

000 001 002 003 004 005 RRNCO: TOWARDS REAL-WORLD ROUTING WITH 006 NEURAL COMBINATORIAL OPTIMIZATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 The practical deployment of Neural Combinatorial Optimization (NCO) for Vehi-
029 cle Routing Problems (VRPs) is hindered by a critical sim-to-real gap. This gap
030 stems not only from training on oversimplified Euclidean data but also from node-
031 based architectures incapable of handling the node-and-edge-based features with
032 correlated asymmetric cost matrices, such as those for real-world distance and
033 duration. We introduce RRNCO, a novel architecture specifically designed to ad-
034 dress these complexities. RRNCO’s novelty lies in two key innovations. First, its
035 Adaptive Node Embedding (ANE) efficiently fuses spatial coordinates with real-
036 world distance features using a learned contextual gating mechanism. Second, its
037 Neural Adaptive Bias (NAB) is the first mechanism to jointly model asymmetric
038 distance, duration, and directional angles, enabling it to capture complex, realis-
039 tic routing constraints. Moreover, we introduce a new VRP benchmark grounded
040 in real-world data crucial for bridging this sim-to-real gap, featuring asymmet-
041 ric distance and duration matrices from 100 diverse cities, enabling the training
042 and validation of NCO solvers on tasks that are more representative of practical
043 settings. Experiments demonstrate that RRNCO achieves state-of-the-art perfor-
044 mance on this benchmark, significantly advancing the practical applicability of
045 neural solvers for real-world logistics.
046

047 1 INTRODUCTION

048 Vehicle routing problems (VRPs) are combinatorial optimization (CO) problems that represent foun-
049 dational challenges in logistics and supply chain management, directly impacting operations across
050 diverse sectors, including last-mile delivery services, disaster response management, and urban
051 mobility. These NP-hard optimization problems require determining optimal routes for a fleet of
052 vehicles while satisfying various operational constraints. While several traditional methods have
053 been developed over decades (Laporte & Nobert, 1987; Vidal, 2022; Wouda et al., 2024; Perron &
054 Furnon, 2023; Applegate et al., 2003; Wouda & Lan, 2023), these often face challenges in real-world
055 applications. Their computational complexity makes them impractical for large-scale and real-time
056 applications. Moreover, they often require careful parameter tuning, problem-specific adaptations,
057 significant domain expertise, and lengthy development. With the global logistics market exceeding
058 the 10 trillion USD mark in 2025 (Research and Markets, 2024), improvements in routing efficiency
059 can yield substantial cost savings and environmental benefits.

060 Neural Combinatorial Optimization (NCO) has emerged as a promising paradigm for solving CO
061 problems such as the VRP (Bengio et al., 2021; Wu et al., 2024a). By automatically learning heuris-
062 tics directly from data, i.e., by using Reinforcement Learning (RL), NCO approaches for VRPs can
063 potentially overcome the limitations of traditional methods by providing efficient solutions without
064 requiring extensive domain expertise and by providing more scalable solutions (Kool et al., 2019;
065 Zhou et al., 2023). Recent advances in NCO have demonstrated impressive results on synthetic
066 VRP instances, suggesting the potential for learning-based approaches to achieve significant impact
067 in real-world logistics optimization (Kwon et al., 2020; Luo et al., 2024; Ye et al., 2024b; Hottung
068 et al., 2025).

069 However, while real-world VRPs encompass various dynamic and operational complexities, the
070 transition from synthetic to practical applications faces a primary topological challenge.

054 Firstly, most existing NCO research primarily relies on simplified synthetic datasets for both training
 055 and testing that fail to capture **the foundational asymmetries of real-world road networks**, particu-
 056 larly asymmetric travel times and distances arising from road networks with diverse conditions
 057 (Osaba, 2020; Thyssens et al., 2023). Hence, a comprehensive framework for real-world data gen-
 058 eration is needed to bridge this gap. Secondly, most current NCO architectures are based on the
 059 node-based transformer paradigm (Vaswani et al., 2017) and, as such, are not designed to effectively
 060 and efficiently embed the rich edge features and structural information present in real-world routing
 061 problems, limiting their practical applicability (Kwon et al., 2021). A new neural approach capable
 062 of effectively encoding information such as asymmetric durations and distances is thus needed to
 063 bridge the sim-to-real gap.

064 Our Real Routing NCO (RRNCO) bridges
 065 the critical **topological gap** between simplified
 066 **NCO research and real-world routing applica-**
 067 **tions**—as illustrated in Fig. 1—through archi-
 068 **ctectural innovations that specifically target the**
 069 **asymmetric nature of practical routing prob-**
 070 **lems while serving as an extensible foundation**
 071 **for complex environments.** We make two fun-
 072 **damental contributions.** First, on the model-
 073 **ing side, we introduce a novel neural architec-**
 074 **ture with two key technical innovations: (i) an**
 075 **Adaptive Node Embedding (ANE)** that dy-
 076 **namically fuses coordinates and distance in-**
 077 **formation via learned contextual gating and**
 078 **probability-weighted sampling; and (ii) a Neu-**
 079 **ral Adaptive Bias (NAB), the first mechanism**
 080 **to jointly model asymmetric distance and dura-**
 081 **tion matrices within a deep routing framework, guid-**
 082 **ing our Adaptation Attention Free Module (AAFM).** To validate our approach, we construct a com-
 083 **prehensive benchmark dataset from 100 diverse cities, featuring real-world asymmetric distance and**
 084 **duration matrices from OpenStreetMap (OpenStreetMap contributors, 2025).**

085 **Our contributions:** (1) A novel NCO architecture (RRNCO) with ANE and NAB to natively handle
 086 real-world routing asymmetries. (2) An extensive, open-source VRP dataset from 100 cities with
 087 asymmetric matrices. (3) State-of-the-art empirical results on realistic VRP instances. (4) Open-
 088 source code and data to foster reproducible research.

089 2 RELATED WORKS

090 **Neural Combinatorial Optimization (NCO)** Neural approaches to combinatorial optimization
 091 learn heuristics directly from data, reducing reliance on domain expertise (Bengio et al., 2021).
 092 Methods are typically classified as construction or improvement. Construction methods sequen-
 093 tially generate solutions, pioneered by Pointer Networks (Vinyals et al., 2015) and now led by
 094 Transformer-based autoregressive models (Kool et al., 2019; Kwon et al., 2020) for their strong abil-
 095 ity to capture complex structures. Non-autoregressive variants predict edge-probability heatmaps in
 096 a single pass (Joshi et al., 2020), with later work enhancing performance via stronger models and
 097 search strategies (Ye et al., 2024a; Sun & Yang, 2024; Xia et al., 2024; Kim et al., 2025). Improve-
 098 ment methods iteratively refine an initial solution through learned operators or policies (Hottung &
 099 Tierney, 2019; Ma et al., 2023; Hottung et al., 2021; Son et al., 2023; Li et al., 2023; Chalumeau
 100 et al., 2023; Kim et al., 2021; Ma et al., 2021; Ye et al., 2024b; Zheng et al., 2024). Our work
 101 targets autoregressive construction, striking an effective balance between speed and solution quality
 102 for real-world logistics.

103 **Vehicle Routing Problem (VRP) Datasets** A significant gap exists between NCO research and
 104 real-world applicability, largely due to the datasets used for training and evaluation. For decades,
 105 the community has relied on established benchmarks like TSPLIB (Reinelt, 1991) and CVRPLIB
 106 (Lima et al., 2014). While invaluable for standardization, these datasets are typically based on
 107 symmetric Euclidean distances, assuming travel costs are equal in both directions ($d_{ij} = d_{ji}$). This
 108 simplification fails to capture the inherent asymmetry of real road networks caused by one-way

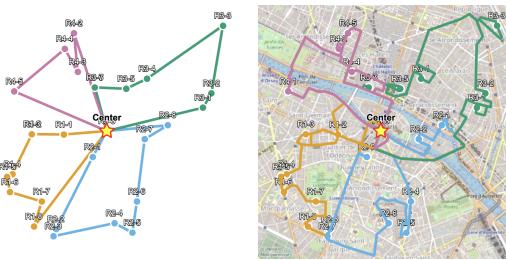


Figure 1: [Left] Most NCO works consider simplified Euclidean settings. [Right] Our work models real-world instances where durations and travel times can be asymmetric.

streets, traffic patterns, and turn restrictions (Osaba, 2020). Some recent works have attempted to create more realistic datasets (Duan et al., 2020; Ali & Saleem, 2024), but they suffer from critical limitations for NCO research: they often rely on proprietary, commercial APIs, are static and cannot be generated online (a key requirement for data-hungry RL agents), can be slow to generate, and are not always publicly released. Furthermore, they often omit crucial information like travel *durations*, which can be decoupled from distance in real traffic. Our work directly addresses these gaps by providing a fast, open-source, and scalable data generation framework that produces asymmetric distance and duration matrices from real-world city topologies.

NCO for VRPs The application of NCO to VRPs has evolved from early adaptations of recurrent models (Nazari et al., 2018) to the now-dominant Transformer-based encoder-decoder architectures (Kool et al., 2019; Kwon et al., 2020; Kim et al., 2022; Luo et al., 2023; Zhou et al., 2024b; Huang et al., 2025; Luo et al., 2025; Berto et al., 2025b). These models have demonstrated impressive performance but are fundamentally node-centric; their attention mechanisms operate on node embeddings, making it non-trivial to incorporate rich structural information contained in edge features like a full distance matrix. This limitation is a primary contributor to the sim-to-real gap. To address this, some works have explored encoding edge information. GCN-based approaches (Duan et al., 2020) and attention via row and column embeddings of MatNet (Kwon et al., 2021) introduced early ways to handle asymmetry, with GOAL (Drakulic et al., 2024) incorporating edge data with cross-attention. While promising, existing methods typically handle only a single cost matrix (e.g., distance) and fail to leverage the correlated modalities of real-world routing (distance, duration, geometry). Efficiently fusing multiple asymmetric edge features remains an open challenge. Our model, RRNCO, addresses this with Adaptive Node Embeddings (ANE) and a Neural Adaptive Bias (NAB) mechanism that learns a unified routing context from distance, duration, and angle.

3 PRELIMINARIES

3.1 VEHICLE ROUTING PROBLEMS

Vehicle Routing Problems (VRPs) are a class of combinatorial optimization problems that aim to find optimal routes for a fleet of vehicles serving a set of customers by minimizing a cost function. The simplest variant, the Traveling Salesman Problem (TSP), involves finding a minimum-cost Hamiltonian cycle in a complete graph $G = (V, E)$ with $n = |V|$ locations. Real-world applications typically extend this basic formulation with operational constraints such as vehicle capacity limits (CVRP) or time windows for service (VRPTW) (Vidal et al., 2014). These problems are characterized by their input structure, consisting of node and edge features. Node features typically include location coordinates and customer demands, while edge features capture the relationships between locations. In real-world settings, these relationships are represented by distance and duration matrices, $D, T \in \mathbb{R}^{n \times n}$, where d_{ij} and t_{ij} denote the distance and travel time from location i to j , respectively. Previous NCO approaches typically rely on Euclidean distances computed directly from location coordinates, avoiding the use of distance matrices entirely. While this simplification works for synthetic problems with symmetric distances ($d_{ij} = d_{ji}, t_{ij} = t_{ji}$), real-world instances are inherently asymmetric due to factors such as traffic patterns and road network constraints. This asymmetry, combined with the problem's combinatorial nature, presents unique challenges for learning-based approaches, particularly in effectively encoding and processing the rich structural information present in edge features.

3.2 SOLVING VRPs WITH GENERATIVE MODELS

VRPs can be solved as a sequential decision process, and deep generative models can be learned to efficiently do so (Wu et al., 2024b). Given a problem instance \mathbf{x} containing both node features (such as coordinates, demands, and time windows) and edge features (distance and duration matrices D, T), we construct solutions through autoregressive generation. Our model iteratively selects the next location to visit based on the current partial route until all locations are covered. This construction process naturally aligns with how routes are executed in practice and allows the model to maintain feasibility constraints throughout generation. In this work, we consider the encoder-decoder framework as in Kool et al. (2019). Formally, let $\theta = \{\theta_f, \theta_g\}$ denote the combined parameters of our encoder and decoder networks. We learn a policy π_θ that maps input instances to solutions

162 through:

163

$$\mathbf{h} = f_{\theta_f}(\mathbf{x}), \quad (1a)$$

164

$$\pi_{\theta}(\mathbf{a}|\mathbf{x}) = \prod_{t=1}^T g_{\theta_g}(a_t|a_{t-1}, \dots, a_1, \mathbf{h}), \quad (1b)$$

165

166 where \mathbf{h} represents the learned latent problem embedding, a_t is the location selected at step t , and a_{t-1}, \dots, a_1 denotes the partial route constructed so far. The architecture choices for the encoding process (Eq. (1a)) and decoding (Eq. (1b)) via f and g , respectively, are paramount to ensure high solution quality.

167

173 3.3 TRAINING VIA REINFORCEMENT LEARNING

174

175 We frame the learning problem in a reinforcement learning (RL) context, which enables data-free
176 optimization by automatically discovering heuristics. The policy parameters θ are optimized to
177 maximize the expected reward:

178

179

$$\max_{\theta} J(\theta) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \mathbb{E}_{\mathbf{a} \sim \pi_{\theta}(\cdot|\mathbf{x})} [R(\mathbf{a}, \mathbf{x})], \quad (2)$$

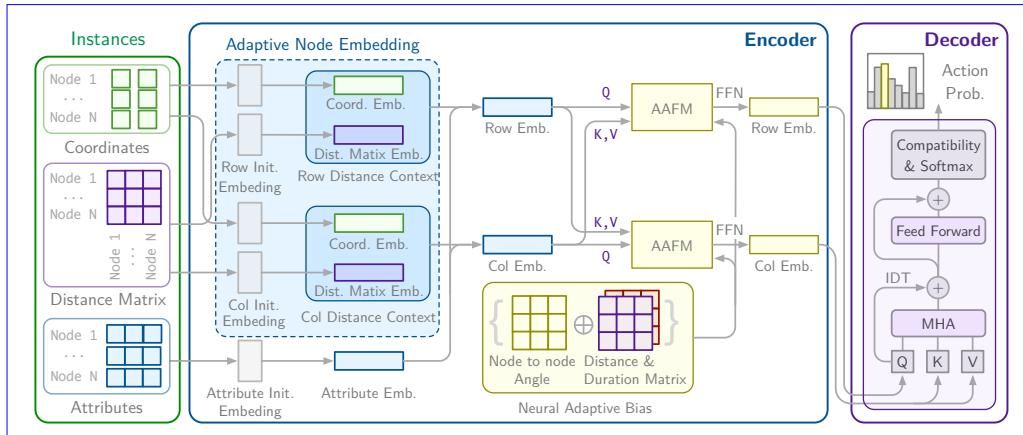
180

181 where \mathcal{D} is the problem distribution we sample and $R(\mathbf{a}, \mathbf{x})$ is the reward (i.e., the negative cost) of
182 a solution. Policy gradient methods can be employed to solve this problem, such as REINFORCE
183 with the variance-reducing POMO baseline (Kwon et al., 2020). Due to RL’s exploratory, i.e., trial
184 and error, nature, many samples are required. Thus, efficient generation and sampling of problem
185 instances \mathbf{x} is essential to ensure training efficiency.

186

187 4 REAL-WORLD ROUTING MODEL

188



204 Figure 2: Our proposed RRNCO model for real-world routing.

205

206 Our model addresses real-world routing challenges where conventional methods struggle with asym-
207 metric attributes like travel times and distances. We introduce two key innovations: (1) Adaptive
208 Node Embedding with probability-weighted distance sampling - efficiently integrating spatial co-
209 ordinates with asymmetric distances through learned contextual gating, avoiding full distance ma-
210trix processing while preserving asymmetric relationships, and (2) Neural Adaptive Bias (NAB) -
211 the first learnable mechanism to jointly model asymmetric distance and duration matrices in deep
212 routing architectures, replacing hand-crafted heuristics in AAFM (Zhou et al., 2024a) with data-
213 driven contextual biases. The model uses an encoder-decoder architecture where the encoder builds
214 comprehensive node representations and the decoder generates solutions sequentially, with our
215 contributions focusing on enhancing the encoder’s real-world routing capabilities while maintaining
efficiency.

216 4.1 ENCODER
217218 4.1.1 ADAPTIVE NODE EMBEDDING
219

220 The Adaptive Node Embedding module synthesizes distance-related features with node characteristics
221 to create comprehensive node representations. A key aspect of our approach is effectively
222 integrating two complementary spatial features: distance matrix information and coordinate-based
223 relationships. For distance matrix information, we employ a selective sampling strategy that cap-
224 tures the most relevant node relationships while maintaining computational efficiency. Given a
225 distance matrix $\mathbf{D} \in \mathbb{R}^{N \times N}$, we sample k nodes for each node i according to probabilities inversely
226 proportional to their distances:

$$227 \quad p_{ij} = \frac{1/d_{ij}}{\sum_{j=1}^N 1/d_{ij}} \quad (3)$$

228 where d_{ij} represents the distance between nodes i and j . The sampled distances are then transformed
229 into an embedding space through a learned linear projection:

$$231 \quad \mathbf{f}_{\text{dist}} = \text{Linear}(\mathbf{d}_{\text{sampled}}) \quad (4)$$

233 Coordinate information is processed separately to capture geometric relationships between nodes.
234 For each node, we first compute its spatial features based on raw coordinates. These features are
235 then projected into the same embedding space through another learned linear transformation:

$$236 \quad \mathbf{f}_{\text{coord}} = \text{Linear}(\mathbf{x}_{\text{coord}}) \quad (5)$$

238 To effectively combine these complementary spatial representations, we employ a Contextual Gating
239 mechanism:

$$240 \quad \mathbf{h} = \mathbf{g} \odot \mathbf{f}_{\text{coord}} + (1 - \mathbf{g}) \odot \mathbf{f}_{\text{dist}} \quad (6)$$

241 where \odot is the Hadamard product and \mathbf{g} represents learned gating weights determined by a multi-
242 layer perceptron (MLP):

$$243 \quad \mathbf{g} = \sigma(\text{MLP}([\mathbf{f}_{\text{coord}}; \mathbf{f}_{\text{dist}}])) \quad (7)$$

244 This gating mechanism allows the model to adaptively weigh the importance of coordinate-based
245 and distance-based features for each node, enabling more nuanced spatial representation. To han-
246 dle asymmetric routing scenarios effectively, we follow the approach introduced in (Kwon et al.,
247 2021) and generate dual embeddings for each node: row embeddings \mathbf{h}^r and column embeddings
248 \mathbf{h}^c . These embeddings are then combined with other node characteristics (such as demand or time
249 windows) through learned linear transformations to produce the combined node representations:

$$250 \quad \mathbf{h}_{\text{comb}}^r = \text{MLP}([\mathbf{h}^r; \mathbf{f}_{\text{node}}]) \quad (8)$$

$$251 \quad \mathbf{h}_{\text{comb}}^c = \text{MLP}([\mathbf{h}^c; \mathbf{f}_{\text{node}}]) \quad (9)$$

253 where \mathbf{f}_{node} represents additional node features such as demand or time windows, which are trans-
254 formed by an additional linear layer. This dual embedding approach allows the RRNCO model to
255 better capture and process asymmetric relationships in real-world routing scenarios.

256 4.1.2 NEURAL ADAPTIVE BIAS FOR AAFM
257

258 Having established comprehensive node representations through our adaptive embedding approach,
259 RRNCO employs an [Adaptation](#) Attention-Free Module (AAFM) based on Zhou et al. (2024a) to
260 model complex inter-node relationships. The AAFM operates on the dual representations $\mathbf{h}_{\text{comb}}^r$
261 and $\mathbf{h}_{\text{comb}}^c$ to capture asymmetric routing patterns through our novel Neural Adaptive Bias (NAB)
262 mechanism. The AAFM operation is defined as:

$$263 \quad \text{AAFM}(Q, K, V, A) = \sigma(Q) \odot \frac{\exp(A) \cdot (\exp(K) \odot V)}{\exp(A) \cdot \exp(K)} \quad (10)$$

266 where $Q = \mathbf{W}^Q \mathbf{h}_{\text{comb}}^r$, $K = \mathbf{W}^K \mathbf{h}_{\text{comb}}^c$, $V = \mathbf{W}^V \mathbf{h}_{\text{comb}}^c$, with learnable weight matrices \mathbf{W}^Q ,
267 \mathbf{W}^K , \mathbf{W}^V . While Zhou et al. (2024a) defines the adaptation bias A heuristically as $-\alpha \cdot \log(N) \cdot d_{ij}$
268 (with learnable α , node count N , and distance d_{ij}), we introduce a Neural Adaptive Bias (NAB) that
269 learns asymmetric relationships directly from data. NAB processes distance matrix \mathbf{D} , [angle matrix](#)
270 Φ with entries $\phi_{ij} = \text{arctan2}(y_j - y_i, x_j - x_i)$, and optionally duration matrix \mathbf{T} , enabling joint

270 modeling of spatial-temporal asymmetries inherent in real-world routing. Let $\mathbf{W}_D, \mathbf{W}_\Phi, \mathbf{W}_T \in \mathbb{R}^E$:
 271

$$\mathbf{D}_{emb} = \text{ReLU}(\mathbf{DW}_D)\mathbf{W}'_D \quad (11)$$

$$\mathbf{\Phi}_{emb} = \text{ReLU}(\mathbf{\Phi}\mathbf{W}_\Phi)\mathbf{W}'_\Phi \quad (12)$$

$$\mathbf{T}_{emb} = \text{ReLU}(\mathbf{TW}_T)\mathbf{W}'_T \quad (13)$$

277 We then apply contextual gating to fuse these heterogeneous information sources. When duration
 278 information is available, we employ a multi-channel gating mechanism with softmax normalization:

$$\mathbf{G} = \text{softmax} \left(\frac{[\mathbf{D}_{emb}; \mathbf{\Phi}_{emb}; \mathbf{T}_{emb}] \mathbf{W}_G}{\exp(\tau)} \right) \quad (14)$$

282 where $[\mathbf{D}_{emb}; \mathbf{\Phi}_{emb}; \mathbf{T}_{emb}] \in \mathbb{R}^{B \times N \times N \times 3E}$ is the concatenation of all embeddings, $\mathbf{W}_G \in \mathbb{R}^{3E \times 3}$
 283 is a learnable weight matrix, and τ is a learnable temperature parameter. The fused representation is
 284 computed as:

$$\mathbf{H} = \mathbf{G}_1 \odot \mathbf{D}_{emb} + \mathbf{G}_2 \odot \mathbf{\Phi}_{emb} + \mathbf{G}_3 \odot \mathbf{T}_{emb} \quad (15)$$

286 Finally, the adaptive bias matrix \mathbf{A} is obtained by projecting the fused embedding \mathbf{H} to a scalar
 287 value:

$$\mathbf{A} = \mathbf{H}\mathbf{w}_{out} \in \mathbb{R}^{B \times N \times N} \quad (16)$$

289 where $\mathbf{w}_{out} \in \mathbb{R}^E$ is a learnable weight vector. The resulting \mathbf{A} matrix serves as a learned inductive
 290 bias that captures complex asymmetric relationships arising from the interplay between distances,
 291 directional angles, and travel durations. **The Neural Adaptive Bias is then incorporated into the**
 292 **Adaptation Attention Free Module (AAFM).** Specifically, we employ the operation defined in (10)
 293 by replacing the generic matrix A with the adaptive matrix generated by NAB.

294 The Neural Adaptive Bias (NAB), applied through the Adaptation Attention Free Module (AAFM),
 295 yields final node representations h_F^r and h_F^c after l passes through AAFM. These representations
 296 result from RRNCO’s encoding process, leveraging joint modeling of distance, angle, and duration
 297 to capture complex asymmetric patterns in real-world routing networks.

299 4.2 DECODER

301 4.2.1 DECODER ARCHITECTURE

303 The decoder architecture integrates key elements from ReLD (Huang et al., 2025) and Mat-
 304 Net (Kwon et al., 2021) to autoregressively construct solutions using the dense node embeddings
 305 produced by the encoder. At each decoding step t , it takes as input the row and column node em-
 306 beddings alongside a context vector that encapsulates the current partial solution state, such as the
 307 last visited node and dynamic attributes like remaining capacity. This context serves as the query
 308 in a multi-head attention mechanism to aggregate information from the embeddings, followed by
 309 residual connections and a multi-layer perceptron to refine the query vector. The resulting query is
 310 then employed in a compatibility layer to compute selection probabilities for feasible nodes, incor-
 311 porating a negative logarithmic distance heuristic to prioritize nearby options and enhance explo-
 312 ration efficiency. This design enables our model to dynamically adapt static embeddings to evolving
 313 contexts, yielding strong performance across vehicle routing problems; for full technical details,
 314 including equations and implementation specifics, please refer to the [Appendix A](#).

315 5 REAL-WORLD VRP DATASET

317 A significant challenge in applying Neural Combinatorial Optimization (NCO) to real-world routing
 318 is the lack of realistic datasets. Most existing benchmarks rely on synthetic instances with symmet-
 319 ric, Euclidean distances, failing to capture the complexities of actual road networks, such as one-way
 320 streets and traffic-dependent travel times, which lead to asymmetric distance and duration matrices.
 321 To bridge this gap, we introduce a new, large-scale dataset for real-world VRPs. We developed a
 322 comprehensive data generation pipeline that leverages the OpenStreetMap Routing Engine (OSRM)
 323 ([OpenStreetMap contributors, 2025](#)) to create detailed topological maps for 100 diverse cities world-
 324 wide. Each map includes location coordinates along with their corresponding asymmetric distance

and duration matrices. Furthermore, we designed an efficient online subsampling method to generate a virtually unlimited number of VRP instances for training our reinforcement learning agent. This approach ensures that our model is trained on data that faithfully represents real-world routing challenges. In addition to serving as a benchmark, the dataset provides a structured basis for evaluating NCO solvers under realistic conditions and helps narrow the simulation-to-real gap, offering a useful resource for future research on practical logistics. Details of the city selection, data generation framework, and subsampling methodology are given in [Appendix B](#).

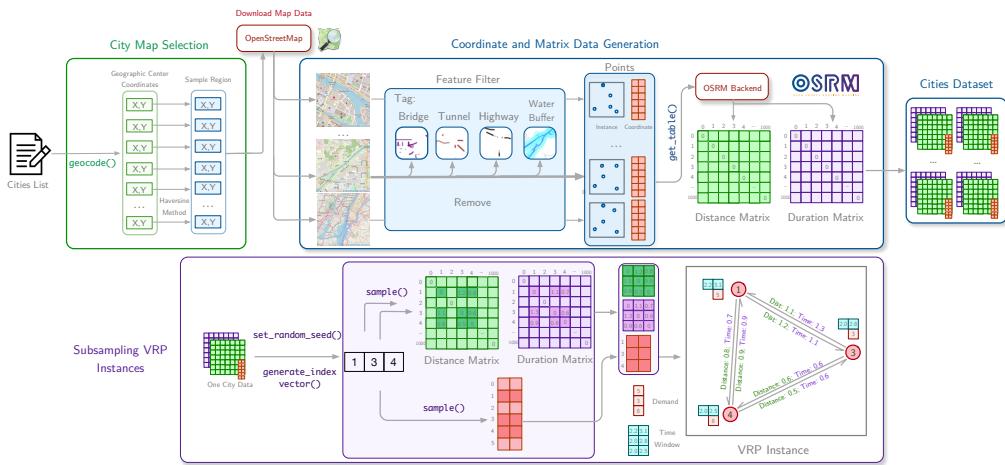


Figure 3: Overview of our RRNCO real-world data generation and sampling framework. We generate a dataset of real-world cities with coordinates and respective distance and duration matrices obtained via OSRM. Then, we efficiently subsample instances as a set of coordinates and their matrices from the city map dataset with additional generated VRP features.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Classical Baselines In the experiments, we compare three SOTA traditional optimization approaches: LKH3 ([Helsgaun, 2017](#)): a heuristic algorithm with strong performance on (A)TSP problems, PyVRP ([Wouda et al., 2024](#)): a specialized solver for VRPs with comprehensive constraint handling capabilities; and Google OR-Tools ([Perron & Didier, 2024](#)): a versatile optimization library for CO problems.

Learning-Based Methods We compare against SOTA NCO methods divided in two categories. 1) *Node-only encoding learning methods*: POMO ([Kwon et al., 2020](#)), an end-to-end multi-trajectory RL-based method based on attention mechanisms; MTPOMO ([Liu et al., 2024](#)), a multi-task variant of POMO; MVMoE ([Zhou et al., 2024b](#)), a mixture-of-experts variant of MTPOMO; RF ([Berto et al., 2025b](#)): an RL-based foundation model for VRPs; ELG ([Gao et al., 2024](#)), a hybrid of local and global policies for routing problems; BQ-NCO ([Drakulic et al., 2023](#)): a decoder-only transformer trained with supervised learning; LEHD ([Luo et al., 2023](#)): a supervised learning-based heavy decoder model and AAFM ([Zhou et al., 2024a](#)), introduced in the ICAM framework as an attention-free alternative enabling instance-conditioned adaptation. 2) *Node and edge encoding learning methods*: GCN ([Duan et al., 2020](#)): a graph convolutional network with encoding of edge information for routing; MatNet ([Kwon et al., 2021](#)): an RL-based solver encoding edge features via matrices; ReLD-MTL and ReLD-MoEL ([Huang et al., 2025](#)), which incorporate identity mapping and feed-forward decoder refinements to significantly improve cross-size and cross-problem generalization and GOAL ([Drakulic et al., 2024](#)): a generalist agent trained via supervised learning for several CO problems, including routing problems.

Training Configuration We perform training runs under the same settings for fair comparison for our model, MatNet for ATSP and ACVRP, and GCN for ACVRP. Node-only models do not

378
 379 Table 1: Performance comparison across real-world routing tasks and distributions. We report costs and gaps
 380 calculated with respect to best-known solutions (*) from traditional solvers. Horizontal lines separate traditional
 381 solvers, node-only methods, node-and-edge methods, and our RRNCO. Lower is better (↓).
 382

383 Task	384 Method	385 In-distribution			386 Out-of-distribution (city)			387 Out-of-distribution (cluster)		
		388 Cost	389 Gap (%)	390 Time	391 Cost	392 Gap (%)	393 Time	394 Cost	395 Gap (%)	396 Time
397 ATSP	LKH3	38.387	*	1.6h	38.903	*	1.6h	12.170	*	1.6h
	OR-Tools	39.685	3.381	7h	40.165	3.244	7h	12.711	4.445	7h
	POMO	51.512	34.192	10s	50.594	30.051	10s	30.051	146.926	10s
	ELG	51.046	32.976	42s	50.133	28.866	42s	23.017	89.131	42s
	BQ-NCO	55.933	45.708	25s	54.739	40.706	25s	27.872	129.022	25s
	LEHD	56.099	46.140	13s	54.811	40.891	13s	27.819	128.587	13s
	MatNet	39.915	3.981	27s	40.548	4.228	27s	12.886	5.883	27s
	GOAL	41.976	9.350	91s	42.590	9.477	91s	13.654	12.194	91s
	AAFM	45.992	19.812	151s	46.588	19.755	151s	15.211	24.987	151s
	RRNCO	39.077	1.797	22s	39.783	2.262	22s	12.450	2.301	22s
398 ACVRP	PyVRP	69.739	*	7h	70.488	*	7h	22.553	*	7h
	OR-Tools	72.597	4.097	7h	73.286	3.969	7h	23.576	4.538	7h
	POMO	85.888	23.156	16s	85.771	21.682	16s	34.179	51.549	16s
	MTPOMO	86.521	24.063	16s	86.446	22.640	16s	34.287	52.029	16s
	MVMoE	86.248	23.672	22s	86.111	22.164	22s	34.135	51.356	22s
	RF	86.289	23.731	17s	86.261	22.377	16s	34.273	51.967	16s
	ELG	85.951	23.247	67s	85.741	21.639	66s	34.027	50.873	67s
	BQ-NCO	93.075	33.462	30s	92.467	31.181	30s	40.110	77.848	30s
	LEHD	93.648	34.284	17s	93.195	32.214	17s	40.048	77.573	17s
	ReLD-MTL	88.331	26.659	16s	88.037	24.896	16s	36.169	60.373	16s
	ReLD-MoEL	88.154	26.406	16s	87.764	24.509	16s	36.137	60.231	16s
	GCN	90.546	29.836	17s	90.805	28.823	17s	34.417	52.605	17s
	MatNet	74.801	7.258	30s	75.722	7.425	30s	24.844	10.158	30s
	GOAL	84.341	20.938	104s	84.097	19.307	104s	34.318	52.166	104s
	AAFM	76.663	9.928	11s	77.811	10.389	11s	25.131	11.431	11s
	RRNCO	72.145	3.450	25s	72.999	3.562	25s	23.280	3.224	25s
407 ACVRPTW	PyVRP	118.056	*	7h	118.513	*	7h	39.253	*	7h
	OR-Tools	119.681	1.377	7h	120.147	1.379	7h	39.903	1.655	7h
	POMO	132.883	12.559	18s	132.743	12.007	17s	50.503	28.661	18s
	MTPOMO	133.135	12.773	17s	132.921	12.158	18s	50.372	28.328	18s
	MVMoE	132.871	12.549	24s	132.700	11.971	23s	50.333	28.227	24s
	RF	132.887	12.563	18s	132.731	11.997	18s	50.422	28.455	18s
	ReLD-MTL	132.722	12.423	18s	132.856	12.102	18s	51.680	31.659	18s
	ReLD-MoEL	132.594	12.314	18s	132.621	11.904	18s	51.647	31.575	18s
	GOAL	134.699	14.098	107s	135.001	13.912	107s	47.966	22.197	107s
	RRNCO	122.693	3.928	35s	123.249	3.996	35s	41.077	4.647	35s

416
 417
 418 necessitate retraining since our datasets are already normalized in the $[0, 1]^2$ coordinates ranges
 419 (with locations sampled uniformly), and we do not retrain supervised-learning models since they
 420 would necessitate labeled data. The model is trained for about 24 hours on 4× NVIDIA A100 40GB
 421 GPUs, with all training settings and train, test dataset details provided in Appendix [Section C.1](#) and
 422 Appendix [Section B.4](#).

423
424 Testing Protocol The test data consists of in-distribution evaluation for 1) *In-dist*: new instances
 425 generated from the 80 cities seen during training, 2) *OOD (city)* out-of-distribution generalization
 426 over new city maps and 3) *OOD (cluster)* out-of-distribution generalization to new location distri-
 427 butions across maps. The test batch size is 32, and a data augmentation factor of 8 is applied to all
 428 models except supervised learning-based ones, i.e., LEHD, BQ-NCO, and GOAL. All evaluations
 429 are conducted on an NVIDIA A6000 GPU paired with an Intel(R) Xeon(R) CPU @ 2.20GHz¹.
 430

431
 432 ¹Code: <https://anonymous.4open.science/r/real-routing-nco-submission/>

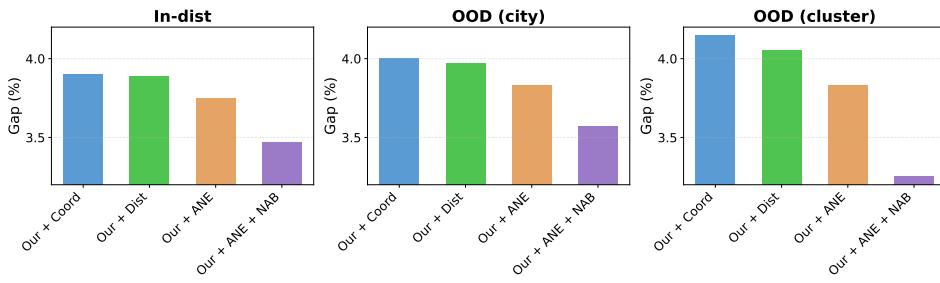


Figure 4: Study of our proposed model with different initial contexts: coordinates, distances, Adaptive Node Embedding (ANE), and Neural Adaptive Bias (NAB). ANE and NAB perform best, particularly in out-of-distribution (OOD) cases.

6.2 MAIN RESULTS

Table 1 shows the results between our and the baseline models across ATSP, ACVRP, and ACVRPTW tasks, with inference times in parentheses. The results clearly demonstrate that our method achieves state-of-the-art performance across all problem settings, consistently outperforming existing neural solvers in both solution quality and computational efficiency. Notably, unlike previous approaches that require separate models for different problem types, our method effectively handles all routing problems within a single unified framework. This key advantage highlights the model’s adaptability and scalability across diverse problem instances while maintaining strong generalization for both in-distribution and out-of-distribution scenarios in real-world settings.

6.3 ANALYSES

Ablation study on proposed components We perform an ablation study on proposed model components in [Fig. 4](#): initial contexts with coordinates, distances, and our Adaptive Node Embedding(ANE), as well as the Neural Adaptive Bias (NAB). We find ANE and NAB perform the best, particularly in out-of-distribution (OOD) cases. Remarkably, in cluster distributions, the NAB shows a relative improvement greater than 15%.

Granular ablation on NAB inputs To further investigate the contribution of each input modality to the Neural Adaptive Bias (NAB), we conduct a granular ablation study on ACVRPTW in [Table 2](#). Starting from the full model that jointly uses distance, duration, and angle matrices, we progressively remove components. The results show that each modality contributes to the final performance: removing duration increases the gap from 3.74% to 3.93% (in-distribution), and further removing angle increases it to 4.06%. The performance degradation is more pronounced in the OOD (cluster) setting, where the gap increases from 4.30% to 4.84%, demonstrating that the joint modeling of all three features is essential for robust generalization.

Table 2: **Granular ablation on NAB inputs for ACVRPTW.** We progressively remove duration and angle from the full NAB model.

Model	In-distribution		OOD (city)		OOD (cluster)	
	Cost	Gap (%)	Cost	Gap (%)	Cost	Gap (%)
PyVRP	118.056	*	118.513	*	39.253	*
RRNCO Full (D + T + Φ)	122.467	3.74	123.004	3.79	40.939	4.30
– Duration (D + Φ)	122.693	3.93	123.249	4.00	41.077	4.65
– Duration – Angle (D only)	122.849	4.06	123.364	4.09	41.151	4.84

Importance of real-world data generators We study the effect of training different models on different data generators, including the ATSP one from MatNet ([Kwon et al., 2021](#)), adding random

486
487
488 Table 3: Comparison of routing solvers and their training data generators on real-world data.
489
490
491
492
493
494
495

Method	Data Gen.	In-dist		OOD City		OOD Clust.	
		Cost	Gap%	Cost	Gap%	Cost	Gap%
LKH3	–	38.39	*	38.90	*	12.17	*
MatNet	ATSP	80.86	110.70	81.04	108.30	27.78	128.23
RRNCO	Noise	41.35	7.72	42.01	7.98	13.66	12.20
MatNet	Real	39.92	3.98	40.55	4.23	12.89	5.88
RRNCO	Real	39.08	1.80	39.78	2.26	12.45	2.30

496
497 noise to break symmetries in distance matrices, and our proposed real-world generator when testing
498 in the real world. Table 3 demonstrates our proposed real-world data generation achieves remarkable
499 improvements in both in-distribution and out-of-distribution settings.
500

501 **Generalization to stochastic VRPs** RRNCO demonstrates remarkable performance when applied
502 to real-world topologies that surpass prior works. We further evaluate the robustness of
503 RRNCO and generalizability to new settings, i.e., under stochastic and time-dependent traffic
504 conditions and conduct experiments on the recently released Stochastic Multi-period Time-dependent
505 VRP (SMTVRP) benchmark from SVRPBench (Heakl et al., 2025). We also benchmark against
506 additional traditional baselines, including Nearest Neighbor + 2-opt (NN+2opt) (Laporte & Nobert,
507 1987; Potvin & Rousseau, 1995) and Ant Colony Optimization (ACO) (Dorigo et al., 2006).

508 As shown in Table 4, RRNCO achieves the lowest cost (601.03) while maintaining full feasibility
509 and zero time window violations. Notably, OR-Tools fails to find feasible solutions for 75.8%
510 of instances within the time limit, highlighting the practical advantage of neural solvers in time-
511 constrained scenarios. These results demonstrate that RRNCO generalizes effectively to more com-
512 plex, time-dependent routing problems beyond the benchmarks used for training. For more details
513 of the dataset, baselines, and training configurations, please refer to Appendix E.

514
515 Table 4: Performance comparison on SMTVRP benchmark. Feasibility indicates the proportion of instances
516 with valid solutions. Lower cost is better.

Method	Cost	Feasibility	Runtime	TW Violations
ACO	763.52	1.00	41.3s	0
OR-Tools	610.08	0.242	1000s	45.15
NN + 2opt	969.96	1.00	10s	0
RF	602.20	1.00	0.05s	0
GOAL	1319.00	1.00	0.28s	0
RRNCO	601.03	1.00	0.20s	0

525
526
527

7 CONCLUSION

528

529 In this paper, we introduced RRNCO, a novel Neural Combinatorial Optimization architecture
530 bridging simplified benchmarks and real-world routing challenges. Our core contribution is a model
531 explicitly handling asymmetric and multi-modal travel costs through two key innovations: Adaptive
532 Node Embedding (ANE) efficiently fusing coordinates with sampled distance features, and a Neural
533 Adaptive Bias (NAB) mechanism. This NAB represents the first approach to jointly model multiple
534 asymmetric metrics—distance, duration, and directional angles—in real-world routing problems.
535 To validate our model, we constructed a large-scale dataset with realistic routing data from 100 di-
536 verse cities. This dataset provides a reproducible and diverse testbed that supports future research on
537 robust and generalizable NCO solvers. On this challenging benchmark, RRNCO achieves state-of-
538 the-art performance among NCO methods. By releasing our model and dataset, we aim to accelerate
539 progress in practical, deployable neural optimization solutions.

540
541

REPRODUCIBILITY STATEMENT

542
543
544
545
546
547

To facilitate reproducibility of our results, we provide complete access to our implementation, including dataset generators and training configurations. The source code is available at <https://anonymous.4open.science/r/real-routing-nco-submission/>. We will additionally disclose the URL of generated data and model weights on HuggingFace upon acceptance. Detailed descriptions of model architectures, dataset creation, training procedures, and experimental setups are provided in the main paper and appendix.

548

549

REFERENCES

550

551

552

553

Hina Ali and Khalid Saleem. Generating large-scale real-world vehicle routing dataset with novel spatial data extraction tool. *PLOS ONE*, 19(6):e0304422, June 2024. ISSN 1932-6203. doi: 10.1371/journal.pone.0304422.

554

555

David Applegate, Robert Bixby, Václav Chvátal, and William Cook. Concorde TSP solver. <http://www.math.uwaterloo.ca/tsp/concorde.html>, 2003.

556

557

558

559

Andrius Barauskas, Agnundefined Brilingaitundefined, Linas Bukauskas, Vaida Čeikutundefined, Alminas Čivilis, and Simonas Šaltenis. Test-data generation and integration for long-distance e-vehicle routing. *Geoinformatica*, 27(4):737–758, January 2023. ISSN 1384-6175. doi: 10.1007/s10707-022-00485-y. URL <https://doi.org/10.1007/s10707-022-00485-y>.

560

561

562

563

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a methodological tour d’horizon. *European Journal of Operational Research*, 290(2): 405–421, 2021.

564

565

566

567

568

569

570

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter Kool, Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun Kwon, Lin Xie, and Jinkyoo Park. RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2025a. URL <https://github.com/ai4co/r14co>.

571

572

573

574

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Junyoung Park, Kevin Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle routing problems. *Transactions on Machine Learning Research*, 2025b. ISSN 2835-8856. URL <https://openreview.net/forum?id=QzGLoaOPiY>.

575

576

577

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre Laterre, and Tom Barrett. Combinatorial optimization with policy adaptation using latent space search. *Advances in Neural Information Processing Systems*, 36:7947–7959, 2023.

578

579

580

581

Nitin R Chopde and Mangesh Nichat. Landmark based shortest path detection by using a* and haversine formula. *International Journal of Innovative Research in Computer and Communication Engineering*, 1(2):298–302, 2013.

582

583

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. *IEEE Computational Intelligence Magazine*, 1(4):28–39, 2006. doi: 10.1109/MCI.2006.329691.

584

585

586

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisimulation quotienting for generalizable neural combinatorial optimization. *arXiv preprint arXiv:2301.03313*, 2023.

587

588

589

Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial optimization agent learner. *arXiv preprint arXiv:2406.15079*, 2024.

590

591

592

593

Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, and Yinghui Xu. Efficiently Solving the Practical Vehicle Routing Problem: A Novel Joint Learning Approach. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 3054–3063, Virtual Event CA USA, August 2020. ACM. ISBN 978-1-4503-7998-4. doi: 10.1145/3394486.3403356.

594 Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
 595 solvers for vehicle routing problems via ensemble with transferrable local policy. *IJCAI*, 2024.
 596

597 Aldy Gunawan, Graham Kendall, Barry McCollum, Hsin Vonn Seow, and Lai Soon Lee. Vehicle
 598 routing: Review of benchmark datasets. *Journal of the Operational Research Society*, 72:1794 –
 599 1807, 2021. URL <https://api.semanticscholar.org/CorpusID:233916306>.

600 Ahmed Heakl, Yahia Salaheldin Shaaban, Martin Takac, Salem Lahlou, and Zangir Iklassov.
 601 Srvpbench: A realistic benchmark for stochastic vehicle routing problem. *arXiv preprint*
 602 *arXiv:2505.21887*, 2025.

603 Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
 604 salesman and vehicle routing problems. *Roskilde: Roskilde University*, 12:966–980, 2017.

605 André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle
 606 routing problem. *arXiv preprint arXiv:1911.09539*, 2019.

607 André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
 608 optimization problems. *arXiv preprint arXiv:2106.05126*, 2021.

609 André Hottung, Paula Wong-Chung, and Kevin Tierney. Neural deconstruction search for vehicle
 610 routing problems. *arXiv preprint arXiv:2501.03715*, 2025.

611 Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin XU. Rethinking light decoder-based solvers
 612 for vehicle routing problems. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=4pRwkYpa2u>.

613 Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning
 614 the travelling salesperson problem requires rethinking generalization. *arXiv preprint*
 615 *arXiv:2006.07054*, 2020.

616 Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve NP-hard routing problems.
 617 *Advances in Neural Information Processing Systems*, 34:10418–10430, 2021.

618 Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging symmetry for neural
 619 combinatorial optimization. *Advances in Neural Information Processing Systems*, 35:1936–1949,
 620 2022.

621 Minsu Kim, Sanghyeok Choi, Hyeonah Kim, Jiwoo Son, Jinkyoo Park, and Yoshua Bengio. Ant
 622 colony sampling with GFlownets for combinatorial optimization. In *The 28th International Conference on Artificial Intelligence and Statistics*, 2025. URL <https://openreview.net/forum?id=kYJSAg7Try>.

623 Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! *International Conference on Learning Representations*, 2019.

624 Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
 625 Pomo: Policy optimization with multiple optima for reinforcement learning. *Advances in Neural Information Processing Systems*, 33:21188–21198, 2020.

626 Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix
 627 encoding networks for neural combinatorial optimization. *Advances in Neural Information Processing Systems*, 34:5138–5149, 2021.

628 Gilbert Laporte and Yves Nobert. Exact algorithms for the vehicle routing problem. In *North-Holland mathematics studies*, volume 132, pp. 147–184. Elsevier, 1987.

629 Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
 630 to gradient search in testing for combinatorial optimization. *Advances in Neural Information Processing Systems*, 36:50020–50040, 2023.

631 Ivan Lima, Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Anand Subramanian,
 632 and Thibaut Vidal. CVRPLIB - capacitated vehicle routing problem library. <http://vrp.galgos.inf.puc-rio.br/>, 2014.

648 Fei Liu, Xi Lin, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Multi-task learning for routing
 649 problem with cross-problem zero-shot generalization. *arXiv preprint arXiv:2402.16891*, 2024.
 650

651 Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
 652 heavy decoder: Toward large scale generalization. *Advances in Neural Information Processing
 653 Systems*, 36:8845–8864, 2023.

654 Fu Luo, Xi Lin, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang. Self-improved
 655 learning for scalable neural combinatorial optimization. *arXiv preprint arXiv:2403.19561*, 2024.
 656

657 Fu Luo, Xi Lin, Yaxin Wu, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang.
 658 Boosting neural combinatorial optimization for large-scale vehicle routing problems. In *The Thir-
 659 teenth International Conference on Learning Representations*, 2025.

660 Dennis Luxen and Christian Vetter. Real-time routing with openstreetmap data. In *Proceedings of
 661 the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information
 662 Systems, GIS '11*, pp. 513–516, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-1031-
 663 4. doi: 10.1145/2093973.2094062. URL [http://doi.acm.org/10.1145/2093973.
 664 2094062](http://doi.acm.org/10.1145/2093973.2094062).

665 Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
 666 Learning to iteratively solve routing problems with dual-aspect collaborative transformer. *Ad-
 667 vances in Neural Information Processing Systems*, 34:11096–11107, 2021.
 668

669 Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible re-
 670 gions of routing problems with flexible neural k-opt. *Advances in Neural Information Processing
 671 Systems*, 36:49555–49578, 2023.

672 Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takáć. Reinforcement
 673 learning for solving the vehicle routing problem. *Advances in neural information processing
 674 systems*, 31, 2018.

675 OpenStreetMap contributors. Openstreetmap database [data set]. [https://www.
 676 openstreetmap.org](https://www.openstreetmap.org), 2025. Accessed: 2025-02-06.

677 Eneko Osaba. Benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem with
 678 Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths. *Data in Brief*, 29:
 679 105142, January 2020. ISSN 2352-3409. doi: 10.1016/j.dib.2020.105142.

680 Laurent Perron and Frédéric Didier. CP-SAT, 2024. URL [https://developers.google.
 681 com/optimization/cp/cp_solver/](https://developers.google.com/optimization/cp/cp_solver/).

682 Laurent Perron and Vincent Furnon. OR-Tools. Google, 2023.

683 Jean-Yves Potvin and Jean-Marc Rousseau. An exchange heuristic for routing problems with time
 684 windows. *Journal of the Operational Research Society*, 46(12):1433–1446, 1995.

685 Ao Qu and Cathy Wu. Revisiting the correlation between simulated and field-observed conflicts
 686 using large-scale traffic reconstruction. *Accident Analysis & Prevention*, 210:107808, 2025.

687 Gerhard Reinelt. TSPLIB—a traveling salesman problem library. *INFORMS Journal on Computing*,
 688 3(4):376–384, 1991. doi: 10.1287/ijoc.3.4.376. URL <https://pubsonline.informs.org/doi/10.1287/ijoc.3.4.376>.

689 Research and Markets. Size of the global logistics industry from 2018 to 2023, with forecasts until
 690 2028 (in trillion u.s. dollars). [https://www.statista.com/statistics/943517/
 691 logistics-industry-global-cagr/](https://www.statista.com/statistics/943517/logistics-industry-global-cagr/), 2024. Accessed: January 22, 2025. The forecast
 692 is based on a 2023 market size of approximately \$9.41 trillion and a CAGR of 5.6%, which
 693 implies an estimated global industry value of roughly \$10.5 trillion in 2025.

694 Jiwoo Son, Minsu Kim, Hyeonah Kim, and Jinkyoo Park. Meta-sage: scale meta-learning scheduled
 695 adaptation with guided exploration for mitigating scale shift on combinatorial optimization. In
 696 *International Conference on Machine Learning*, pp. 32194–32210. PMLR, 2023.

702 Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
 703 *Advances in Neural Information Processing Systems*, 36, 2024.

704

705 Daniela Thyssens, Tim Dernedde, Jonas K Falkner, and Lars Schmidt-Thieme. Routing arena: A
 706 benchmark suite for neural routing solvers. *arXiv preprint arXiv:2310.04140*, 2023.

707

708 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 709 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information*
 710 *processing systems*, 30, 2017.

711

712 Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighborood.
 713 *Computers & Operations Research*, 140:105643, 2022.

714

715 Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins. A unified solution
 716 framework for multi-attribute vehicle routing problems. *European Journal of Operational Research*,
 717 234(3):658–673, 2014. ISSN 0377-2217. doi: <https://doi.org/10.1016/j.ejor.2013.09.045>.

718

719 Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. *Advances in neural information*
 720 *processing systems*, 28, 2015.

721

722 Fahui Wang and Yanqing Xu. Estimating o-d travel time matrix by google maps api: implementa-
 723 tion, advantages, and implications. *Annals of GIS*, 17(4):199–209, 2011.

724

725 Niels A Wouda and Leon Lan. Alns: A python implementation of the adaptive large neighbourhood
 726 search metaheuristic. *Journal of Open Source Software*, 8(81):5028, 2023.

727

728 Niels A Wouda, Leon Lan, and Wouter Kool. PyVRP: A high-performance VRP solver package.
 729 *INFORMS Journal on Computing*, 2024.

730

731 Xuan Wu, Di Wang, Lijie Wen, Yubin Xiao, Chunguo Wu, Yuesong Wu, Chaoyu Yu, Douglas L
 732 Maskell, and You Zhou. Neural combinatorial optimization algorithms for solving vehicle routing
 733 problems: A comprehensive survey with perspectives. *arXiv preprint arXiv:2406.00415*, 2024a.

734

735 Xuan Wu, Di Wang, Lijie Wen, Yubin Xiao, Chunguo Wu, Yuesong Wu, Chaoyu Yu, Douglas L
 736 Maskell, and You Zhou. Neural Combinatorial Optimization Algorithms for Solving Vehicle
 737 Routing Problems: A Comprehensive Survey with Perspectives, October 2024b.

738

739 Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking
 740 post-hoc search-based neural approaches for solving large-scale traveling salesman problems. In
 741 *Proceedings of the 41st International Conference on Machine Learning*, pp. 54178–54190, 2024.

742

743 Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. DeepACO: Neural-enhanced
 744 ant systems for combinatorial optimization. *Advances in Neural Information Processing Systems*,
 745 36, 2024a.

746

747 Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
 748 global partition and local construction for solving large-scale routing problems in real-time. *AAAI*
 749 2024, 2024b.

750

751 Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A unified
 752 neural divide-and-conquer framework for large-scale combinatorial optimization problems. *arXiv*
 753 *preprint arXiv:2407.00312*, 2024.

754

755 Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.
 756 Instance-conditioned adaptation for large-scale generalization of neural combinatorial optimiza-
 757 tion. *arXiv preprint arXiv:2405.01906*, 2024a.

758

759 Jianan Zhou, Yaxin Wu, Zhiguang Cao, Wen Song, and Jie Zhang. Collaboration! Towards robust
 760 neural methods for vehicle routing problems. 2023.

761

762 Jianan Zhou, Zhiguang Cao, Yaxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. MV-
 763 MoE: Multi-task vehicle routing solver with mixture-of-experts. In *International Conference on*
 764 *Machine Learning*, 2024b.

APPENDIX

A DETAILED MODEL DECODER ARCHITECTURE

The decoder architecture combines key elements from the ReLD and MatNet to effectively process the dense node embeddings generated by the encoder and construct solutions for vehicle routing problems. At each decoding step t , the decoder takes as input the row and column node embeddings (h_F^r, h_F^c) produced by the encoder and a context vector h_c . The composition of h_c adapts to the problem type. For VRP variants (ACVRP and ACVRPTW), the context relies on the last visited node and the dynamic state. In contrast, for ATSP, we additionally include the embedding of the first node a_0 to explicitly anchor the tour's origin. Formally, the context vector is defined as:

$$h_c = \begin{cases} [h_{a_0}^r, h_{a_{t-1}}^r, D^t] \in \mathbb{R}^{2d_h + d_{\text{attr}}} & \text{for ATSP,} \\ [h_{a_{t-1}}^r, D^t] \in \mathbb{R}^{d_h + d_{\text{attr}}} & \text{for ACVRP and ACVRPTW.} \end{cases} \quad (17)$$

where $D^t \in \mathbb{R}^{d_{\text{attr}}}$ represents the dynamic features derived from the state s^t . The specific contents of D^t are tailored to the constraints of each problem variant: for ACVRP, D^t consists of the **current load**; for ACVRPTW, it includes both the **current load** and the **current time**. In the case of ATSP, which is unconstrained by capacity or time windows, no dynamic features are utilized (i.e., $D^t = \emptyset$).

To aggregate information from the node embeddings, the decoder applies a multi-head attention (MHA) mechanism, using the context vector h_c as the query and $H^t \in \mathbb{R}^{|F^t| \times d_h}$ as the key and value:

$$h'_c = \text{MHA}(h_c, W^{\text{key}}h_F^c, W^{\text{val}}h_F^c). \quad (18)$$

The ReLD model introduces a direct influence of context by adding a residual connection between the context vector h_c and the refined query vector h'_c :

$$h'_c = h'_c + \text{IDT}(h_c), \quad (19)$$

where $\text{IDT}(\cdot)$ is an identity mapping function that reshapes the context vector to match the dimension of the query vector, allowing context-aware information to be directly embedded into the representation. To further enhance the decoder performance, an MLP with residual connections is incorporated to introduce non-linearity into the computation of the final query vector q_c :

$$q_c = h'_c + \text{MLP}(h'_c). \quad (20)$$

The MLP consists of two linear transformations with a ReLU activation function, transforming the decoder into a transformer block with a single query that can model complex relationships and adapt the embeddings based on the context. Finally, the probability p_i of selecting node $i \in F^t$ is calculated by applying a compatibility layer with a negative logarithmic distance heuristic score:

$$p_i = \left[\text{Softmax} \left(C \cdot \tanh \left(\frac{(q_c)^T W^\ell h_F^c}{\sqrt{d_h}} - \log(\text{dist}_i) \right) \right) \right]_i \quad (21)$$

where C is a clipping hyperparameter, d_h is the embedding dimension, and dist_i denotes the distance between node i and the last selected node a_{t-1} . This heuristic guides the model to prioritize nearby nodes during the solution construction process. The combination of ReLD's architectural modifications and MatNet's decoding mechanism with our rich, learned encoding enables the RRNCO model to effectively leverage static node embeddings while dynamically adapting to the current context, leading to improved performance on various vehicle routing problems.

B REAL-WORLD VRP DATASET GENERATION

Existing methodologies often require integrating massive raw datasets (e.g., traffic simulators and multi-source spatial data) – for instance, Barauskas et al. (2023) rely on simplistic synthetic benchmarks, which are either resource-intensive or lack real-world complexity (Gunawan et al., 2021).

To address these limitations, we design a three-step pipeline to create a diverse and realistic vehicle routing dataset aimed at training and testing NCO models. First, we select cities worldwide based on

810 multi-dimensional urban descriptors (morphology, traffic flow regimes, land-use mix). Second, we
 811 develop a framework using the Open Source Routing Machine (OSRM) (Luxen & Vetter, 2011) to
 812 create city maps with topological data, generating both precise location coordinates and their corre-
 813 sponding distance and duration matrices between each other. Finally, we efficiently subsample these
 814 topologies to generate diverse VRP instances by adding routing-specific features such as demands
 815 and time windows, thus preserving the inherent spatial relationships while enabling the rapid genera-
 816 tion of instances with varying operational constraints, leveraging the precomputed distance/duration
 817 matrices from the base maps. The whole pipeline is illustrated in Fig. 3.

819 B.1 CITY MAP SELECTION

820 We select a list of 100 cities distributed across six continents, with 25 in Asia, 21 in Europe, 15
 821 each in North America and South America, 14 in Africa, and 10 in Oceania. The selection empha-
 822 sizes urban diversity through multiple dimensions, including population scale (50 large cities $>1M$
 823 inhabitants, 30 medium cities 100K-1M, and 20 small cities $<100K$), infrastructure development
 824 stages, and urban planning approaches. Cities feature various layouts, from grid-based systems like
 825 Manhattan to radial patterns like Paris and organic developments like Fez, representing different geo-
 826 graphic and climatic contexts from coastal to mountain locations. We prioritized cities with reliable
 827 data availability while balancing between globally recognized metropolitan areas and lesser-known
 828 urban centers, providing a comprehensive foundation for evaluating vehicle routing algorithms un-
 829 der diverse real-world conditions. Moreover, by including cities from developing regions, we aim to
 830 advance transportation optimization research that could benefit underprivileged areas and contribute
 831 to their socioeconomic development.

833 B.2 TOPOLOGICAL DATA GENERATION FRAMEWORK

834 In the second stage, we generate base maps that capture real urban complexities. This topological
 835 data generation is composed itself of three key components: geographic boundary information, point
 836 sampling from road networks, and travel information computation.

837 **Geographic boundary information** We establish standardized 9 km^2 areas ($3 \times 3 \text{ km}$) centered on
 838 each target city’s municipal coordinates, ensuring the same spatial coverage across different urban
 839 environments. Given that the same physical distance corresponds to different longitudinal spans
 840 at different latitudes due to the Earth’s spherical geometry, we need a precise distance calculation
 841 method: thus, the spatial boundaries are computed using the Haversine spherical distance formula-
 842 tion (Chopde & Nichat, 2013):

$$843 d = 2R \cdot \arcsin \left(\sqrt{\sin^2 \left(\frac{\Delta\phi}{2} \right) + \cos(\phi_1) \cos(\phi_2) \sin^2 \left(\frac{\Delta\lambda}{2} \right)} \right) \quad (22)$$

844 where d is the distance between two points along the great circle, R is Earth’s radius (approximately
 845 6,371 kilometers), ϕ_1 and ϕ_2 are the latitudes of point 1 and point 2 in radians, $\Delta\phi = \phi_2 - \phi_1$
 846 represents the difference in latitudes, and $\Delta\lambda = \lambda_2 - \lambda_1$ represents the difference in longitudes.
 847 This enables precise spatial boundary calculations and standardized cross-city comparisons while
 848 maintaining consistent analysis areas across different geographic locations.

849 **Point sampling from road networks** Our RRNCO framework interfaces with OpenStreetMap
 850 (OpenStreetMap contributors, 2025) for point sampling. More specifically, we extract both
 851 road networks and water features within defined boundaries using `graph_from_bbox` and
 852 `features_from_bbox`². Employing boolean indexing, the sampling process implements several
 853 filtering mechanisms to filter the DataFrame and ensure point quality: we exclude bridges, tunnels,
 854 and highways to focus on accessible street-level locations and create buffer zones around water fea-
 855 tures to prevent sampling from (close to) inaccessible areas. Points are then generated through a
 856 weighted random sampling approach, where road segments are weighted by their length to ensure
 857 uniform spatial distribution.

858 ²<https://osmnx.readthedocs.io/en/stable/user-reference.html>

864 **Travel information computation** The travel information computation component leverages a lo-
 865 cally hosted Open Source Routing Machine (OSRM) server (Luxen & Vetter, 2011) to calculate
 866 real travel distances and durations between sampled points, ensuring full reproducibility of results.
 867 Through the efficient `get_table` function in our router implementation via the OSRM table ser-
 868 vice³, we can process a complete 1000x1000 origin-destination matrix within 18 seconds, making
 869 it highly scalable for urban-scale analyses. In contrast to commercial API-based approaches that
 870 require more than 20 seconds for 350x350 matrices (Ali & Saleem, 2024), our open-source local
 871 OSRM implementation achieves the same computations in approximately 5 seconds. Additionally,
 872 it enables the rapid generation of multiple instances from small datasets with negligible computa-
 873 tional cost per iteration epoch. The RRNCO framework finally processes this routing data through
 874 a normalization strategy that addresses both unreachable destinations and abnormal travel times.
 875 This step captures real-world routing complexities, including one-way streets, turn restrictions, and
 876 varying road conditions, resulting in asymmetric distance and duration matrices that reflect actual
 877 urban travel patterns. All computations are performed locally⁴, allowing for consistent results and
 878 independent verification of the analysis pipeline.

879 B.3 VRP INSTANCE SUBSAMPLING

880 From the large-scale city base maps, we generate diverse VRP instances by subsampling a set of
 881 locations along with their corresponding distance and duration matrices, allowing us to generate an
 882 effectively unlimited number of instances while preserving the underlying structure. The subsam-
 883 pling process follows another three-step procedure:

884 1. *Index Selection*: Given a city dataset containing N_{tot} locations, we define a subset size N_{sub}
 885 representing the number of locations to be sampled for the VRP instance. We generate an in-
 886 dex vector $\mathbf{s} = (s_1, s_2, \dots, s_{N_{\text{sub}}})$ where each s_i is drawn from $\{1, \dots, N_{\text{tot}}\}$, ensuring unique
 887 selections. 2. *Matrix Subsampling*: Using \mathbf{s} , we extract submatrices from the precomputed dis-
 888 tance matrix $D \in \mathbb{R}^{N_{\text{tot}} \times N_{\text{tot}}}$ and duration matrix $T \in \mathbb{R}^{N_{\text{tot}} \times N_{\text{tot}}}$, forming instance-specific ma-
 889 trices $D_{\text{sub}} = D[\mathbf{s}, \mathbf{s}] \in \mathbb{R}^{N_{\text{sub}} \times N_{\text{sub}}}$ and $T_{\text{sub}} = T[\mathbf{s}, \mathbf{s}] \in \mathbb{R}^{N_{\text{sub}} \times N_{\text{sub}}}$, preserving spatial rela-
 890 tionships among selected locations. 3. *Feature Generation*: Each VRP can have different fea-
 891 tures. For example, in Asymmetric Capacitated VRP (ACVRP) we can generate a demand vector
 892 $\mathbf{d} \in \mathbb{R}^{N_{\text{sub}} \times 1}$, such that $\mathbf{d} = (d_1, d_2, \dots, d_{N_{\text{sub}}})^\top$, where each d_i represents the demand at location
 893 s_i . Similarly, we can extend to ACVRPTW (time windows) represented as $\mathbf{W} \in \mathbb{R}^{N_{\text{sub}} \times 2}$, where
 894 $\mathbf{W} = \{(w_1^{\text{start}}, w_1^{\text{end}}), \dots, (w_{N_{\text{sub}}}^{\text{start}}, w_{N_{\text{sub}}}^{\text{end}})\}$, defining the valid service interval for each node.

895 Unlike previous methods that generate static datasets offline (Duan et al., 2020; Ali & Saleem, 2024),
 896 our RRNCO generation framework dynamically generates instances on the fly in few milliseconds,
 897 reducing disk memory consumption while maintaining high diversity. Fig. 3 illustrates the overall
 898 process, showing how a city map is subsampled using an index vector to create VRP instances
 899 with distance and duration matrices enriched with node-specific features such as demands and time
 900 windows. Our approach allows us to generate a (arbitrarily) large number of problem instances from
 901 a relatively small set of base topology maps totaling around 1.5GB, in contrast to previous works
 902 that required hundreds of gigabytes of data to produce just a few thousand instances.

904 B.4 ADDITIONAL DATA INFORMATION

906 We present a comprehensive urban mobility dataset encompassing 100 cities across diverse geo-
 907 graphical regions worldwide. For each city, we collected 1000 sampling points distributed through-
 908 out the same size urban area. The dataset includes the precise geographical coordinates (latitude and
 909 longitude) for each sampling point. Additionally, we computed and stored complete distance and
 910 travel time matrices between all pairs of points within each city, resulting in 1000x1000 matrices per
 911 city. The cities in our dataset exhibit significant variety in their characteristics, including population
 912 size (ranging from small to large), urban layout patterns (such as grid, organic, mixed, and historical
 913 layouts), and distinct geographic features (coastal, mountain, river, valley, etc.). The dataset covers
 914 multiple regions including Asia, Oceania, Americas, Europe, and Africa. This diversity in urban

915 ³<https://project-osrm.org/docs/v5.24.0/api/#table-service>

916 ⁴Our framework can also be extended to include real-time commercial map API integrations and powerful
 917 traffic forecasting to obtain better-informed routing (Wang & Xu, 2011; Qu & Wu, 2025), which we leave as
 918 future works.

environments enables comprehensive analysis of mobility patterns across different urban contexts and geographical settings. **Table 5** on the following page provides information about our topology dataset choices.

Table 5: Comprehensive City Details

City	Population	Layout	Geographic Features	Region	Split
Addis Ababa	Large	Organic	Highland	East Africa	Train
Alexandria	Large	Mixed	Coastal	North Africa	Train
Amsterdam	Large	Canal grid	River	Western Europe	Train
Almaty	Large	Grid	Mountain	Central Asia	Train
Asunción	Medium	Grid	River	South America	Test
Athens	Large	Mixed	Historical	Southern Europe	Train
Auckland	Large	Harbor layout	Isthmus	Oceania	Train
Baku	Large	Mixed	Coastal	Western Asia	Train
Bangkok	Large	River layout	River	Southeast Asia	Train
Barcelona	Large	Grid & historic	Coastal	Southern Europe	Train
Beijing	Large	Ring layout	Plains	East Asia	Train
Bergen	Small	Fjord	Coastal mountain	Northern Europe	Train
Brisbane	Large	River grid	River	Oceania	Train
Buenos Aires	Large	Grid	River	South America	Train
Bukhara	Small	Medieval	Historical	Central Asia	Test
Cape Town	Large	Mixed	Coastal&mountain	Southern Africa	Train
Cartagena	Medium	colonial	Coastal	South America	Train
Casablanca	Large	Mixed	Coastal	North Africa	Train
Chengdu	Large	colonial	Basin	East Asia	Train
Colombo	Medium	Grid	Coastal	South Asia	Train
Chicago	Large	Colonial grid	Lake	North America	Test
Christchurch	Medium	Grid	Coastal plain	Oceania	Train
Copenhagen	Large	Mixed	Coastal	Northern Europe	Train
Curitiba	Large	Grid	Highland	South America	Train
Cusco	Medium	Historic mixed	Mountain	South America	Test
Daejeon	Large	Grid	Valley	East Asia	Train
Dakar	Medium	Peninsula grid	Coastal	West Africa	Train
Dar es Salaam	Large	Coastal grid	Coastal	East Africa	Train
Denver	Large	Grid	Mountain	North America	Train
Dhaka	Large	Organic	River	South Asia	Train
Dubai	Large	Linear modern	Coastal& desert	Western Asia	Train

Continued on next page

Table 5 – *Continued from previous page*

City	Population	Layout	Geographic Features	Region	Split
Dublin	Large	Georgian grid	Coastal	Northern Europe	Train
Dubrovnik	Small	Medieval walled	Coastal	Southern Europe	Train
Edinburgh	Medium	Historic mixed	Hills	Northern Europe	Train
Fez	Medium	Medieval organic	Historical	North Africa	Test
Guatemala City	Large	Valley grid	Valley	Central America	Train
Hanoi	Large	Mixed	River	Southeast Asia	Train
Havana	Large	Colonial	Coastal	Caribbean	Train
Helsinki	Large	Grid	Peninsula	Northern Europe	Train
Hobart	Small	Mountain harbor	Harbor	Oceania	Test
Hong Kong	Large	Vertical	Harbor	East Asia	Train
Istanbul	Large	Mixed	Strait	Western Asia	Train
Kigali	Medium	Hill organic	Highland	East Africa	Train
Kinshasa	Large	Organic	River	Central Africa	Train
Kuala Lumpur	Large	Modern mixed	Valley	Southeast Asia	Test
Kyoto	Large	Historical grid	Valley	East Asia	Train
La Paz	Large	Valley organic	Mountain	South America	Train
Lagos	Large	Organic	Coastal	West Africa	Train
Lima	Large	Mixed grid	Coastal desert	South America	Train
London	Large	Radial organic	River	Northern Europe	Test
Los Angeles	Large	Grid sprawl	Coastal basin	North America	Train
Luanda	Large	Mixed	Coastal	Southern Africa	Train
Mandalay	Large	Grid	River	Southeast Asia	Train
Marrakech	Medium	Medina	Desert edge	North Africa	Train
Medellín	Large	Valley grid	Mountain	South America	Train
Melbourne	Large	Grid	River	Oceania	Train
Mexico City	Large	Mixed	Valley	North America	Test
Montevideo	Large	Grid	Coastal	South America	Train
Montreal	Large	Mixed	Island	North America	Train
Moscow	Large	Ring layout	River	Eastern Europe	Train
Mumbai	Large	Linear coastal	Coastal	South Asia	Test
Nairobi	Large	Mixed	Highland	East Africa	Train

Continued on next page

Table 5 – *Continued from previous page*

City	Population	Layout	Geographic Features	Region	Split
New Orleans	Medium	Colonial	River delta	North America	Train
New York City	Large	Grid	Coastal	North America	Train
Nouméa	Small	Peninsula	Coastal	Oceania	Test
Osaka	Large	Grid	Harbor	East Asia	Test
Panama City	Large	Coastal modern	Coastal	Central America	Train
Paris	Large	Radial	River	Western Europe	Train
Perth	Large	Coastal sprawl	Coastal	Oceania	Test
Port Moresby	Medium	Harbor sprawl	Coastal hills	Oceania	Train
Porto	Medium	Medieval organic	River mouth	Southern Europe	Train
Prague	Large	Historic grid	River	Central Europe	Train
Quebec City	Medium	Historic walled	River	North America	Test
Quito	Large	Linear valley	Highland	South America	Test
Reykjavik	Small	Modern grid	Coastal	Northern Europe	Test
Rio de Janeiro	Large	Coastal organic	Mountain& coastal	South America	Train
Rome	Large	Historical organic	Seven hills	Southern Europe	Test
Salvador	Large	Mixed historic	Coastal	South America	Train
Salzburg	Small	Medieval core	River	Central Europe	Train
San Francisco	Large	Hill grid	Peninsula	North America	Train
San Juan	Medium	Mixed historic	Coastal	Caribbean	Test
Santiago	Large	Grid	Valley	South America	Train
São Paulo	Large	Sprawl	Highland	South America	Train
Seoul	Large	Mixed	River	East Asia	Train
Shanghai	Large	Modern mixed	River	East Asia	Train
Singapore	Large	Planned	Island	Southeast Asia	Train
Stockholm	Large	Archipelago	Island	Northern Europe	Train
Sydney	Large	Harbor organic	Harbor	Oceania	Train
Taipei	Large	Grid	Basin	East Asia	Train
Thimphu	Small	Valley organic	Mountain	South Asia	Train
Tokyo	Large	Mixed	Harbor	East Asia	Test
Toronto	Large	Grid	Lake	North America	Train
Ulaanbaatar	Large	Grid	Valley	East Asia	Train
Valparaíso	Medium	Hill organic	Coastal hills	South America	Train

Continued on next page

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Table 5 – *Continued from previous page*

City	Population	Layout	Geographic Features	Region	Split
Vancouver	Large	Grid	Peninsula	North America	Train
Vienna	Large	Ring layout	River	Central Europe	Train
Vientiane	Medium	Mixed	River	Southeast Asia	Train
Wellington	Medium	Harbor basin	Coastal hills	Oceania	Train
Windhoek	Small	Grid	Highland	Southern Africa	Test
Yogyakarta	Medium	Traditional	Cultural center	Southeast Asia	Train

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 HYPERPARAMETER DETAILS

Table 6 shows the hyperparameters we employ for RRNCO. The configuration can be changed through yaml files as outlined in RL4CO (Berto et al., 2025a), which we employ as the base framework for our codebase.

Table 6: Hyperparameters for RRNCO.

Hyperparameter	Value
Optimizer	Adam
Learning Rate	4×10^{-4}
LR Decay Schedule	0.1 at epochs 180, 195
Batch Size	256
Instances per Epoch	100,000
Embedding Dimension	128
Feedforward Dimension	512
AAFM Layers	12
Clipping C	10

C.2 TESTING DATASET

For each dataset of the main experiments Section 6.2, we use subsampling as described in Section B.3 and sample 1,280 instances for each test set. Whole test sets and seeds are provided in the shared code for reproducibility.

C.3 BASELINES DETAILS

All evaluations are conducted on an NVIDIA A6000 GPU paired with an Intel(R) Xeon(R) CPU @ 2.20GHz. For neural methods, we employ the provided models and code in the original repositories to ensure fairness and reproducibilty.

We evaluate all traditional solvers on a single CPU core sequentially. To reflect a realistic deployment scenario, we do not perform instance-specific hyperparameter tuning, instead relying on the robust default configurations provided by each library. For LKH-3 (Helsgaun, 2017), we utilize the standard parameter set from the official distribution (e.g., PATCHING_C=3, PATCHING_A=2 for VRPs), imposing a TIME_LIMIT of 5 seconds per instance. For PyVRP (Wouda et al., 2024), we employ the default Hybrid Genetic Search (HGS) parameters specifically nb_elite=4 and generation_size=40 with a 20-second time limit via MaxRuntime. Similarly, for Google OR-Tools (Perron & Didier, 2024), we configure the routing model to use the

1134 GUIDED_LOCAL_SEARCH metaheuristic initialized with PATH_CHEAPEST_ARC, restricted to a
 1135 20-second budget. This protocol, consistent with Liu et al. (2024), results in a total evaluation time
 1136 of approximately 7 hours for the test set (1,280 instances).
 1137

1138 D USE OF LARGE LANGUAGE MODELS

1141 Large language models were employed solely as general-purpose writing assistants. Their use was
 1142 restricted to refining phrasing, improving clarity, and correcting grammar in draft versions of the
 1143 manuscript. All research ideas, methodologies, analyses, results, and interpretations were conceived,
 1144 executed, and validated exclusively by the authors. Any text generated with the assistance of LLMs
 1145 was thoroughly reviewed, edited, and integrated by the authors to ensure accuracy, correctness, and
 1146 compliance with academic standards.

1147 E ADDITIONAL MATERIAL ON STOCHASTIC BENCHMARKS

1150 We further evaluate RRNCO on routing scenarios with time-varying travel conditions. Specifically,
 1151 we benchmark on the Stochastic Multi-period Time-dependent VRP (SMTVRP), which incorporates
 1152 realistic traffic dynamics following the simulation protocol of SVRPBench (Heakl et al., 2025).

1154 E.1 BENCHMARK SETUP

1156 **Dynamic Travel Time Model** Real-world travel times exhibit significant temporal variation due
 1157 to congestion patterns, stochastic delays, and unexpected incidents. We model the travel time from
 1158 node a to b departing at time t as:

$$1160 \quad T(a, b, t) = T_{\text{base}}(a, b) + T_{\text{congestion}}(a, b, t) + T_{\text{incident}}(t), \quad (23)$$

1161 where $T_{\text{base}}(a, b) = D(a, b)/V$ represents the free-flow travel time based on Euclidean distance
 1162 $D(a, b)$ and average speed V . The congestion component captures systematic daily patterns:

$$1164 \quad T_{\text{congestion}}(a, b, t) = B(a, b, t) \cdot R(t), \quad (24)$$

1165 with $B(a, b, t)$ encoding deterministic congestion and $R(t)$ introducing stochastic variability.

1166 The congestion factor combines temporal and spatial dependencies:

$$1169 \quad B(a, b, t) = \alpha \cdot \underbrace{\left[\beta + \gamma \sum_{p \in \{\text{am,pm}\}} \mathcal{G}(t; \mu_p, \sigma_p) \right]}_{F_{\text{time}}(t)} \cdot \underbrace{\left(1 - e^{-D(a,b)/\lambda} \right)}_{F_{\text{dist}}(D)}, \quad (25)$$

1174 where $\mathcal{G}(t; \mu, \sigma)$ denotes a Gaussian kernel. The bimodal temporal structure with peaks at $\mu_{\text{am}} = 8$
 1175 and $\mu_{\text{pm}} = 17$ reflects typical morning and evening rush hours. The distance factor captures the
 1176 empirical observation that longer trips have higher congestion exposure.

1177 To model traffic variability, $R(t)$ follows a log-normal distribution with time-dependent parameters:

$$1179 \quad R(t) \sim \text{LogNormal}(\mu_R(t), \sigma_R(t)), \quad (26)$$

1181 where both $\mu_R(t)$ and $\sigma_R(t)$ increase during peak hours to reflect heightened uncertainty.

1182 Incident-induced delays are modeled as:

$$1184 \quad T_{\text{incident}}(t) = \mathbb{1}[\text{incident at } t] \cdot \Delta_{\text{incident}}, \quad (27)$$

1186 where incident occurrences follow a time-inhomogeneous Poisson process with elevated rates during
 1187 nighttime hours ($\mu_{\text{night}} = 21$), and delay durations $\Delta_{\text{incident}} \sim U(0.5, 2.0)$ hours align with industry
 1188 clearance statistics.

1188
 1189 **Time Window Generation** Customer availability windows are sampled to reflect realistic delivery
 1190 scenarios. We distinguish between two customer types with distinct temporal preferences:
 1191

$$T_{\text{start}}^{(\text{res})} \sim 0.5 \cdot \mathcal{N}(\mu_{\text{am}}, \sigma_{\text{am}}^2) + 0.5 \cdot \mathcal{N}(\mu_{\text{pm}}, \sigma_{\text{pm}}^2), \quad (28)$$

1192 for residential customers with morning ($\mu_{\text{am}} = 480$ min) and evening ($\mu_{\text{pm}} = 1140$ min) availability
 1193 peaks, and

$$T_{\text{start}}^{(\text{com})} \sim \mathcal{N}(\mu_{\text{biz}}, \sigma_{\text{biz}}^2), \quad (29)$$

1194 for commercial customers centered on business hours ($\mu_{\text{biz}} = 780$ min). Window durations are sam-
 1195 pled uniformly within problem-specific bounds. Complete parameter specifications follow SVRP-
 1196 Bench (Heakl et al., 2025).

1200 E.2 BASELINE CONFIGURATIONS

1201 We evaluate a set of baseline methods on the stochastic multi-period time-dependent VRP
 1202 (SMTVRP) benchmark to ensure rigorous and fair comparisons. All methods are configured fol-
 1203 lowing standard practices in SVRPBench and prior VRP literature, with adjustments only when
 1204 necessary to accommodate time-dependent travel information.

1205 **ACO (Ant Colony Optimization)** We adopt a conventional parameterization commonly used in
 1206 the SVRP literature. To balance solution quality and computational efficiency in dynamic envi-
 1207 ronments, we set the number of ants to 50 and the maximum number of iterations to 100. The
 1208 pheromone-related parameters are fixed to $\alpha = 1.0$, $\beta = 2.0$, and evaporation rate $\rho = 0.5$. At each
 1209 temporal update in SMTVRP, heuristic costs are recomputed while pheromone trails are preserved
 1210 to maintain stability across time periods.

1211 **OR-Tools** We use the guided local search (GLS) implementation included in SVRPBench with a
 1212 strict time limit of 1000 seconds per instance. This extended budget allows the solver to explore
 1213 large neighborhoods under dynamic updates. Following each change in the time-dependent duration
 1214 matrix, OR-Tools is restarted from the most recent feasible solution when possible, but no custom
 1215 tuning beyond the default GLS configuration is introduced.

1216 **NN + 2-opt** In accordance with the SVRPBench protocol, a Nearest Neighbor (NN) heuristic is
 1217 first used to construct an initial solution, followed by a 2-opt local improvement phase. The search
 1218 terminates upon convergence or after reaching a maximum runtime of 10 seconds per instance.
 1219 Under dynamic conditions, NN + 2-opt is rerun at every update step to preserve consistency with
 1220 the updated travel-time information.

1221 **GOAL** We evaluate GOAL using its official pre-trained checkpoint trained on CVRPTW in-
 1222 stances. No additional training or adaptation is performed. For each temporal update, GOAL re-
 1223 evaluates its autoregressive decoding process under the current duration matrix, thereby testing its
 1224 zero-shot generalization capacity to dynamic inputs.

1225 **RouteFinder** We initialize RouteFinder from its official pre-trained model and apply Efficient
 1226 Active Learning (EAL) for 20 epochs to adapt the policy to the SMTVRP distributions. After EAL
 1227 adaptation, inference proceeds in a closed-loop manner: at each step, the updated travel-time matrix
 1228 is processed, and actions are generated based on the current state of the dynamic environment.

1229 E.3 MULTI-SNAPSHOT NAB FOR STOCHASTIC ROUTING

1230 To extend RRNCO to robustly handle time-dependent and stochastic traffic variations, we intro-
 1231 duce a Multi-Snapshot variant of the Neural Adaptive Bias (NAB). While the standard NAB fuses
 1232 a single duration matrix, real-world traffic is highly dynamic and uncertain. To address this, we
 1233 integrate a dynamics-informed traffic simulation directly into the encoder pipeline and extend the
 1234 NAB architecture to process multiple temporal “snapshots” of traffic conditions simultaneously.

1242
1243

E.3.1 DYNAMICS-INFORMED INPUT GENERATION

1244
1245
1246
1247
1248

To approximate the stochastic nature of real-world travel times, we employ the dynamics-informed traffic modeling framework proposed in SVRPBench (Heakl et al., 2025). Instead of a single static duration matrix, the model takes as input a set of K distinct duration snapshots $\{\mathbf{T}_1, \dots, \mathbf{T}_K\}$. In our experiments, we set $K = 3$ to represent distinct traffic regimes (e.g., morning peak, noon, evening peak).

1249
1250
1251
1252
1253
1254
1255

These snapshots are generated using Gaussian kernels centered at learnable “time anchors” to model congestion peaks, combined with stochastic noise injection. Specifically, for a snapshot k , the duration $t_{ij}^{(k)}$ is derived by modulating the base travel time with a congestion factor drawn from a time-dependent Gaussian distribution, multiplicative noise sampled from a LogNormal distribution to simulate flow variability, and sparse additive noise modeled via a Poisson process to account for random incidents (accidents). This ensures the model receives a global, “look-ahead” view of potential traffic states and their associated uncertainties.

1256
1257

E.3.2 MULTI-SNAPSHOT GATING MECHANISM

1258
1259
1260
1261

We extend the Neural Adaptive Bias (NAB) module to aggregate these heterogeneous temporal views. The Multi-Snapshot NAB employs a unified gating network that dynamically weighs the importance of the static spatial structure against the variable traffic conditions.

1262
1263

First, we project the static Distance matrix \mathbf{D} , the Relative Angle matrix Φ , and each of the K dynamic Duration snapshots into a shared high-dimensional embedding space:

1264
1265
1266
1267

$$\mathbf{D}_{\text{emb}} = \text{ReLU}(\mathbf{D}\mathbf{W}_D)\mathbf{W}'_D, \quad (30)$$

$$\Phi_{\text{emb}} = \text{ReLU}(\Phi\mathbf{W}_\Phi)\mathbf{W}'_\Phi, \quad (31)$$

$$\mathbf{T}_{\text{emb}}^{(k)} = \text{ReLU}(\mathbf{T}_k\mathbf{W}_T)\mathbf{W}'_T, \quad \forall k \in \{1, \dots, K\}. \quad (32)$$

1268
1269
1270
1271

To fuse these $K+2$ feature maps, we compute a set of scalar importance weights via a learned gating network. Let $\mathbf{E}_{\text{concat}} = [\mathbf{D}_{\text{emb}}; \Phi_{\text{emb}}; \mathbf{T}_{\text{emb}}^{(1)}; \dots; \mathbf{T}_{\text{emb}}^{(K)}]$ denote the concatenation of all embeddings. We compute the gating weights $\mathbf{g} \in \mathbb{R}^{2+K}$ via a softmax function:

1272
1273
1274

$$\mathbf{g} = \text{softmax} \left(\frac{\mathbf{E}_{\text{concat}} \mathbf{W}_G}{\exp(\tau)} \right), \quad (33)$$

1275
1276

where \mathbf{W}_G is a learnable weight matrix and τ is the temperature parameter. The final fused representation $\mathbf{H}_{\text{fused}}$ is computed as a probability-weighted sum of the static and dynamic features:

1277
1278
1279

$$\mathbf{H}_{\text{fused}} = g_1 \odot \mathbf{D}_{\text{emb}} + g_2 \odot \Phi_{\text{emb}} + \sum_{k=1}^K g_{k+2} \odot \mathbf{T}_{\text{emb}}^{(k)}. \quad (34)$$

1280
1281
1282
1283
1284

Similar to the standard NAB, this fused representation is projected to a scalar bias matrix $\mathbf{A} = \mathbf{H}_{\text{fused}} \mathbf{w}_{\text{out}}$. This bias \mathbf{A} modulates the attention scores in the Adaptation Attention Free Module (AAFM), guiding the solver to avoid routes that are consistently congested across the simulated snapshots or to leverage time windows where traffic is predicted to be lighter.

1285
1286

E.4 TRAINING DETAILS

1287
1288
1289
1290
1291
1292
1293

RRNCO (NAB) The standard RRNCO model equipped with the Neural Adaptive Bias (NAB) is trained for 100 epochs on static instances sampled from the real-world generator introduced in the main paper. Each epoch consists of 100,000 training instances, with a batch size of 256 and the Adam optimizer with a learning rate of 4×10^{-4} . The learning rate is decayed following the schedule described in Table 6 of the appendix. No fine-tuning is performed on the SMTVRP benchmark; instead, the model is directly evaluated in a dynamic closed-loop setting.

1294
1295

RRNCO (Multi-Snapshot NAB) As detailed in Section E.3, this variant integrates temporal variability by augmenting the Neural Adaptive Bias (NAB) module with a dynamics-informed traffic simulator and a temporal gating mechanism designed to statically fuse multiple duration snapshots.

1296 In our experiments, the model receives $K = 3$ temporal duration snapshots at training time, cor-
 1297 responding to short-horizon predictions of traffic fluctuations. The model is trained for 100 epochs
 1298 under the same reinforcement learning setup as the base RRNCO. During dynamic evaluation on
 1299 SMTVRP, the NAB module processes and fuses the K snapshots once during the initial encoding
 1300 step. This process enables the resultant node representations to embed a global context of potential
 1301 traffic variations, allowing the autoregressive decoder to anticipate near-future congestion patterns
 1302 without requiring dynamic re-encoding at every decision step.

1303
 1304 **Inference Protocol** Both RRNCO variants operate autoregressively in a closed-loop dynamic en-
 1305 vironment. After each routing action, the updated time-dependent duration matrix is provided by
 1306 the SMTVRP simulator. The model recomputes its route continuation based on this updated infor-
 1307 mation. A decoding augmentation factor of 8 is applied during inference to reduce variance and
 1308 enhance route stability across dynamic updates.

1309
 1310 **E.5 RESULTS FOR MULTI-SNAPSHOT NAB**

1311 **Table 7** demonstrates that RRNCO with Multi-Snapshot NAB achieves state-of-the-art performance
 1312 with a cost of 594.19, surpassing both the standard NAB (601.03) and RouteFinder (602.20). This
 1313 improvement confirms that fusing multiple temporal snapshots allows the model to better antici-
 1314 pate traffic stochasticity. On the other hand, OR-Tools fails to find feasible solutions for 75.8% of
 1315 instances despite a 1000s budget. RRNCO maintains 100% feasibility and zero time window vio-
 1316 lations, offering superior robustness and speed (0.20s) with virtually no additional inference latency
 1317 compared to the standard model.

1318
 1319 **Table 7: Performance comparison on SMTVRP benchmark. Feasibility indicates the proportion of instances**
 1320 **with valid solutions. Lower cost is better.**

Method	Cost	Feasibility	Runtime	TW Violations
ACO	763.52	1.00	41.3s	0
OR-Tools	610.08	0.242	1000s	45.15
NN + 2opt	969.96	1.00	10s	0
RF	602.20	1.00	0.05s	0
GOAL	1319.00	1.00	0.28s	0
RRNCO (NAB)	601.03	1.00	0.20s	0
RRNCO (Multi-Snapshot NAB)	594.19	1.00	0.20s	0

1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349