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Abstract

Current reinforcement learning from verifiable rewards (RLVR) relies on sparse bi-
nary outcomes, whereas symbolic proof assistants can provide fine-grained, struc-
tured feedback. In this work, we demonstrate that the Lean proof assistant itself
can serve as a symbolic process oracle, providing verified rewards at both the out-
come level and the fine-grained tactic level during training. Proof attempts are
parsed into tactic sequences, and Lean’s elaboration marks both locally sound
steps and the earliest failing step, yielding dense, verifier-grounded credit sig-
nals rooted in type theory. We incorporate these structured signals into a GRPO-
style reinforcement learning objective with first-error propagation and first-token
credit methods that balances outcome- and process-level advantages.Experiments
with STP-Lean and DeepSeek-Prover-V1.5 show that tactic-level supervision out-
performs outcome-only baselines in most settings, delivering improvements on
benchmarks such as MiniF2F and ProofNet. Beyond empirical gains, our study
highlights a broader perspective: symbolic proof assistants are not only verifiers
at evaluation time, but can also act as process-level reward oracles during train-
ing. This opens a path toward reinforcement learning frameworks that combine
the scalability of language models with the reliability of symbolic verification for
formal reasoning.

1 Introduction

Automated theorem proving (ATP) is a long-standing goal of AI [29]. Unlike natural language (NL)
reasoning-often ambiguous-formal proofs in systems such as Lean, Isabelle, and Coq provide pre-
cise, checkable derivations grounded in logic and type theory [B, 00, 16, 13, P&, 3T]. In this setting,
Lean proofs are sequences of tactics; the prover verifies local steps and whole proofs, offering a
principled middle ground between automation and human guidance.

Large language models (LLMs) have made progress on mathematical reasoning via instruction tun-
ing and Reinforcement Learning with Human Feedback (RLHF) [Z, B4, 5], and recent RL work
encourages longer reasoning chains [14, 32]. However, outcome-only rewards are sparse [[I], and
process-based reward models (PRMs) raise questions about how to define steps, labels, and super-
vision [54, '], I2]. In formal proving, ITPs can supply verifiable signals beyond final correctness,
yet most prior uses of Lean focus on data augmentation, step checking at inference or whole-proof
verification during training without leveraging tactic-level structure [, &0, 20, &2, D6, 51, 50, [7].

We propose to use Lean as a symbolic process oracle during Reinforcement Learning (RL) training:
for each generated proof, Lean returns (i) a global outcome and (ii) tactic-level feedback from info
trees and error logs. We convert these signals into structured process rewards and map them to
tokens, integrating outcome and tactic advantages into a GRPO-style objective. This yields precise,
type-theoretic credit assignment without auxiliary PRMs or NL chain-of-thought. Empirically, this
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verifier-guided RL improves MiniF2F and ProofNet over outcome-only Reinforcement Learning
(RL) and supervised baselines. Our key contributions are as follows:

* Symbolic verifier as process oracle reward. We formalized the use of the Lean proof as-
sistant as a symbolic verifier of reasoning processes, parsing proofs into tactic-level reward.

* Symbolic verifier-guided RL. We integrate outcome- and tactic-level rewards derived
from Lean into an RL framework, providing dense and verifiable credit assignment.

» Stable improvements on benchmarks. On MiniF2F and ProofNet, our approach outper-
forms both outcome-only RL and vanilla baselines in most settings, yielding more stable
and robust gains without NL notation or external PRM.
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Figure 1: Overall framework for combining outcome and tactic level rewards via Lean: the proof Y’
is parsed into tactics 71, . . ., T5, with Lean providing outcome feedback ¢g(Y") and step-level errors
(e.g., failure at T3 invalidates later tactics). Rewards are then assigned to the first token of each
tactic.

2 Preliminaries
2.1 Leand

In Lean, a goal is reduced to subgoals by a sequence of tactics. For given mathematical proof, each
tactic is parsed and elaborated, producing structured info trees including proof states, errors and its
positions. The kernel then validates type-theoretic correctness of the whole proof.

Formally, let  be a theorem statement and Y a Lean proof. Let ) be the set of proofs and
T the set of tactics. The Lean compiler parses Y into TacSet(Y) C 7, TacSet(Y) = {T |
T is a tactic parsed from Y }. Sorting tactics by starting position yields (71, T3, ..., Tn(y)) where
N(Y') is the number of tactic of Y, in order to align with the LLMs autoregressive generation.
Each tactic T; comprises corresponding tokens y; in Y. Tactics are represented as Abstract Syntax
Tree (AST) nodes carrying structure and metadata (errors, proof states, indices). If a tactic does
not appear in the error log, it means Lean elaborated successfully and is locally sound; however,
proof-level success still requires all subsequent goals to be passed.

Define the parsing function f : Y — T* by f(Y) = (T1,...,Tn(y)). Define a global score
g:Y —[0,1] with g(Y) = 1 if and only if Y verifies, else 0. For per-tactic scoring, ¢ : {(Y,T) |
Y eV, T € TacSet(Y)} — {1,dy,ds} as
1, ifg(Y)=1,
o(Y,T) =< d1, elseif g(Y) = 0and T has no errors in Lean,
da, elseif g(Y) = 0 and T contains errors.

Thus,
Lean: Y — {0,1} x (T x {1,d1,d2})",

Lean(Y) = ((Y), [(T1, (Y, 1)), -, (Tnvys 0(Y: Tn iy V) pov =iy

STn(yy)”

2.2 Tactic-Level MDP

We model tactic generation as an MDP M = (S, A, r, F, m). States S are proof prefixes; actions
A = T are tactics; rewards 7 : S x A — R are tactic-level; transitions are deterministic concatena-



tions: s;41 = F'(s;,a;) = 5; @ a;. Lean feedback affects r, not F. EOS states Sierm are absorbing;
m is the initial state. In Section B we instantiate 7 using the outcome g and the tactic signal (.

Background on credit assignment is provided in Appendix G.

3 Method

3.1 Define Tactic-level Rewards

We leverage Lean’s parsing and elaboration (Sec. ) to turn each generated proof Y into (i) a binary
outcome g(Y") and (ii) tactic-level feedback (Y, T') over f(Y) = (T1,...,Tn(y)). Assume that,
analogous to the GRPO training rollout framework, given a question ¢, an LLM generates a group
of responses {Y7, Y, ..., Ys}. The outcome reward is

Toutcome (Yi) = g(¥3).
For a GRPO-style group of responses {Yi}iG:l, the outcome advantage for any token y; ; is
g(Yi) — mean(g(Yl), e ,g(Yg))
std(g(Y1), -+, 9(Ya)) '
To obtain dense, verifier-grounded signals, we apply a first-error propagation as [26, 22]: once the

earliest failing tactic T is found, all T}, with k > j are treated as erroneous for reward assignment.
Concretely,

Aoutcome, i, t

dy, ¢g(Y)=0andk > j,
Let j = min{é : T; contains an error}. (Y,T}) =< dy, g(Y)=0andk < j and no error,
1, g)=1
Given Y; = {T; 1,T; 2, ...} with stateaction pair (s;,a;) = (prefix upto T; j_1, T; ;), the process
reward and advantage are
rproccss(sjv aj) = Tprocess, i,j — SO(Y;; Cri,j)a Aproccss, i,5 — Tprocess, i,j_mean(g(yl)a cee 7g(YG)) .

The batch mean of g serves as a difficulty-aware baseline, penalizing misses more on easy batches
and less on hard ones.

3.2 Integrating Lean into Tactic-based Reinforcement Learning

‘We combine outcome- and tactic-level signals within GRPO by mapping tactic advantages to the first
token of each tactic (the tactic keyword), which most directly determines subsequent proof structure:

Ai,t = Aoutcome,iﬂ‘, + 1{t: ﬁrSt(T’i,s(i,t))} 'Aprocess,i,s(i,t)v

where s(1, t) indexes the tactic containing token ¢ and first(7; ;) indicates the first token of the tactic.
The overall objective is

L(0) = Equp(Q), {¥i}&, ~roy (V1)

G Vi 1
é Z{ﬁ ZHlin(ﬂi,t Ait, Clip(/h‘,t7 1—¢ 1+ e) Ai,t) - B Dk [Wa I 7Tref] }:| . M
i=1 =1

with p; ; = M This keeps GRPOs simplicity while mitigating reward sparsity via
’ ﬂeold(yi,th,Yi,q)

Lean-derived tactic advantages and enforcing sound credit through first-error propagation. Empiri-
cally, computing returns was unnecessary and less stable; the above normalized, mixed (outcome +
tactic) advantages yielded more reliable optimization. (See Appendix ). The overall framework is

shown in Figure 0.
4 Experiments
4.1 Experimental Setup

We train on a 10k random sample of STP dataset and evaluate on MiniF2F and ProofNet. Baselines
are STP-Lean and DeepSeek-Prover-V1.5-SFT. Further details are in Appendix O.



Model Model size Budget MiniF2F-Test ProofNet-Test
Whole-Proof Generation Methods
DeepSeek-Prover-V1.5-SFT [A4] 7B 32 46.2% +£0.2  14.3% £0.3
64 47.5% + 0.1 15.05% + 1
DeepSeek-Prover-V1.5-RL [49] 7B 32 48% £ 0 16% + 1
64 48.8% +£04 17.4% +£0.6
Goedel-Prover-SFT [9] 7B 32 56.9% +£0.4 15.6% +£0.5
64 57.9% £ 0.5 16.7% + 0
STP-Lean [13] 7B 32 55.9% £ 0.2 17.2% +0
64 56.7% £ 0.2 19.1% +0.4
STP-Lean + Ours 7B 32 571% + 0.8 18.6% + 0.3
64 59.2% + 0.5 19% £ 0.3
DeepSeek-Prover-V1.5 + STP 7B 32 54.9% +0.7 16.8% +0.3
64 57.2% £ 0.2 17.7% + 0
DeepSeek-Prover-V1.5 + STP + Ours 7B 32 56.3% £ 0.6 17.6% +£0.8
64 57.8% +0.4 18.5% + 0.3
Tree Search Methods
Lean-STaR 7B 64 x 1 x 50 46.3% -
InternLM?2-Math-Plus-7B [52] 7B 1 x 32 x 100 48.8% -
InternLM2.5-StepProver 7B 4x32x600 585%=+0.9 -
DeepSeek-Prover-V1.5-RL + RMaxTS [2Y] 7B 3,200 55.0% £ 0.7 21.5% +0.8

Table 1: Budgets for whole-proof methods denote the sample budget (N) per problem; for tree-
search methods, budgets denote the authors reported search expansions counts. All our GRPO-style
runs use the same STP subset, generations per query, and a 15s Lean timeout.

4.2 Main Results

Table 0 shows consistent gains from Lean-guided tactic rewards on MiniF2F and ProofNet. For
STP-Lean, we see up to +2.5pp (MiniF2F pass@64) and +1.4pp (ProofNet pass@32), with only a
minor —0.1pp drop. DeepSeek-Prover-V1.5 also improves steadily across benchmarks.

In Table O, outcome-only GRPO shows only marginal improvements, especially, no gain on
ProofNet-Test in DeepSeek-Prover, showing the limits of sparse binary feedback. In contrast, tactic-
level credit yields denser, verifier-grounded signals and more reliable improvements (e.g., +2.5pp
vs. +1.2pp on MiniF2F pass@64). These benefits come with negligible overhead, since Lean verifi-
cation is already required for both outcome and tactic rewards.

Finally, compared to search-based frameork, our single-shot training achieves comparable accuracy
(59.2% vs. 58.5% on MiniF2F pass@64) while avoiding heavy inference-time search.

Model Model Size Budget MiniF2F - Test ProofNet - Test
STP + Outcome only (GRPO) 7B 32 55.7% + 1 17.4% £ 0.6
64 57.9% +0.5 19% +0.3
STP + Tactic only 7B 32 55.6% £ 0.6 18.3% +0
64 56.8% +£0.6 17.9% + 0.8
STP + Outcome+Tactic RL (ours) 7B 32 571% + 0.8 18.6% + 0.3
64 59.2% £ 0.5 19% + 0.3
DeepSeek-Prover-V1.5 + Outcome only (GRPO) 7B 32 55.3% £04 16.8% +0.8
64 57.4% +0.4 17.6% +0.8
DeepSeek-Tactic only 7B 32 54.9% £ 0.7 16.8% +0.8
64 57.8% + 1 17.6% + 0.3
DeepSeek-Prover-V1.5 + Outcome+Tactic RL (ours) 7B 32 56.3% + 0.6 17.6% +0.8
64 57.8% + 0.4 18.5% +0.3

Table 2: Ablation study of STP-Lean with various verifier methods on MiniF2F-Test and ProofNet-

Test benchmarks.



4.3 Analysis

The Tables and figures for analyzing our methods, detailed analysis and ablation for verification
timeout and qualitative analysis are in Appendix A

The Role of Qutcome and Tactic Rewards. As shown in Figure Di(a,b), outcome-only RL suffers
from sparse binary feedback, leading to slow gains and early plateaus. Tactic-only training is dense
but lacks a global signal, converging prematurely. Combining both yields faster progress and higher
accuracy: outcome rewards enforce proof-level success, while tactic rewards give step-level credit.
As Table [, only their integration consistently improves across benchmarks.

Entropy and Proof Length. Fine-grained rewards guide exploration more efficiently rather than
broadening it. Outcome+tactic models converge to lower entropy (Figure P(c)), showing more deci-
sive policies without mode collapse. Proof length remains stable across methods (Figure B(d)), so
it shows that gains are not due to trivial output lengthening but to denser feedback steering toward
efficient proof strategies.

Tactic to Token Level Credit Assignment. We tested how to map tactic advantages to tokens: (i)
all tokens, (ii) last token, (iii) entropy-based token selection, and (iv) first token only. As Table 3
shows, only the first-token strategy yields consistent improvements. This aligns with Lean semantics:
the first token is the tactic keyword (e.g., intro, apply), which defines proof strategy and subgoal
structure, making it the most informative supervision point.

Reward Strategy for Tactic-level Feedback. As shown in Table B, tactic rewards are most effec-
tive when they (i) respect sequential dependency, (ii) adapt to task difficulty, and (iii) distinguish
partially correct from erroneous steps. Removing first-error propagation reduces accuracy, since tac-
tics after the first error occur in invalid states. Dropping difficulty normalization destabilizes learn-
ing, and collapsing d; = d» yields inconsistent outcomesimprovements on MiniF2F but declines on
ProofNet. Together, these elements provide more stable and semantically faithful training signals.
Sensitivity analysis (Appendix H) further confirms that separating d; and dy improves robustness
over the GRPO baseline, with the strongest gains on MiniF2F.

5 Conclusion

We introduced a reinforcement learning framework that uses the Lean proof assistant as a process-
level reward oracle. Unlike prior outcome-only methods, our approach leverages Leans parsing
and validation to provide both global outcome signals and fine-grained tactic rewards, integrated
into a GRPO objective. This enables denser, verifiable credit assignment: outcome rewards enforce
proof-level success, while tactic rewards guide step-level reasoning. Experiments on STP-Lean and
DeepSeek-Prover-V1.5 show general improvements on MiniF2F and ProofNet, with stable gains
achieved by assigning tactic rewards to the first token of each tactic and first error propagation
method. Overall, proof assistants can serve not only as checkers at inference but also as structured
feedback sources during training, pointing toward more stable and effective RL for reasoning.
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Figure 2: Training dynamics showing (a) outcome reward, (b) tactic reward, (c) entropy, and (d)
mean of response length during reinforcement learning.

Model Model Size  Sample Budget ~MiniF2F - Test ~ ProofNet - Test
All tokens 7B 32 56.3% = 0.6 18.1% £ 0.8
64 57.8% £ 0.7 18.1% 4+ 0.8
Entropy-based 7B 32 56.4% £+ 0.2 17.9% £ 0.8
64 57.1% £ 0.5 18.5% 4+ 0.3
Last token 7B 32 56.7% £ 0.9 172% +0
64 57.5% £ 0.6 17.7% £ 0.5
First token 7B 32 57.1% + 0.8 18.6% + 0.3
64 59.2% + 0.5 19% + 0.3

Table 3: Ablation study on how to distribute tactic-level advantages across tokens.

Model Model Size Sample Budget MiniF2F - Test ProofNet - Test

No First Error 7B 32 56.4% +0.9 17.4% +0.3
64 58.2% +0.7 18.3% £ 0.3

No Baseline 7B 32 56.7% £ 0.2 17.9% +0.3
64 57.4% +0.7 18.3% £ 0.5

Same tactic reward 7B 32 57.7% + 0.2 17.6% £ 0.6
64 58.7% + 0.8 18.1% + 0.6

Outcome+Tactic RL (ours) 7B 32 57.1% +0.8 18.6% + 0.3
64 59.2% + 0.5 19% +0.3

Table 4: Ablation study on reward strategies for tactic-level feedback in STP-Lean. Additional
experiments include removing the first-error propagation policy (No First Error), removing the base-
line extraction (No Baseline), and using equal penalties for all tactics.

The Role of Outcome and Tactic Rewards. Integrating both outcome-level and tactic-level sig-
nals yields more effective learning than employing either signal in isolation. Outcome-only RL, as
in GRPO, is constrained by the sparsity of binary feedback: improvements are gradual and the final
performance plateaus at a relatively low level (Figure B(a)). In contrast, tactic-only training provides
dense feedback but lacks a global objective, resulting in premature convergence. When combined,
outcome rewards serve as a global objective function, while tactic rewards provide local credit as-
signment, enabling both rapid progress and higher performance. This complementary relationship is
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further reflected in Figure D(b), where tactic-only supervision’s tactic reward plateaus, but outcome-
tactic combined rewards continue to increase steadily. The results in Table [ supports this finding:
outcome signals enforce proof-level correctness, while tactic signals supply verifiable intermediate
feedback; only their integration consistently improves performance across benchmarks.

Entropy and Proof Length. The use of fine-grained rewards influences exploration not by in-
discriminately broadening the search space but by focusing learning on more informative decision
points. As shown in Figure Q(c), outcome+tactic training converges to lower entropy than tactic-only
and outcome-only settings, indicating that the policy becomes more decisive as training progresses.
This does not correspond to mode collapse: Figure D(d) shows that the average proof length remains
stable across all methods, suggesting that the performance gains are not attributable to trivial length-
ening of outputs. Instead, denser intermediate rewards appear to reduce the need for broad stochastic
exploration, guiding the model toward more efficient proof strategies.

Tactic to Token Level Credit Assignment. Having defined tactic-level rewards and advantages,
the next step is how to distribute them across tokens within each tactic. In our main method, the tactic
advantage is assigned only to the first token of the tactic. For comparison, we conducted ablations
where the tactic advantage was instead (i) distributed to all tokens of a tactic, (ii) assigned only to
the last token, (iii) keep first token reward distribution, but additionally choose 10% tokens within
the tactic with respect to high entropy. As, [46] showed that high entropy tokens could be reasoning
drive tokens, we speculated that this method can automatically select the tokens for serving as fork
in formal reasoning. Assigning credit to the first token of each tactic achieves the most stable and
consistent improvements, as evidenced by Table B. Alternative strategies do not yield comparable
gains and in some cases even degrade performance. This outcome aligns with the semantics of
Lean proofs: the first token corresponds to the tactic keyword (e.g., intro, apply, have), which
determines the subsequent proof strategy and constrains the structure of subgoals. Concentrating
credit on this decision point enhances the models ability to select tactics appropriately, resulting in
more reliable downstream reasoning.

Reward Strategy for Tactic-level Feedback. For tactic-level feedback to be effective, it must
reflect the sequential dependency of proof construction, account for task difficulty, and distinguish
between partially correct and erroneous steps. The first-error propagation rule ensures that once
an error occurs, subsequent tactics are treated as invalid; removing this rule significantly reduces
performance (Table H), because once the first error occurs, the remaining tactics are evaluated in an
invalid context and cannot salvage correctness. Incorporating a difficulty-normalized baseline fur-
ther stabilizes training, while its absence leads to degraded results. Finally, differentiating penalties
between partially correct tactics and outright erroneous ones proves essential: collapsing these into
a single penalty d; = d5 yields inconsistent outcomes- improvements on MiniF2F but declines on
ProofNet. These results indicate that an effective tactic-level reward scheme must combine sequen-
tial error propagation, difficulty-aware normalization, and differentiated penalties in order to provide
stable and semantically faithful learning signals. In the sensitivity analysis of Appendix B, assigning
different values to d; and ds leads to robust performance, tending to outperform the GRPO baseline
and yielding the strongest improvements on MiniF2F.

52 | —e— pass@32 12 pass@32
—8— pass@64 —&— pass@64 |

50 10 0 100 200
5 10 15 30 5 10 15 30 Global Step

timeout timeout

300 400

Figure 3: Ablation study on different Lean verification timeouts (5, 10, 15, and 30 seconds) during
outcome-+tactic based training. We report evaluation performance on the MiniF2F and ProofNet
benchmarks (a),(b), and the maximum response length observed during training (c).
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Effect of Verification Timeouts When using Lean as a verifier, long proofs can lead to excessive
verification time, so we introduced timeout thresholds of 5, 10, 15, and 30s (Figure B). A Ss
limit gave the worst results, since even relatively simple proofs often exceeded this window and
produced too few valid reward signals. In contrast, 10-30s yielded much stronger performance, with
15s giving the best overall balance. Interestingly, 10-15s sometimes outperformed 30s despite the
shorter allowance. We attribute this to the fact that discarding overly complex proofs biases training
toward shorter and more efficient proof strategies. This effect is amplified in our setting because
we evaluate non-CoT responses purely by Lean verification (without natural language commentary):
longer outputs are not only slower to check but also more error-prone. As aresult, shorter verification
limits encourage the model to generate concise, canonical proofs, which we hypothesize leads to
better generalization at test time.

Qualitative Analysis We conduct a qualitative analysis to better understand the differences be-
tween our tactic-reward-based approach and the baseline STP model. Specifically, we examine
proofs from two benchmark problems: Imo_1960_p2 in the MiniF2F benchmark and 1_14 from
ProofNet. Table B presents the proof generated by our tactic-reward model, while Table B shows
the corresponding proof from the STP model.The key difference in the first example lies in how the
upper bound < 45/8 is established. The STP model attempts to use the nonlinear inequality tactic
nlinarith, which results in an error. By contrast, our tactic-reward-trained model learns to penalize
such invalid tactic choices. Instead, it carefully applies previously proven assumptions and inter-
mediate lemmas before invoking nlinarith, thereby producing a correct and more robust proof. The
second example comes from the ProofNet benchmark (1_14 exercise). As shown in Table [, the
tactic-reward-trained model begins by normalizing the problem using a rewrite tactic. In contrast,
the baseline model in Table [ skips this normalization step and directly attempts inequality manip-
ulations, which ultimately causes the proof to fail. These anecdotal examples illustrate plausible
mechanisms; for definitive evidence, see Table [.

B Additional Related Works

Automatic Theorem Proving An automated theorem prover typically consists of two stages.
The first is the process of translating mathematical statements written in natural language into for-
mal statements. [47] utilized large language models to translate mathematical questions into formal
languages such as Isabelle and HOL. This process, known as autoformalization, is primarily used
for constructing datasets intended for formal reasoning. Benchmarks or training datasets such as
MiniF2F, LeanWorkbook, ProofNet, Deepseek-Prover have employed LLMs to translate natural lan-
guage mathematical statements into formal expressions, contributing to the creation of high-quality
formal reasoning datasets [56, 2, 49, 51].

The second stage involves generating a formal proof from the translated formal statement. This proof
generation process is typically divided into two approaches: one involves step-by-step inference,
such as tree search during inference time [B3, B, 8, 50], and the other generates the entire proof at
once [49, Z4]. [33, 45, @] use Lean compiler as agent for complementing formal reasoning ability of
LLMs, while [T5] enhances formal reasoning by augmenting problems via conjecture. [IR] presents
a unified framework that combines both autoformalization and proof generation in a single pipeline.

Existing methods such as Lean-STaR and RMaxTS [Z3, 50] utilize Lean as a step-checker during
inference, generating steps sequentially and searching optimally via tree search to find valid proofs.
In contrast, in this paper, similar to [41, 55, 36, /], we utilize Lean as a whole-proof verifier
during the training stage. Additionally, beyond merely providing correctness checks for the entire
proof, we leverage Lean’s parsing and elaboration capabilities to validate each individual tactic step,
integrating this step-level validation into the training process. In other words, we employ the Lean
proof assistant as a process-based reward model for validating the correctness of each reasoning
steps. [22Z].

Unlike prior work that leverages dense feedback from proof assistants, our research takes a different
perspective: we rely solely on the rule-based signals of the symbolic engine, without introducing
any natural language. Approaches such as [23, 5, 44, DT],exploit natural language reasoning as a
form of annotation to enhance LLMs formal reasoning abilities. In contrast, our method improves
performance exclusively through reward signals provided by Lean, without any reliance on natural
language.
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Reinforcement Learning in Language Models While developing or applying algorithms such
as PPO [B7] and GRPO [39] plays a significant role in reinforcement learning, reward shaping and
credit assignment are central challenges in reinforcement learning. [I1] introduced a reward model
based on the outcome of a response. However, similar to other areas of RLHF, this approach suffers
from the limitation of sparse rewards [9, 57].

To address this, process-based reward model (PRM) assigns step-level rewards during inference to
guide rationale generation [22], and can also be used to reward responses during training [38, T9].
[64, T2] derived an implicit PRM from the ORM without any data annotation or additional training.
When assigning scores to reasoning steps, [27] defined the reward as the correctness of each step,
which required substantial human annotation effort. [43] instead adopted a Monte Carlo approach,
defining the score of a step as the proportion of successful rollouts originating from that step. While
recent PRM approaches show promise in natural language reasoning, they require large annotated
datasets of step-level correctness. To the best of our knowledge, no such dataset exists for Lean or
formal theorem proving, making a direct comparison with a learned PRM baseline infeasible. This
further motivates our approach of leveraging the Lean verifier itself as a process oracle. In contrast,
our process-based reward leverages the Lean theorem prover to automatically verify the correctness
of each step, thereby eliminating the need for human annotators or sampling many proofs steps.

Our work can also be interpreted through the lens of reward shaping [B0]. Prior approaches have
explored different mechanisms for distributing reward signals: [J] leverages the internal attention
patterns of LLMs to assign higher weights to important tokens, [K] employs Shapley values to allo-
cate credit across actions, and [Y9] uses Monte Carlo rollouts to estimate and distribute rewards over
intermediate steps. In contrast, our method relies on an external parser-the Lean theorem prover-to
parse tactics and assign reward to the first token, thereby implementing a form of credit assignment.

C Limitations

We did not compare against learned PRMs, as they rely on natural-language CoT supervision and
large annotated datasets that are not yet available for Lean. Our models also generate pure Lean
proofs without long CoT, leaving open how to design fine-grained rewards for long-form reasoning.
In addition, tactic rewards in our method were fixed scores (d;, ds), which proved effective but
somewhat sensitive to hyperparameters. Developing adaptive advantage estimators and large-scale
tactic-level datasets remains important future work.

D Experimental Detail

Data. We randomly sampled 10k instances from the STP dataset (3.26M total) for RL training.
For DeepSeek-Prover-V1.5-SFT, we applied an additional supervised fine-tuning step on 500k STP
samples before RL, since the vanilla model produced low-quality proofs.

Verification. We use Lean 4.9.0-rcl for all experiments in the paper. During training, we used
a REPL (read-eval-print loop) interface with Lean to verify proofs and assign outcome- and tactic-
level rewards. Each proof attempt was given a maximum of 15 seconds for verification; longer runs
were treated as failures.

RL configuration. For GRPO training, we used G = 4 generations per prompt, sampling temper-
ature 0.9, KL coefficient 0.04, clipping € = 0.2, and the DAPO upper bound 0.28 [63]. Tactic-level
rewards were fixed at d; = —0.05 and do = —0.1 for partially valid and erroneous tactics, respec-
tively. All experiments used non-CoT prompts, following [50].

Training details. We fine-tuned the models with LoRA (rank 64, o = 64) using bf16 precision.
The AdamW optimizer was used with a learning rate of 1.0 x 10~°. Maximum response length was
set to 1024 tokens during both training and evaluation.

Evaluation. For decoding we used temperature 1.0 and top-p 0.95. We re-evaluated all baselines

under the same non-CoT and budget settings (32/64 samples). All reported results are from the final
checkpoint.
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Compute. Training was conducted on 4 x NVIDIA A6000 GPUs, requiring approximately 21-23
hours.

E Hyperparameter ablations on d;

Setting Model Size Sample Budget MiniF2F - Test ProofNet - Test
STP-baseline 7B 32 55.9% £ 0.2 17.2% +0
64 56.7% + 0.2 19.1% + 0.4
GRPO baseline 7B 32 55.7% + 1 17.4% £ 0.6
64 57.9% +0.5 19% +0.3
di = —0.05, d> = —0.10 7B 32 57.1% £ 0.8 18.6% £ 0.3
64 59.2% +0.5 19% +0.3
dy =d2 =—0.10 7B 32 57.7% +0.2 17.6% £ 0.6
64 58.7% +0.8 18.1% £+ 0.6
dy = —0.05, d2 = —0.50 7B 32 57% £ 0.4 17.6% £ 0.3
64 59.2% +0.5  18.6% + 0.8

Table 5: Ablation study on tactic-level penalties di,ds. We compare outcome-only GRPO base-
line with three variants of (d;,ds) settings. Results are reported as pass@32 and pass@64 (%) on
MiniF2F and ProofNet test sets. The experiment is couducted with STP-Lean model.

This ablation shows that introducing a gap between d; and d, makes the method more robust: per-
formance remains consistently above the GRPO baseline, with stable gains across different penalty
scales and especially clear improvements on MiniF2F.

F Prompts

For training and evaluation, we used non-COT evaluation followed by [I5] and [50]. The examples
are introduced in Table B, [.

Complete the following Lean 4 code:\n\n
**“leand4\n{header}{formal_statement}

Table 6: Prompt template used in training and evaluation. We selected non-COT generation which
is appropriate with our MDP setting

Complete the following Lean 4 code:

""" lean4

import Mathlib

import Aesop

set_option maxHeartbeats O

open BigOperators Real Nat Topology Rat

theorem theorem_exercise_2011_2_257 (G : Type*) [Group G] [Fintype Gl
(h : Fintype.card G | 2) (x : G) : x ~ 2 =1

(xy:G, x*xy=y*x) (a:G, a=az) a s @ &2=1i

let px : G G := by

Table 7: A training sample used in training and evaluation. We selected non-COT generation which
is appropriate with our MDP setting.

15



G Credit Assignment in Reinforcement Learning

Let y; be the ¢-th token of y, R denote the reward model, 7y represent the policy model, and
Tt be the reference model. L denote the response length and B be a coefficient controlling
the distance between the policy and the reference policy. In PPO, the token-level reward at po-

sition ¢ is defined as: r¢(x,y:) = R(z,y)1(yy = L) — Blog (”e(yt‘w) ), where the non-zero

Wrcf(ytlr)
reward R(x,y) is assigned only to the last token. For all other tokens, only a KL divergence
penalty is applied via a log ratio log (%) Direct usage of rewards can lead to high vari-

ance; therefore, PPO reduces variance by utilizing a learned value model V.This value network
assigns a value to each token y;, from which the Temporal-Difference (TD) error is computed as:
8¢ = ¢ + vV (yr+1) — V(y¢) where 7 is discounted factor. Then, the advantage for each token is
recursively calculated as follows: Ay = 6p, Ay = 0 + YAA441, fort =L —1,L—2,...,1
Subsequently, because the computed advantages A; can exhibit high variance during exploration,
normalization or similar techniques are applied, resulting in the final adjusted advantage A;. This
adjusted advantage is then utilized in the PPO loss defined as:

LOUP () — E, [min( To(y: | @) A, Clip< mo(y: | @) -6l +6> At)} ?)
TG0 (yt | J)) TOoia (yt ‘ l‘)
In contrast, REINFORCE-based methods such as GRPO and RLOO have proposed algorithms that

optimize policies directly from verifiable rewards without requiring a value model, due to concerns
about the computational cost and estimation capability associated with training value networks.

GRPO generates multiple response groups { y; }&, for a given question ¢ from an old policy 7.

Subsequently, a reward function outputs reward r = {r(i)}iczl for each response group. If we set
s + as t—th token index of response y; The advantage for y; +, A; + is then computed by normalizing
r; —mean(r)

these rewards as follows: AM = Std(r)

This advantage is uniformly assigned to each token y; ; constituting the response y;. Subsequently,
this identical token-level advantage is utilized in calculating the following loss:

Larpo(0) = Equp(q), {416, ~mo,,, ()

G
1 o melyie la) i L me(yiela) L Y _
{G ;{mln<m,m (yit | @) Al’t’Chp(Wa(,M (Wit l @) trett 6) Au) # D[l M]}}

3

As our goal is to integrate Lean-based fine-grained rewards to GRPO algorithm, our method keep
balance between value-based PPO’s fine-grained credit assignmethod and GRPO’s simple unifrom
credit assignment approach.
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H Generated Proofs Examples

import Mathlib
import Aesop

set_option maxHeartbeats O

open BigOperators Real Nat Topology Rat

theorem imo_1960_p2 (x : \mathbb{R}) (h_0 : 0 1 + 2 * x)
(h_1 : (1 - Real.sqrt (1 + 2 * x)) ~ 2 0)

(h.2 : 4*%x~2/ (1 -Real.sqrt (1 + 2 *x x)) ~ 2< 2 *xx + 9)
-(1/2) x x<45/ 8 :=by

have h_ 3 : 0 (1 + 2 * x) := by linarith

have h_ 4 : 0 Real.sqrt (1 + 2 * x):= Real.sqrt_nonneg(l + 2 * x)
have h_ 5 : 0 (1 + 2 * x) * Real.sqrt (1 + 2 * x) := by positivity
have h 6 : 0 < (1 - Real.sqrt (1 + 2 * x)) ~ 2 := by

apply sq_pos_of_ne_zero
intro h
apply h_1
nlinarith
constructor
nlinarith [sq_sqrt (show O 1 + 2 * x from by linarith), h_2]
have h 7 : x < 45 / 8 := by
apply 1lt_of_not_ge
intro hge
have h 8 : 4 * x = 2 / (1 - Real.sqrt (1 + 2 * x)) ~ 2 2x%x+9
:= by
rw [ge_iff_le]
rw [le_div_iff h_6]
nlinarith [sq_sqrt (show O 1 + 2 * x from by linarith), hgel
linarith
linarith

Table 8: Proof of imo_1960_p2 from MiniF2F generated by our tactic-reward-trained model.
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import Mathlib
import Aesop

set_option maxHeartbeats O
open BigOperators Real Nat Topology Rat

theorem imo_1960_p2 (x : \mathbb{R})

(hO:0 1+2x*x) (h1: (1-Real.sqrt (1 +2 *x)) ~ 2 0)
(h.2 : 4 *x~ 2/ (1 -Real.sqrt (1 + 2 *x x)) ~ 2 < 2 *xx + 9)
-(1 /2 x x<45/ 8 := by

have h_ 3 : 0 < (1 - Real.sqrt (1 + 2 * x)) ~ 2 := by positivity
have h_ 4 : 0 Real.sqrt (1 + 2 * x) := Real.sqrt_nonneg _
have h .5 : 0 1 + 2 * x := by linarith
have h_6 : Real.sqrt (1 + 2 *x x) 1 + x := by
rw [Real.sqrt_le_iff]
constructor
4 linarith
4 nlinarith
have h 7 : 4 *x x = 2 / (1 - Real.sqrt (1 + 2 *x x)) = 2< 2 *x + 9

by assumption

have h. 8 : -(1 / 2) x := by
rw [div_1t_iff h_3] at h_7
nlinarith

have h_ 9 : x < 45 / 8 := by

rw [div_1t_iff h_3] at h_7

nlinarith

xact h_8, h_9

assumption

assumption

assumption

assumption

assumption

assumption

assumption

assumption

assumption

AANANANAANAANANAAND

VVVVVVYVYVYV

Table 9: Proof of imo_1960_p2 from MiniF2F generated by the baseline STP model.

import Mathlib

open Topology Filter Real Complex TopologicalSpace Finset
open scoped BigOperators

theorem exercise_1_14
(z : \mathbb{C}) (h : abs z = 1)

(abs (1 +2)) = 2+ (abs (1 - 2)) -~ 2 =4 :=by
rw [Complex.normSq_eq_abs, Complex.normSq_eq_abs]
simp [Complex.normSq_add, Complex.normSq_sub, h]
ring_nf
<;> simp [h, Complex.normSq_eq_abs]
<;> ring_nf

Table 10: Proof of exercise_1_14 from ProofNet generated by our tactic-reward-trained model.
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import Mathlib

open Topology Filter Real Complex TopologicalSpace Finset
open scoped BigOperators

theorem exercise_1_14
(z : \mathbb{C}) (h : abs z = 1)
(abs (1 +2)) - 2+ (abs (1 - 2)) -~ 2=4 :=by
have h 0 : abs z =~ 2 = 1 := by simp [h]
simp [pow_two, abs_add, abs_sub, h_0]
ring_nf
simp_all [sq_abs]

Table 11: Proof of exercise_1_14 from ProofNet generated by the baseline STP model.
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I Results on Return-based Advantage

Model Model Size Sample Budget MiniF2F - Test ProofNet - Test

Return 7B 32 55.3% +0.4 181% +0.3
64 57.5% + 0.2 18.6% + 0.3

Outcome+Tactic RL (ours) 7B 32 571% + 0.8 18.6% + 0.3
64 59.2% +£0.5 19% +0.3

Table 12: Ablation study on reward strategies for return-based advantage.

@ o, ) ©

0102 260.0

—— Outcome + Tactic Advantage — Outcome + Tactic Advantage —— Outcome + Tactic Advantage
Return 0.100 Return 257.5 Return
255.0
0.098 g S

4 A
f

0.088 2400
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 10 150 200 250 300 350 400
Global Step Global Step Global Step

0.096

Entropy

Outcome Reward

Mean Completion Length

Figure 4: Training dynamics showing (a) outcome reward,(b) entropy, and (c) mean of response
length during reinforcement learning in our method and return-based method.
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J Failure case and limitation of our method

import Mathlib
import Aesop

set_option maxHeartbeats O
open BigOperators Real Nat Topology Rat

theorem imo_2019_pl (f : \Z \Z) :

(\forall ab, f (2*xa) +2xfb=fFf( (a+b)))

\n \iff (\forall z, f z = 0)

\n (\exists c, \forall z, f z = 2 * z + c) := by
constructor
intro h
intro z
have
have
have
have
have
have
have
have
have
simp
norm_num at
omega
intro h
intro a b
have h_1 :
have h_ 2 := h b
have h_3 h (a + b)
cases' h_1 with h_1 h_1 <;> cases' h_2 with h_ 2 h_2
\n <;> cases' h_3 with h_3 h_3 <;> simp_all
<;> omega

(=== = N = g = A = =2
O OO~NOOdWN =

[ I | (I | | | Y | [

(= =g === gl = = g = - - =3

[
ct1
(=3

P NNFPLONNRE P OO
SENMNNNR,ORORO

h (2 * a)

Table 13: Proof of imo_2019_p1 in MiniF2f generated by our tactic-reward-trained model.

Consider a function f : Z — Z satisfying

Va,b € Z, fa)+2f(b) = f(fla+b)).

The task is to prove that necessarily one of the following holds:

(i) Vz€Z, f(2) =0,0r
(ii)) 3c€Z,Vz € Z, f(2) =2z+c.

Our model first introduced the assumption
h: Va,beZ, f(2a) +2 f(b) = f(f(a+1D)),

and then instantiated it at several concrete pairs to create hypotheses h; (e.g., b1 = h(0,0),
hs := h(0,1), ...). After some local simplification steps (e.g., simp, norm_num), it attempted to
close the goal using the omega tactic, a decision procedure for Presburger arithmetic (linear integer
arithmetic).

However, the omega call produced the first Lean error. While our method correctly assigns the ds
penalty to this failing omega tactic under first-error propagation, it does not penalize the preceding
tactics (intro, have, simp) because they elaborate successfully and thus appear locally valid. In
other words, although introducing h and instantiating h; is not logically incorrect, this route is
strategically unproductive for this problem: the remaining goal still involves quantifiers, disjunction,

21



and an uninterpreted function f, which lie outside omega’s theory. Consequently, our current scheme
only punishes the terminal failing step and fails to capture that the earlier (locally successful) steps
did not make meaningful progress toward solving the global goal.

K Large Language Model Usage

In preparing this manuscript, we made limited use of large language models strictly for writing
assistance. Specifically, we used ChatGPT-5 and Gemini-2.5 to improve grammar, enhance clarity
of expression, and polish the overall presentation.
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