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ABSTRACT

Recent advances in generative vision-language models have demonstrated re-
markable capabilities in image synthesis, captioning, and multi-modal reasoning.
Among their most intriguing use cases is in-context learning, the ability to adapt
to new tasks from just a few examples. While well-studied in language models,
this capability remains underexplored in the visual domain. Motivated by this, we
explore how generative vision models can infer and apply visual concepts directly
from image sets, without relying on text or labels. We frame this as an attribute
subspace inference task: given a small set of related images, the model identifies
the shared variation and uses it to guide generation from a query image. During
training, we use auxiliary groupings to provide weak structural supervision. At
inference time, the model receives only unlabeled inputs and must generalize the
visual concept based on example images alone. Our approach enables attribute-
consistent image generation and contributes a novel direction for nonverbal concept
learning in vision.

1 INTRODUCTION

Generative vision-language models (VLMs) have rapidly advanced in recent years, achieving impres-
sive results in image captioning, visual question answering, and text-conditioned image synthesis (Liu
et al., 2023a; Alayrac et al., 2022; Chen et al., 2025). Among their most intriguing use cases is
in-context learning: adapting to new tasks or inputs simply by conditioning on multi-modal example
prompts, without any parameter updates (Dong et al., 2024). This emergent behavior, particularly
well-studied in large language models (LLMs), reflects a core aspect of intelligence: the ability to
generalize from a limited context with no additional supervision.

While in-context learning has been widely explored in the textual domain, its visual counterpart
remains underdeveloped. Even though recent proprietary VLMs (Fortin et al., 2025; Batifol et al.,
2025; Wu et al., 2025) claim to offer multi-modal reasoning capabilities, their ability to understand
complex instructions from a visual context remains limited (Figure 2). When faced with instructions
they do not understand, these models often collapse to reproducing the input image, generating
objects they are biased towards, or exhibiting other degenerate behaviors.

Models with genuine visual in-context learning capabilities should be able to generalize novel
concepts from just a few images, reasoning directly over visual input sets without relying on language,
labels, or fine-tuning. In this work, we take a step towards this goal by introducing a framework for
few-shot attribute discovery from visual context. We formalize this as an attribute subspace inference
(ASI) task (Figure 1): the model is given a small context set of images that share a common semantic
attribute, and it must infer a latent subspace that captures this shared variation. For instance, given
a few objects with a common shape, texture, or pose, the model should isolate the relevant factor
and apply it to new query images. To teach this capability, we construct training sets using auxiliary
information, e.g., groupings derived from the WordNet hierarchy of ImageNet. These groupings
act as weak supervision, providing a scaffold that helps the model learn how meaningful visual
attributes co-vary across examples. At inference time, it operates solely on unlabeled image sets
and a query image to perform attribute discovery and manipulation. This formulation differs from
standard text-conditioned generation, few-shot classification, or vision-language pretraining. It also
avoids explicit attribute disentanglement or optimization at test time. Instead, our method enables
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Generated Images: felines

car
cat

Visual Context: vehicles

Visual Context: anim
als

Figure 1: Visual in-context learning through attribute subspace inference. Left: Given a context
set of images sharing a latent attribute, the model infers a subspace that captures the shared variation.
Next, it projects a query image into this subspace. Conditioning on this projected query enables
generating new samples that reflect the relevant attribute while discarding unrelated information. The
same query produces different outputs under different contexts, showing that the model can isolate
and apply attribute-specific structure. Right: Additional examples illustrating the expected behavior
across different query images.

nonverbal, few-shot concept learning by encouraging a pretrained generative model to reason over
the latent subspace structure induced by shared visual context.

We evaluate our method using image synthesis tasks in which attribute subspaces are inferred from a
handful of context images and applied to query images to isolate the target attribute. The results show
that our model can capture visual attributes, even when those attributes are difficult to verbalize or
not represented in standard taxonomies. We summarize our contributions as follows:

• We introduce a new perspective on visual in-context learning, where a model infers and
applies latent visual attributes based solely on a small set of related images and a query.

• We propose the attribute subspace inference task and develop a training framework that
enables generative models to learn this behavior using weak supervisory signals derived
from auxiliary grouping information.

• We present qualitative and quantitative results showing that the model can isolate visual
factors from the query image and use them to guide attribute-consistent image generation,
without relying on textual prompts or class labels.

2 RELATED WORK

Visual In-Context Learning Visual in-context learning refers to the ability of visual models to
adapt to new tasks using only examples provided during inference, without additional training. Al-
though extensively studied in textual domains with large language models (LLMs) (Dong et al., 2024;
Brown et al., 2020), visual in-context learning remains relatively under-explored. Recent VLMs have
begun addressing this challenge, yet only a handful support support both unified understanding and
generation of images, meaning they can reason over multi-modal text-image input and also generate
images. BAGEL (Deng et al., 2025) and ILLUME+ (Huang et al., 2025) offer this functionality
and currently represent the state-of-the-art in unified image understanding and generation amongst
open-source models. Very recently, the largest proprietary models have showcased surprising multi-
modal capabilities. Yet, they still fail at correctly solving our proposed ASI task, as shown in Table 1.
Other approaches that explicitly target visual in-context learning, such as Visual Prompting via Image
Inpainting (Bar et al., 2022), Improv (Xu et al., 2023), sequential prompting (Bai et al., 2024), and
Hummingbird (Balazevic et al., 2023), adapt through visual cues or prompts but require explicit task
demonstrations in-context.

Our approach differs by removing the reliance on explicit in-context examples. Instead, our model
implicitly discovers relevant attributes through provided image sets, closely resembling how humans
learn from contextual examples. This framing provides a more natural and flexible mechanism
for visually specifying complex, subtle, or otherwise difficult-to-describe attributes, significantly
extending the scope and practicality of visual in-context learning.

Visual Attribute Learning with Explicit Labels A long line of research has explored learning
disentangled image representations without large-scale, per-attribute annotations. Unsupervised
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Visual Context

Seemingly correct given one context set (dogs)

Generated Images

But often ignoring different context set (boats)

Query

Figure 2: Typical VLM failure cases: The model largely ignores the visual context and fixates on a
single attribute of the query image, in this case the dog. While the first row may suggest that it has
understood the task, the second row reveals a bias toward specific attributes rather than genuine task
comprehension.

latent factorization methods like StyleGAN (Karras et al., 2019) and GANalyze (Goetschalckx et al.,
2019) reveal that certain latent directions correspond to meaningful variations (e.g., color, style).
Other approaches (Higgins et al., 2017; Chen et al., 2018) use regularization or mutual information
constraints to discover interpretable factors like pose or lighting, but often require massive datasets or
manual inspection. More recently, diffusion models have been analyzed for their capacity to encode
structured semantic variations (Jiang et al., 2024; Gandikota et al., 2025), but these methods typically
require extensive model finetuning or optimization to extract meaningful attribute directions.

Measuring Intelligence of Models Recent benchmarks like the Abstract Reasoning Corpus
(ARC) (Chollet, 2019), CLEVR (Johnson et al., 2017), and physics-based reasoning tests (Mo-
tamed et al., 2025) assess model intelligence by evaluating reasoning abilities on visually grounded
challenges. However, these approaches typically focus on explicit input-output mappings within
well-defined constraints. Our proposed ASI task is uniquely flexible, simulating human cognitive
tests by implicitly defining visual attributes through examples. It evaluates a model’s capability to
generalize from abstract attribute definitions to specific instantiations without explicit input-output
pairs, aligning more closely with human visual intelligence assessment.

3 METHOD

Our goal is to provide an intuitive and effective mechanism for explicitly instructing a visual model
about attributes of interest. We propose an approach framed as an attribute subspace inference (ASI)
task, where the model learns to identify shared visual attributes within image sets. By explicitly
discovering and encoding attributes, we ensure that the model learns semantically meaningful and
interpretable feature directions.

3.1 DEFINING THE VISUAL ATTRIBUTE SUBSPACE INFERENCE TASK

We frame our learning problem as a visual in-context task, where a model observes a small set of
related images and is expected to generalize the underlying visual concept they share. This setup
simulates a natural form of visual learning, in which a user conveys a concept by providing example
images, without relying on language or labels.

Formally, let an image x ∈ X be associated with a set of visual attributes Ax ⊆ A, where A =
{a1, a2, . . . , an} denotes the complete space of possible visual characteristics. Each attribute ai may
have multiple concrete instantiations, such as car type: sedan; surface finish: metallic; or color: blue.

To define an attribute inference task, we construct a context set Xset consisting of several images
that share a common (but unlabeled) attribute. For example, the context set might contain images
of various dog breeds, objects in bright lighting, or items made of wood. This shared structure
encourages the model to infer a latent attribute subspace that captures the variation across the set.
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Figure 3: Complete Model Overview. Given a set of images that share an attribute (here, shape), the
set learner predicts an attribute space that captures the full extent of that visual characteristic. We
project the embedded query images in that attribute space to obtain its concrete instantiation (here,
circle) and remove all other attributes that cannot be represented in that space. Finally, the diffusion
model is conditioned on the projected query to denoise the target image.

The goal is for the model to identify and internalize the relevant visual dimension that unifies these
examples.

In order to verify whether the model truly understands and precisely identifies the intended attribute,
we introduce two images: a query image xquery and a target image xtarget. Both the query and target
images share the same specific instantiation of the attribute (e.g., the same breed of dog). The role of
the query image is to concretely instantiate a particular example within the broader attribute category
defined by the set, as illustrated in Figure 4. The target image then acts as the correct match or answer,
sharing this exact instantiation.

To enable learning of this behavior, we require a mechanism for constructing context sets and
corresponding query-target pairs that reflect shared attributes. This relies on auxiliary information
that allows us to group images according to some shared semantics. While this introduces a form of
indirect supervision, the key idea is to teach the model how to infer structure from sets of images
alone. At inference time, the model is presented with only a context set and a query image, and must
reason about the relevant visual concept based purely on visual input.

3.2 ARCHITECTURE

Our method comprises three components: (1) the Set Learner, (2) the Projection Stage, and (3) the
Diffusion Model. See Figure 3 for an illustration. Each component plays a specialized role in our
framework to discover, encode, and utilize meaningful visual attributes.

Set Learner The Set Learner identifies attribute-specific directions in the feature space. Each image
in the input set Xset is first encoded individually using a pretrained Vision Transformer E (Caron
et al., 2021; Oquab et al., 2023; Radford et al., 2021), producing feature token embeddings. The Set
Learner itself is a separate Vision Transformer (ViT) that takes the combined embeddings of the entire
set of images as input. It reasons across these embeddings jointly to identify the shared attribute and
subsequently predicts a set of direction vectors Da = {d1,d2, . . . ,dk}. These directions explicitly
represent the subspace corresponding to the shared attribute identified within the set.

Projection Module Given a query image xquery, we encode it individually
using the same pretrained encoder E , but utilize only the CLS token embedding
equery. To isolate the attribute-specific information identified by the Set Learner,
we project this embedding onto the subspace spanned by the attribute directions
di through dot products:

si = ⟨equery,di⟩, ∀di ∈ Da (1)

These scalars s = {s1, s2, . . . , sk} represent the query’s attribute instantiation within the broader
attribute space. Multiplying each scalar si back by the respective direction di and aggregating gives
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Table 1: Performance of current VLMs. We evaluate the performance of current SOTA VLMs on
a simplified version of our task and report accuracy. Even the largest closed-source VLMs are not
able to solve our task reliably. Qwen and Flux do not support multiple image inputs. Tiling multiple
images into one does not lead to successful task completion.

Model Nano Banana
(Fortin et al., 2025)

Gemini 2.5 Flash Image
(Fortin et al., 2025)

Qwen Image Edit
(Wu et al., 2025)

FLUX.1 Kontext Pro
(Batifol et al., 2025) Ours

Accuracy 46% 40% - - 93%

Animals

Dogs Fishes Felines Reptiles

Cats Tigers Lynx

     (felines)

(animals)

(felines)
sample

sample
felines

catscat

     (animals)

project

Figure 4: Hierarchical Attribute Spaces. A simplified visualization of our ImageNet hierarchy and
attribute space definition. We create a hierarchy of ImageNet classes loosely based on the WordNet
hierarchy. We define an attribute space with respect to the next hierarchy level. The Da(animals)
attribute space differentiates roughly between different types of animals whereas Da(felines) is more
granular and operates on a lower level of the hierarchy.

a single attribute-conditioned token:

equeryproj =

k∑
i=1

sidi (2)

This resulting token equeryproj explicitly captures only the attribute-specific information from the query,
discarding unrelated visual details (e.g., background or unrelated objects).

Diffusion Model The final diffusion model DMθ is conditioned on equeryproj to generate target images
xtarget. Specifically, equeryproj is added directly to the timestep embedding of the diffusion model,
ensuring strong attribute-conditioned generation.

To train the entire setup, we use the rectified flow objective (Lipman et al., 2023; Albergo et al.,
2023; Liu et al., 2023b), which frames generative modeling as matching a continuous vector field.
Specifically, given a data distribution p(x) and an initial noise distribution, the diffusion model DM
learns a time-dependent vector field v(x, t) that transports samples smoothly from noise toward the
data manifold. Formally, this involves minimizing the Flow Matching loss:

LFM(θ) = Et∼U [0,1],xtarget
t ∼pt,e

query
proj

[∥∥DMθ(x
target
t , t, equeryproj )− u(xtarget

t , t)
∥∥2
2

]
(3)

This end-to-end training with a flow matching loss provides a stable objective that is easy to optimize
and can work well with smaller batch sizes, which sets it apart from other methods such as contrastive
learning that typically requires larger batch sizes to work successfully.

4 EXPERIMENTS

We first analyze how well current SOTA VLMs can perform visual in-context learning by measuring
their performance on a simplified version of our task (Section 4.1).

Next, we investigate more thoroughly our model’s ability for visual in-context learning in two settings
using large datasets (Section 4.2). We start by validating our setup in a synthetic setting, allowing
for perfect control over the data. Next, we scale our approach to real-world data. To that end, we
leverage a generic scheme to assemble context sets and query-target pairs based on the WordNet
hierarchy (Miller, 1994).

A correct solution to the Attribute Subspace Inference (ASI) task consists of inferring the relevant
attribute from the context set and correctly extracting that attribute from the query image. We
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Context Set

Set 1
Set 3

Set 2
Set 4

Query Generated Images Query Generated Images

Figure 5: Visualization of our toy dataset and results. The left third shows the context set used for
obtaining an attribute space, here shape (row 1-2) and color (row 3-4). The middle and right part
show three samples for two different query images (left column), respectively. The model learns to
correctly identify the attribute specified by the context set and extract it from the context query image
xquery. Note that only the specified attribute is kept constant while other attributes can vary freely,
indicating that the model correctly disregards irrelevant information.

analyze our model’s capability to correctly solve ASI tasks from two perspectives. (1) By analyzing if
generated images for given context sets and queries pose correct solutions to the ASI task (Section 4.3).
(2) By investigating the representation of the queries in the attribute space(Section 4.4).

4.1 PERFORMANCE OF CURRENT SOTA VLMS

Since many current SOTA VLMs are closed-source and only accessible via API providers, we perform
a small-scale evaluation using the FAL.ai API (fal, 2025) for a simplified version of our task. The
dataset consists of an ambiguous query image showing two attributes, and one context set for each of
the two attributes visible in the query image. The task for the model is to understand what attribute to
extract from the query based on the context set, and generate a variation of the attribute, similar to
Figure 1. We prompt the VLM accordingly and manually classify whether the model solved the task
correctly. We find that even current SOTA VLMs are not able to solve this task reliably, showing the
need for a more principled approach (Table 1). More details can be found in Section C.

4.2 DATASETS

In order to train our model and perform a large-scale quantitative evaluation, we introduce two
datasets:

Synthetic Dataset To assess whether our model is generally able to reason about sets of images and
find the shared attribute in a context set, we construct a synthetic dataset that allows us to precisely
obtain images with desired attributes for the context set and the query-target pair. Each image consists
of a single object with relevant attributes Ax = {shape, size, location, color}. We construct context
set, query and target such that one attribute is shared within the context set. Query and target share a
potentially different instantiation of that same attribute (see Figure 5).

Real-World Hierarchical Dataset To enable learning of meaningful attribute representations, we
employ a hierarchical structure derived from WordNet (Miller, 1994). Each node in this hierarchy
corresponds to a visual attribute category (e.g., animal), with branches representing increasingly
specific attribute values (e.g., mammal→dog→bulldog). Sets are constructed at different hierarchy
levels to define varying degrees of specificity for attribute encoding. For instance, if the attribute
animal is chosen, a set might contain mammals, birds, and fish. Given a query image depicting a
mammal, the diffusion model should generate other mammals, since that is the next level in the
hierarchy. Conversely, selecting a more specific attribute (e.g., dog) restricts generation to matching
exact breeds.
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Table 2: Quantitative comparison of models on ASI tasks. Correctly solving an ASI task entails
generating correct and diverse images. We investigate the models’ ability to generalize to sketches
from the ImageNet Sketch dataset (Wang et al., 2019) and to unseen classes from ImageNet21k (Deng
et al., 2009). We additionally visualize the results for the hierarchy dataset on the right to showcase
the trade-off between accuracy and diversity that our model strikes best.

Method Dataset
Accuracy (%) ↑

Diversity ↑
per Attr. per Val.

Baseline: Copy Query Image

Hierarchy

– – 0.47
ILLUME+ 3B (Deng et al., 2025) 37.15 55.00 0.57
BAGEL 7B-MoT (Huang et al., 2025) 26.05 33.76 0.46
Visual Prompting (Bar et al., 2022) 26.02 45.89 0.70
Ours 46.34 54.46 0.81

Visual Prompting (Bar et al., 2022)
Sketch Queries

23.76 44.57 0.68
Ours 32.60 47.11 0.72

Visual Prompting (Bar et al., 2022)
Sketch Context

27.67 47.04 0.71
Ours 41.50 52.24 0.79

Visual Prompting (Bar et al., 2022)
Sketch C+Q

25.69 44.45 0.68
Ours 31.90 46.47 0.71

Visual Prompting (Bar et al., 2022)
21k Context

29.07 49.95 0.76
Ours 39.63 51.40 0.79
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This hierarchical approach addresses a fundamental challenge in attribute learning: constructing
meaningful training sets where the relationships between context set, query, and target directly
influence the learned representations. While extensive annotations for attribute values would be ideal,
such datasets are rare and challenging to create. Our hierarchical structure provides a flexible yet
structured framework for attribute subspace inference, where the precise definition of sets directly
shapes the model’s learned capabilities.

4.3 VISUAL IN-CONTEXT LEARNING

If the model can correctly infer the relevant attribute from a context set and extract it from the query,
it should generate targets that match the query with regards to the relevant attribute. Thus, we analyze
the images generated by our model to determine if the Set Learner has correctly inferred the relevant
attribute. In the hierarchical setting, a correct solution entails understanding the hierarchy level and
branch from the context set, identifying the query’s position within the hierarchy, and generating
samples from the appropriate branch. We compare our approach against the Visual Prompting
model (Bar et al., 2022), as it is the closest existing method to our approach. Implementation details
on how we adapt their method to the proposed ASI task are provided in Section J. Adding to our
evaluation of general-purpose VLMs from Section 4.1, we evaluate two state-of-the-art open-source
VLMs, (Deng et al., 2025; Huang et al., 2025). Since these general-purpose models have to understand
the task in-context, we design three different prompting schemes shown in Table F and ablate their
performance in Table E. The VLM results in Table 2 use the best performing prompting scheme.

To quantify performance, we focus on the animal subtree of our hierarchy. We chose this subtree
for its intuitive structure, as it follows the biological taxonomy, providing a clear hierarchy for
evaluation. To quantify both the correctness and diversity of generated images, we report accuracy
and diversity in Table 2. Diversity of generated samples is a crucial indicator of the model’s reasoning
capabilities, as the trivial solution of copying the query often fulfills the posed task without requiring
understanding of the task. This behaviour is punished by our diversity metric.

Accuracy We evaluate the model’s performance on ASI tasks by measuring the accuracy of the
generated images. To assess whether a generated image is in the correct part of the hierarchy, we
use a classifier to obtain the class label and locate the predicted class within the hierarchy tree. We
provide the mean accuracy averaged over attributes (per attr) and averaged over possible attribute
instantiations in the query (per val). We observe that our model outperforms the Visual Prompting
Model model on unseen validation samples from the same hierarchy as used during training, as shown
in the upper two rows of Table 2.
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Diversity We want the model to demonstrate understanding of the ASI task at hand by not only
producing correct but also diverse images. A trivial solution to correctly retrieve an attribute from the
query is to simply retrieve all attributes, merely copying the query. As this would not be penalized by
a lower accuracy, we introduce a diversity score as a second decisive metric. This score captures the
model’s ability to generate diverse but correct outputs and penalizes trivial solutions. We define the
diversity score as the mean ratio of entropies between generated distributions for a single attribute
instantiation qval projected onto two attribute directions of different abstraction levels:

Div =
1

K ·Q
∑
qval∈Q

K∑
k=1

H(qval, attr0k)
H(qval, attr1k) + 1

(4)

Q is the number of attribute instantiations for the query image. K denotes the number of attribute
pairs where attr1k is a sub-attribute of attr0k, i.e. a direct subclass in the hierarchy (e.g. attr1k = fish
and attr0k = animal ). The entropy

H(qval, attr) = −
∑

ai∈Mattr

p(ai|qval, attr) log(p(ai|qval, attr)) (5)

is calculated over all attribute instantiations ai ∈ Mattr of the higher-level attribute’s subtree that
the attribute instantiation lies in. p(ai|qval, attr)) denotes the probability that given a context set for
attribute attr and a query with instantiation qval, the generated image’s attribute attr is instantiated
as ai. An illustration of the model’s desired behaviour is provided in Figure 4: If we project a cat
onto the attribute direction feline, we want the model to generate diverse cats. If we project that same
cat onto the attribute direction animal, we want the model to generate diverse felines, not only cats.
By doing so, the model demonstrates that it has correctly inferred the context set’s hierarchy level.

To build intuition for our proposed diversity metric, we evaluate two naive baselines. Replicating the
query image results in a diversity score of 0.47 and a near-perfect accuracy, only upper-bounded by
the classifier’s accuracy. Generating completely random images achieves a diversity score of 0.77,
comparable to the values reported in Table 2, but leads to near-zero accuracy. The diversity score’s
theoretical upper-bound equals 1.87 in our proposed hierarchy setup.

4.3.1 GENERALIZATION CAPABILITIES

We evaluate our model’s ability to generalize beyond its training distribution by testing it under
two challenging settings: (1) using sketch images as context and/or query inputs, and (2) providing
context images from previously unseen ImageNet21k classes.

To assess whether the model has overfit to appearance cues or has instead learned to capture semantic
content, we use the ImageNet-Sketch dataset (Wang et al., 2019). We construct evaluation setups
where the context set, the query, or both are drawn from sketch images. An illustration of this setup
is shown in the appendix in Section F. Quantitative results for all combinations of real and sketch
images in the context and query are reported in Table 2. While performance decreases relative to
settings using only real images, our model maintains strong accuracy and consistently outperforms
the Visual Prompting baseline across all configurations.

Additionally, we test if the model can correctly infer relevant attributes given novel attribute instantia-
tions not seen during training. To that end, we construct context sets from ImageNet21k and report
performance in the bottom section of Table 2. We observe only slight performance degradation,
indicating that our model is able to generalize to unseen attribute instantiations.

4.4 ATTRIBUTE SPACES

Since the Set Learner in our architecture predicts an explicit subspace, we can additionally analyze the
structure and expressiveness of the attribute space to better understand how the model solves the task.
As described in Section 3.2, our method predicts a subspace using the attribute directions inferred by
the Set Learner. This approach contrasts with traditional dimensionality reduction methods such as
PCA and LDA, which derive subspaces from statistical properties of the data rather than explicitly
learning attribute-specific directions. Specifically, we evaluate how the number of examples in the
context set influences performance, as larger sets should provide stronger signals for identifying the
shared attribute.
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Figure 6: Attribute Subspace Analysis. Left: We compare subspaces from our method with PCA
and LDA on the same embedding space, using the Fisher Discriminant Ratio (Duda et al., 2000) to
assess class separation. Our method achieves higher expressiveness with significantly fewer samples.
Middle/Right: Visualization of predicted attribute spaces using the first two principal components.
The middle plot shows an animal space labeled by the next level of the ImageNet hierarchy; the
right shows a fish space labeled by class. Our subspaces remain structured and semantically
meaningful across different levels of granularity (e.g., arachnid appears near insect in the
animal space).

To quantify the structure of the predicted attribute space, we use the Fisher Discriminant Ratio, which
assesses class separability by comparing intra-class and inter-class variance. Formally, we compute
the between-class scatter matrix SB and the within-class scatter matrix SW , where Nc is the number
of elements in class c. We then compute the trace ratio Jtrace which provides a single scalar measure
of how well-separated the attribute representations are:

Jtrace =
tr(SB)

tr(SW)
, SB =

C∑
c=1

Nc(µc−µ)(µc−µ)⊤, SW =

C∑
c=1

∑
xi∈Cc

(xi−µc)(xi−µc)
⊤. (6)

To compare our approach against commonly used dimensionality reduction techniques, we evaluate
the expressiveness of our learned subspaces relative to Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA). To ensure a fair comparison, we average results across multiple
context sets and attribute spaces. We encode images using the same pretrained encoder E and linear
projection layer as our method before applying PCA or LDA. While PCA captures general variance
across samples, LDA explicitly optimizes for inter-class separability using class labels.

For evaluation, we use the validation split of ImageNet. We randomly sample levels from our
hierarchical structure to construct context sets, which in turn define attribute directions. As mentioned
earlier, we average results across multiple directions to enable a fair comparison.

We present a quantitative comparison in Figure 6a, showing that our method produces a structured
attribute space comparable to LDA but requires an order of magnitude fewer samples. Additionally,
we visualize the learned subspace in Figures 6b and 6c, illustrating that a natural structure emerges.
As the context set size increases, our method discovers more expressive subspaces. This aligns with
intuition: larger sets reduce ambiguity in the ASI task, enabling the model to better approximate the
underlying attribute structure.

5 CONCLUSION

In this work, we introduced a novel framework for inferring attributes from visual context, formalized
as attribute subspace inference (ASI) tasks. We propose a scheme to assemble visual context sets
from real-world data by leveraging weak semantic groupings of images. We present a training setup
that enables learning to infer these attributes from context images and embedding them into a jointly
learned low-dimensional attribute subspace. We demonstrated that our model successfully infers
relevant attributes from query images and generates diverse outputs that reflect the extracted semantics,
even for attributes that are complex, subtle, or hard to verbalize. Our approach outperforms other
methods in accuracy and diversity of generated images. We validate the robustness and flexibility of
our method, showing its ability to generalize to unseen attributes and modalities such as sketches.

9
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ETHICS STATEMENT

This paper presents work whose goal is to advance the field of generative artificial intelligence with
a specific focus on visual understanding and in-context learning. There are many potential societal
consequences of our work, none of which we feel must be specifically highlighted here.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All code will be released with
the camera-ready version, including model implementations, training scripts, and the data loader.
Detailed implementation information is provided in the main paper and further elaborated in the
appendix. We will also release the dataset creation pipelines for both the synthetic dataset and the
hierarchical dataset derived from ImageNet, along with the corresponding hierarchy structure. The
underlying source dataset (ImageNet) is publicly available. In addition, we will provide the code and
data used for the initial VLM accuracy evaluation.
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Inferring Attribute Subspaces from Visual Contexts
Supplementary Material

A LIMITATIONS AND FUTURE WORK

Our method relies on auxiliary information to construct context sets and query-target pairs during
training. This reflects a fundamental property of the setup: the data itself defines what the model
should learn to represent. As a result, the grouping of images carries the semantic structure we want
the model to internalize, and the effectiveness of the approach depends on how well these groupings
reflect meaningful attributes.

In this paper, we explored two types of auxiliary signals. In a controlled synthetic setting, we had full
control over the data generation process. This allowed us to construct batches where the context set
shared a specific attribute, the query image instantiated that attribute value, and the target matched
the query in that dimension. Such precise supervision is rarely possible outside synthetic data. In our
second example, we used the WordNet taxonomy (Miller, 1994) to define groupings over ImageNet
classes. In this case, the model learned to capture relationships embedded in the taxonomy hierarchy
without relying on explicit attribute labels.

These examples highlight both the generality and the constraint of the approach. Given well-
structured groupings, the model can learn to represent and apply a wide range of attributes. However,
constructing such groupings at scale remains a practical challenge and a key direction for future work.

One possible path forward is to use unsupervised clustering methods to identify image sets that
share latent similarities. For example, subspace clustering (Elhamifar & Vidal, 2013) could be
used to discover many overlapping groupings in different embedding dimensions. Context sets and
query-target pairs could then be drawn from these clusters, with the assumption that shared structure
exists within each. If performed across a broad range of subspaces, the model may learn to generalize
across diverse attribute types. The difficulty lies in ensuring that the resulting clusters reflect visually
meaningful attributes.

Another direction is to generate attribute annotations automatically using vision-language models. We
experimented with this by defining a set of structured attribute-related questions, each with predefined
answer sets, and prompting a VLM (Qwen 2.5) (Yang et al., 2025) to label images accordingly. This
produced pseudo-attribute labels for ImageNet images, which were then used to form context sets.
Although the results showed promise, we found that label quality was often inconsistent, which
limited the effectiveness of training. Improving the robustness of such automated annotation pipelines
may enable more scalable training in the future.

In summary, our method performs well when given appropriate training data, but future work will
need to address how to scale the data construction process. This could include both improving
unsupervised discovery of meaningful groupings and refining automated supervision to make the
framework more broadly applicable.

B GENERAL IMPLEMENTATION DETAILS

We train the entire setup end-to-end. The set learner is parameterized as a ViT-L (Dosovitskiy et al.,
2021) and the diffusion model as a SiT-L (Albergo et al., 2023). In total this leads to 765 trainable
parameters. We train our model on 16 H100 GPUs for 24 hours using 30 query-target image pairs
for every set and a global batch size of 80 sets. As the Set Learner only needs to run once per set,
we precompute the attribute directions for a set and reuse them for all 30 query-target image pairs.
Our attribute space has four directions of dimensionality 256. The image encoder E is a ViT-L which
we initialize with DINOv2 (Darcet et al., 2024; Caron et al., 2021) for faster convergence. We use
Adam (Kingma & Ba, 2014) as our optimizer with a learning rate of 1e-4 with linear warmup.
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Nano Banana(Fortin et al., 2025) Gemini 2.5 Flash Image(Fortin et al., 2025) Ours
Replicate Query Image 4 3 0
Sample Wrong Attribute 46 40 0
Sample Unrelated Image 4 1 7
Sample Correct Attribute 46 56 93
% Correct 46% 56% 93%

Table A: Error Evaluation. We roughly classify where the evaluated VLMs fail. In most cases,
the model is not able to understand the context set and find the common attribute, leading it to also
generate the wrong attribute. In rarer cases, the model simply replicates the query image or produces
an unrelated image to the query and context set.

Table B: Performance with noisy context sets. One or two of five context images are replaced with
random images from the dataset.

Set Type
Accuracy (%) ↑

Diversity ↑
per Attr. per Val.

clean 46.34 54.46 0.811
noisy (1/5 random) 37.62 46.85 0.8124
noisy (2/5 random) 26.01 36.42 0.9054

C ADDITIONAL VLM EVALUATION DETAILS

We use the FAl.ai API (fal, 2025) to access closed-source models. Due to the cost of using those
APIs, we only generate 100 images per model and manually classify them into the categories shown
in Table A. Since these models have no way of knowing the ImageNet hierarchy, we provided a
simplified hierarchy in the prompt to make the task more comparable to our main evaluation. The
prompt used is: “I will provide you with 5 images. The first four images all contain one shared
attribute, i.e., they have something in common. Your goal is to identify this shared attribute and find
the corresponding level in the provided hierarchy. Then take a look at the fifth image and find the
correct child branch of the selected hierarchy level, i.e., the correct first level under it. Then generate
an image showing a random instance from that level. The hierarchy: [hierarchy]”. Since we only
measure the accuracy of the model, the hierarchy is not strictly required as the model does not need
to sample diverse images from the correct hierarchy level, but we found that including the hierarchy
increases performance.

D LATENT SPACE INTERPRETABILITY

We qualitatively explore how semantically meaningful the predicted subspaces are by interpolating
between two data points in a shared subspace. We first select a meaningful attribute space for the
interpolation, e.g., feline, project images of cats and tigers in the attribute space, and find an attribute
direction by taking the average delta between the embedded tiger and cat points. We then sample
points from this direction and conditionally generate images using the diffusion model. In Figure A
we show examples of such interpolations.

E ROBUSTNESS TO CONTEXT SET QUALITY AND SIZE

We extend the analysis in Sec. 4.3 to test robustness with respect to context set quality and size. The
model degrades gracefully under noise and improves with larger context sets. This aligns with the
Fisher ratio trend in Fig. 6, which suggests that larger sets reduce ambiguity.

Sensitivity to context noise We replace one or two images out of five with random images from
the dataset. As noise increases, accuracy decreases progressively, which indicates that the model uses
relevant context effectively while remaining robust to partial corruption. Diversity remains stable or
slightly higher, which suggests no collapse under less informative inputs. Results appear in Table B.
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Sample class a Interpolation a −→ b Sample class b

Figure A: Interpolation Examples between two points in a shared subspace.

Table C: Performance across context set sizes. Accuracy improves with additional context, especially
in the low-data regime, and diversity increases with size.

Set Size
Accuracy (%) ↑

Diversity ↑
per Attr. per Val.

2 44.74 48.92 0.719
3 45.26 53.51 0.801
4 46.05 54.57 0.821
5 46.34 54.46 0.811
6 46.38 54.57 0.816
7 46.56 54.74 0.824

Effect of context set size We vary the number of context images from two to seven. Accuracy
improves steadily with additional context, particularly from two to four examples, and then plateaus.
This suggests that small sets already provide useful signal, while larger sets increase reliability for
nuanced attribute inference. Diversity also increases with context size. Results appear in Table C.

F QUALITATIVE EXAMPLES FOR GENERALIZATION

We provide qualitative examples for the generalization capabilities of our model in Figure B. An
extensive quantitative evaluation is provided in the lower part of Table 2.

G MULTIPLE SHARED ATTRIBUTES

Real-world scenarios often involve context sets with multiple shared attributes, creating ambiguity
about which properties to preserve. To evaluate our model’s robustness in such a setting, we conduct
controlled experiments using the synthetic datasets.
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Context Set

Set 1
Set 3

Set 2
Set 4

Query Expected

Labrador

Hourglass

Feline

Tiger

Commonality

Dog

Timepiece

Animal

Feline

Generated

OOD

OOD

OOD

OOD

OOD

OOD

OOD

OOD

OOD

OOD

Figure B: When a query does not fully match the attribute space defined by the context set, it aligns
with the closest point on the learned manifold. Although trained only on ImageNet, the model
generalizes to sketch inputs by extrapolating semantically. This applies to both query and context
images. In the last two rows, we show how different hierarchy levels affect generation: projecting a
tiger onto the feline space yields tiger-like samples, while projection onto the broader animal
space results in more generic felines.

Table D: Performance evaluation on synthetic dataset with single and multiple shared attributes. Strict
accuracy requires both attributes to match simultaneously.

Setting Mean Accuracy (%) ↑ Mean Entropy ↑ Random Guessing (%)

1 shared attribute 90.96 1.88 13.85
2 shared attributes (strict) 90.57 1.77 1.87

We use our synthetic dataset (Section 4.1) to construct context sets with exactly one or two shared
attributes, enabling precise evaluation of the model’s behavior under ambiguous conditions. The
dataset contains four attributes: shape (5 values), size (7), position (9), and color (10).

Experimental Setup: We generate 100 queries and corresponding context sets, sampling 100 outputs
per query-context combination (10,000 total images). We measure:

• Accuracy: Preservation of shared attribute values using pretrained classifiers (> 98%
validation accuracy)

• Entropy: Diversity of non-shared attributes, with bounds from query replication (0) to
uniform distribution (2.01)

For the two-attribute setting, we report strict accuracy where a generated image receives 100%
accuracy only if both predicted attributes match the ground truth, and 0% otherwise. This evaluation
ensures that the model genuinely preserves multiple attributes simultaneously rather than succeeding
on individual attributes independently.

The model maintains high accuracy even with two shared attributes while preserving substantial diver-
sity (entropy well above replication baseline). Notably, accuracy remains stable when transitioning
from one to two shared attributes, indicating that richer conditioning signals help the diffusion model
extract shared properties more precisely without sacrificing diversity.

H PROMPT ABLATION ILLUME+

To establish the effectiveness of our approach relative to existing multimodal systems, we conduct a
comprehensive evaluation against ILLUME+ (Huang et al., 2025), a state-of-the-art vision-language
model that supports both image understanding and generation tasks.
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Table E: Performance comparison of three prompting strategies for ILLUME+ versus our method.
All metrics are reported higher is better (↑).

Method Acc. per Attr (%) ↑ Acc. per Val (%) ↑ Diversity ↑ LPIPS-D ↑
ILLUME+ Prompt #1 33.17 51.08 0.578 0.654
ILLUME+ Prompt #2 37.15 55.00 0.568 0.631
ILLUME+ Prompt #3 33.19 50.56 0.575 0.642

Ours 46.38 54.46 0.81 0.73

Since ILLUME+ cannot perform both image understanding (context set analysis) and image gen-
eration in a single inference round like our method, we design a two-stage prompting protocol. In
the first round, the model analyzes the context set to identify shared attributes. In the second round,
it generates a new image based on the identified attribute and the query image. We evaluate three
distinct prompting strategies to ensure a fair comparison and follow our standard evaluation protocol
described in Section 4.3.

Table E presents the quantitative results comparing different prompting strategies for ILLUME+
against our method. Our approach strikes a significantly better trade-off across evaluation metrics
compared to all prompting variants. The best-performing prompting strategy (Prompt #2) achieves
37.15% accuracy per attribute, 55.00% accuracy per value, and a diversity of 0.568, while our method
achieves 46.38%, 54.46%, and 0.81, respectively. We detail the three prompting strategies employed
for ILLUME+ in Table F.

Our results reveal several key insights. First, prompt optimization significantly impacts VLM
performance, with Prompt #2 outperforming Prompt #3 substantially in attribute accuracy. However,
even the best-performing prompt falls substantially short of our method’s performance overall.
Second, the two-stage nature of the VLM approach introduces potential error propagation, where
mistakes in attribute identification compound during image generation. Finally, our end-to-end
approach demonstrates superior capability in both understanding shared attributes and generating
coherent images that preserve these attributes while introducing appropriate variations.

I FEW-SHOT CLASSIFICATION USING ATTRIBUTE SUBSPACES

The ASI framework naturally extends to various downstream applications through its inference-time
adaptability. We demonstrate this capability through a few-shot classification experiment. We evaluate
our method’s transferability by applying a model trained on the ImageNet hierarchy to few-shot
classification on the Caltech-UCSD Birds (CUB) dataset (Wah et al., 2011). A key advantage of
ASI is its ability to adapt the encoder at inference time by defining context sets without requiring
additional training or class information.

Our experimental setup uses context sets of five randomly selected bird images to define a bird-
specific attribute subspace. We then perform 1-shot 5-way classification by projecting CUB test
images into this learned attribute space. This approach achieves an accuracy of 72.28%.

For comparison, we establish a DINO baseline using an equivalent experimental setup. We create a
DINO subspace by embedding the same context images and applying PCA with four components
(matching our number of attribute directions). Few-shot classification in this DINO subspace yields a
baseline accuracy of 71.78%. Our method outperforms this strong baseline despite being trained on
ImageNet at a much smaller scale than DINO, demonstrating the effectiveness of our attribute-based
representation learning.

J VISUAL PROMPTING IMPLEMENTATION DETAILS

To ensure compatibility with (Bar et al., 2022), we cast the ASI task as a 3x2 grid image that
encompasses a 2x2 context set at the top, a query image on the bottom left and the denoising target
image on the bottom right. We train a flow matching model to denoise the bottom right part of this
3x2 grid. To enable a fair comparison to our main model, the flow matching model is parameterized as
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Table F: Prompting strategies used for ILLUME+ evaluation.

Strategy Round 1: Attribute Identification Round 2: Image Generation
#1 Text: “I provided you with four images

and a class hierarchy below. Find the hi-
erarchy level that best matches the com-
monality / shared attribute in the four
images. Answer only with the name of
the hierarchy level, nothing else. The
hierarchy: [hierarchy]”
Input: Context set images

Text: “I provided you with one image
and a class hierarchy below. Find out
what child of the [extracted feature] hi-
erarchy level best matches the content
of the provided image. Generate an im-
age showing a random instance from that
level. If there are no children under the
selected hierarchy level, you can gener-
ate an image from the same class of the
given image.
The hierarchy: [hierarchy]”
Input: Query image

#2 Text: “Here are four images and a tax-
onomy. Identify the hierarchy level that
captures the common concept present in
all four images. Answer only with the
name of the hierarchy level, nothing else.
The hierarchy: [hierarchy]”
Input: Context set images

Text: “I will give you one image along
with a hierarchy of categories. Identify
which child node of the hierarchy level
[extracted feature] best describes the im-
age. After identifying it, generate a new
image showing a random example from
that node. If there are no children under
the selected hierarchy level, you can gen-
erate an image from the same class of
the given image.
The hierarchy: [hierarchy]”
Input: Query image

#3 Text: “I am giving you four example im-
ages and a hierarchy of categories. Find
the hierarchy level that represents the
feature or class they all have in common.
Answer only with the name of the hier-
archy level, nothing else.
The hierarchy: [hierarchy]”
Input: Context set images

Text: “Analyze the given image in the
context of the following hierarchy. Pick
the child under the hierarchy level [ex-
tracted feature] that best matches this
image. Then produce an image showing
another random instance from that same
hierarchy level. If there are no children
under the selected hierarchy level, you
can generate an image from the same
class of the given image.
The hierarchy: [hierarchy]”
Input: Query image

a SiT-L (Albergo et al., 2023). Similar to our main model, the context and query images from the 3x2
grid are individually encoded by a ViT-L image encoder E which we initialize with DINOv2 (Darcet
et al., 2024; Caron et al., 2021) for faster convergence. We train the model on 16 H100 GPUs for 24
hours.

K ADDITIONAL QUALITATIVE EXAMPLES

We show additional qualitative examples from our hierarchical Imagenet model in Figure C.
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Figure C: More samples from our model. The upper third shows the context sets (column-wise)
consisting of five images each. The following two sections are organized in the following way: query,
three samples, and target. This visualization intends to provide a better intuition of how the hierarchy
is structured and how we compose sets, queries, and targets.
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