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Abstract

In the quest to interpret complex cellular responses,001
self-supervised learning (SSL) methods have been devel-002
oped, promising powerful generic representations. How-003
ever, their performance on biologically critical tasks such004
as mechanism of action (MoA) classification remains lim-005
ited. We argue that no single model—no matter how so-006
phisticated or generalisable—can produce representations007
that are optimal for all downstream tasks, as different008
objectives impose conflicting requirements. To address009
this, we propose a novel framework called Task-guided010
Representation exaptation (TRex). In TRex, a generic011
(possibly self-supervised) model first extracts broad and012
rich morphological embeddings, which are then refined by a013
lightweight adaptation network optimised for biological rel-014
evance linked to the specific downstream tasks. This modu-015
lar design enables rapid and resource-efficient transforma-016
tion of generic features into biologically meaningful, task-017
focused representations — without the need to retrain large-018
scale models. We evaluate TRex on a 20-plate Cell Painting019
dataset spanning two cell lines and show that MoA-based020
adaptation not only significantly improves MoA classifica-021
tion performance (doubling the mAP), but also enhances022
compound recognition. Our results highlight the limitations023
of static, generic representations and demonstrate the util-024
ity of task-aware adaptation for maximising the biological025
relevance of morphological profiling.026

1. Introduction027

Cell Painting is a high-content imaging assay designed for028
morphological profiling, offering a rich, multiplexed read-029
out of cellular responses to chemical and genetic pertur-030
bations [1, 4, 9]. By staining multiple cellular compart-031
ments with a combination of fluorescent dyes, the assay032
provides valuable insights into cellular structure and func-033
tion. However, to fully exploit the information encoded in034
these images, robust and biologically meaningful methods035

for representation learning and analysis are required. Over 036
the years, approaches to extracting and interpreting fea- 037
tures have evolved rapidly from handcrafted descriptors [2] 038
to deep learning-based techniques [8], and more recently, 039
to self-supervised learning frameworks [6, 7], reducing the 040
need for extensive annotations and promising improved rep- 041
resentations. 042

The earliest approach to feature extraction from Cell 043
Painting images relied on CellProfiler [2], an open-source 044
image analysis platform that extracts hand-crafted morpho- 045
logical features. These features, which include measure- 046
ments of shape, texture, intensity, and spatial organization, 047
are computed at the single-cell level and aggregated into 048
well-level feature vectors. Despite wide-scale adoption, 049
this methodology presents several limitations. It typically 050
requires manual parameter tuning for different datasets or 051
tasks, and it is unlikely to capture the complex phenotypic 052
variations present in cellular images. The reliance on pre- 053
defined morphological descriptors may limit the discovery 054
of novel patterns in large-scale profiling experiments. 055

To address these limitations, deep learning-based ap- 056
proaches have been introduced to learn potentially superior 057
image features directly from data. One such approach is 058
DeepProfiler [8], which uses convolutional neural networks 059
(CNNs) to extract morphological features in a data-driven 060
manner. DeepProfiler employs EfficientNet-B0, initialized 061
with ImageNet weights and fine-tuned on a Cell Paint- 062
ing dataset comprising 232 plates and 488 perturbations. 063
Feature extraction is performed using activations from the 064
block6a layer, generating 672-dimensional feature vectors 065
per cell. Training is conducted using a weakly supervised 066
learning (WSL) approach, where classification loss enables 067
the model to learn treatment-specific representations from 068
single-cell images. To mitigate confounding technical vari- 069
ation and enhance the biological relevance of extracted fea- 070
tures, DeepProfiler applies sphering transform-based batch 071
correction. 072

To further improve the scalability and generalisability of 073
morphological profiling, and to eliminate the need for ex- 074
tensive annotations required for training, researchers turned 075

1



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

to self-supervised learning (SSL). One such method is Sub-076
Cell [6], which utilizes Vision Transformers (ViTs) to ex-077
tract hierarchical and spatially-aware cellular features. Sub-078
Cell learns from individual cells extracted from the Human079
Protein Atlas (HPA) [10], a near-proteome-wide dataset of080
high-resolution immunofluorescence images spanning 35081
different cell lines. The model optimizes a three-component082
loss function as the basis of feature learning: a reconstruc-083
tion loss to ensure general feature extraction, a cell-specific084
similarity loss to enforce consistency across augmented085
views of the same cell, and a protein-specific localization086
loss to minimize variation between images stained for the087
same protein across different cell types. Additionally, an at-088
tention pooling mechanism suppresses background artifacts089
and enhances the focus on cellular features, improving ro-090
bustness across diverse microscopy tasks without requiring091
fine-tuning.092

Another SSL based approach, DINO [5], also uses ViTs093
to learn rich, task-agnostic representations of cellular mor-094
phology without manual annotations or supervision. Devel-095
oped originally for natural images, DINO has proven highly096
effective for microscopy data, capturing biologically mean-097
ingful variation across subcellular, single-cell, and at popu-098
lation levels. The architecture uses a teacher-student frame-099
work, where both networks are trained to produce similar100
feature representations from different augmented views of101
the same image, encouraging the model to focus on the in-102
variant, biologically relevant structures. Unlike DeepPro-103
filer, which relies on weak supervision and convolutional104
architectures, DINO operates entirely self-supervised and105
benefits from the global contextual awareness of transform-106
ers. Compared to SubCell, which learns single-cell fea-107
tures using contrastive objectives over protein localization,108
DINO emphasizes semantic consistency across scales and109
has been shown to uncover hierarchical biological struc-110
ture, including MoA, cell-cycle stages, and protein local-111
ization patterns. Its general-purpose embeddings make it a112
strong candidate for further task-specific adaptation, as ex-113
plored in this work through the Task-guided Representation114
exaptation (TRex) framework.115

More recently, SSL has also been explored for image-116
level feature extraction, eliminating the need for cell seg-117
mentation. In [7], self-supervised vision transformers were118
trained on a subset of the JUMP Cell Painting dataset [3] to119
extract morphological features directly from full-field im-120
ages, bypassing segmentation-based workflows. While this121
segmentation-free approach significantly reduces computa-122
tional costs (by skipping the cell segmentation stage), the123
biological relevance of the resulting features - particularly124
in the context of MoA prediction - remains an open ques-125
tion, as demonstrated by the reported MoA performance.126

In [6], the authors presented a detailed evaluation of127
compound matching (Cmpd) and mechanism of action128

(MoA) prediction on the JUMP Cell Painting chemical per- 129
turbation dataset, comparing the performance of CellPro- 130
filer, DeepProfiler, DINO, and their own models. The re- 131
sults reveal minimal variation between methods, with no- 132
tably low performance for MoA prediction across all ap- 133
proaches. The Cmpd mAP ranged from 0.27 (DeepProfiler) 134
to 0.39 (SubCell), while the MoA mAP remained consis- 135
tently poor, varying from 0.16 (DeepProfiler) to 0.18 (Cell- 136
Profiler). Notably, hand-crafted CellProfiler features out- 137
performed all machine learning-based methods, including 138
SSL approaches, on the MoA task, suggesting that existing 139
learned representations may not yet capture the biologically 140
relevant features needed for this application. While self- 141
supervised features promise to transfer to a wider range of 142
tasks, their ability to effectively capture task-specific bio- 143
logical information remains unclear. 144

In this work, we address this limitation by introduc- 145
ing TRex, a novel framework for task-guided represen- 146
tation adaptation. TRex begins with a general-purpose 147
feature extractor—preferably a pre-trained self-supervised 148
model—and adds a lightweight adaptation network that re- 149
fines these embeddings for a specific downstream task. Un- 150
like traditional fine-tuning, our adaptation module operates 151
on frozen features and requires minimal computation and 152
data, enabling efficient adaptation of powerful SSL back- 153
bones. 154

We show that our approach yields substantial gains 155
in both MoA classification and compound recognition, 156
demonstrating that task-aware adaptation is key to unlock- 157
ing the full potential of self-supervised representations for 158
biological discovery. Our specific contributions are as fol- 159
lows: 160

1. We propose a novel, lightweight TRex architecture for 161
adapting SSL-derived morphological features to biolog- 162
ical prediction tasks, achieving substantial performance 163
gains. 164

2. We design an efficient adaptation module composed of 165
four fully connected layers with batch normalization, 166
GELU activation, dropout regularization, and residual 167
connections in selected layers to preserve signal flow and 168
reduce overfitting. 169

3. We systematically evaluate the TRex framework and 170
show that it can effectively double MoA classification 171
performance over prior art, improving mAP from 0.15 172
to 0.32. 173

4. We evaluate three state-of-the art representations within 174
TRex and show that SSL-derived features offer good per- 175
formance, with DINO achieving the highest accuracy on 176
MoA prediction tasks. 177

5. We demonstrate that MoA-based training leads to more 178
biologically relevant representations, enhancing not only 179
MoA classification but also compound recognition in- 180
cluding generalisation to unseen compounds. 181
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2. Introducing TRex182

We propose a new two-stage architecture for efficient mor-183
phological profiling. In the first stage, self-supervised learn-184
ing is used to generate a broad set of biologically meaning-185
ful features. In the second stage, a learnt task-specific fea-186
ture transformation is applied to adapt this self-supervised187
feature space into a task-oriented representation optimised188
for specific downstream objective. We refer to our approach189
as Task-Guided Representation exaptation (TRex). We190
adopted the term exaptation from evolutionary biology be-191
cause it aligns with how our method repurposes and adapts192
generic self-supervised features for specific tasks.193

The motivation behind this approach stems from the fact194
that it is not possible for a single generic feature representa-195
tion to be equally effective across all morphological profil-196
ing tasks. Take for instance, two compound perturbations,197
A and B, which coincide in mechanism of action (MoA).198
It therefore follows that their feature representations should199
aim to be distinct for compound identification (where the200
goal is to differentiate them), yet simultaneously identical201
for MoA classification (where their shared functional effect202
should be captured). Clearly, a static, task-agnostic rep-203
resentation cannot reconcile these conflicting requirements204
without additional adaptation. This limitation is evident in205
the poor MoA prediction performance reported in [6] across206
various methods, which plateau around 0.17, highlighting207
the need for a more tailored, task-aware approach.208

In our TRex framework, shown in Figure 1, the first209
stage (TRex Feature Extractor) derives a comprehensive210
pool of generic single-cell embeddings, most likely via a211
self-supervised approach or even by aggregating multiple212
representations from complementary methods. The sec-213
ond stage (TRex Adaptation Module) applies a lightweight214
transformation network to adapt these features into a task-215
specific final representation. Since the first stage is compu-216
tationally intensive, it is trained only once. In contrast, the217
second-stage adaptation is fast, efficient, and can be per-218
formed even with limited resources. This makes our ap-219
proach not only biologically meaningful - by aligning rep-220
resentations with task-specific biological distinctions such221
as compound mechanisms of action or phenotypic similar-222
ity— but also computationally practical, allowing for rapid223
adaptation to new tasks and datasets.224

Let:225
• fSSL : X → Z be a self-supervised feature extractor,226

where X represents the input 5-channel microscopy im-227
ages, and Z ∈ Rd is the high-dimensional feature repre-228
sentation learned via self-supervised pretraining.229

• tTASK : Z → Y be the task-guided feature transfor-230
mation network, where Y is the final representation and231
TASK is the task at hand, for example the perturbation232
or MoA classification.233
For example, in MoA classification task, the goal of our234

second-stage network is to learn a transformation tMoA such 235
that the extracted features Z are mapped to an optimized, 236
lower-dimensional space Y that retains biologically mean- 237
ingful information linked to MoA, thus improving MoA 238
classification accuracy. Unlike end-to-end learning, our 239
framework operates on precomputed feature embeddings, 240
significantly reducing computational complexity and data 241
requirements. 242

2.1. TRex design details 243

The input features are extracted in the stage one model 244
(TRex Feature Extractor), which, in our case, is from one 245
of the three pre-trained models: DeepProfiler, DINO, or 246
Subcell. The key properties of these models are sum- 247
marised in Table 1. The DeepProfiler model [8], based on 248
EfficientNet-B0, was trained in a weakly supervised man- 249
ner on cellular images from the BBBC and LINCS datasets, 250
generating a 672-dimensional embedding per cell. The 251
DINO method [5], a vision transformer (ViT), was trained 252
in a self-supervised manner on the same datasets and pro- 253
duces a 768-dimensional embedding per cell. Both mod- 254
els were trained on 224×224 images containing five fluo- 255
rescence channels (DNA, ER, RNA, Golgi/Actin, and Mi- 256
tochondria). The SubCell model, also based on ViT, was 257
trained in a self-supervised manner on the Human Protein 258
Atlas (HPA) dataset, which consists of three-channel im- 259
ages (ER, DNA, Protein). The model generates a 4608- 260
dimensional embedding per cell. The HPA training set in- 261
cluded 35 cell lines, including both U2OS and A549. All 262
three models have seen U2OS and A549 cells during train- 263
ing, but SubCell was additionally trained on 33 other cell 264
lines, which in theory may enable it to produce more gener- 265
alisable features across diverse cellular contexts. 266

Method Dataset Training Cell Types Dim.

DeepProfiler L+B Weak-sup. U2OS,A549 672
DINO L+B Self-sup. U2OS,A549 768
SubCell HPA Self-sup. Various 4608

Table 1. Summary of feature extraction methods tested in our
framework. L+B denotes a combination of LINCS and BBBC
datasets.

To make these diverse and generic embeddings task- 267
relevant, we employ the TRex adaptation network, which 268
transforms the output of each feature extractor into a biolog- 269
ically meaningful and task-optimised representation suit- 270
able for downstream prediction. This network is lightweight 271
by design, enabling efficient adaptation regardless of the 272
upstream embedding source. It consists of four fully con- 273
nected layers, each followed by batch normalization, GELU 274
activation, and dropout regularization to ensure stable gradi- 275
ent propagation, improved non-linearity, and reduced over- 276
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DeepProfiler, DINO, SubCell

Single-cell 
embeddings

TRex – Adaptation Module 

Final 
representation 

(512-D 
embeddings 
from Layer 3)
Evaluation on 

Jump-CP 

Training Strategy 
(Focal Loss, 

AdamW, Early 
Stopping) 

Cell-painting dataset

STAGE 1 STAGE 2

TRex – Feature Extractor

Figure 1. Overview of the TRex framework. Single-cell embeddings are extracted from five-channel Cell Painting images using pre-trained
DeepProfiler, DINO, or SubCell models (STAGE 1). These embeddings are passed to the TRex adaptation module, which is trained using
focal loss for the mechanism of action (MoA) classification task (STAGE 2). During evaluation/inference, features are extracted from the
adaptation module’s third layer and used for two tasks: (1) replicate retrieval — identifying wells treated with the same compound across
experimental batches, and (2) MoA identification — detecting compounds that share the same mechanism of action.

fitting.277

The first layer of the proposed model processes the em-278
beddings from one of these pre-trained models through a279
fully connected transformation (1024-dimensional output),280
stabilizing activations with batch normalization, introduc-281
ing non-linearity with GELU, and applying dropout for282
regularization. The second layer projects the transformed283
features into a 512-dimensional latent space, retaining the284
same activation and normalization mechanisms. To enhance285
gradient flow and preserve learned representations, a resid-286
ual connection is incorporated in the third layer, allowing287
the input to be directly added to the output before further288
transformation. The fourth layer (256-dimensional output)289
refines the feature representation before passing it to the290
final classification layer, which is optimised for a specific291
downstream task. In our experiments, this final layer was292
trained either for compound classification (a single-label293
task) or for Mechanism of Action (MoA) prediction, for-294
mulated as a multi-label classification problem to account295
for cases where a single cell may be associated with mul-296
tiple MoAs. More broadly, the TRex framework is com-297
patible with other downstream objectives, depending on the298
structure of the final classification head and the chosen op-299
timisation criterion.300

2.2. Key Design Principles of TRex301

The TRex framework is built around several core principles302
that distinguish it from prior approaches to morphological303
profiling:304

1. Feature Refinement Rather than Direct End-to-End305
Training – Rather than training directly from raw im-306
ages, TRex operates on high-quality embeddings pro-307
duced by large self-supervised models. This approach308

preserves expressive morphological information while 309
reducing redundancy and computational cost.. 310

2. Task-Specific Optimisation – The adaptation module is 311
explicitly trained using a task-specific loss (e.g., MoA 312
classification), ensuring that the learned representation is 313
aligned with biologically meaningful distinctions rather 314
than generic morphological similarity. 315

3. Multi-Label Adaptability – TRex naturally supports 316
multi-label classification, enabling the representation of 317
complex phenotypes such as compounds with multiple 318
mechanisms of action — a common scenario in biologi- 319
cal data. 320

4. Computational Efficiency and Modularity – By freez- 321
ing the upstream feature extractor and training only the 322
lightweight adaptation module, TRex achieves efficient 323
task adaptation with minimal labelled data and compute 324
resources. In contrast to full SSL training, which re- 325
quires multi-GPU server infrastructure and days of com- 326
pute time, the TRex adaptation module can be trained 327
in under an hour on a single consumer-grade GPU (e.g., 328
NVIDIA RTX 3090). This makes it practical for scaling 329
across new tasks, cell lines, or experimental conditions. 330

3. Experimental Evaluation 331

3.1. Datasets 332

Our training and evaluation were performed on a selec- 333
tion of 20 plates from the JUMP-CP Pilot dataset, repre- 334
senting two distinct human cell lines: U2OS, which con- 335
sists of human bone osteosarcoma epithelial cells, and 336
A549, which consists of human alveolar basal epithelial 337
cells. To ensure a representative distribution of morpholog- 338
ical variations, separate subsets of plates were designated 339
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for training and testing for each cell line. For the A549340
cell line, the training set included plates BR00116991,341
BR00116992, BR00117050, BR00117052, BR00117054,342
and BR00117055, while the testing set comprised plates343
BR00116993, BR00116994, BR00117008, BR00117009,344
BR00117051, and BR00117053. For the U2OS cell345
line, the training set consisted of plates BR00116995,346
BR00117013, and BR00117025, while the test set in-347
cluded plates BR00117011, BR00117012, BR00117024,348
and BR00117026.349

There were 303 different perturbations present, repre-350
senting 77 unique usable modes of action. We followed the351
MoA definitions and evaluation methodology defined in [6].352

The images of selected plates were pre-processed and353
segmented into individual cells using DeepProfiler. Default354
parameter values were used for segmentation to maintain355
generability and consistency with prior studies. Following356
segmentation, the data set consisted of a total of 1,079,388357
cells for training and 1,144,682 cells for testing in the U2OS358
cell line, and 3,179,429 cells for training and 2,626,695359
cells for testing in the A549 cell line. These single-cell360
images were subsequently used for feature extraction and361
downstream performance analyses in our study.362

3.2. Learning Framework363

To address class imbalance in the dataset, the model is364
trained using focal loss, which dynamically adjusts the loss365
contribution to emphasize hard-to-classify samples. The366
training process runs for 100 epochs, utilizing the AdamW367
optimizer with an initial learning rate of 1e-3, which is re-368
duced by a factor of 0.5 if the validation mAP does not im-369
prove for five consecutive epochs. Early stopping is applied370
if no improvement is observed for 10 consecutive epochs,371
ensuring efficient convergence while preventing overfitting.372

For evaluation of the JUMP-CP test dataset, we ex-373
tract the output from layer 3 of our model, generating374
a 512-dimensional embedding that serves as the learned375
feature representation. This representation supports two376
key downstream tasks: replicate retrieval, which identifies377
wells treated with the same compound across experimental378
batches, and MoA identification, which detects compounds379
that share the same mechanism of action (MoA). The archi-380
tecture design of the proposed method is presented in Figure381
1.382

To generate well-level profiles, single-cell embeddings383
from our model are first aggregated into Field of View384
(FOV) profiles using mean aggregation, followed by a sec-385
ond mean aggregation step to obtain well-level representa-386
tions. Post-processing includes Principal Component Anal-387
ysis (PCA) for dimensionality reduction, followed by Me-388
dian Absolute Deviation (MAD)-robust standardization to389
enhance data robustness.390

Well-level profiles were used to evaluate replicate re-391

trieval. For mechanism of action (MoA) prediction, well- 392
level profiles from the same compound treatment were av- 393
eraged across plates to generate a consensus profile for each 394
compound. Mean average precision (mAP) was calculated 395
using cosine similarity between well-level and consensus 396
profiles, for replicate retrieval and MoA identification, re- 397
spectively. 398

3.3. Experimental Evaluation 399

We performed a series of experiments to evaluate the ef- 400
fectiveness of the proposed TRex framework. First, we as- 401
sessed the impact of the training objective by comparing 402
the models trained for compound classification versus the 403
mechanism of action classification. Next, we applied TRex 404
to three different base representations: one obtained via 405
weak supervision (DeepProfiler) and two derived from dis- 406
tinct self-supervised learning strategies (DINO, SubCell). 407
This analysis provides insight into whether self-supervised 408
representations may be more effective for downstream bio- 409
logical tasks. Finally, we investigated the generalizability of 410
the method by training on datasets restricted to a single cell 411
type and evaluating its performance on data from an unseen 412
cell type. 413

Training on compound recognition. In the first set 414
of experiments, we trained TRex on the task of compound 415
recognition (Table 2). Performance was evaluated on both 416
compound recognition and MoA classification tasks, using 417
datasets for individual cell lines as well as the combined 418
dataset. We note that TRex offers significant improvements 419
in compound recognition across all representations, provid- 420
ing gains of +0.09 for A549 and +0.05 for U2OS. The 421
gain for the combined dataset is 0.07. We observe that 422
self-supervised representations offer some limited perfor- 423
mance gains over DeepProfiler, and these gains are main- 424
tained when using TRex. The best performing combination, 425
TRex + SubCell, achieved compound recognition of 0.34, 426
compared to 0.29 for the SubCell representation alone. We 427
also note that training on compound recognition results in 428
only marginal improvements for MoA classification, with 429
gains between 0.01 and 0.02. The best MoA result is 0.17, 430
which may not be sufficient for many applications. This 431
suggests that compound-based training does not promote 432
biologically relevant representations and is suboptimal for 433
MoA tasks, and the mAP for MoA remains disappointingly 434
low. 435

Training with the MoA objective. In contrast, train- 436
ing with the MoA objective leads to a substantial improve- 437
ment in MoA classification performance, effectively more 438
than doubling the mAP score from 0.15 to 0.32 for TRex + 439
DINO (Table 3). We note that DINO offered the best base 440
representation for distillation by TRex, outperforming TRex 441
+ SubCell by 0.05 on the combined cell dataset. Interest- 442
ingly, this approach also results in a notable improvement 443
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Table 2. Compound recognition (Cmpd) and MoA classification performance (mAP) for models trained with compound supervision on
both A549 and U2OS cell lines.

Method Cmpd A549 MoA A549 Cmpd U2OS MoA U2OS Cmpd Both MoA Both

DeepProfiler 0.35 0.15 0.24 0.15 0.22 0.14
DINO 0.38 0.16 0.27 0.16 0.26 0.15
SubCell 0.36 0.15 0.29 0.16 0.27 0.14

TRex + DeepProfiler 0.44 0.15 0.30 0.16 0.29 0.16
TRex + DINO 0.47 0.18 0.32 0.16 0.33 0.17
TRex + SubCell 0.45 0.17 0.34 0.17 0.34 0.17

Table 3. Compound recognition (Cmpd) and MoA classification performance (mAP) for models trained with MoA supervision on both
A549 and U2OS cell lines.

Method Cmpd A549 MoA A549 Cmpd U2OS MoA U2OS Cmpd Both MoA Both

DeepProfiler 0.35 0.15 0.24 0.15 0.22 0.14
DINO 0.38 0.16 0.27 0.16 0.26 0.15
SubCell 0.36 0.15 0.29 0.16 0.27 0.14

TRex + DeepProfiler 0.42 0.27 0.28 0.25 0.29 0.26
TRex + DINO 0.44 0.34 0.30 0.28 0.30 0.32
TRex + SubCell 0.42 0.28 0.32 0.25 0.31 0.27

in compound classification performance for TRex across444
all representations. The improvement was most signifi-445
cant for DeepProfiler (0.07), followed by +0.04 for the446
self-supervised representations. These findings suggest that447
training with an MoA objective using the proposed multi-448
label formulation provides a more generalizable solution, as449
it enhances both MoA classification and compound recogni-450
tion. This indicates that when tackling tasks related to MoA451
or compound classification, MoA-driven training should be452
preferred, as it leads to greater performance gains in both453
objectives.454

Generalisation across compounds and cell lines. To455
evaluate the generalisation properties of the TRex frame-456
work, we conducted experiments in two settings: general-457
isation to unseen chemical compounds and generalisation458
to an unseen cell line. Training with the MoA objective459
provides a natural starting point, as 111 compounds are not460
used in TRex MoA training due to the lack of usable MoA461
annotations. Table 4 shows the mAP for the compounds462
that were unseen during the adaptation stage. As shown,463
TRex improves performance even on these previously un-464
seen compounds, increasing mAP from 0.24 to 0.28.

Table 4. Compound recognition performance (mAP) for com-
pounds unseen during TRex adaptation, using MoA-based training

Method Cmpd (unseen)

DINO 0.24
TRex + DINO 0.28

For the second setting, we trained the adaptation module 465
with MoA objective using data from only one of the two 466
available cell lines (A549 or U2OS), and evaluated perfor- 467
mance on both (Table 5). While TRex provides a clear per- 468
formance boost on the cell line it was trained on, we observe 469
no significant improvement on the unseen cell line. This 470
outcome is not surprising: since training was performed on 471
a single cell line, the adaptation module had no exposure 472
to examples from other cellular contexts and therefore no 473
basis for learning cell-line-invariant MoA features. In other 474
words, we would not expect generalisation to emerge from 475
a single-cell-line training setup. TRex is intended to spe- 476
cialise general-purpose features for a specific downstream 477
task and cellular context, optimising performance where it 478
is needed most. 479

Table 5. Compound recognition (Cmpd) and MoA performance
(mAP) for models trained on a single cell line and evaluated on
both seen and unseen cell lines. TRex was trained with MoA su-
pervision.

Method Train Cell Eval Cell Cmpd MoA

DINO – A549 0.38 0.16
TRex + DINO A549 A549 0.44 0.36
TRex + DINO U2OS A549 0.36 0.16

DINO – U2OS 0.27 0.16
TRex + DINO U2OS U2OS 0.30 0.31
TRex + DINO A549 U2OS 0.25 0.17
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In future work, we plan to investigate whether training480
TRex on multiple cell lines can support better generalisation481
to unseen cellular contexts by encouraging the adaptation482
module to learn cell-line-invariant biological features.483

4. Conclusions484

In this work, we addressed the limitations of self-supervised485
learning (SSL) for morphological profiling by introducing a486
two-stage learning framework that refines generic SSL fea-487
tures for task-specific objectives. While SSL provides scal-488
able feature extraction, our results confirm that its represen-489
tations are suboptimal for important tasks such as mecha-490
nism of action (MoA) classification. This is because a sin-491
gle, task-agnostic model cannot effectively satisfy conflict-492
ing requirements across different end tasks.493

By introducing a lightweight transformation network494
that adapts SSL features to specific predictive tasks, TRex495
enables efficient, task-aware optimization without requir-496
ing the retraining of large-scale SSL models. Our exper-497
iments on a dataset of 20 Cell Painting plates from two498
cell lines demonstrate that training for MoA prediction in499
a multi-label setting significantly improves both MoA clas-500
sification and compound recognition, highlighting the ben-501
efits of learning task-specific refinements over purely static502
SSL representations.503

Because TRex is computationally efficient and can be504
trained with fewer labeled examples, it provides a practi-505
cal and scalable solution for large-scale drug discovery ap-506
plications. More broadly, our findings suggest that self-507
supervised feature representations should not be treated as508
fixed but rather as a foundation for adaptive transforma-509
tions that better align with specific biological objectives.510
Future work could explore extending TRex to other high-511
content imaging assays and integrating additional domain-512
specific constraints to further improve biological inter-513
pretability.514
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