon. Empirical explorations of the logic theory machine:
a case study in heuristic. In Papers Presented at the February 26-28, 1957, Western Joint Com-
puter Conference: Techniques for Reliability, IRE-AIEE-ACM ’57 (Western), page 218230,
New York, NY, USA, 1957. Association for Computing Machinery.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In Proceedings of the Sixteenth Interna-
tional Conference on Machine Learning, ICML 99, page 278287, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: a proof assistant
for higher-order logic. Springer-Verlag, Berlin, Heidelberg, 2002.

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky,
Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex
Karpenko, Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Alli-
son Tam, Ally Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein,
Andrew Kondrich, Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Bar-
ret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew,
Borys Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon
Eastman, Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy,
Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse,
Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam,
David Dohan, David Farhi, David Mely, David Robinson, Dimitris Tsipras, Doug Li, Dra-
gos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch Cheung,
Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang, Felipe Petroski Such, Filippo
Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred von Lohmann, Freddie Sulit,
Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman, Guil-
laume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad,
Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian Osband,
Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina Kofman, Jakub Pa-
chocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu, Jiayi
Weng, Jie Tang, Jieqi Yu, Joaquin Quifionero Candela, Joe Palermo, Joel Parish, Johannes Hei-
decke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan Ward, Joost
Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl Cobbe, Katy
Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin Stone,
Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus, Lilian
Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk, Lukasz
Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko Tin-
tor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yat-
baz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese,
Neil Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum,
Oleg Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter
Zhokhov, Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Mi-
yara, Reimar Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan
Cheu, Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino,
Sandhini Agarwal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia
Zhao, Shengli Hu, Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu,
Spencer Papay, Steph Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan
Clark, Tao Wang, Taylor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas
Degry, Thomas Dimson, Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor
Creech, Troy Peterson, Tyna Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr

Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann
Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun
Wang, Zheng Shao, and Zhuohan Li. Openai ol system card, 2024.

[33] Azim Ospanov, Farzan Farnia, and Roozbeh Yousefzadeh. Apollo: Automated llm and lean
collaboration for advanced formal reasoning, 2025.

[34] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022.

[35] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem prov-
ing, 2020.

[36] Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue
Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang,
Yuxuan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing
formal mathematical reasoning via reinforcement learning for subgoal decomposition, 2025.

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[38] Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agar-
wal, Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling auto-
mated process verifiers for llm reasoning, 2024.

[39] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024.

[40] Trieu Trinh, Yuhuai Tony Wu, Quoc Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625:476-482, 2024.

[41] Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jiangiao Lu, Hugues de Saxcé, Bolton Bailey,
Chendong Song, Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Jiawei
Liu, Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall, Luigi
Pagani, Moreira Machado, Pauline Bourigault, Ran Wang, Stanislas Polu, Thibaut Barroyer,
Wen-Ding Li, Yazhe Niu, Yann Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang, Zhilin
Yang, Zhengying Liu, and Jia Li. Kimina-prover preview: Towards large formal reasoning
models with reinforcement learning, 2025.

[42] Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie,
Han Shi, Yujun Li, Lin Li, Jian Yin, Zhenguo Li, and Xiaodan Liang. DT-solver: Automated
theorem proving with dynamic-tree sampling guided by proof-level value function. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
12632-12646, Toronto, Canada, July 2023. Association for Computational Linguistics.

[43] Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations,
2024.

[44] Ruida Wang, Yuxin Li, Yi R. Fung, and Tong Zhang. Let’s reason formally: Natural-formal
hybrid reasoning enhances llm’s math capability, 2025.

[45] Ruida Wang, Rui Pan, Yuxin Li, Jipeng Zhang, Yizhen Jia, Shizhe Diao, Renjie Pi, Junjie Hu,
and Tong Zhang. Ma-lot: Multi-agent lean-based long chain-of-thought reasoning enhances
formal theorem proving, 2025.

[46] Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui
Chen, Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji
Song, Bowen Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority
tokens drive effective reinforcement learning for llm reasoning, 2025.

[47] Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models, 2022.

[48] Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai
Chen. Internlm2.5-stepprover: Advancing automated theorem proving via expert iteration on
large-scale lean problems, 2024.

[49] Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda
Li, and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-
scale synthetic data, 2024.

[50] Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F.
Wau, Fuli Luo, and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search, 2024.

[51] Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean work-
book: A large-scale lean problem set formalized from natural language math problems, 2024.

[52] Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan
Ma, Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe
Zhou, Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang,
Kai Chen, and Dahua Lin. Internlm-math: Open math large language models toward verifiable
reasoning, 2024.

[53] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming
Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze
Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou,
Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan
Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025.

[54] Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou,
Zhiyuan Liu, and Hao Peng. Free process rewards without process labels, 2024.

[55] Jingyuan Zhang, Qi Wang, Xingguang Ji, Yahui Liu, Yang Yue, Fuzheng Zhang, Di Zhang,
Guorui Zhou, and Kun Gai. Leanabell-prover: Posttraining scaling in formal reasoning, 2025.

[56] Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark
for formal olympiad-level mathematics, 2022.

[57] Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie
Jin, Qin Liu, Yuhao Zhou, Limao Xiong, Lu Chen, Zhiheng Xi, Nuo Xu, Wenbin Lai, Minghao
Zhu, Cheng Chang, Zhangyue Yin, Rongxiang Weng, Wensen Cheng, Haoran Huang, Tianxi-
ang Sun, Hang Yan, Tao Gui, Qi Zhang, Xipeng Qiu, and Xuanjing Huang. Secrets of rlhf in
large language models part i: Ppo, 2023.

10

Appendix

A Analysis

—— Outcome + Tactic Advantage
Tactic Advantage Only

Outcome Rewal

Tactic Advantage Only
031 —— GRPO Baseline

S
0.33 €031 / W
0.32 —— Outcome + Tactic Advantage .. /

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Global Step Global Step
© o102 —— Outcome + Tactic Advantage @ 2600
0.100 Tactic Advantage Only 2575
—— GRPO Baseline

&
&
°

0.098

&
N

0.096

Entropy
NN
g
o

0.094

n
B R
& =
o

0.092

ean Completion Length

—— Outcome + Tactic Advantage
Tactic Advantage Only
—— GRPO Baseline
0.088

240.0
o 50 100 150 200 250 300 350 400 0 50 100 150
Global Step

0.090

M
b
S

200 250 300 350 400
Global Step

Figure 2: Training dynamics showing (a) outcome reward, (b) tactic reward, (c) entropy, and (d)
mean of response length during reinforcement learning.

Model Model Size Sample Budget ~MiniF2F - Test ~ ProofNet - Test
All tokens 7B 32 56.3% = 0.6 18.1% £ 0.8
64 57.8% £ 0.7 18.1% 4+ 0.8
Entropy-based 7B 32 56.4% £+ 0.2 17.9% £ 0.8
64 57.1% £ 0.5 18.5% 4+ 0.3
Last token 7B 32 56.7% £ 0.9 172% +0
64 57.5% £ 0.6 17.7% £ 0.5
First token 7B 32 57.1% + 0.8 18.6% + 0.3
64 59.2% + 0.5 19% + 0.3

Table 3: Ablation study on how to distribute tactic-level advantages across tokens.

Model Model Size Sample Budget MiniF2F - Test ProofNet - Test

No First Error 7B 32 56.4% +0.9 17.4% +0.3
64 58.2% +0.7 18.3% £ 0.3

No Baseline 7B 32 56.7% £ 0.2 17.9% +0.3
64 57.4% +0.7 18.3% £ 0.5

Same tactic reward 7B 32 57.7% + 0.2 17.6% £ 0.6
64 58.7% + 0.8 18.1% + 0.6

Outcome+Tactic RL (ours) 7B 32 57.1% +0.8 18.6% + 0.3
64 59.2% + 0.5 19% +0.3

Table 4: Ablation study on reward strategies for tactic-level feedback in STP-Lean. Additional
experiments include removing the first-error propagation policy (No First Error), removing the base-
line extraction (No Baseline), and using equal penalties for all tactics.

The Role of Outcome and Tactic Rewards. Integrating both outcome-level and tactic-level sig-
nals yields more effective learning than employing either signal in isolation. Outcome-only RL, as
in GRPO, is constrained by the sparsity of binary feedback: improvements are gradual and the final
performance plateaus at a relatively low level (Figure B(a)). In contrast, tactic-only training provides
dense feedback but lacks a global objective, resulting in premature convergence. When combined,
outcome rewards serve as a global objective function, while tactic rewards provide local credit as-
signment, enabling both rapid progress and higher performance. This complementary relationship is

11

further reflected in Figure D(b), where tactic-only supervision’s tactic reward plateaus, but outcome-
tactic combined rewards continue to increase steadily. The results in Table [supports this finding:
outcome signals enforce proof-level correctness, while tactic signals supply verifiable intermediate
feedback; only their integration consistently improves performance across benchmarks.

Entropy and Proof Length. The use of fine-grained rewards influences exploration not by in-
discriminately broadening the search space but by focusing learning on more informative decision
points. As shown in Figure Q(c), outcome+tactic training converges to lower entropy than tactic-only
and outcome-only settings, indicating that the policy becomes more decisive as training progresses.
This does not correspond to mode collapse: Figure D(d) shows that the average proof length remains
stable across all methods, suggesting that the performance gains are not attributable to trivial length-
ening of outputs. Instead, denser intermediate rewards appear to reduce the need for broad stochastic
exploration, guiding the model toward more efficient proof strategies.

Tactic to Token Level Credit Assignment. Having defined tactic-level rewards and advantages,
the next step is how to distribute them across tokens within each tactic. In our main method, the tactic
advantage is assigned only to the first token of the tactic. For comparison, we conducted ablations
where the tactic advantage was instead (i) distributed to all tokens of a tactic, (ii) assigned only to
the last token, (iii) keep first token reward distribution, but additionally choose 10% tokens within
the tactic with respect to high entropy. As, [46] showed that high entropy tokens could be reasoning
drive tokens, we speculated that this method can automatically select the tokens for serving as fork
in formal reasoning. Assigning credit to the first token of each tactic achieves the most stable and
consistent improvements, as evidenced by Table B. Alternative strategies do not yield comparable
gains and in some cases even degrade performance. This outcome aligns with the semantics of
Lean proofs: the first token corresponds to the tactic keyword (e.g., intro, apply, have), which
determines the subsequent proof strategy and constrains the structure of subgoals. Concentrating
credit on this decision point enhances the models ability to select tactics appropriately, resulting in
more reliable downstream reasoning.

Reward Strategy for Tactic-level Feedback. For tactic-level feedback to be effective, it must
reflect the sequential dependency of proof construction, account for task difficulty, and distinguish
between partially correct and erroneous steps. The first-error propagation rule ensures that once
an error occurs, subsequent tactics are treated as invalid; removing this rule significantly reduces
performance (Table H), because once the first error occurs, the remaining tactics are evaluated in an
invalid context and cannot salvage correctness. Incorporating a difficulty-normalized baseline fur-
ther stabilizes training, while its absence leads to degraded results. Finally, differentiating penalties
between partially correct tactics and outright erroneous ones proves essential: collapsing these into
a single penalty d; = d5 yields inconsistent outcomes- improvements on MiniF2F but declines on
ProofNet. These results indicate that an effective tactic-level reward scheme must combine sequen-
tial error propagation, difficulty-aware normalization, and differentiated penalties in order to provide
stable and semantically faithful learning signals. In the sensitivity analysis of Appendix B, assigning
different values to d; and ds leads to robust performance, tending to outperform the GRPO baseline
and yielding the strongest improvements on MiniF2F.

52 | —e— pass@32 12 pass@32
—8— pass@64 —&— pass@64 |

50 10 0 100 200
5 10 15 30 5 10 15 30 Global Step

timeout timeout

300 400

Figure 3: Ablation study on different Lean verification timeouts (5, 10, 15, and 30 seconds) during
outcome-+tactic based training. We report evaluation performance on the MiniF2F and ProofNet
benchmarks (a),(b), and the maximum response length observed during training (c).

12

Effect of Verification Timeouts When using Lean as a verifier, long proofs can lead to excessive
verification time, so we introduced timeout thresholds of 5, 10, 15, and 30s (Figure B). A Ss
limit gave the worst results, since even relatively simple proofs often exceeded this window and
produced too few valid reward signals. In contrast, 10-30s yielded much stronger performance, with
15s giving the best overall balance. Interestingly, 10-15s sometimes outperformed 30s despite the
shorter allowance. We attribute this to the fact that discarding overly complex proofs biases training
toward shorter and more efficient proof strategies. This effect is amplified in our setting because
we evaluate non-CoT responses purely by Lean verification (without natural language commentary):
longer outputs are not only slower to check but also more error-prone. As aresult, shorter verification
limits encourage the model to generate concise, canonical proofs, which we hypothesize leads to
better generalization at test time.

Qualitative Analysis We conduct a qualitative analysis to better understand the differences be-
tween our tactic-reward-based approach and the baseline STP model. Specifically, we examine
proofs from two benchmark problems: Imo_1960_p2 in the MiniF2F benchmark and 1_14 from
ProofNet. Table B presents the proof generated by our tactic-reward model, while Table B shows
the corresponding proof from the STP model.The key difference in the first example lies in how the
upper bound < 45/8 is established. The STP model attempts to use the nonlinear inequality tactic
nlinarith, which results in an error. By contrast, our tactic-reward-trained model learns to penalize
such invalid tactic choices. Instead, it carefully applies previously proven assumptions and inter-
mediate lemmas before invoking nlinarith, thereby producing a correct and more robust proof. The
second example comes from the ProofNet benchmark (1_14 exercise). As shown in Table [, the
tactic-reward-trained model begins by normalizing the problem using a rewrite tactic. In contrast,
the baseline model in Table [skips this normalization step and directly attempts inequality manip-
ulations, which ultimately causes the proof to fail. These anecdotal examples illustrate plausible
mechanisms; for definitive evidence, see Table [.

B Additional Related Works

Automatic Theorem Proving An automated theorem prover typically consists of two stages.
The first is the process of translating mathematical statements written in natural language into for-
mal statements. [47] utilized large language models to translate mathematical questions into formal
languages such as Isabelle and HOL. This process, known as autoformalization, is primarily used
for constructing datasets intended for formal reasoning. Benchmarks or training datasets such as
MiniF2F, LeanWorkbook, ProofNet, Deepseek-Prover have employed LLMs to translate natural lan-
guage mathematical statements into formal expressions, contributing to the creation of high-quality
formal reasoning datasets [56, 2, 49, 51].

The second stage involves generating a formal proof from the translated formal statement. This proof
generation process is typically divided into two approaches: one involves step-by-step inference,
such as tree search during inference time [B3, B, 8, 50], and the other generates the entire proof at
once [49, Z4]. [33, 45, @] use Lean compiler as agent for complementing formal reasoning ability of
LLMs, while [T5] enhances formal reasoning by augmenting problems via conjecture. [IR] presents
a unified framework that combines both autoformalization and proof generation in a single pipeline.

Existing methods such as Lean-STaR and RMaxTS [Z3, 50] utilize Lean as a step-checker during
inference, generating steps sequentially and searching optimally via tree search to find valid proofs.
In contrast, in this paper, similar to [41, 55, 36, /], we utilize Lean as a whole-proof verifier
during the training stage. Additionally, beyond merely providing correctness checks for the entire
proof, we leverage Lean’s parsing and elaboration capabilities to validate each individual tactic step,
integrating this step-level validation into the training process. In other words, we employ the Lean
proof assistant as a process-based reward model for validating the correctness of each reasoning
steps. [22Z].

Unlike prior work that leverages dense feedback from proof assistants, our research takes a different
perspective: we rely solely on the rule-based signals of the symbolic engine, without introducing
any natural language. Approaches such as [23, 5, 44, DT],exploit natural language reasoning as a
form of annotation to enhance LLMs formal reasoning abilities. In contrast, our method improves
performance exclusively through reward signals provided by Lean, without any reliance on natural
language.

13

Reinforcement Learning in Language Models While developing or applying algorithms such
as PPO [B7] and GRPO [39] plays a significant role in reinforcement learning, reward shaping and
credit assignment are central challenges in reinforcement learning. [I1] introduced a reward model
based on the outcome of a response. However, similar to other areas of RLHF, this approach suffers
from the limitation of sparse rewards [9, 57].

To address this, process-based reward model (PRM) assigns step-level rewards during inference to
guide rationale generation [22], and can also be used to reward responses during training [38, T9].
[64, T2] derived an implicit PRM from the ORM without any data annotation or additional training.
When assigning scores to reasoning steps, [27] defined the reward as the correctness of each step,
which required substantial human annotation effort. [43] instead adopted a Monte Carlo approach,
defining the score of a step as the proportion of successful rollouts originating from that step. While
recent PRM approaches show promise in natural language reasoning, they require large annotated
datasets of step-level correctness. To the best of our knowledge, no such dataset exists for Lean or
formal theorem proving, making a direct comparison with a learned PRM baseline infeasible. This
further motivates our approach of leveraging the Lean verifier itself as a process oracle. In contrast,
our process-based reward leverages the Lean theorem prover to automatically verify the correctness
of each step, thereby eliminating the need for human annotators or sampling many proofs steps.

Our work can also be interpreted through the lens of reward shaping [B0]. Prior approaches have
explored different mechanisms for distributing reward signals: [J] leverages the internal attention
patterns of LLMs to assign higher weights to important tokens, [K] employs Shapley values to allo-
cate credit across actions, and [Y9] uses Monte Carlo rollouts to estimate and distribute rewards over
intermediate steps. In contrast, our method relies on an external parser-the Lean theorem prover-to
parse tactics and assign reward to the first token, thereby implementing a form of credit assignment.

C Limitations

We did not compare against learned PRMs, as they rely on natural-language CoT supervision and
large annotated datasets that are not yet available for Lean. Our models also generate pure Lean
proofs without long CoT, leaving open how to design fine-grained rewards for long-form reasoning.
In addition, tactic rewards in our method were fixed scores (d;, ds), which proved effective but
somewhat sensitive to hyperparameters. Developing adaptive advantage estimators and large-scale
tactic-level datasets remains important future work.

D Experimental Detail

Data. We randomly sampled 10k instances from the STP dataset (3.26M total) for RL training.
For DeepSeek-Prover-V1.5-SFT, we applied an additional supervised fine-tuning step on 500k STP
samples before RL, since the vanilla model produced low-quality proofs.

Verification. We use Lean 4.9.0-rcl for all experiments in the paper. During training, we used
a REPL (read-eval-print loop) interface with Lean to verify proofs and assign outcome- and tactic-
level rewards. Each proof attempt was given a maximum of 15 seconds for verification; longer runs
were treated as failures.

RL configuration. For GRPO training, we used G = 4 generations per prompt, sampling temper-
ature 0.9, KL coefficient 0.04, clipping € = 0.2, and the DAPO upper bound 0.28 [63]. Tactic-level
rewards were fixed at d; = —0.05 and do = —0.1 for partially valid and erroneous tactics, respec-
tively. All experiments used non-CoT prompts, following [50].

Training details. We fine-tuned the models with LoRA (rank 64, o = 64) using bf16 precision.
The AdamW optimizer was used with a learning rate of 1.0 x 10~°. Maximum response length was
set to 1024 tokens during both training and evaluation.

Evaluation. For decoding we used temperature 1.0 and top-p 0.95. We re-evaluated all baselines

under the same non-CoT and budget settings (32/64 samples). All reported results are from the final
checkpoint.

14

Compute. Training was conducted on 4 x NVIDIA A6000 GPUs, requiring approximately 21-23
hours.

E Hyperparameter ablations on d;

Setting Model Size Sample Budget MiniF2F - Test ProofNet - Test
STP-baseline 7B 32 55.9% £ 0.2 17.2% +0
64 56.7% + 0.2 19.1% + 0.4
GRPO baseline 7B 32 55.7% + 1 17.4% £ 0.6
64 57.9% +0.5 19% +0.3
di = —0.05, d> = —0.10 7B 32 57.1% £ 0.8 18.6% £ 0.3
64 59.2% +0.5 19% +0.3
dy =d2 =—0.10 7B 32 57.7% +0.2 17.6% £ 0.6
64 58.7% +0.8 18.1% £+ 0.6
dy = —0.05, d2 = —0.50 7B 32 57% £ 0.4 17.6% £ 0.3
64 59.2% +0.5 18.6% + 0.8

Table 5: Ablation study on tactic-level penalties di,ds. We compare outcome-only GRPO base-
line with three variants of (d;,ds) settings. Results are reported as pass@32 and pass@64 (%) on
MiniF2F and ProofNet test sets. The experiment is couducted with STP-Lean model.

This ablation shows that introducing a gap between d; and d, makes the method more robust: per-
formance remains consistently above the GRPO baseline, with stable gains across different penalty
scales and especially clear improvements on MiniF2F.

F Prompts

For training and evaluation, we used non-COT evaluation followed by [I5] and [50]. The examples
are introduced in Table B, [.

Complete the following Lean 4 code:\n\n
**“leand4\n{header}{formal_statement}

Table 6: Prompt template used in training and evaluation. We selected non-COT generation which
is appropriate with our MDP setting

Complete the following Lean 4 code:

""" lean4

import Mathlib

import Aesop

set_option maxHeartbeats O

open BigOperators Real Nat Topology Rat

theorem theorem_exercise_2011_2_257 (G : Type*) [Group G] [Fintype Gl
(h : Fintype.card G | 2) (x : G) : x ~ 2 =1

(xy:G, x*xy=y*x) (a:G, a=az) a s @ &2=1i

let px : G G := by

Table 7: A training sample used in training and evaluation. We selected non-COT generation which
is appropriate with our MDP setting.

15

G Credit Assignment in Reinforcement Learning

Let y; be the ¢-th token of y, R denote the reward model, 7y represent the policy model, and
Tt be the reference model. L denote the response length and B be a coefficient controlling
the distance between the policy and the reference policy. In PPO, the token-level reward at po-

sition ¢ is defined as: r¢(x,y:) = R(z,y)1(yy = L) — Blog (”e(yt‘w)), where the non-zero

Wrcf(ytlr)
reward R(x,y) is assigned only to the last token. For all other tokens, only a KL divergence
penalty is applied via a log ratio log (%) Direct usage of rewards can lead to high vari-

ance; therefore, PPO reduces variance by utilizing a learned value model V.This value network
assigns a value to each token y;, from which the Temporal-Difference (TD) error is computed as:
8¢ = ¢ + vV (yr+1) — V(y¢) where 7 is discounted factor. Then, the advantage for each token is
recursively calculated as follows: Ay = 6p, Ay = 0 + YAA441, fort =L —1,L—2,...,1
Subsequently, because the computed advantages A; can exhibit high variance during exploration,
normalization or similar techniques are applied, resulting in the final adjusted advantage A;. This
adjusted advantage is then utilized in the PPO loss defined as:

LOUP () — E, [min(To(y: | @) A, Clip< mo(y: | @) -6l +6> At)} ?)
TG0 (yt | J)) TOoia (yt ‘ l‘)
In contrast, REINFORCE-based methods such as GRPO and RLOO have proposed algorithms that

optimize policies directly from verifiable rewards without requiring a value model, due to concerns
about the computational cost and estimation capability associated with training value networks.

GRPO generates multiple response groups { y; }&, for a given question ¢ from an old policy 7.

Subsequently, a reward function outputs reward r = {r(i)}iczl for each response group. If we set
s + as t—th token index of response y; The advantage for y; +, A; + is then computed by normalizing
r; —mean(r)

these rewards as follows: AM = Std(r)

This advantage is uniformly assigned to each token y; ; constituting the response y;. Subsequently,
this identical token-level advantage is utilized in calculating the following loss:

Larpo(0) = Equp(q), {416, ~mo,,, ()

G
1 o melyie la) i L me(yiela) L Y _
{G ;{mln<m,m (yit | @) Al’t’Chp(Wa(,M (Wit l @) trett 6) Au) # D[l M]}}

3

As our goal is to integrate Lean-based fine-grained rewards to GRPO algorithm, our method keep
balance between value-based PPO’s fine-grained credit assignmethod and GRPO’s simple unifrom
credit assignment approach.

16

H Generated Proofs Examples

import Mathlib
import Aesop

set_option maxHeartbeats O

open BigOperators Real Nat Topology Rat

theorem imo_1960_p2 (x : \mathbb{R}) (h_0 : 0 1 + 2 * x)
(h_1 : (1 - Real.sqrt (1 + 2 * x)) ~ 2 0)

(h.2 : 4*%x~2/ (1 -Real.sqrt (1 + 2 *x x)) ~ 2< 2 *xx + 9)
-(1/2) x x<45/ 8 :=by

have h_ 3 : 0 (1 + 2 * x) := by linarith

have h_ 4 : 0 Real.sqrt (1 + 2 * x):= Real.sqrt_nonneg(l + 2 * x)
have h_ 5 : 0 (1 + 2 * x) * Real.sqrt (1 + 2 * x) := by positivity
have h 6 : 0 < (1 - Real.sqrt (1 + 2 * x)) ~ 2 := by

apply sq_pos_of_ne_zero
intro h
apply h_1
nlinarith
constructor
nlinarith [sq_sqrt (show O 1 + 2 * x from by linarith), h_2]
have h 7 : x < 45 / 8 := by
apply 1lt_of_not_ge
intro hge
have h 8 : 4 * x = 2 / (1 - Real.sqrt (1 + 2 * x)) ~ 2 2x%x+9
:= by
rw [ge_iff_le]
rw [le_div_iff h_6]
nlinarith [sq_sqrt (show O 1 + 2 * x from by linarith), hgel
linarith
linarith

Table 8: Proof of imo_1960_p2 from MiniF2F generated by our tactic-reward-trained model.

17

import Mathlib
import Aesop

set_option maxHeartbeats O
open BigOperators Real Nat Topology Rat

theorem imo_1960_p2 (x : \mathbb{R})

(hO:0 1+2x*x) (h1: (1-Real.sqrt (1 +2 *x)) ~ 2 0)
(h.2 : 4 *x~ 2/ (1 -Real.sqrt (1 + 2 *x x)) ~ 2 < 2 *xx + 9)
-(1 /2 x x<45/ 8 := by

have h_ 3 : 0 < (1 - Real.sqrt (1 + 2 * x)) ~ 2 := by positivity
have h_ 4 : 0 Real.sqrt (1 + 2 * x) := Real.sqrt_nonneg _
have h .5 : 0 1 + 2 * x := by linarith
have h_6 : Real.sqrt (1 + 2 *x x) 1 + x := by
rw [Real.sqrt_le_iff]
constructor
4 linarith
4 nlinarith
have h 7 : 4 *x x = 2 / (1 - Real.sqrt (1 + 2 *x x)) = 2< 2 *x + 9

by assumption

have h. 8 : -(1 / 2) x := by
rw [div_1t_iff h_3] at h_7
nlinarith

have h_ 9 : x < 45 / 8 := by

rw [div_1t_iff h_3] at h_7

nlinarith

xact h_8, h_9

assumption

assumption

assumption

assumption

assumption

assumption

assumption

assumption

assumption

AANANANAANAANANAAND

VVVVVVYVYVYV

Table 9: Proof of imo_1960_p2 from MiniF2F generated by the baseline STP model.

import Mathlib

open Topology Filter Real Complex TopologicalSpace Finset
open scoped BigOperators

theorem exercise_1_14
(z : \mathbb{C}) (h : abs z = 1)

(abs (1 +2)) = 2+ (abs (1 - 2)) -~ 2 =4 :=by
rw [Complex.normSq_eq_abs, Complex.normSq_eq_abs]
simp [Complex.normSq_add, Complex.normSq_sub, h]
ring_nf
<;> simp [h, Complex.normSq_eq_abs]
<;> ring_nf

Table 10: Proof of exercise_1_14 from ProofNet generated by our tactic-reward-trained model.

18

import Mathlib

open Topology Filter Real Complex TopologicalSpace Finset
open scoped BigOperators

theorem exercise_1_14
(z : \mathbb{C}) (h : abs z = 1)
(abs (1 +2)) - 2+ (abs (1 - 2)) -~ 2=4 :=by
have h 0 : abs z =~ 2 = 1 := by simp [h]
simp [pow_two, abs_add, abs_sub, h_0]
ring_nf
simp_all [sq_abs]

Table 11: Proof of exercise_1_14 from ProofNet generated by the baseline STP model.

19

I Results on Return-based Advantage

Model Model Size Sample Budget MiniF2F - Test ProofNet - Test

Return 7B 32 55.3% +0.4 181% +0.3
64 57.5% + 0.2 18.6% + 0.3

Outcome+Tactic RL (ours) 7B 32 571% + 0.8 18.6% + 0.3
64 59.2% +£0.5 19% +0.3

Table 12: Ablation study on reward strategies for return-based advantage.

@ o,) ©

0102 260.0

—— Outcome + Tactic Advantage — Outcome + Tactic Advantage —— Outcome + Tactic Advantage
Return 0.100 Return 257.5 Return
255.0
0.098 g S

4 A
f

0.088 2400
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 10 150 200 250 300 350 400
Global Step Global Step Global Step

0.096

Entropy

Outcome Reward

Mean Completion Length

Figure 4: Training dynamics showing (a) outcome reward,(b) entropy, and (c) mean of response
length during reinforcement learning in our method and return-based method.

20

J Failure case and limitation of our method

import Mathlib
import Aesop

set_option maxHeartbeats O
open BigOperators Real Nat Topology Rat

theorem imo_2019_pl (f : \Z \Z) :

(\forall ab, f (2*xa) +2xfb=fFf((a+b)))

\n \iff (\forall z, f z = 0)

\n (\exists c, \forall z, f z = 2 * z + c) := by
constructor
intro h
intro z
have
have
have
have
have
have
have
have
have
simp
norm_num at
omega
intro h
intro a b
have h_1 :
have h_ 2 := h b
have h_3 h (a + b)
cases' h_1 with h_1 h_1 <;> cases' h_2 with h_ 2 h_2
\n <;> cases' h_3 with h_3 h_3 <;> simp_all
<;> omega

(=== = N = g = A = =2
O OO~NOOdWN =

[I | (I | | | Y | [

(= =g === gl = = g = - - =3

[
ct1
(=3

P NNFPLONNRE P OO
SENMNNNR,ORORO

h (2 * a)

Table 13: Proof of imo_2019_p1 in MiniF2f generated by our tactic-reward-trained model.

Consider a function f : Z — Z satisfying

Va,b € Z, fa)+2f(b) = f(fla+b)).

The task is to prove that necessarily one of the following holds:

(i) Vz€Z, f(2) =0,0r
(ii)) 3c€Z,Vz € Z, f(2) =2z+c.

Our model first introduced the assumption
h: Va,beZ, f(2a) +2 f(b) = f(f(a+1D)),

and then instantiated it at several concrete pairs to create hypotheses h; (e.g., b1 = h(0,0),
hs := h(0,1), ...). After some local simplification steps (e.g., simp, norm_num), it attempted to
close the goal using the omega tactic, a decision procedure for Presburger arithmetic (linear integer
arithmetic).

However, the omega call produced the first Lean error. While our method correctly assigns the ds
penalty to this failing omega tactic under first-error propagation, it does not penalize the preceding
tactics (intro, have, simp) because they elaborate successfully and thus appear locally valid. In
other words, although introducing h and instantiating h; is not logically incorrect, this route is
strategically unproductive for this problem: the remaining goal still involves quantifiers, disjunction,

21

and an uninterpreted function f, which lie outside omega’s theory. Consequently, our current scheme
only punishes the terminal failing step and fails to capture that the earlier (locally successful) steps
did not make meaningful progress toward solving the global goal.

K Large Language Model Usage

In preparing this manuscript, we made limited use of large language models strictly for writing
assistance. Specifically, we used ChatGPT-5 and Gemini-2.5 to improve grammar, enhance clarity
of expression, and polish the overall presentation.

22

	Introduction
	Preliminaries
	Lean4
	Tactic-Level MDP

	Method
	Define Tactic-level Rewards
	Integrating Lean into Tactic-based Reinforcement Learning

	Experiments
	Experimental Setup
	Main Results
	Analysis

	Conclusion
	Analysis
	Additional Related Works
	Limitations
	Experimental Detail
	Hyperparameter ablations on di
	Prompts
	Credit Assignment in Reinforcement Learning
	Generated Proofs Examples
	Results on Return-based Advantage
	Failure case and limitation of our method
	Large Language Model Usage

