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ABSTRACT

Current Spiking Neural Networks (SNNs) underutilize the temporal dynamics in-
herent in spike-based processing, relying primarily on rate coding while over-
looking precise timing information that provides rich computational cues. We
address this by proposing SPARTA (Spiking Priority Attention with Resource-
Adaptive Temporal Allocation), which leverages heterogeneous neuron dynamics
and spike-timing information to enable sparse attention mechanisms. SPARTA
extracts temporal cues—including firing patterns, spike timing, and inter-spike
intervals—to prioritize tokens for processing, achieving 65.4% sparsity through
competitive gating. By selecting only the most salient tokens, SPARTA reduces
attention complexity from O(N?) to O(K?), where k < n. Our approach achieves
state-of-the-art accuracy on DVS-Gesture (98.78%) and competitive performance
on CIFAR10-DVS (83.06%) and CIFAR-10 (95.3%), demonstrating that spike-
timing utilization enables both computational efficiency and competitive accuracy.

1 INTRODUCTION

Deep learning with Artificial Neural Networks (ANNs) has revolutionized numerous aspects of
modern society, achieving major breakthroughs in computer vision He et al.| (2016). However,
the substantial energy consumption of these increasingly complex models has emerged as a critical
bottleneck for practical deployment |Strubell et al.| (2019).

Spiking Neural Networks (SNNs) offer a fundamentally different paradigm by processing discrete,
asynchronous spikes that mirror biological neural computation. This enables natural event-driven
processing and intrinsic temporal coding, making SNNs particularly suited for neuromorphic hard-
ware such as Intel’s Loihi [Davies et al.|(2018)). Yet, the discrete spike events and temporal dynam-
ics introduce inherent challenges for training, resulting in a persistent accuracy gap compared to
continuous-valued ANNs. While recent approaches have successfully improved SNN performance
through ANN-inspired techniques like ANN-to-SNN conversion |Deng & Gu|(2021), surrogate gra-
dient methods |[Neftci et al.[(2019), and sophisticated normalization |Zheng et al.| (2021), these meth-
ods have underutilized the rich temporal dynamics inherent in spike-based processing. Most existing
approaches focus primarily on achieving higher accuracy while insufficiently exploiting the precise
temporal information that distinguishes SNNs from conventional ANNSs, representing a key oppor-
tunity for further advancement. Consequently, this has limited their computational efficiency on
neuromorphic hardware |Orchard et al.| (2021)); Bellec et al.|(2018).

SNNs inherently excel in spatio-temporal coding, leveraging precise spike timing to efficiently en-
code complex temporal patterns, a capability ANNs do not naturally replicate |[Eshraghian et al.
(2023). However, current research predominantly focuses on matching ANN performance metrics
while insufficiently addressing the unique opportunities that spike timing provides for both com-
putational efficiency and attention mechanisms. This raises a critical question: How can we more
effectively integrate the temporal coding capabilities inherent to spike dynamics into attention mech-
anisms to enhance both efficiency and performance in SNNs?

Inspired by neuroscientific evidence from insights into temporal dynamics underlying selective at-
tention [Singer| (1999), we propose SPARTA (Spiking Priority Attention with Resource-Adaptive
Temporal Allocation). SPARTA incorporates heterogeneous neurons that mimic the rich diversity of
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response properties found in cortical neuron populations, enabling the network to capture complex
temporal features across multiple timescales. It then leverages a Spatio-Temporal Encoding Net-
work (STEN) to construct a multi-scale feature representation that explicitly preserves this critical
spike timing information. Finally, these features guide a Priority-Aware Sparse Temporal Attention,
which dynamically allocates computational resources only to the most salient tokens, avoiding the
quadratic complexity of standard attention while maintaining processing efficiency.

SPARTA’s token selection mechanism is based on three biologically-inspired observations: (1) im-
portant stimuli tend to fire earlier |[Foffani et al| (2009), (2) important stimuli tend to fire with
shorter intervals between spikes |(Oswald et al| (2007), and (3) important stimuli tend to fire more
frequently |Gerstner et al.| (1997). These observations guide our multi-scale feature extraction ap-
proach. We interpret stimuli as tokens, enabling biologically-inspired selection and localized com-
petitive gating for sparse attention, while preserving event-driven sparsity critical to neuromorphic
hardware.

* HI-LIF neuron (Heterogeneous Initialized Leaky Integrate-and Fire) that introduces learn-
able, channel-wise temporal diversity to expand the network’s processing bandwidth.

* A novel sparse attention mechanism guided by biologically-inspired temporal cues (firing
rate, spike timing) for efficient, saliency-based computation.

* The SPARTA framework, which achieves competitive performance demonstrating that in-
tegrating biologically-inspired temporal cues can enhance both efficiency and performance
in SNNs.

2 BACKGROUND AND MOTIVATION

2.1 LIF NEURON MODELS AND TEMPORAL CODING

The computational core of Spiking Neural Networks (SNNs) is the Leaky Integrate-and-Fire (LIF)
neuron, whose dynamics are governed by a membrane time constant (7) and a firing threshold (v, ),
as described in Equations 1 and 2.
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However, a critical limitation arises in how these models are conventionally applied: SNNs typ-
ically employ uniform parameters shared across all spatial channels. This simplification, while
computationally convenient, starkly contrasts with biological reality, where cortical neurons exhibit
remarkable heterogeneity in their temporal properties [Mason et al.|(2022); |[Eyal et al.|(2023)). This
imposed homogeneity creates a significant bottleneck, limiting the network’s temporal coding ca-
pacity and its ability to process complex information across multiple timescales [Perez-Nieves et al.
(2021). Our work directly confronts this limitation, proposing a neuron model inspired by this bio-
logical diversity to unlock a richer temporal processing bandwidth.

2.2 HUMAN COGNITION AND TEMPORAL ATTENTION

Human visual attention leverages temporal dynamics for rapid pattern recognition. The flashed-
face distortion effect demonstrates temporal sensitivity: faces presented in rapid succession ap-
pear perceptually distorted, consistent with competitive normalization within brief presentation win-
dows [Tangen et al.|(2011). Structured visual search tasks illustrate temporal attention mechanisms
where systematic scanning operates under specific temporal constraints [Wolfe (1994)); |Chun & Pot-
ter| (1995)). Cognitive integration depends on maintaining partial cues within critical time windows,
beyond which integration success declines |(Chun & Potter| (1995); |Di Lollo| (1977). While these
cognitive phenomena provide a high-level, conceptual foundation for our approach, the core com-
putational mechanisms of SPARTA are grounded in established models from computational neuro-
science.



Under review as a conference paper at ICLR 2026

The First Word You Find Describes
Your Psychological State !

(%{megyu\s

Figure 1: Crossword puzzle analogy illustrating temporal integration and decay of visual cues un-
derlying SPARTA’s selective temporal attention.

Figure|l|illustrates a step-by-step temporal attention process analogous to our problem:

1. Global scan: Continuous monitoring detects “FAT” but dismisses it, as “FAT” is not a
valid psychological word.

2. Rapid detection: Focused attention shifts to “IGUE” within the relevant time interval.

3. Temporal integration: The brain associates “FAT” and “IGUE” to form “FATIGUE” (a
valid psychological term).

4. Interval dependency: Longer delays cause the memory of “FAT” to decay, reducing the
likelihood of integration. The user will be unable to connect “IGUE” with “FAT”.

Such observations suggest how temporal windows may affect the selection and integration of sen-
sory cues, providing a conceptual foundation for SPARTA’s spike-timing based attention mecha-
nism. This temporal integration process parallels spike-based neural computation, where informa-
tion binding occurs through precise timing relationships rather than simple accumulation. Unlike
conventional frame-based approaches that process each temporal snapshot independently, spiking
networks naturally maintain temporal context through membrane dynamics, enabling information
integration across biologically plausible time windows.

Building on this principle, SPARTA leverages spike timing to preserve the temporal dynamics es-
sential for efficient attention allocation, drawing inspiration from both cognitive processes and neu-
romorphic computation principles.

2.3 EVENT-BASED VISION

Event-based cameras (e.g., Dynamic Vision Sensors; DVS) emit polarity events only when local
log-intensity changes occur, producing temporally precise and highly sparse streams that interface
cleanly with spike-based SNN computation. [Lichtsteiner et al.| (2008)); \Gallego et al.|(2020). These
sensors capture key aspects of change-driven encoding found in biological vision systems Delbruck
& Lichtsteiner| (2014); |Gollisch & Meister| (2010). Learning directly from native event streams is
practical at scale; accumulating events into dense frames discards fine-grained timing info and can
substantially increase memory and computational demands|Amir et al.|(2017);|Gallego et al.|(2020).
Neuromorphic processors (e.g., Loihi 2) achieve substantial energy savings by scheduling work only
on active addresses—idle pixels and silent neuron populations incur negligible cost—making event-
driven sparsity a primary efficiency lever |Davies et al.| (2018)); |Orchard et al.| (2021)). Accordingly,
SPARTA retains temporally resolved spike tokens and applies salience-guided sparsification prior to
global attention, focusing compute on active regions.
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3 RELATED WORKS

Performance-Driven SNNs focus on accuracy through ANN-inspired techniques, primarily em-
phasizing rate-based coding. ANN-to-SNN conversion methods achieve high performance through
weight scaling and threshold adjustment Bu et al.| (2022); [Han et al.|(2020); Kim et al.[(2022)). Hy-
brid training schemes apply gradient-based optimization to spike networks |Li et al.| (2021)). Large-
scale adaptations port state-of-the-art models to spiking paradigms |Yao et al.[ (2023); Zheng et al.
(2023); Wang et al.| (2023), demonstrating compatibility with cutting-edge Al while treating spikes
primarily as discrete rate codes rather than exploiting their temporal coding capabilities.

Biologically-Inspired Architectures emphasize neuromorphic principles and biological similarity
in design. Local learning rules employ STDP and Hebbian mechanisms for biological fidelity [Song
et al.[ (2000); [Diehl & Cook! (2015), offering hardware compatibility while optimizing for specific
learning paradigms that prioritize biological authenticity. Neuromorphic hardware designs achieve
energy efficiency and real-time processing through platform-specific optimizations for systems like
Loihi [Davies et al.| (2018) and SpiNNaker Furber et al.| (2014), demonstrating effective integration
of neuromorphic principles with practical hardware constraints. Brain-circuit architectures directly
emulate neural circuits through cortical column simulations Hawkins & Ahmad| (2016), achieving
high biological similarity while specializing in applications where biological fidelity is the primary
design criterion.

Temporal Dynamics & Sparse Processing focuses on preserving and leveraging spike timing infor-
mation to optimize computational efficiency and accuracy. Methods like optimized spiking neurons
achieve high accuracy through precise timing codes|Stockl & Maass|(2021)), while sparse processing
frameworks reduce energy consumption without sacrificing network performance |Yin et al.| (2023).
Multi-scale encoding approaches expand receptive fields across resolution levels|Dampfhoffer et al.
(2021)), and progressive learning methods enable deep networks to process complex patterns through
sparse representations [Wu et al.|(2021). Recent empirical analysis demonstrates temporal informa-
tion dynamics in SNNs, showing natural concentration in earlier timesteps during training Kim et al.
(2023). Spatio-temporal attention mechanisms effectively integrate temporal dependencies without
additional computational overhead [Lee et al.| (2025)). While these approaches demonstrate signif-
icant progress in leveraging temporal information, there remains opportunity to further integrate
biological principles with sparse attention mechanisms to achieve balance between temporal coding
and computational efficiency.

4 METHODOLOGY

4.1 HI-LIF: HETEROGENEOUS TEMPORAL DYNAMICS.

Real cortical neurons exhibit variability in membrane time constants (7) and firing thresholds
(ven) Mason et al.| (2022); [Eyal et al.| (2023). We implement channel-wise initialization for LIF
neurons, sampling 7 and vy, per channel from learnable normal distributions. This Heterogeneous
Initialized LIF (HI-LIF) introduces temporal diversity across channels.

Channel-wise diversity in Ti(rfg and vt(z) yields a spectrum of rapid and sluggish responders: low-
T/low-vy, paths fire early to encode high-frequency events, whereas high-7 paths integrate slow
dynamics. This dual heterogeneity broadens the network’s temporal receptive field while preserving
its overall computational efficiency, enabling the model to capture both fleeting transients and long-

range context within the event-driven layer.

4.2 MULTI-SCALE SPIKE ENCODING & FEATURE EXTRACTION

As mentioned in introduction, SPARTA’s token selection pipeline ranks patch saliency using three
biologically driven cues—high firing rate, early first-spike, and short inter-spike interval.

4.2.1 SPATIO-TEMPORAL ENCODING NETWORK(STEN)

STEN implements cascading downsampling that preserves temporal dynamics through HI-LIF neu-
rons. It processes spike features through three parallel branches: (i) 1x1 convolution for fine-grained
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Figure 2: SPARTA architecture overview. Input events are processed through STEN to generate
Spikelnfo with rich temporal cues. Following multi-scale processing by MSP, the STSG module
modulates token importance, after which the SC selects the top-K salient tokens for efficient sparse
attention classification. Solid arrows show the main data flow.

details, (ii) 3x3 convolution with HI-LIF for additional dynamics, and (iii) adaptive pooling for
global context. The resulting multi-scale features are concatenated and refined by a timing-aware at-
tention mechanism, which assigns higher weights to rich temporal activity. In parallel, STEN derives
three complementary timing metrics—first-spike timing T4, for rapid event detection, inter-spike
intervals Tipterval fOr continuity, and burst firing patterns 73,,,s¢ for salience estimation, forming a
comprehensive temporal representation for downstream processing.

4.2.2 MULTI-SCALE PROCESSING

The second stage applies bias-based attention mechanisms that weight different temporal charac-
teristics. This approach is grounded in established temporal coding models from computational
neuroscience. Specifically, we model the decaying importance of spike latency using an exponential
function, a common and effective method in temporal plasticity models. The weights are defined as:

Wiing = 0xP(—ar- T{1)) 3)
wi(rft)crval = exp(—B {Z—‘l(nst)erval) (4)
wc(:;)mbmed = wt(:r)mng © wl(rft)erval © 0( Fr(z:t)c) (5)

Here, the exponential formulation for wgfgling directly models the principle that earlier spikes carry

greater informational value, a key aspect of first-spike latency codes. The factors «, 3,y are learn-
able scaling parameters that allow the network to adaptively balance these complementary temporal
cues. The resulting temporal bias is incorporated into multi-head attention through attention mask-
ing to emphasize temporally salient regions.
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4.2.3 PATCH GROUPING

Aggregates multi-scale spike features and adjusts the token count to a fixed size without zero-
padding by selecting tokens based on their importance (e.g., firing rate). This preserves meaningful
spike information while ensuring compatibility with downstream modules.

4.3 SPARSE TOKEN PROCESSING & ATTENTION

The sparse processing stage implements biologically-inspired competition and selective attention
through integrated mechanisms that reduce computation while preserving salient temporal patterns.
By dynamically selecting the top-k tokens where k < n, it achieves an efficient attention complexity
of O(k?), significantly lowering the computational cost compared to the full O(n?) attention.

4.3.1 SPIKE TOKEN SELECTION & GATING (STSG).

STSG implements lateral inhibition mechanisms that integrate three attention mechanisms: MSP
features, spatial competition through center-surround inhibition kernels, and temporal priority in-
formation. Unlike fixed sparsity ratios, STSG employs a learned predictor that adapts to temporal
characteristics:

mean(Fa¢e)
finput = [ Std(Ttiming) ] (6)

mean(Tinterval)

The three scoring mechanisms are fused through a learned attention network:

Scombined = MLPfusion([sspatiala SMSP; StemporalD (7)

The dynamic K value is computed based on predicted sparsity ratio with a minimum threshold
for stable processing, and top-K tokens are selected based on fused attention scores. The lateral
inhibition mechanism applies differential processing where selected tokens receive enhancement
while non-selected tokens undergo suppression:

fprocessed =fo MtopK a+fo (I - MtopK) : B (8)

where M,k is the binary selection mask, I is the identity matrix, and «, 3 are learned enhancement
and suppression factors respectively.

4.3.2 SPARSE ATTENTION CLASSIFIER (SC).

The final module receives the temporally-modulated tokens from the STSG and implements genuine,
hard sparsity by selecting content-adaptive top-k tokens based on temporal urgency. It processes
only this reduced set for classification, reducing computational complexity from O(N?) to O(K?)
where K < N. Token selection uses a dynamic priority score that synthesizes three biologically-
motivated cues from the STSG output: early-firing tokens receive higher priority (rapid stimulus
detection), tokens with shorter inter-spike intervals gain precedence (sustained attention), and higher
firing rates indicate stimulus salience. A temporal integration network mimics cortical attention
circuits to select tokens with the most significant temporal patterns.

4.3.3 O(k?) SPARSE ATTENTION LAYER.

The selected k tokens are processed through specialized attention layers that perform Priority-Aware
Sparse Temporal Attention, adapting focus based on temporal characteristics. Early-firing tokens
with short inter-spike intervals receive sharper attention allocation, while tokens with delayed or
irregular firing patterns are processed with broader attention distributions. This temporal adaptation
concentrates computational resources on time-critical information, mirroring biological selective
attention mechanisms. Multi-layered processing enables hierarchical refinement of temporal priori-
ties, preserving the most salient temporal dynamics for classification.
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5 EXPERIMENTS

To validate the effectiveness of our approach, we conduct experiments on neuromorphic datasets
(DVS Gesture |Amir et al.| (2017), CIFAR10-DVS |Li et al.| (2017)) and conventional RGB datasets
(CIFAR-10[Krizhevsky & Hinton|(2009)), CIFAR-100|[Krizhevsky & Hinton|(2009)). Our evaluation
focuses on analyzing SPARTA’s overall performance and temporal variance of model.

Experimental Setup. Experiments were performed using PyTorch with AdamW, CrossEntropy
Loss (Ir 1e-4, cosine schedule); neuromorphic tasks ran 300 epochs, RGB tasks 500 epochs. Results
are the mean of three seeds.

5.1 STUDY ON TEMPORAL RESOLUTION.

We first analyze SPARTA’s performance across different time step configurations to understand its
temporal processing characteristics and establish optimal operating conditions.

Table 1: Temporal performance at different timesteps. The variance column reports the spatial
variance of first-spike timings and inter-spike intervals, respectively, computed across all output
tokens and averaged over the entire test set.

Timesteps Accuracy (%) Variance
DVS-Gesture =~ CIFAR10-DVS | Timing / Interval
4 88.89 (-10.01%) 78.2 (-6.07%) 0.287/1.81
8 92.74 (-6.04%) 78.7 (-5.45%) 0.288/1.93
12 94.73 (-4.05%) 81.90 (-1.45%) 0.280/1.92
16 98.46 (-0.32%) 83.06 0.288/1.71
20 98.78 82.87 (-0.24%) 0.292/1.82
32 94.30 (-4.54%) 79.45 (-4.51%) 0.287/1.91

Results show optimal performance at T=20 for DVS-Gesture (98.78%) and T=16 for CIFAR10-DVS
(83.06%). Both datasets exhibit performance degradation at T=32 (-4.54% and -4.51%), indicating
that excessive temporal windows introduce noise and reduce accuracy.

5.2 HI-LIF HETEROGENEITY ANALYSIS.

We analyze the impact of channel-wise heterogeneity on temporal encoding efficacy by varying the
standard deviations of the membrane time constant (7) and firing threshold (vy,).

Table 2: Impact of individual HI-LIF parameter diversity on accuracy (DVS-Gesture) (1, = 2.0,
Ven, = 1.0, T=16).

C . HI-LIF Parameters | Accuracy
onfiguration
To Vth,o (%)

Homogeneous 0.0 0.0 96.53
Low Tau Diversity 0.2 0.0 97.25
High Tau Diversity 0.5 0.0 94.36
Low Threshold Diversity | 0.0 0.1 96.27
High Threshold Diversity | 0.0 0.3 92.43
Combined Diversity 0.5 0.3 89.83
Adjusted (Combined) 0.3 0.2 98.46

Results show that adjusted combined heterogeneity achieves the highest accuracy, demonstrating
the benefit of balanced diversity, while excessive diversity leads to performance degradation due to
instability.

5.3 ANALYSIS OF SPARSITY POLICIES.

We benchmark our dynamic sparsity policy against fixed-sparsity baselines on the DVS-Gesture
dataset (N = 256), evaluating the trade-off between accuracy and computational cost.
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Figure 3: Visualization of gesture samples.(a) Input frame from DVS-Gesture dataset (top: arm-roll,
bottom: clap gestures); (b) Firing rate map (red to yellow: low to high rates); (¢) Attention weights
(purple to yellow: low to high); (d) Top-K selection mask (white: selected tokens, black: filtered
tokens); (e) Spike count variance across temporal dimension. The arm-roll gesture shows uniform
spike counts over time, while clap exhibits concentrated spike bursts.

Table 3: DVS-Gesture accuracy and computational cost for dynamic vs. fixed sparsity policies
(T=20). For fixed policies, K denotes the number of tokens resulting from the specified sparsity,
calculated as N x (1 — Sparsity/100).

Sparsity Policy Sparsity (%) Acc. (%) | FLOPs (G)
Dynamic (Ours) | 65.4 (Adaptive) 98.78 1.23
Fixed (K=192) 25.0 98.30 1.24
Fixed (K=128) 50.0 92.50 1.21
Fixed (K=64) 75.0 78.03 1.19

Our dynamic policy achieves 65.4% sparsity while maintaining 98.78% accuracy, outperforming
fixed baselines (Table [3). Unlike fixed approaches that trade accuracy for computational cost, our
learnable predictor adapts token selection (K) to input complexity.

5.4 MSP TEMPORAL WEIGHTING ABLATION.

We systematically ablate the temporal weighting parameters in MSP to understand the contribution
of each biological cue.

Table 4: Ablation study on MSP’s temporal weighting cues (Accuracy %). «, (3, and y correspond
to the weights for first-spike timing, inter-spike interval, and firing rate, respectively.

Configuration T | DVS-Gesture | CIFAR10-DVS
Full MSP («,3,y) | 16 98.46 83.06

w/o « (timing) 16 | 96.94 (-1.52) 79.80 (-3.26)
w/o (3 (interval) 16 | 95.56 (-2.90) 80.35 (-2.71)
w/o v (firing rate) | 16 | 92.26 (-6.2) 77.23 (-5.83)

w/o o, 16 | 94.61(-3.85) | 78.28(-4.78)
w/o a7y 16 | 89.16(-9.30) | 75.26(-7.80)
wlo B,y 16 | 91.38(-7.08) | 74.50 (-8.56)
W/o o, B,y 16 | 85.0(-13.46) | 72.80(-10.26)

Table [ reveals a clear hierarchy of importance among the temporal cues. The firing rate weight (vy)
is consistently the most critical single factor, as its removal causes the largest individual performance
drop on both DVS-Gesture (-6.2%) and CIFAR10-DVS (-5.83%). While timing («) and interval (53)
cues also contribute significantly, the most substantial degradation occurs when all three are removed
entirely. This confirms that these weights work in a complementary manner to effectively guide the
attention mechanism.
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5.5 TEMPORAL VARIANCE ANALYSIS.

We analyze SPARTA’s spike timing variance against other SNN architectures by measuring the
spatial variance of first-spike timings and inter-spike intervals across output tokens, averaged over
the DVS-Gesture test set |[Perez-Nieves et al.| (2021)); Bellec et al.| (2018)); IStockl & Maass| (2021));
Mason et al.|[(2022).
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Figure 4: Temporal variance comparison across different SNN architectures on the DVS-Gesture.
The y-axis represents the spatial variance of spike timings and intervals, averaged over the test set.

As shown in Figure[d] SPARTA maintains higher temporal diversity than the compared models. This
confirms that the heterogeneous parameters of our HI-LIF neurons enable the network to learn richer
and more diverse temporal representations, which is a key factor in its strong performance.

5.6 COMPARISON WITH STATE-OF-THE-ART

We conduct comprehensive experiments to compare our proposed SPARTA method with re-
cent state-of-the-art SNN models across four benchmark datasets. Table [5] presents the perfor-
mance comparison on both neuromorphic datasets (DVS-Gesture, CIFAR10-DVS) and static RGB
datasets(CIFAR-10, CIFAR-100).

Table 5: State-of-the-art comparison on neuromorphic and RGB datasets. T denotes the timesteps;
Acc (%) indicates classification accuracy; Params refers to the number of model parameters. A dash
(-) indicates values not reported in the original paper.

DVS-Gesture | CIFAR10-DVS | CIFAR-10 | CIFAR-100

Method Params (M) T Acc T Acc T Acc |T Acc
SEW-ResNet 60.2 16 89.06 |16 67.20 - - 4 7593
GLIF+ResNet 11.2 - - 16 78.10 4 94.67 |4 7737
Spikformer 9.32 16 9549 |16 80.60 4 9519 (4 77.86
SpikingResFormer 17.25 16 91.67 10 84.80 4 9740 |4 8598
QKFormer-S/L 1.5/6.74 |16 98.60 |16 84.00 4 96.18 |4 81.15
SGLFormer 8.9 16 97.20 10 82.90 4 96.76 |4 82.26
Event-Vivid 48.2 20 98.80 |20 92.50 - - - -

SMA-AZO-VGG - 16  98.60 10 84.00 - - - -

SPARTA (Ours) 13.8 20 98.78 16 83.06 4 953 |4 78.1

6 CONCLUSION

We present SPARTA, which integrates spike-timing information into sparse attention mecha-
nisms for SNNs. The framework uses channel-wise heterogeneous initialization and biologically-
motivated temporal cues to achieve O(K?) attention complexity with 65.4% sparsity.

Our results on DVS-Gesture (98.78%) and CIFAR10-DVS (83.06%) validate that biological princi-
ples can coexist with high accuracy in large-scale SNNs. However, the sparse attention mechanism
may lead to information loss when critical information is distributed across many tokens (e.g., fine-
grained textures) or when important temporal patterns occur in tokens filtered out during top-K
selection. Future work will focus on extending SPARTA to multi-modal data and deploying the
framework on neuromorphic hardware to verify real-world efficiency.
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