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ABSTRACT

The practical deployment of Neural Combinatorial Optimization (NCO) for Vehi-
cle Routing Problems (VRPs) is hindered by a critical sim-to-real gap. This gap
stems not only from training on oversimplified Euclidean data but also from node-
based architectures incapable of handling the node-and-edge-based features with
correlated asymmetric cost matrices, such as those for real-world distance and
duration. We introduce RRNCO, a novel architecture specifically designed to ad-
dress these complexities. RRNCO’s novelty lies in two key innovations. First, its
Adaptive Node Embedding (ANE) efficiently fuses spatial coordinates with real-
world distance features using a learned contextual gating mechanism. Second, its
Neural Adaptive Bias (NAB) is the first mechanism to jointly model asymmetric
distance, duration, and directional angles, enabling it to capture complex, realis-
tic routing constraints. Moreover, we introduce a new VRP benchmark grounded
in real-world data crucial for bridging this sim-to-real gap, featuring asymmet-
ric distance and duration matrices from 100 diverse cities, enabling the training
and validation of NCO solvers on tasks that are more representative of practical
settings. Experiments demonstrate that RRNCO achieves state-of-the-art perfor-
mance on this benchmark, significantly advancing the practical applicability of
neural solvers for real-world logistics.

1 INTRODUCTION

Vehicle routing problems (VRPs) are combinatorial optimization (CO) problems that represent foun-
dational challenges in logistics and supply chain management, directly impacting operations across
diverse sectors, including last-mile delivery services, disaster response management, and urban
mobility. These NP-hard optimization problems require determining optimal routes for a fleet of
vehicles while satisfying various operational constraints. While several traditional methods have
been developed over decades (Laporte & Nobert, 1987; Vidal, 2022; Wouda et al., 2024; Perron &
Furnon, 2023; Applegate et al., 2003; Wouda & Lan, 2023), these often face challenges in real-world
applications. Their computational complexity makes them impractical for large-scale and real-time
applications. Moreover, they often require careful parameter tuning, problem-specific adaptations,
significant domain expertise, and lengthy development. With the global logistics market exceeding
the 10 trillion USD mark in 2025 (Research and Markets, 2024), improvements in routing efficiency
can yield substantial cost savings and environmental benefits.

Neural Combinatorial Optimization (NCO) has emerged as a promising paradigm for solving CO
problems such as the VRP (Bengio et al., 2021; Wu et al., 2024a). By automatically learning heuris-
tics directly from data, i.e., by using Reinforcement Learning (RL), NCO approaches for VRPs can
potentially overcome the limitations of traditional methods by providing efficient solutions without
requiring extensive domain expertise and by providing more scalable solutions (Kool et al., 2019;
Zhou et al., 2023). Recent advances in NCO have demonstrated impressive results on synthetic
VRP instances, suggesting the potential for learning-based approaches to achieve significant impact
in real-world logistics optimization (Kwon et al., 2020; Luo et al., 2024; Ye et al., 2024b; Hottung
et al., 2025).

However, while real-world VRPs encompass various dynamic and operational complexities, the
transition from synthetic to practical applications faces a primary topological challenge.
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Firstly, most existing NCO research primarily relies on simplified synthetic datasets for both train-
ing and testing that fail to capture the foundational asymmetries of real-world road networks, par-
ticularly asymmetric travel times and distances arising from road networks with diverse conditions
(Osaba, 2020; Thyssens et al., 2023). Hence, a comprehensive framework for real-world data gen-
eration is needed to bridge this gap. Secondly, most current NCO architectures are based on the
node-based transformer paradigm (Vaswani et al., 2017) and, as such, are not designed to effectively
and efficiently embed the rich edge features and structural information present in real-world routing
problems, limiting their practical applicability (Kwon et al., 2021). A new neural approach capable
of effectively encoding information such as asymmetric durations and distances is thus needed to
bridge the sim-to-real gap.

Figure 1: [Left] Most NCO works consider simplified
Euclidean settings. [Right] Our work models real-world
instances where durations and travel times can be asym-
metric.

Our Real Routing NCO (RRNCO) bridges
the critical topological gap between simplified
NCO research and real-world routing applica-
tions —as illustrated in Fig. 1—through archi-
tectural innovations that specifically target the
asymmetric nature of practical routing prob-
lems while serving as an extensible foundation
for complex environments. We make two fun-
damental contributions. First, on the model-
ing side, we introduce a novel neural architec-
ture with two key technical innovations: (i) an
Adaptive Node Embedding (ANE) that dy-
namically fuses coordinates and distance in-
formation via learned contextual gating and
probability-weighted sampling; and (ii) a Neu-
ral Adaptive Bias (NAB), the first mechanism
to jointly model asymmetric distance and duration matrices within a deep routing framework, guid-
ing our Adaptation Attention Free Module (AAFM). To validate our approach, we construct a com-
prehensive benchmark dataset from 100 diverse cities, featuring real-world asymmetric distance and
duration matrices from OpenStreetMap (OpenStreetMap contributors, 2025).

Our contributions: (1) A novel NCO architecture (RRNCO) with ANE and NAB to natively handle
real-world routing asymmetries. (2) An extensive, open-source VRP dataset from 100 cities with
asymmetric matrices. (3) State-of-the-art empirical results on realistic VRP instances. (4) Open-
source code and data to foster reproducible research.

2 RELATED WORKS

Neural Combinatorial Optimization (NCO) Neural approaches to combinatorial optimization
learn heuristics directly from data, reducing reliance on domain expertise (Bengio et al., 2021).
Methods are typically classified as construction or improvement. Construction methods sequen-
tially generate solutions, pioneered by Pointer Networks (Vinyals et al., 2015) and now led by
Transformer-based autoregressive models (Kool et al., 2019; Kwon et al., 2020) for their strong abil-
ity to capture complex structures. Non-autoregressive variants predict edge-probability heatmaps in
a single pass (Joshi et al., 2020), with later work enhancing performance via stronger models and
search strategies (Ye et al., 2024a; Sun & Yang, 2024; Xia et al., 2024; Kim et al., 2025). Improve-
ment methods iteratively refine an initial solution through learned operators or policies (Hottung &
Tierney, 2019; Ma et al., 2023; Hottung et al., 2021; Son et al., 2023; Li et al., 2023; Chalumeau
et al., 2023; Kim et al., 2021; Ma et al., 2021; Ye et al., 2024b; Zheng et al., 2024). Our work
targets autoregressive construction, striking an effective balance between speed and solution quality
for real-world logistics.

Vehicle Routing Problem (VRP) Datasets A significant gap exists between NCO research and
real-world applicability, largely due to the datasets used for training and evaluation. For decades,
the community has relied on established benchmarks like TSPLIB (Reinelt, 1991) and CVRPLIB
(Lima et al., 2014). While invaluable for standardization, these datasets are typically based on
symmetric Euclidean distances, assuming travel costs are equal in both directions (dij = dji). This
simplification fails to capture the inherent asymmetry of real road networks caused by one-way
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streets, traffic patterns, and turn restrictions (Osaba, 2020). Some recent works have attempted to
create more realistic datasets (Duan et al., 2020; Ali & Saleem, 2024), but they suffer from critical
limitations for NCO research: they often rely on proprietary, commercial APIs, are static and cannot
be generated online (a key requirement for data-hungry RL agents), can be slow to generate, and are
not always publicly released. Furthermore, they often omit crucial information like travel durations,
which can be decoupled from distance in real traffic. Our work directly addresses these gaps by
providing a fast, open-source, and scalable data generation framework that produces asymmetric
distance and duration matrices from real-world city topologies.

NCO for VRPs The application of NCO to VRPs has evolved from early adaptations of recurrent
models (Nazari et al., 2018) to the now-dominant Transformer-based encoder-decoder architectures
(Kool et al., 2019; Kwon et al., 2020; Kim et al., 2022; Luo et al., 2023; Zhou et al., 2024b; Huang
et al., 2025; Luo et al., 2025; Berto et al., 2025b). These models have demonstrated impressive
performance but are fundamentally node-centric; their attention mechanisms operate on node em-
beddings, making it non-trivial to incorporate rich structural information contained in edge features
like a full distance matrix. This limitation is a primary contributor to the sim-to-real gap. To address
this, some works have explored encoding edge information. GCN-based approaches (Duan et al.,
2020) and attention via row and column embeddings of MatNet (Kwon et al., 2021) introduced
early ways to handle asymmetry, with GOAL (Drakulic et al., 2024) incorporating edge data with
cross-attention. While promising, existing methods typically handle only a single cost matrix (e.g.,
distance) and fail to leverage the correlated modalities of real-world routing (distance, duration,
geometry). Efficiently fusing multiple asymmetric edge features remains an open challenge. Our
model, RRNCO, addresses this with Adaptive Node Embeddings (ANE) and a Neural Adaptive
Bias (NAB) mechanism that learns a unified routing context from distance, duration, and angle.

3 PRELIMINARIES

3.1 VEHICLE ROUTING PROBLEMS

Vehicle Routing Problems (VRPs) are a class of combinatorial optimization problems that aim to
find optimal routes for a fleet of vehicles serving a set of customers by minimizing a cost func-
tion. The simplest variant, the Traveling Salesman Problem (TSP), involves finding a minimum-cost
Hamiltonian cycle in a complete graph G = (V,E) with n = |V | locations. Real-world applica-
tions typically extend this basic formulation with operational constraints such as vehicle capacity
limits (CVRP) or time windows for service (VRPTW) (Vidal et al., 2014). These problems are
characterized by their input structure, consisting of node and edge features. Node features typically
include location coordinates and customer demands, while edge features capture the relationships
between locations. In real-world settings, these relationships are represented by distance and dura-
tion matrices, D,T ∈ Rn×n, where dij and tij denote the distance and travel time from location i to
j, respectively. Previous NCO approaches typically rely on Euclidean distances computed directly
from location coordinates, avoiding the use of distance matrices entirely. While this simplifica-
tion works for synthetic problems with symmetric distances (dij = dji, tij = tji), real-world in-
stances are inherently asymmetric due to factors such as traffic patterns and road network constraints.
This asymmetry, combined with the problem’s combinatorial nature, presents unique challenges for
learning-based approaches, particularly in effectively encoding and processing the rich structural
information present in edge features.

3.2 SOLVING VRPS WITH GENERATIVE MODELS

VRPs can be solved as a sequential decision process, and deep generative models can be learned
to efficiently do so (Wu et al., 2024b). Given a problem instance x containing both node features
(such as coordinates, demands, and time windows) and edge features (distance and duration matrices
D,T ), we construct solutions through autoregressive generation. Our model iteratively selects the
next location to visit based on the current partial route until all locations are covered. This construc-
tion process naturally aligns with how routes are executed in practice and allows the model to main-
tain feasibility constraints throughout generation. In this work, we consider the encoder-decoder
framework as in Kool et al. (2019). Formally, let θ = {θf , θg} denote the combined parameters
of our encoder and decoder networks. We learn a policy πθ that maps input instances to solutions
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through:

h = fθf (x), (1a)

πθ(a|x) =
T∏

t=1

gθg (at|at−1, . . . , a1,h), (1b)

where h represents the learned latent problem embedding, at is the location selected at step t, and
at−1, . . . , a1, denotes the partial route constructed so far. The architecture choices for the encoding
process (Eq. (1a)) and decoding (Eq. (1b)) via f and g, respectively, are paramount to ensure high
solution quality.

3.3 TRAINING VIA REINFORCEMENT LEARNING

We frame the learning problem in a reinforcement learning (RL) context, which enables data-free
optimization by automatically discovering heuristics. The policy parameters θ are optimized to
maximize the expected reward:

max
θ

J(θ) = Ex∼DEa∼πθ(·|x)[R(a,x)], (2)

where D is the problem distribution we sample and R(a,x) is the reward (i.e., the negative cost) of
a solution. Policy gradient methods can be employed to solve this problem, such as REINFORCE
with the variance-reducing POMO baseline (Kwon et al., 2020). Due to RL’s exploratory, i.e., trial
and error, nature, many samples are required. Thus, efficient generation and sampling of problem
instances x is essential to ensure training efficiency.

4 REAL-WORLD ROUTING MODEL
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Figure 2: Our proposed RRNCO model for real-world routing.

Our model addresses real-world routing challenges where conventional methods struggle with asym-
metric attributes like travel times and distances. We introduce two key innovations: (1) Adaptive
Node Embedding with probability-weighted distance sampling - efficiently integrating spatial co-
ordinates with asymmetric distances through learned contextual gating, avoiding full distance ma-
trix processing while preserving asymmetric relationships, and (2) Neural Adaptive Bias (NAB) -
the first learnable mechanism to jointly model asymmetric distance and duration matrices in deep
routing architectures, replacing hand-crafted heuristics in AAFM (Zhou et al., 2024a) with data-
driven contextual biases. The model uses an encoder-decoder architecture where the encoder builds
comprehensive node representations and the decoder generates solutions sequentially, with our con-
tributions focusing on enhancing the encoder’s real-world routing capabilities while maintaining
efficiency.
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4.1 ENCODER

4.1.1 ADAPTIVE NODE EMBEDDING

The Adaptive Node Embedding module synthesizes distance-related features with node character-
istics to create comprehensive node representations. A key aspect of our approach is effectively
integrating two complementary spatial features: distance matrix information and coordinate-based
relationships. For distance matrix information, we employ a selective sampling strategy that cap-
tures the most relevant node relationships while maintaining computational efficiency. Given a
distance matrix D ∈ RN×N , we sample k nodes for each node i according to probabilities inversely
proportional to their distances:

pij =
1/dij∑N
j=1 1/dij

(3)

where dij represents the distance between nodes i and j. The sampled distances are then transformed
into an embedding space through a learned linear projection:

fdist = Linear(dsampled) (4)

Coordinate information is processed separately to capture geometric relationships between nodes.
For each node, we first compute its spatial features based on raw coordinates. These features are
then projected into the same embedding space through another learned linear transformation:

fcoord = Linear(xcoord) (5)

To effectively combine these complementary spatial representations, we employ a Contextual Gating
mechanism:

h = g ⊙ fcoord + (1− g)⊙ fdist (6)

where ⊙ is the Hadamard product and g represents learned gating weights determined by a multi-
layer perceptron (MLP) :

g = σ(MLP([fcoord; fdist])) (7)

This gating mechanism allows the model to adaptively weigh the importance of coordinate-based
and distance-based features for each node, enabling more nuanced spatial representation. To han-
dle asymmetric routing scenarios effectively, we follow the approach introduced in (Kwon et al.,
2021) and generate dual embeddings for each node: row embeddings hr and column embeddings
hc. These embeddings are then combined with other node characteristics (such as demand or time
windows) through learned linear transformations to produce the combined node representations:

hr
comb = MLP([hr; fnode]) (8)

hc
comb = MLP([hc; fnode]) (9)

where fnode represents additional node features such as demand or time windows, which are trans-
formed by an additional linear layer. This dual embedding approach allows the RRNCO model to
better capture and process asymmetric relationships in real-world routing scenarios.

4.1.2 NEURAL ADAPTIVE BIAS FOR AAFM

Having established comprehensive node representations through our adaptive embedding approach,
RRNCO employs an Adaptation Attention-Free Module (AAFM) based on Zhou et al. (2024a) to
model complex inter-node relationships. The AAFM operates on the dual representations hr

comb
and hc

comb to capture asymmetric routing patterns through our novel Neural Adaptive Bias (NAB)
mechanism. The AAFM operation is defined as:

AAFM(Q,K, V,A) = σ(Q)⊙ exp(A) · (exp(K)⊙ V )

exp(A) · exp(K)
(10)

where Q = WQhr
comb, K = WKhc

comb, V = WV hc
comb, with learnable weight matrices WQ,

WK , WV . While Zhou et al. (2024a) defines the adaptation bias A heuristically as −α · log(N) ·dij
(with learnable α, node count N , and distance dij), we introduce a Neural Adaptive Bias (NAB) that
learns asymmetric relationships directly from data. NAB processes distance matrix D, angle matrix
Φ with entries ϕij = arctan2(yj − yi, xj − xi), and optionally duration matrix T, enabling joint
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modeling of spatial-temporal asymmetries inherent in real-world routing. Let WD,WΦ,WT ∈
RE :

Demb = ReLU(DWD)W′
D (11)

Φemb = ReLU(ΦWΦ)W
′
Φ (12)

Temb = ReLU(TWT )W
′
T (13)

We then apply contextual gating to fuse these heterogeneous information sources. When duration
information is available, we employ a multi-channel gating mechanism with softmax normalization:

G = softmax
(
[Demb; Φemb; Temb]WG

exp(τ)

)
(14)

where [Demb;Φemb;Temb] ∈ RB×N×N×3E is the concatenation of all embeddings, WG ∈ R3E×3

is a learnable weight matrix, and τ is a learnable temperature parameter. The fused representation is
computed as:

H = G1 ⊙Demb +G2 ⊙Φemb +G3 ⊙Temb (15)

Finally, the adaptive bias matrix A is obtained by projecting the fused embedding H to a scalar
value:

A = Hwout ∈ RB×N×N (16)

where wout ∈ RE is a learnable weight vector. The resulting A matrix serves as a learned inductive
bias that captures complex asymmetric relationships arising from the interplay between distances,
directional angles, and travel durations. The Neural Adaptive Bias is then incorporated into the
Adaptation Attention Free Module (AAFM). Specifically, we employ the operation defined in (10)
by replacing the generic matrix A with the adaptive matrix generated by NAB.

The Neural Adaptive Bias (NAB), applied through the Adaptation Attention Free Module (AAFM),
yields final node representations hr

F and hc
F after l passes through AAFM. These representations

result from RRNCO’s encoding process, leveraging joint modeling of distance, angle, and duration
to capture complex asymmetric patterns in real-world routing networks.

4.2 DECODER

4.2.1 DECODER ARCHITECTURE

The decoder architecture integrates key elements from ReLD (Huang et al., 2025) and Mat-
Net (Kwon et al., 2021) to autoregressively construct solutions using the dense node embeddings
produced by the encoder. At each decoding step t, it takes as input the row and column node em-
beddings alongside a context vector that encapsulates the current partial solution state, such as the
last visited node and dynamic attributes like remaining capacity. This context serves as the query
in a multi-head attention mechanism to aggregate information from the embeddings, followed by
residual connections and a multi-layer perceptron to refine the query vector. The resulting query is
then employed in a compatibility layer to compute selection probabilities for feasible nodes, incor-
porating a negative logarithmic distance heuristic to prioritize nearby options and enhance explo-
ration efficiency. This design enables our model to dynamically adapt static embeddings to evolving
contexts, yielding strong performance across vehicle routing problems; for full technical details,
including equations and implementation specifics, please refer to the Appendix A.

5 REAL-WORLD VRP DATASET

A significant challenge in applying Neural Combinatorial Optimization (NCO) to real-world routing
is the lack of realistic datasets. Most existing benchmarks rely on synthetic instances with symmet-
ric, Euclidean distances, failing to capture the complexities of actual road networks, such as one-way
streets and traffic-dependent travel times, which lead to asymmetric distance and duration matrices.
To bridge this gap, we introduce a new, large-scale dataset for real-world VRPs. We developed a
comprehensive data generation pipeline that leverages the OpenStreetMap Routing Engine (OSRM)
(OpenStreetMap contributors, 2025) to create detailed topological maps for 100 diverse cities world-
wide. Each map includes location coordinates along with their corresponding asymmetric distance
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and duration matrices. Furthermore, we designed an efficient online subsampling method to gen-
erate a virtually unlimited number of VRP instances for training our reinforcement learning agent.
This approach ensures that our model is trained on data that faithfully represents real-world rout-
ing challenges. In addition to serving as a benchmark, the dataset provides a structured basis for
evaluating NCO solvers under realistic conditions and helps narrow the simulation-to-real gap, of-
fering a useful resource for future research on practical logistics. Details of the city selection, data
generation framework, and subsampling methodology are given in Appendix B.
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Figure 3: Overview of our RRNCO real-world data generation and sampling framework. We generate a dataset
of real-world cities with coordinates and respective distance and duration matrices obtained via OSRM. Then,
we efficiently subsample instances as a set of coordinates and their matrices from the city map dataset with
additional generated VRP features.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Classical Baselines In the experiments, we compare three SOTA traditional optimization ap-
proaches: LKH3 (Helsgaun, 2017): a heuristic algorithm with strong performance on (A)TSP prob-
lems, PyVRP (Wouda et al., 2024): a specialized solver for VRPs with comprehensive constraint
handling capabilities; and Google OR-Tools (Perron & Didier, 2024): a versatile optimization li-
brary for CO problems.

Learning-Based Methods We compare against SOTA NCO methods divided in two categories. 1)
Node-only encoding learning methods: POMO (Kwon et al., 2020), an end-to-end multi-trajectory
RL-based method based on attention mechanisms; MTPOMO (Liu et al., 2024), a multi-task variant
of POMO; MVMoE (Zhou et al., 2024b), a mixture-of-experts variant of MTPOMO; RF (Berto
et al., 2025b): an RL-based foundation model for VRPs; ELG (Gao et al., 2024), a hybrid of local
and global policies for routing problems; BQ-NCO (Drakulic et al., 2023): a decoder-only trans-
former trained with supervised learning; LEHD (Luo et al., 2023): a supervised learning-based
heavy decoder model and AAFM (Zhou et al., 2024a), introduced in the ICAM framework as an
attention-free alternative enabling instance-conditioned adaptation. 2) Node and edge encoding
learning methods: GCN (Duan et al., 2020): a graph convolutional network with encoding of edge
information for routing; MatNet (Kwon et al., 2021): an RL-based solver encoding edge features via
matrices; ReLD-MTL and ReLD-MoEL (Huang et al., 2025), which incorporate identity mapping
and feed-forward decoder refinements to significantly improve cross-size and cross-problem gener-
alization and GOAL (Drakulic et al., 2024): a generalist agent trained via supervised learning for
several CO problems, including routing problems.

Training Configuration We perform training runs under the same settings for fair comparison
for our model, MatNet for ATSP and ACVRP, and GCN for ACVRP. Node-only models do not

7
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Table 1: Performance comparison across real-world routing tasks and distributions. We report costs and gaps
calculated with respect to best-known solutions (∗) from traditional solvers. Horizontal lines separate traditional
solvers, node-only methods, node-and-edge methods, and our RRNCO. Lower is better (↓).

In-distribution Out-of-distribution (city) Out-of-distribution (cluster)

Task Method Cost Gap (%) Time Cost Gap (%) Time Cost Gap (%) Time

AT
SP

LKH3 38.387 ∗ 1.6h 38.903 ∗ 1.6h 12.170 ∗ 1.6h
OR-Tools 39.685 3.381 7h 40.165 3.244 7h 12.711 4.445 7h

POMO 51.512 34.192 10s 50.594 30.051 10s 30.051 146.926 10s
ELG 51.046 32.976 42s 50.133 28.866 42s 23.017 89.131 42s
BQ-NCO 55.933 45.708 25s 54.739 40.706 25s 27.872 129.022 25s
LEHD 56.099 46.140 13s 54.811 40.891 13s 27.819 128.587 13s

MatNet 39.915 3.981 27s 40.548 4.228 27s 12.886 5.883 27s
GOAL 41.976 9.350 91s 42.590 9.477 91s 13.654 12.194 91s
AAFM 45.992 19.812 151s 46.588 19.755 151s 15.211 24.987 151s

RRNCO 39.077 1.797 22s 39.783 2.262 22s 12.450 2.301 22s

A
C

V
R

P

PyVRP 69.739 ∗ 7h 70.488 ∗ 7h 22.553 ∗ 7h
OR-Tools 72.597 4.097 7h 73.286 3.969 7h 23.576 4.538 7h

POMO 85.888 23.156 16s 85.771 21.682 16s 34.179 51.549 16s
MTPOMO 86.521 24.063 16s 86.446 22.640 16s 34.287 52.029 16s
MVMoE 86.248 23.672 22s 86.111 22.164 22s 34.135 51.356 22s
RF 86.289 23.731 17s 86.261 22.377 16s 34.273 51.967 16s
ELG 85.951 23.247 67s 85.741 21.639 66s 34.027 50.873 67s
BQ-NCO 93.075 33.462 30s 92.467 31.181 30s 40.110 77.848 30s
LEHD 93.648 34.284 17s 93.195 32.214 17s 40.048 77.573 17s
ReLD-MTL 88.331 26.659 16s 88.037 24.896 16s 36.169 60.373 16s
ReLD-MoEL 88.154 26.406 16s 87.764 24.509 16s 36.137 60.231 16s

GCN 90.546 29.836 17s 90.805 28.823 17s 34.417 52.605 17s
MatNet 74.801 7.258 30s 75.722 7.425 30s 24.844 10.158 30s
GOAL 84.341 20.938 104s 84.097 19.307 104s 34.318 52.166 104s
AAFM 76.663 9.928 11s 77.811 10.389 11s 25.131 11.431 11s

RRNCO 72.145 3.450 25s 72.999 3.562 25s 23.280 3.224 25s

A
C

V
R

PT
W

PyVRP 118.056 ∗ 7h 118.513 ∗ 7h 39.253 ∗ 7h
OR-Tools 119.681 1.377 7h 120.147 1.379 7h 39.903 1.655 7h

POMO 132.883 12.559 18s 132.743 12.007 17s 50.503 28.661 18s
MTPOMO 133.135 12.773 17s 132.921 12.158 18s 50.372 28.328 18s
MVMoE 132.871 12.549 24s 132.700 11.971 23s 50.333 28.227 24s
RF 132.887 12.563 18s 132.731 11.997 18s 50.422 28.455 18s
ReLD-MTL 132.722 12.423 18s 132.856 12.102 18s 51.680 31.659 18s
ReLD-MoEL 132.594 12.314 18s 132.621 11.904 18s 51.647 31.575 18s

GOAL 134.699 14.098 107s 135.001 13.912 107s 47.966 22.197 107s

RRNCO 122.693 3.928 35s 123.249 3.996 35s 41.077 4.647 35s

necessitate retraining since our datasets are already normalized in the [0, 1]2 coordinates ranges
(with locations sampled uniformly), and we do not retrain supervised-learning models since they
would necessitate labeled data. The model is trained for about 24 hours on 4× NVIDIA A100 40GB
GPUs, with all training settings and train, test dataset details provided in Appendix Section C.1 and
Appendix Section B.4.

Testing Protocol The test data consists of in-distribution evaluation for 1) In-dist: new instances
generated from the 80 cities seen during training, 2) OOD (city) out-of-distribution generalization
over new city maps and 3) OOD (cluster) out-of-distribution generalization to new location distri-
butions across maps. The test batch size is 32, and a data augmentation factor of 8 is applied to all
models except supervised learning-based ones, i.e., LEHD, BQ-NCO, and GOAL. All evaluations
are conducted on an NVIDIA A6000 GPU paired with an Intel(R) Xeon(R) CPU @ 2.20GHz1.

1Code: https://anonymous.4open.science/r/real-routing-nco-submission/
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Figure 4: Study of our proposed model with different initial contexts: coordinates, distances, Adaptive Node
Embedding (ANE), and Neural Adaptive Bias (NAB). ANE and NAB perform best, particularly in out-of-
distribution (OOD) cases.

6.2 MAIN RESULTS

Table 1 shows the results between our and the baseline models across ATSP, ACVRP, and
ACVRPTW tasks, with inference times in parentheses. The results clearly demonstrate that our
method achieves state-of-the-art performance across all problem settings, consistently outperform-
ing existing neural solvers in both solution quality and computational efficiency. Notably, unlike
previous approaches that require separate models for different problem types, our method effec-
tively handles all routing problems within a single unified framework. This key advantage highlights
the model’s adaptability and scalability across diverse problem instances while maintaining strong
generalization for both in-distribution and out-of-distribution scenarios in real-world settings.

6.3 ANALYSES

Ablation study on proposed components We perform an ablation study on proposed model
components in Fig. 4: initial contexts with coordinates, distances, and our Adaptive Node Em-
bedding(ANE), as well as the Neural Adaptive Bias (NAB). We find ANE and NAB perform the
best, particularly in out-of-distribution (OOD) cases. Remarkably, in cluster distributions, the NAB
shows a relative improvement greater than 15%.

Granular ablation on NAB inputs To further investigate the contribution of each input modality
to the Neural Adaptive Bias (NAB), we conduct a granular ablation study on ACVRPTW in Table 2.
Starting from the full model that jointly uses distance, duration, and angle matrices, we progressively
remove components. The results show that each modality contributes to the final performance:
removing duration increases the gap from 3.74% to 3.93% (in-distribution), and further removing
angle increases it to 4.06%. The performance degradation is more pronounced in the OOD (cluster)
setting, where the gap increases from 4.30% to 4.84%, demonstrating that the joint modeling of all
three features is essential for robust generalization.

Table 2: Granular ablation on NAB inputs for ACVRPTW. We progressively remove duration and angle from
the full NAB model.

Model In-distribution OOD (city) OOD (cluster)
Cost Gap (%) Cost Gap (%) Cost Gap (%)

PyVRP 118.056 ∗ 118.513 ∗ 39.253 ∗
RRNCO Full (D + T + Φ) 122.467 3.74 123.004 3.79 40.939 4.30
− Duration (D + Φ) 122.693 3.93 123.249 4.00 41.077 4.65
− Duration − Angle (D only) 122.849 4.06 123.364 4.09 41.151 4.84

Importance of real-world data generators We study the effect of training different models on
different data generators, including the ATSP one from MatNet (Kwon et al., 2021), adding random

9
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Table 3: Comparison of routing solvers and their training data generators on real-world data.

Method Data
Gen.

In-dist OOD City OOD Clust.

Cost Gap% Cost Gap% Cost Gap%

LKH3 – 38.39 ∗ 38.90 ∗ 12.17 ∗

MatNet ATSP 80.86 110.70 81.04 108.30 27.78 128.23
RRNCO Noise 41.35 7.72 42.01 7.98 13.66 12.20
MatNet Real 39.92 3.98 40.55 4.23 12.89 5.88
RRNCO Real 39.08 1.80 39.78 2.26 12.45 2.30

noise to break symmetries in distance matrices, and our proposed real-world generator when testing
in the real world. Table 3 demonstrates our proposed real-world data generation achieves remarkable
improvements in both in-distribution and out-of-distribution settings.

Generalization to stochastic VRPs RRNCO demonstrates remarkable performance when ap-
plied to real-world topologies that surpass prior works. We further evaluate the robustness of
RRNCO and generalizability to new settings, i.e., under stochastic and time-dependent traffic con-
ditions and conduct experiments on the recently released Stochastic Multi-period Time-dependent
VRP (SMTVRP) benchmark from SVRPBench (Heakl et al., 2025). We also benchmark against
additional traditional baselines, including Nearest Neighbor + 2-opt (NN+2opt) (Laporte & Nobert,
1987; Potvin & Rousseau, 1995) and Ant Colony Optimization (ACO) (Dorigo et al., 2006).

As shown in Table 4, RRNCO achieves the lowest cost (601.03) while maintaining full feasibil-
ity and zero time window violations. Notably, OR-Tools fails to find feasible solutions for 75.8%
of instances within the time limit, highlighting the practical advantage of neural solvers in time-
constrained scenarios. These results demonstrate that RRNCO generalizes effectively to more com-
plex, time-dependent routing problems beyond the benchmarks used for training. For more details
of the dataset, baselines, and training configurations, please refer to Appendix E.

Table 4: Performance comparison on SMTVRP benchmark. Feasibility indicates the proportion of instances
with valid solutions. Lower cost is better.

Method Cost Feasibility Runtime TW Violations

ACO 763.52 1.00 41.3s 0
OR-Tools 610.08 0.242 1000s 45.15
NN + 2opt 969.96 1.00 10s 0
RF 602.20 1.00 0.05s 0
GOAL 1319.00 1.00 0.28s 0

RRNCO 601.03 1.00 0.20s 0

7 CONCLUSION

In this paper, we introduced RRNCO, a novel Neural Combinatorial Optimization architecture
bridging simplified benchmarks and real-world routing challenges. Our core contribution is a model
explicitly handling asymmetric and multi-modal travel costs through two key innovations: Adaptive
Node Embedding (ANE) efficiently fusing coordinates with sampled distance features, and a Neural
Adaptive Bias (NAB) mechanism. This NAB represents the first approach to jointly model multiple
asymmetric metrics—distance, duration, and directional angles—in real-world routing problems.
To validate our model, we constructed a large-scale dataset with realistic routing data from 100 di-
verse cities. This dataset provides a reproducible and diverse testbed that supports future research on
robust and generalizable NCO solvers. On this challenging benchmark, RRNCO achieves state-of-
the-art performance among NCO methods. By releasing our model and dataset, we aim to accelerate
progress in practical, deployable neural optimization solutions.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility of our results, we provide complete access to our implementation, in-
cluding dataset generators and training configurations. The source code is available at https:
//anonymous.4open.science/r/real-routing-nco-submission/. We will addi-
tionally disclose the URL of generated data and model weights on HuggingFace upon acceptance.
Detailed descriptions of model architectures, dataset creation, training procedures, and experimental
setups are provided in the main paper and appendix.
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APPENDIX

A DETAILED MODEL DECODER ARCHITECTURE

The decoder architecture combines key elements from the ReLD and MatNet to effectively process
the dense node embeddings generated by the encoder and construct solutions for vehicle routing
problems. At each decoding step t, the decoder takes as input the row and column node embeddings
(hr

F, hc
F) produced by the encoder and a context vector hc. The composition of hc adapts to the

problem type. For VRP variants (ACVRP and ACVRPTW), the context relies on the last visited
node and the dynamic state. In contrast, for ATSP, we additionally include the embedding of the
first node a0 to explicitly anchor the tour’s origin. Formally, the context vector is defined as:

hc =

{
[hr

a0
, hr

at−1
, Dt] ∈ R2dh+dattr for ATSP,

[hr
at−1

, Dt] ∈ Rdh+dattr for ACVRP and ACVRPTW.
(17)

where Dt ∈ Rdattr represents the dynamic features derived from the state st. The specific contents of
Dt are tailored to the constraints of each problem variant: for ACVRP, Dt consists of the current
load; for ACVRPTW, it includes both the current load and the current time. In the case of ATSP,
which is unconstrained by capacity or time windows, no dynamic features are utilized (i.e., Dt = ∅).

To aggregate information from the node embeddings, the decoder applies a multi-head attention
(MHA) mechanism, using the context vector hc as the query and Ht ∈ R|F t|×dh as the key and
value:

h′
c = MHA(hc,W

keyhc
F ,W

valhc
F ). (18)

The ReLD model introduces a direct influence of context by adding a residual connection between
the context vector hc and the refined query vector h′

c:

h′
c = h′

c + IDT(hc), (19)

where IDT(·) is an identity mapping function that reshapes the context vector to match the di-
mension of the query vector, allowing context-aware information to be directly embedded into the
representation. To further enhance the decoder performance, an MLP with residual connections is
incorporated to introduce non-linearity into the computation of the final query vector qc:

qc = h′
c + MLP(h′

c). (20)

The MLP consists of two linear transformations with a ReLU activation function, transforming the
decoder into a transformer block with a single query that can model complex relationships and
adapt the embeddings based on the context. Finally, the probability pi of selecting node i ∈ F t is
calculated by applying a compatibility layer with a negative logarithmic distance heuristic score:

pi =

[
Softmax

(
C · tanh

(
(qc)

TW ℓhc
F√

dh
− log(disti)

))]
i

(21)

where C is a clipping hyperparameter, dh is the embedding dimension, and disti denotes the distance
between node i and the last selected node at−1. This heuristic guides the model to prioritize nearby
nodes during the solution construction process. The combination of ReLD’s architectural modifi-
cations and MatNet’s decoding mechanism with our rich, learned encoding enables the RRNCO
model to effectively leverage static node embeddings while dynamically adapting to the current
context, leading to improved performance on various vehicle routing problems.

B REAL-WORLD VRP DATASET GENERATION

Existing methodologies often require integrating massive raw datasets (e.g., traffic simulators and
multi-source spatial data) – for instance, Barauskas et al. (2023) rely on simplistic synthetic bench-
marks, which are either resource-intensive or lack real-world complexity (Gunawan et al., 2021).

To address these limitations, we design a three-step pipeline to create a diverse and realistic vehicle
routing dataset aimed at training and testing NCO models. First, we select cities worldwide based on
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multi-dimensional urban descriptors (morphology, traffic flow regimes, land-use mix). Second, we
develop a framework using the Open Source Routing Machine (OSRM) (Luxen & Vetter, 2011) to
create city maps with topological data, generating both precise location coordinates and their corre-
sponding distance and duration matrices between each other. Finally, we efficiently subsample these
topologies to generate diverse VRP instances by adding routing-specific features such as demands
and time windows, thus preserving the inherent spatial relationships while enabling the rapid genera-
tion of instances with varying operational constraints, leveraging the precomputed distance/duration
matrices from the base maps. The whole pipeline is illustrated in Fig. 3.

B.1 CITY MAP SELECTION

We select a list of 100 cities distributed across six continents, with 25 in Asia, 21 in Europe, 15
each in North America and South America, 14 in Africa, and 10 in Oceania. The selection empha-
sizes urban diversity through multiple dimensions, including population scale (50 large cities >1M
inhabitants, 30 medium cities 100K-1M, and 20 small cities <100K), infrastructure development
stages, and urban planning approaches. Cities feature various layouts, from grid-based systems like
Manhattan to radial patterns like Paris and organic developments like Fez, representing different ge-
ographic and climatic contexts from coastal to mountain locations. We prioritized cities with reliable
data availability while balancing between globally recognized metropolitan areas and lesser-known
urban centers, providing a comprehensive foundation for evaluating vehicle routing algorithms un-
der diverse real-world conditions. Moreover, by including cities from developing regions, we aim to
advance transportation optimization research that could benefit underprivileged areas and contribute
to their socioeconomic development.

B.2 TOPOLOGICAL DATA GENERATION FRAMEWORK

In the second stage, we generate base maps that capture real urban complexities. This topological
data generation is composed itself of three key components: geographic boundary information, point
sampling from road networks, and travel information computation.

Geographic boundary information We establish standardized 9 km2 areas (3×3 km) centered on
each target city’s municipal coordinates, ensuring the same spatial coverage across different urban
environments. Given that the same physical distance corresponds to different longitudinal spans
at different latitudes due to the Earth’s spherical geometry, we need a precise distance calculation
method: thus, the spatial boundaries are computed using the Haversine spherical distance formula-
tion (Chopde & Nichat, 2013):

d = 2R · arcsin

(√
sin2

(
∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2) sin

2

(
∆λ

2

))
(22)

where d is the distance between two points along the great circle, R is Earth’s radius (approximately
6,371 kilometers), ϕ1 and ϕ2 are the latitudes of point 1 and point 2 in radians, ∆ϕ = ϕ2 − ϕ1

represents the difference in latitudes, and ∆λ = λ2 − λ1 represents the difference in longitudes.
This enables precise spatial boundary calculations and standardized cross-city comparisons while
maintaining consistent analysis areas across different geographic locations.

Point sampling from road networks Our RRNCO framework interfaces with OpenStreetMap
(OpenStreetMap contributors, 2025) for point sampling. More specifically, we extract both
road networks and water features within defined boundaries using graph from bbox and
features from bbox2. Employing boolean indexing, the sampling process implements several
filtering mechanisms to filter the DataFrame and ensure point quality: we exclude bridges, tunnels,
and highways to focus on accessible street-level locations and create buffer zones around water fea-
tures to prevent sampling from (close to) inaccessible areas. Points are then generated through a
weighted random sampling approach, where road segments are weighted by their length to ensure
uniform spatial distribution.

2https://osmnx.readthedocs.io/en/stable/user-reference.html
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Travel information computation The travel information computation component leverages a lo-
cally hosted Open Source Routing Machine (OSRM) server (Luxen & Vetter, 2011) to calculate
real travel distances and durations between sampled points, ensuring full reproducibility of results.
Through the efficient get table function in our router implementation via the OSRM table ser-
vice3, we can process a complete 1000x1000 origin-destination matrix within 18 seconds, making
it highly scalable for urban-scale analyses. In contrast to commercial API-based approaches that
require more than 20 seconds for 350×350 matrices (Ali & Saleem, 2024), our open-source local
OSRM implementation achieves the same computations in approximately 5 seconds. Additionally,
it enables the rapid generation of multiple instances from small datasets with negligible computa-
tional cost per iteration epoch. The RRNCO framework finally processes this routing data through
a normalization strategy that addresses both unreachable destinations and abnormal travel times.
This step captures real-world routing complexities, including one-way streets, turn restrictions, and
varying road conditions, resulting in asymmetric distance and duration matrices that reflect actual
urban travel patterns. All computations are performed locally4, allowing for consistent results and
independent verification of the analysis pipeline.

B.3 VRP INSTANCE SUBSAMPLING

From the large-scale city base maps, we generate diverse VRP instances by subsampling a set of
locations along with their corresponding distance and duration matrices, allowing us to generate an
effectively unlimited number of instances while preserving the underlying structure. The subsam-
pling process follows another three-step procedure:

1. Index Selection: Given a city dataset containing Ntot locations, we define a subset size Nsub
representing the number of locations to be sampled for the VRP instance. We generate an in-
dex vector s = (s1, s2, . . . , sNsub) where each si is drawn from {1, . . . , Ntot}, ensuring unique
selections. 2. Matrix Subsampling: Using s, we extract submatrices from the precomputed dis-
tance matrix D ∈ RNtot×Ntot and duration matrix T ∈ RNtot×Ntot , forming instance-specific ma-
trices Dsub = D[s, s] ∈ RNsub×Nsub and Tsub = T [s, s] ∈ RNsub×Nsub , preserving spatial rela-
tionships among selected locations. 3. Feature Generation: Each VRP can have different fea-
tures. For example, in Asymmetric Capacitated VRP (ACVRP) we can generate a demand vector
d ∈ RNsub×1, such that d = (d1, d2, . . . , dNsub)

⊤, where each di represents the demand at location
si. Similarly, we can extend to ACVRPTW (time windows) represented as W ∈ RNsub×2, where
W = {(wstart

1 , wend
1 ), . . . , (wstart

Nsub
, wend

Nsub
)}, defining the valid service interval for each node.

Unlike previous methods that generate static datasets offline (Duan et al., 2020; Ali & Saleem, 2024),
our RRNCO generation framework dynamically generates instances on the fly in few milliseconds,
reducing disk memory consumption while maintaining high diversity. Fig. 3 illustrates the overall
process, showing how a city map is subsampled using an index vector to create VRP instances
with distance and duration matrices enriched with node-specific features such as demands and time
windows. Our approach allows us to generate a (arbitrarily) large number of problem instances from
a relatively small set of base topology maps totaling around 1.5GB, in contrast to previous works
that required hundreds of gigabytes of data to produce just a few thousand instances.

B.4 ADDITIONAL DATA INFORMATION

We present a comprehensive urban mobility dataset encompassing 100 cities across diverse geo-
graphical regions worldwide. For each city, we collected 1000 sampling points distributed through-
out the same size urban area. The dataset includes the precise geographical coordinates (latitude and
longitude) for each sampling point. Additionally, we computed and stored complete distance and
travel time matrices between all pairs of points within each city, resulting in 1000×1000 matrices per
city. The cities in our dataset exhibit significant variety in their characteristics, including population
size (ranging from small to large), urban layout patterns (such as grid, organic, mixed, and historical
layouts), and distinct geographic features (coastal, mountain, river, valley, etc.). The dataset covers
multiple regions including Asia, Oceania, Americas, Europe, and Africa. This diversity in urban

3https://project-osrm.org/docs/v5.24.0/api/#table-service
4Our framework can also be extended to include real-time commercial map API integrations and powerful

traffic forecasting to obtain better-informed routing (Wang & Xu, 2011; Qu & Wu, 2025), which we leave as
future works.
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environments enables comprehensive analysis of mobility patterns across different urban contexts
and geographical settings. Table 5 on the following page provides information about our topology
dataset choices.

Table 5: Comprehensive City Details

City Population Layout Geographic
Features

Region Split

Addis Ababa Large Organic Highland East Africa Train
Alexandria Large Mixed Coastal North Africa Train
Amsterdam Large Canal grid River Western

Europe
Train

Almaty Large Grid Mountain Central Asia Train
Asunción Medium Grid River South

America
Test

Athens Large Mixed Historical Southern
Europe

Train

Auckland Large Harbor layout Isthmus Oceania Train
Baku Large Mixed Coastal Western

Asia
Train

Bangkok Large River layout River Southeast
Asia

Train

Barcelona Large Grid &
historic

Coastal Southern
Europe

Train

Beijing Large Ring layout Plains East Asia Train
Bergen Small Fjord Coastal mountain Northern

Europe
Train

Brisbane Large River grid River Oceania Train
Buenos Aires Large Grid River South

America
Train

Bukhara Small Medieval Historical Central Asia Test
Cape Town Large Mixed

colonial
Coastal&mountain Southern

Africa
Train

Cartagena Medium Colonial Coastal South
America

Train

Casablanca Large Mixed
colonial

Coastal North Africa Train

Chengdu Large Grid Basin East Asia Train
Colombo Medium Colonial grid Coastal South Asia Train
Chicago Large Grid Lake North

America
Test

Christchurch Medium Grid Coastal plain Oceania Train
Copenhagen Large Mixed Coastal Northern

Europe
Train

Curitiba Large Grid Highland South
America

Train

Cusco Medium Historic mixed Mountain South
America

Test

Daejeon Large Grid Valley East Asia Train
Dakar Medium Peninsula grid Coastal West Africa Train
Dar es Salaam Large Coastal grid Coastal East Africa Train
Denver Large Grid Mountain North

America
Train

Dhaka Large Organic River South Asia Train
Dubai Large Linear modern Coastal& desert Western

Asia
Train

Continued on next page
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Table 5 – Continued from previous page
City Population Layout Geographic

Features
Region Split

Dublin Large Georgian grid Coastal Northern
Europe

Train

Dubrovnik Small Medieval
walled

Coastal Southern
Europe

Train

Edinburgh Medium Historic mixed Hills Northern
Europe

Train

Fez Medium Medieval
organic

Historical North Africa Test

Guatemala City Large Valley grid Valley Central
America

Train

Hanoi Large Mixed River Southeast
Asia

Train

Havana Large Colonial Coastal Caribbean Train
Helsinki Large Grid Peninsula Northern

Europe
Train

Hobart Small Mountain
harbor

Harbor Oceania Test

Hong Kong Large Vertical Harbor East Asia Train
Istanbul Large Mixed Strait Western

Asia
Train

Kigali Medium Hill organic Highland East Africa Train
Kinshasa Large Organic River Central

Africa
Train

Kuala Lumpur Large Modern mixed Valley Southeast
Asia

Test

Kyoto Large Historical grid Valley East Asia Train
La Paz Large Valley organic Mountain South

America
Train

Lagos Large Organic Coastal West Africa Train
Lima Large Mixed grid Coastal desert South

America
Train

London Large Radial organic River Northern
Europe

Test

Los Angeles Large Grid sprawl Coastal basin North
America

Train

Luanda Large Mixed Coastal Southern
Africa

Train

Mandalay Large Grid River Southeast
Asia

Train

Marrakech Medium Medina Desert edge North Africa Train
Medellı́n Large Valley grid Mountain South

America
Train

Melbourne Large Grid River Oceania Train
Mexico City Large Mixed Valley North

America
Test

Montevideo Large Grid Coastal South
America

Train

Montreal Large Mixed Island North
America

Train

Moscow Large Ring layout River Eastern
Europe

Train

Mumbai Large Linear coastal Coastal South Asia Test
Nairobi Large Mixed Highland East Africa Train

Continued on next page
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Table 5 – Continued from previous page
City Population Layout Geographic

Features
Region Split

New Orleans Medium Colonial River delta North
America

Train

New York City Large Grid Coastal North
America

Train

Nouméa Small Peninsula Coastal Oceania Test
Osaka Large Grid Harbor East Asia Test
Panama City Large Coastal

modern
Coastal Central

America
Train

Paris Large Radial River Western
Europe

Train

Perth Large Coastal sprawl Coastal Oceania Test
Port Moresby Medium Harbor sprawl Coastal hills Oceania Train
Porto Medium Medieval

organic
River mouth Southern

Europe
Train

Prague Large Historic grid River Central
Europe

Train

Quebec City Medium Historic
walled

River North
America

Test

Quito Large Linear valley Highland South
America

Test

Reykjavik Small Modern grid Coastal Northern
Europe

Test

Rio de Janeiro Large Coastal
organic

Mountain&
coastal

South
America

Train

Rome Large Historical
organic

Seven hills Southern
Europe

Test

Salvador Large Mixed historic Coastal South
America

Train

Salzburg Small Medieval core River Central
Europe

Train

San Francisco Large Hill grid Peninsula North
America

Train

San Juan Medium Mixed historic Coastal Caribbean Test
Santiago Large Grid Valley South

America
Train

São Paulo Large Sprawl Highland South
America

Train

Seoul Large Mixed River East Asia Train
Shanghai Large Modern mixed River East Asia Train
Singapore Large Planned Island Southeast

Asia
Train

Stockholm Large Archipelago Island Northern
Europe

Train

Sydney Large Harbor
organic

Harbor Oceania Train

Taipei Large Grid Basin East Asia Train
Thimphu Small Valley organic Mountain South Asia Train
Tokyo Large Mixed Harbor East Asia Test
Toronto Large Grid Lake North

America
Train

Ulaanbaatar Large Grid Valley East Asia Train
Valparaı́so Medium Hill organic Coastal hills South

America
Train

Continued on next page
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Table 5 – Continued from previous page
City Population Layout Geographic

Features
Region Split

Vancouver Large Grid Peninsula North
America

Train

Vienna Large Ring layout River Central
Europe

Train

Vientiane Medium Mixed River Southeast
Asia

Train

Wellington Medium Harbor basin Coastal hills Oceania Train
Windhoek Small Grid Highland Southern

Africa
Test

Yogyakarta Medium Traditional Cultural center Southeast
Asia

Train

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 HYPERPARAMETER DETAILS

Table 6 shows the hyperparameters we employ for RRNCO. The configuration can be changed
through yaml files as outlined in RL4CO (Berto et al., 2025a), which we employ as the base frame-
work for our codebase.

Table 6: Hyperparameters for RRNCO.

Hyperparameter Value
Optimizer Adam
Learning Rate 4× 10−4

LR Decay Schedule 0.1 at epochs 180, 195
Batch Size 256
Instances per Epoch 100,000
Embedding Dimension 128
Feedforward Dimension 512
AAFM Layers 12
Clipping C 10

C.2 TESTING DATASET

For each dataset of the main experiments Section 6.2, we use subsampling as described in Sec-
tion B.3 and sample 1,280 instances for each test set. Whole test sets and seeds are provided in the
shared code for reproducibility.

C.3 BASELINES DETAILS

All evaluations are conducted on an NVIDIA A6000 GPU paired with an Intel(R) Xeon(R) CPU @
2.20GHz. For neural methods, we employ the provided models and code in the original repositories
to ensure fairness and reproducibilty.

We evaluate all traditional solvers on a single CPU core sequentially. To reflect a realistic
deployment scenario, we do not perform instance-specific hyperparameter tuning, instead re-
lying on the robust default configurations provided by each library. For LKH-3 (Helsgaun,
2017), we utilize the standard parameter set from the official distribution (e.g., PATCHING C=3,
PATCHING A=2 for VRPs), imposing a TIME LIMIT of 5 seconds per instance. For PyVRP
(Wouda et al., 2024), we employ the default Hybrid Genetic Search (HGS) parameters specifically
nb elite=4 and generation size=40 with a 20-second time limit via MaxRuntime. Sim-
ilarly, for Google OR-Tools (Perron & Didier, 2024), we configure the routing model to use the
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GUIDED LOCAL SEARCH metaheuristic initialized with PATH CHEAPEST ARC, restricted to a
20-second budget. This protocol, consistent with Liu et al. (2024), results in a total evaluation time
of approximately 7 hours for the test set (1,280 instances).

D USE OF LARGE LANGUAGE MODELS

Large language models were employed solely as general-purpose writing assistants. Their use was
restricted to refining phrasing, improving clarity, and correcting grammar in draft versions of the
manuscript. All research ideas, methodologies, analyses, results, and interpretations were conceived,
executed, and validated exclusively by the authors. Any text generated with the assistance of LLMs
was thoroughly reviewed, edited, and integrated by the authors to ensure accuracy, correctness, and
compliance with academic standards.

E ADDITIONAL MATERIAL ON STOCHASTIC BENCHMARKS

We further evaluate RRNCO on routing scenarios with time-varying travel conditions. Specifically,
we benchmark on the Stochastic Multi-period Time-dependent VRP (SMTVRP), which incorporates
realistic traffic dynamics following the simulation protocol of SVRPBench (Heakl et al., 2025).

E.1 BENCHMARK SETUP

Dynamic Travel Time Model Real-world travel times exhibit significant temporal variation due
to congestion patterns, stochastic delays, and unexpected incidents. We model the travel time from
node a to b departing at time t as:

T (a, b, t) = Tbase(a, b) + Tcongestion(a, b, t) + Tincident(t), (23)

where Tbase(a, b) = D(a, b)/V represents the free-flow travel time based on Euclidean distance
D(a, b) and average speed V . The congestion component captures systematic daily patterns:

Tcongestion(a, b, t) = B(a, b, t) ·R(t), (24)

with B(a, b, t) encoding deterministic congestion and R(t) introducing stochastic variability.

The congestion factor combines temporal and spatial dependencies:

B(a, b, t) = α ·

β + γ
∑

p∈{am,pm}

G(t;µp, σp)


︸ ︷︷ ︸

Ftime(t)

·
(
1− e−D(a,b)/λ

)
︸ ︷︷ ︸

Fdist(D)

, (25)

where G(t;µ, σ) denotes a Gaussian kernel. The bimodal temporal structure with peaks at µam = 8
and µpm = 17 reflects typical morning and evening rush hours. The distance factor captures the
empirical observation that longer trips have higher congestion exposure.

To model traffic variability, R(t) follows a log-normal distribution with time-dependent parameters:

R(t) ∼ LogNormal
(
µR(t), σR(t)

)
, (26)

where both µR(t) and σR(t) increase during peak hours to reflect heightened uncertainty.

Incident-induced delays are modeled as:

Tincident(t) = ⊮[incident at t] ·∆incident, (27)

where incident occurrences follow a time-inhomogeneous Poisson process with elevated rates during
nighttime hours (µnight = 21), and delay durations ∆incident ∼ U(0.5, 2.0) hours align with industry
clearance statistics.
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Time Window Generation Customer availability windows are sampled to reflect realistic delivery
scenarios. We distinguish between two customer types with distinct temporal preferences:

T (res)
start ∼ 0.5 · N (µam, σ

2
am) + 0.5 · N (µpm, σ

2
pm), (28)

for residential customers with morning (µam = 480 min) and evening (µpm = 1140 min) availability
peaks, and

T (com)
start ∼ N (µbiz, σ

2
biz), (29)

for commercial customers centered on business hours (µbiz = 780 min). Window durations are sam-
pled uniformly within problem-specific bounds. Complete parameter specifications follow SVRP-
Bench (Heakl et al., 2025).

E.2 BASELINE CONFIGURATIONS

We evaluate a set of baseline methods on the stochastic multi-period time-dependent VRP
(SMTVRP) benchmark to ensure rigorous and fair comparisons. All methods are configured fol-
lowing standard practices in SVRPBench and prior VRP literature, with adjustments only when
necessary to accommodate time-dependent travel information.

ACO (Ant Colony Optimization) We adopt a conventional parameterization commonly used in
the SVRP literature. To balance solution quality and computational efficiency in dynamic envi-
ronments, we set the number of ants to 50 and the maximum number of iterations to 100. The
pheromone-related parameters are fixed to α = 1.0, β = 2.0, and evaporation rate ρ = 0.5. At each
temporal update in SMTVRP, heuristic costs are recomputed while pheromone trails are preserved
to maintain stability across time periods.

OR-Tools We use the guided local search (GLS) implementation included in SVRPBench with a
strict time limit of 1000 seconds per instance. This extended budget allows the solver to explore
large neighborhoods under dynamic updates. Following each change in the time-dependent duration
matrix, OR-Tools is restarted from the most recent feasible solution when possible, but no custom
tuning beyond the default GLS configuration is introduced.

NN + 2-opt In accordance with the SVRPBench protocol, a Nearest Neighbor (NN) heuristic is
first used to construct an initial solution, followed by a 2-opt local improvement phase. The search
terminates upon convergence or after reaching a maximum runtime of 10 seconds per instance.
Under dynamic conditions, NN + 2-opt is rerun at every update step to preserve consistency with
the updated travel-time information.

GOAL We evaluate GOAL using its official pre-trained checkpoint trained on CVRPTW in-
stances. No additional training or adaptation is performed. For each temporal update, GOAL re-
evaluates its autoregressive decoding process under the current duration matrix, thereby testing its
zero-shot generalization capacity to dynamic inputs.

RouteFinder We initialize RouteFinder from its official pre-trained model and apply Efficient
Active Learning (EAL) for 20 epochs to adapt the policy to the SMTVRP distributions. After EAL
adaptation, inference proceeds in a closed-loop manner: at each step, the updated travel-time matrix
is processed, and actions are generated based on the current state of the dynamic environment.

E.3 MULTI-SNAPSHOT NAB FOR STOCHASTIC ROUTING

To extend RRNCO to robustly handle time-dependent and stochastic traffic variations, we intro-
duce a Multi-Snapshot variant of the Neural Adaptive Bias (NAB). While the standard NAB fuses
a single duration matrix, real-world traffic is highly dynamic and uncertain. To address this, we
integrate a dynamics-informed traffic simulation directly into the encoder pipeline and extend the
NAB architecture to process multiple temporal ”snapshots” of traffic conditions simultaneously.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E.3.1 DYNAMICS-INFORMED INPUT GENERATION

To approximate the stochastic nature of real-world travel times, we employ the dynamics-informed
traffic modeling framework proposed in SVRPBench (Heakl et al., 2025). Instead of a single static
duration matrix, the model takes as input a set of K distinct duration snapshots {T1, . . . ,TK}.
In our experiments, we set K = 3 to represent distinct traffic regimes (e.g., morning peak, noon,
evening peak).

These snapshots are generated using Gaussian kernels centered at learnable “time anchors” to model
congestion peaks, combined with stochastic noise injection. Specifically, for a snapshot k, the du-
ration t

(k)
ij is derived by modulating the base travel time with a congestion factor drawn from a

time-dependent Gaussian distribution, multiplicative noise sampled from a LogNormal distribution
to simulate flow variability, and sparse additive noise modeled via a Poisson process to account
for random incidents (accidents). This ensures the model receives a global, “look-ahead” view of
potential traffic states and their associated uncertainties.

E.3.2 MULTI-SNAPSHOT GATING MECHANISM

We extend the Neural Adaptive Bias (NAB) module to aggregate these heterogeneous temporal
views. The Multi-Snapshot NAB employs a unified gating network that dynamically weighs the
importance of the static spatial structure against the variable traffic conditions.

First, we project the static Distance matrix D, the Relative Angle matrix Φ, and each of the K
dynamic Duration snapshots into a shared high-dimensional embedding space:

Demb = ReLU(DWD)W′
D, (30)

Φemb = ReLU(ΦWΦ)W
′
Φ, (31)

T
(k)
emb = ReLU(TkWT )W

′
T , ∀k ∈ {1, . . . ,K}. (32)

To fuse these K+2 feature maps, we compute a set of scalar importance weights via a learned gating
network. Let Econcat = [Demb;Φemb;T

(1)
emb; . . . ;T

(K)
emb ] denote the concatenation of all embeddings.

We compute the gating weights g ∈ R2+K via a softmax function:

g = softmax
(
EconcatWG

exp(τ)

)
, (33)

where WG is a learnable weight matrix and τ is the temperature parameter. The final fused repre-
sentation Hfused is computed as a probability-weighted sum of the static and dynamic features:

Hfused = g1 ⊙Demb + g2 ⊙Φemb +

K∑
k=1

gk+2 ⊙T
(k)
emb. (34)

Similar to the standard NAB, this fused representation is projected to a scalar bias matrix A =
Hfusedwout. This bias A modulates the attention scores in the Adaptation Attention Free Module
(AAFM), guiding the solver to avoid routes that are consistently congested across the simulated
snapshots or to leverage time windows where traffic is predicted to be lighter.

E.4 TRAINING DETAILS

RRNCO (NAB) The standard RRNCO model equipped with the Neural Adaptive Bias (NAB)
is trained for 100 epochs on static instances sampled from the real-world generator introduced in
the main paper. Each epoch consists of 100,000 training instances, with a batch size of 256 and the
Adam optimizer with a learning rate of 4×10−4. The learning rate is decayed following the schedule
described in Table 6 of the appendix. No fine-tuning is performed on the SMTVRP benchmark;
instead, the model is directly evaluated in a dynamic closed-loop setting.

RRNCO (Multi-Snapshot NAB) As detailed in Section E.3, this variant integrates temporal vari-
ability by augmenting the Neural Adaptive Bias (NAB) module with a dynamics-informed traffic
simulator and a temporal gating mechanism designed to statically fuse multiple duration snapshots.
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In our experiments, the model receives K = 3 temporal duration snapshots at training time, cor-
responding to short-horizon predictions of traffic fluctuations. The model is trained for 100 epochs
under the same reinforcement learning setup as the base RRNCO. During dynamic evaluation on
SMTVRP, the NAB module processes and fuses the K snapshots once during the initial encoding
step. This process enables the resultant node representations to embed a global context of potential
traffic variations, allowing the autoregressive decoder to anticipate near-future congestion patterns
without requiring dynamic re-encoding at every decision step.

Inference Protocol Both RRNCO variants operate autoregressively in a closed-loop dynamic en-
vironment. After each routing action, the updated time-dependent duration matrix is provided by
the SMTVRP simulator. The model recomputes its route continuation based on this updated infor-
mation. A decoding augmentation factor of 8 is applied during inference to reduce variance and
enhance route stability across dynamic updates.

E.5 RESULTS FOR MULTI-SNAPSHOT NAB

Table 7 demonstrates that RRNCO with Multi-Snapshot NAB achieves state-of-the-art performance
with a cost of 594.19, surpassing both the standard NAB (601.03) and RouteFinder (602.20). This
improvement confirms that fusing multiple temporal snapshots allows the model to better antici-
pate traffic stochasticity. On the other hand, OR-Tools fails to find feasible solutions for 75.8% of
instances despite a 1000s budget. RRNCO maintains 100% feasibility and zero time window vio-
lations, offering superior robustness and speed (0.20s) with virtually no additional inference latency
compared to the standard model.

Table 7: Performance comparison on SMTVRP benchmark. Feasibility indicates the proportion of instances
with valid solutions. Lower cost is better.

Method Cost Feasibility Runtime TW Violations

ACO 763.52 1.00 41.3s 0
OR-Tools 610.08 0.242 1000s 45.15
NN + 2opt 969.96 1.00 10s 0
RF 602.20 1.00 0.05s 0
GOAL 1319.00 1.00 0.28s 0

RRNCO (NAB) 601.03 1.00 0.20s 0
RRNCO (Multi-Snapshot NAB) 594.19 1.00 0.20s 0
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