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ABSTRACT

Longitudinal biomedical studies monitor individuals over time to capture dynam-
ics in brain development, disease progression, and treatment effects. However,
estimating trajectories of brain biomarkers is challenging due to biological vari-
ability, inconsistencies in measurement protocols (e.g., differences in MRI scan-
ners) as well as scarcity and irregularity in longitudinal measurements. Herein,
we introduce a novel personalized deep kernel regression framework for fore-
casting brain biomarkers, with application to regional volumetric measurements.
Our approach integrates two key components: a population model that captures
brain trajectories from a large and diverse cohort, and a subject-specific model that
captures individual trajectories. To optimally combine these, we propose Adap-
tive Shrinkage Estimation, which effectively balances population and subject-
specific models. We assess our model’s performance through predictive accu-
racy metrics, uncertainty quantification, and validation against external clinical
studies. Benchmarking against state-of-the-art statistical and machine learning
models—including linear mixed effects models, generalized additive models, and
deep learning methods—demonstrates the superior predictive performance of our
approach. Additionally, we apply our method to predict trajectories of compos-
ite neuroimaging biomarkers, which highlights the versatility of our approach
in modeling the progression of longitudinal neuroimaging biomarkers. Further-
more, validation on three external neuroimaging studies confirms the robustness
of our method across different clinical contexts. We make the code available at
https://github.com/vatass/AdaptiveShrinkageDKGP.

1 INTRODUCTION

Accurately predicting the temporal progression of brain biomarkers is essential for monitoring dis-
ease progression and determining optimal intervention points (Maheux et al., 2023). However,
challenges such as biological variability among individuals, limited longitudinal data, and irregu-
lar observation intervals make model development particularly difficult. Since accurate and reliable
predictions are imperative, models must dynamically adapt as new subject-specific data become
available, ensuring personalized predictions.

Several predictive models have been proposed to model the progression of biomarkers in the field
of neuroimaging (Marinescu et al., 2018). Traditional methods, such as linear mixed effects models
(Lindstrom & Bates, 1988), often struggle to handle high-dimensional multivariate data effectively
and are predominately used for statistical inference (Bernal-Rusiel et al., 2013; Xie et al., 2023).
Additionally, commonly, mixed-effect regression modeling is employed to address these longitudi-
nal predictions by fitting biomarker progression to linear or sigmoidal curves (Sabuncu et al., 2014;
Koval et al., 2021a). However, this approach may be limited by its reliance on predefined trajec-
tory shapes. More recently, Hong et al. (2019) and Gruffaz et al. (2021) explored manifold learning
techniques to capture biomarker trajectories requiring subjects with at least two acquisitions for
inference. Additionally, Lorenzi et al. (2019) introduced a Gaussian process–based disease progres-
sion model capable of predicting biomarkers like cognitive scores and volumetric measurements,
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but it relies on specific design assumptions regarding the number of observations per subject and
also uses low-dimensional input (i.e, five biomarkers). In the same spectrum, Koval et al. (2021b)
presented a bayesian mixed effects models again for estimating biomarker trajectories from low-
dimensional inputs. Abi Nader et al. (2020) proposed a method for spatiotemporal progression of
biomarkers without adapting to subject’s follow-up. Tassopoulou et al. (2022) proposed a deep ker-
nel regression method to infer biomarker trajectories from high-dimensional multivariate imaging
features, though it does not utilize individual subject trajectories to refine predictions. In a related
direction, Rudovic et al. (2019) developed a meta-weighting scheme combining two personalized
Gaussian process models to forecast ADAS-Cog13 (Mohs et al., 1997) scores up to two years ahead
. Similarly, Chung et al. (2019) introduced a deep mixed effects framework for personalization in
electronic health record time-series data, employing a long short-term memory network (Hochre-
iter & Schmidhuber, 1997) to model population trends while using a Gaussian process to capture
subject-specific deviations.

In this paper, we address the above limitations by proposing Deep Kernel Regression with Adap-
tive Shrinkage Estimation, a composite framework for predicting longitudinal brain trajectories
leveraging all the available observations of the test subject, either single acquisition or multiple
randomly-timed acquisitions. Unlike previous approaches that predict biomarkers within predeter-
mined time intervals (Rudovic et al., 2019), our method is designed to forecast over a practically
unbounded future time horizon while simultaneously refining past observations by reducing noise
in subject-specific observations. This dual capability enhances measurement reliability and pre-
serves the global progression trend from the initial observation to any unseen future time point.
Moreover, our framework naturally handles randomly-timed and temporally unaligned longitudinal
observations without requiring imputation, thereby leveraging all available data. By extending the
shrinkage estimator concept from Bayesian statistics and penalized inference (James & Stein, 1961;
Lindquist & Gelman, 2009; Shou et al., 2014), our method learns weights to combine population
and subject-specific deep kernel model through an adaptive shrinkage estimator, while accounting
for both observation time and predictive uncertainty.

Contributions. 1) We propose a novel deep kernel regression framework for predicting biomarker
trajectories from sparse longitudinal observations, that maps high-dimensional, imaging and clinical
features into a lower-dimensional latent space predictive of biomarker progression. Our approach
naturally accommodates randomly-timed and temporally unaligned observations without requiring
imputation. 2) We introduce Adaptive Shrinkage Estimation that fuses population and subject-
specific model, enabling incremental updates to personalized predictions as new data arrive, and
it refines historical data to reduce observational noise while preserving the overall progression pat-
tern from the first observation to any future time. Importantly, the adaptive shrinkage estimator
is interpretable, offering insights into the relative contributions of population and subject-specific
model. 3) We showcase the versatility of our method to be applied for the prediction of two ad-
ditional composite neuroimaging biomarkers from high-dimensional multivariate imaging data and
clinical covariates. 4) We demonstrate the generalizability of our method in different clinical con-
texts, showing its ability to generalize in three external clinical studies.

2 METHOD

2.1 PROBLEM FORMULATION
We address the problem of predicting biomarker trajectories, modeled as a one-dimensional signal
spanning multiple years. Formally, biomarker progression is described by the function f : U → Y ,
where U ∈ RK and Y ∈ R. The input is represented as U = (X,M, T ), where X denotes
the imaging features, M denotes the clinical covariates at subject’s first visit, and T represents
the temporal variable, indicating time in months from the first visit. The biomarker trajectory is
denoted as Y = (y0, y1, . . . , yn), corresponding to the biomarker volumes at time points T =
(t0, t1, . . . , tn).

Our goal is to learn smooth functions of brain biomarkers using imaging and clinical data. To
achieve this, we employ Deep Kernel Learning (DKL) (Wilson et al., 2015). The deep kernel
integrates imaging and clinical covariates, learning a lower-dimensional representation informa-
tive for biomarker progression, while a Gaussian Process (GP) models the temporal dependen-
cies. The backbone model, Deep Kernel Gaussian Process (DKGP), is defined as: f(U) ∼
GP(µ,K(Φ(U),Φ(U))), where Φ is a transformation function.
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Figure 1: Overview of the proposed framework. In Figure 1a, we illustrate the training process of
the two models, p-DKGP and ss-DKGP. The population dataset Dp contains multiple longitudinal
acquisitions of subjects, where N is the total number of samples across all subjects, and L is the
latent dimension obtained from transformation Φ. Different shades of green in the population dataset
indicate different subjects in Dp. We denote the observed trajectory of subject j with h samples as
Dsj |h. These samples are utilized to train the ss-DKGP. During the training of the ss-DKGP, the
transformation Φ is fixed, and only the subject-specific gaussian process is optimized. In Figure
1b, we describe the personalization process through the shrinkage parameter α. For subject j,
we extrapolate biomarker values over time using both the p-DKGP and ss-DKGP models. These
extrapolated values are then used to infer the adaptive shrinkage α for posterior correction, yielding
the personalized posterior predictive mean Yc variance Vc of the subject’s trajectory.

2.2 POPULATION DEEP KERNEL MODEL (P-DKGP)
The population model leverages data from the population dataset Dp = {Up,Yp}, comprising
subjects with longitudinal observations. It applies the transformation Φ(u;W,b), a Multi-Layer
Perceptron (MLP), that maps the input data Up = (X,M, T ) into a latent representation:

Zp = Φ(Up;W,b). (1)

A GP, subsequently, models the biomarker progression function f using a Radial Basis Function
(RBF) kernel as the covariance function and a zero mean: f(Zp) ∼ GP

(
0,K(Zp,Z

′
p)
)
.

The population parameters γp = {Wp,bp, lp, σp} are learned jointly through the Marginal Log
Likelihood (MLL) of the GP (Wilson et al., 2015; Rasmussen & Williams, 2006).

For a test subject j with input uj = (xj ,mj , t), we denote the transformed input as zj =
Φ(uj ;Wp,bp).

The posterior predictive distribution of the biomarker function at point uj = (xj ,mj , t) is:

fpj | (Zp,Yp), zj ∼ N (f̄pj , cov(fpj )). (2)

The mean and variance of the predictive posterior distribution provide the predictions and their
uncertainties, respectively, and are calculated as follows:

f̄pj
= E[f∗ | Zp,Yp, zj ] = K(zj ,Zp)[K(Zp,Zp) + σ2

nI]
−1Yp, (3)

Var(fpj
) = K(zj , zj)−K(zj ,Zp)[K(Zp,Zp) + σ2

nI]
−1K(Zp, zj), (4)

where σ2
n is the additive independent identically distributed Gaussian noise ϵ.

For simplicity, the predictive mean and variance of a biomarker for test subject j from the p-
DKGP are denoted as yp and vp, respectively. By prompting the p-DKGP model with different
time intervals t, yields the predicted trajectory and predictive uncertainty across time, represented
as Yp = (yp1 , yp2 , . . . , ypT

) and Vp = (vp1 , vp2 , . . . , vpT
).
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2.3 SUBJECT-SPECIFIC DEEP KERNEL MODEL (SS-DKGP)
For a new test subject, let h denote the number of observations and Tobs the time of observation from
the initial acquisition. The observed data for the subject is represented as Ds = {(Xs,Ms, Ts), Ys}.
The ss-DKGP model is trained on Ds to capture the subject-specific trajectory. The transformation
Φ(·;Wp,bp), learned via the p-DKGP, initializes the deep kernel of the subject-specific model.

We initialize a new GP with an RBF kernel and a zero mean. During the training of the ss-DKGP,
only the observed trajectory of the subject is used. Specifically, we update the GP hyperparame-
ters, which include the length-scale ls and the signal variance σs, while keeping the weights of the
function Φ(·;Wp,bp) frozen during backpropagation.

For subject j with input uj = (xj ,mj , t), we denote their transformation as zj = Φ(uj ;Wp,bp).

The posterior predictive distribution of the biomarker progression function at time point t is:

fsj | (Zs,Ys), zj ∼ N (f̄sj , cov(fsj )), (5)

where zj = Φ(uj ;Wp,bp)

The predictive mean and variance, representing the predictions and their associated uncertainties
respectively, are computed as follows:

f̄sj = E[fsj | Zs,Ys, zj ] = K(zj ,Zs)[K(Zs,Zs) + σ2
nI]

−1Ys, (6)

Var(fsj ) = K(zj , zj)−K(zj ,Zs)[K(Zs,Zs) + σ2
nI]

−1K(Zs, zj). (7)

where σ2
n is the additive independent identically distributed Gaussian noise ϵ.

For simplicity, the predictive mean and predictive variance of the ss-DKGP are denoted as ysj and
vsj , respectively. By querying the ss-DKGP model at different time intervals t we reconstruct the
ROI trajectory of subject j, yielding the predicted trajectory Ys = (ys1 , ys2 , . . . , ysT ) and predictive
uncertainty Vs = (vs1 , vs2 , . . . , vsT ).

2.4 PREDICTIVE POSTERIOR CORRECTION

Given predictions yp and ys from the p-DKGP and ss-DKGP models, the personalized prediction is
expressed as a linear combination:

yc = αyp + (1− α)ys, (8)

where, α is the shrinkage parameter reflecting the relative confidence in each model. Assuming
independence between the models, the combined prediction yc, retains Gaussian properties, and its
variance is given by:

vc = α2vp + (1− α)2vs. (9)

The weights α and 1− α quantify the credibility of each model, yielding a new posterior predictive
mean Yc and variance Vc. Values of α close to 1 indicate higher confidence in p-DKGP model, while
values close to 0 reflect greater trust in ss-DKGP model. We refer to α as the shrinkage parameter.

2.4.1 ACQUIRING THE ORACLE SHRINKAGE α
Estimating the oracle shrinkage parameter α is crucial for constructing the personalized posterior
predictive means and variances of the biomarker trajectory. To estimate α, we use a held-out set
of subjects with known trajectories, unseen by the population model. Predictions for these subjects
are generated using the p-DKGP model. For each subject, the ss-DKGP component is trained by
progressively increasing the length of the observed trajectory.

The entire biomarker trajectory is reconstructed from the baseline time (t = 0) to the subject’s
last time point (tn). Using both models, p-DKGP and ss-DKGP, we obtain two estimates of the
biomarker trajectory along with their predictive variances. Let Yp and Vp denote the p-DKGP pre-
dictive mean and variance, and Ys and Vs denote the ss-DKGP model predictive mean and variance.
Let Y represent the ground truth biomarker values over time. The oracle α is estimated by minimiz-
ing the following criterion:

Js|h(α) =

tn∑
t=0

(yt − (α · ypt + (1− α) · yst))
2
. (10)
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The notation Js|h reflects that this optimization is performed for a subject s, given h observed
acquisitions. The algorithm for calculating the oracle shrinkage estimates on the validation set is
outlined in Algorithm 1. Each subject’s data is processed individually, applying the optimization to
each sequence of observations. This process is repeated for every subject in the validation set.

Algorithm 1 Shrinkage Estimation

Require: Validation set V = {(Us, Y (s)) | s ∈ S}, where Y (s) = {y(s)t }Tt=1 is the ground truth
trajectory for subject s

Ensure: Optimal shrinkage parameters α̂s,h for each s ∈ S and h ∈ H
1: for each s ∈ S do
2: Initialize list L(s) ← [ ]
3: for each h ∈ H do
4: Obtain P-DKGP trajectory: Y (s,h)

p = {y(s,h)p,t }Tt=1

5: Obtain ss-DKGP trajectory: Y (s,h)
s = {y(s,h)s,t }Tt=1

6: Define objective function:

Js,h(α) =
T∑

t=1

(
y
(s)
t −

(
αy

(s,h)
p,t + (1− α)y

(s,h)
s,t

))2

7: Compute:
α̂s,h = arg min

α∈[0,1]
Js,h(α)

8: Append α̂s,h to L(s)

9: end for
10: Store list L(s) for subject s
11: end for

2.4.2 LEARNING THE ADAPTIVE SHRINKAGE α
The shrinkage parameter α represents the trust factor between the two components (p-DKGP and ss-
DKGP). We model α as a function of the input variables q = {yp, ys, vp, vs, Tobs}, where q ∈ R5 and
Tobs represents the time of the last observed acquisition from the baseline. Using oracle shrinkage
α obtained from Section 2.4.1) on the validation set, our objective is to learn a mapping function g
with parameters θ that transforms the input space Q = {Yp, Ys, Vp, Vs, Tobs}, where Q ∈ R5, to the
output space A ∈ R, as α̂ = g(Q; θ).

We employ XGBoost regression to learn the function g that minimizes the difference between the
predicted α̂ and the oracle α. The learned function is denoted as gα. In Supplementary Section C.2,
we provide results from additional non-linear functions we experimented with, demonstrating that
XGBoost achieves the best performance for estimating the shrinkage α.

2.5 PERSONALIZATION THROUGH ADAPTIVE SHRINKAGE

For a new test subject with h observations and Tobs as the observation time (measured from the sub-
ject’s first visit), we train the ss-DKGP model as described in Section 2.3. The posterior-corrected
predictive distribution, referred to as pers-DKGP, is computed using the following algorithm:

Algorithm 2 Personalization through Adaptive Shrinkage
Require: p-DKGP model, ss-DKGP model, and learned function gα
Ensure: Adapted predictive mean and variance: Yc, Vc

1: Compute Yp, Vp (predictive mean and variance) from the p-DKGP model.
2: Compute Ys, Vs (predictive mean and variance) from the ss-DKGP model.
3: Estimate shrinkage parameter: α̂h = gα(Yp, Ys, Vp, Vs, Tobs).
4: Compute the adapted predictive mean: Yc = α̂h · Yp + (1− α̂h) · Ys.
5: Compute the adapted predictive variance: Vc = α̂2

h · Vp + (1− α̂h)
2 · Vs.

6: return Yc, Vc.

The personalization process through Adaptive Shrinkage is described in Algorithm 2.
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Figure 2: We compare the mean MAE per subject stratified by the progression status (top) and the
AE with time from the last observation (bottom) of our method with the baselines for (a) the 7 ROI
Volume biomarkers, (b) SPARE-AD score and (c) SPARE-BA. Error bars, in the top row, denote the
95th percentile of the MAE across all subjects.

3 EXPERIMENTS

3.1 PREDICTION OF REGIONAL VOLUMETRIC TRAJECTORIES

In this section, we apply deep kernel regression with adaptive shrinkage to predict trajectories of
seven volumetric Regions of Interest (ROI): Hippocampus R, Hippocampus L, Thalamus Proper R,
Amygdala R, Amygdala L, Parahippocampal Gyrus and Lateral Ventricle R. For each ROI Volume
model we use a dataset of 2, 200 subjects with Ui = (Xi,Mi, Ti) from subject i, where Xi are
volumetric measures from 145 brain regions collected at subjects’s first visit, Mi are the covariates
of diagnosis at subject’s first visit, sex, age, education, APOE4 Alleles, a genetic variant related
to AD and the Time from subject’s first visit. The p-DKGP model for each ROI is trained on a
population cohort of 1, 600 subjects, while the adaptive shrinkage function is trained on a held-
out set of 200 subjects. Predictive performance is evaluated on 440 test subjects. For details on
the architecture and training of the ROI Volume deep kernel models, p-DKGP and ss-DKGP, see
Section B.1.

We combine preprocessed and harmonized neuroimaging measures from two well-known longitu-
dinal studies: the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Weiner et al., 2017) and
the Baltimore Longitudinal Study of Aging (BLSA) (Ferrucci, 2008), which focus on Alzheimer’s
Disease and Brain Aging, respectively. Further details on the studies and preprocessing pipelines
are provided in Supplementary Section A.

We benchmark our method against several baselines and state-of-the-art predictors: Linear Mixed
Model (LMM) (Lindstrom & Bates, 1988), Generalized Additive Model (GAM) (Hastie & Tibshi-
rani, 1986), Deep Regression, and the Deep Mixed Effects (DME) (Chung et al., 2019). Further
details on the architectural design and training of baselines are provided in Supplementary B.3.
Model performance is evaluated from two perspectives: predictive accuracy and uncertainty quan-
tification (UQ). Predictive accuracy is measured using Absolute Error (AE) and Mean Absolute
Error (MAE) per subject. UQ is assessed by interval width (the range between ±2 standard devia-
tions from the predictive mean) and coverage (the proportion of true biomarker values within that
range). Importantly, these metrics are computed over the entire unseen trajectory of test subjects,
providing a comprehensive evaluation of model performance over time.
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a Healthy Control b Healthy Control  c AD Progressor

Figure 3: We present personalized ROI volume trajectories for three test subjects as observations
increase from 4 to 7 acquisitions. The dashed lines represent the prediction using LMM. The first
two panels visualize the Hippocampus R and Thalamus Proper R Volume trajectories of Healthy
Control subject. Last panel shows the Lateral Ventricle R Volume for an AD Progressor. The shaded
bands represent the predictive uncertainty over time.

For each predictor, Figure 2a presents a comparative study of the predictive performance with re-
spect to progression status and time from the last known acquisition. Progression status is defined by
the subject’s initial and final diagnoses, categorized as follows: AD refers to subjects diagnosed with
AD at their first visit; AD Progressor includes subjects initially diagnosed as Cognitively Normal
(CN) or Mild Cognitively Impaired (MCI) who progress to AD; Healthy Controls are subjects who
remain CN throughout all visits; MCI Progressor refers to subjects who progress from CN to MCI;
MCI Stable includes subjects who remain MCI throughout their trajectory; and Unknown (UKN)
corresponds to cases involving misdiagnosis.

Building on this categorization, Figure 2a shows the mean MAE across progression status for the
seven volumetric ROIs. Notably, the largest mean MAE differences between our method and base-
lines occur in participants with AD and AD Progressors, who exhibit non-linear and steeper trends
that competing baselines fail to capture. Specifically, the Linear Mixed Model (LMM), constrained
to linear patterns in ROI volumes, shows significant percentage mean MAE differences in AD
(177.66%) and AD progressors (22.05%). Even in healthy controls, LMM exhibits a 29.78% MAE
difference, highlighting its inability to capture trajectories even in cases of relatively stable volume
trajectories. Further quantitative comparisons, including error stratification by covariates such as
sex, APOE4 Alleles, and education years, are provided in Supplementary Sections D.1.

In addition to evaluating performance across progression status, we also assess the model’s ability to
predict long-term longitudinal trajectories. In Figure 2a, we visualize the mean AE across different
lengths of observed trajectories, with errors plotted relative to the time from the last observation.
Our method achieves progressively lower mean AE over time, indicating improved precision in both
long-term and short-term predictions. This demonstrates the model’s ability in capturing temporal
trends and adapting to varying observation lengths.

To further highlight the strengths of our model, we provide a qualitative evaluation of the predicted
trajectories in Figure 3. For the Volume ROIs of Hippocampus R, Thalamus Proper R, and Lateral
Ventricle R, our model successfully adapts to the observed trajectories of test subjects, resulting in
more accurate long-term predictions. For instance, in the Healthy Control subject shown in Fig-
ure 3b, the population prediction deviates from the actual trajectory. However, as the number of
observations increases, the pers-DKGP trajectory shifts toward the observed trajectory, effectively
adapting to the subject-specific trend. Similarly, the third subject, an AD Progressor in Figure 3c,
exhibits an abrupt increase in ventricular volume. This trend is captured with few observations by
the pers-DKGP model, while the LMM underestimates the ventricular volume in the long term.
Additional qualitative examples of trajectories are provided in Supplementary Section D.3.

Overall, the LMM exhibits limited flexibility in capturing non-linear patterns in ROI volumes,
rendering it inadequate for long-term biomarker prediction. While it performs reasonably well
in short-term forecasts and lower-dimensional settings, its expressiveness falls short for complex,
high-dimensional inputs. Deep regression, though capable of learning from observed data, often
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yields non-smooth or non-monotonic trajectories that deviate from biologically plausible biomarker
progression trends. The DME model, which combines a shared deep mean function with subject-
specific GP, struggles to achieve personalization in high-dimensional input spaces, resulting in per-
sistent errors across time and diagnostic categories. These issues stem from the limitations of the
RBF kernel in managing multivariate, high-dimensional data. In contrast, our method effectively
approximates non-linear mixed effects models, demonstrating flexibility in handling multivariate,
high-dimensional data and capturing diverse temporal patterns.

3.2 APPLICATION TO NEUROIMAGING BIOMARKERS: SPARE SCORES

Having demonstrated our framework’s ability to personalize longitudinal predictions of volumet-
ric ROIs as subject observations increase, we now show its versatility by applying it to composite
neuroimaging biomarkers: the SPARE-AD (Davatzikos et al., 2009) and SPARE-BA (Habes et al.,
2016) scores. SPARE-AD quantifies the risk of AD progression, while SPARE-BA represents pre-
dicted brain age. For both SPARE models we use a dataset of 2,200 subjects with Ui = (Xi,Mi, Ti)
from subject i, where Xi are volumetric measures from 145 brain regions collected at subjects’s first
visit, Mi are the covariates of diagnosis at subject’s first visit, sex, age, education, APOE4 Alleles
and the SPARE-AD and SPARE-BA values at the first visit. The p-DKGP model is trained on 1600
subjects, the adaptive shrinkage estimator is trained on a held-out set of 200 subjects. The evaluation
of the predictive performance is performed on the 440 test subjects. For details on the architectural
design and training of the SPARE-AD and SPARE-BA deep kernel models (p-DKGP and ss-DKGP)
see Section B.2.

Our model demonstrates strong performance in predicting long-term longitudinal trajectories for
both SPARE-AD and SPARE-BA biomarkers, as illustrated in Figure 2b, c. Notably, the model
achieves progressively lower mean AE over time, indicating improved precision in forecasting long-
term outcomes. For SPARE-BA, model performance differences are minimal in stable subjects and
healthy controls, but more pronounced in AD subjects, where SPARE-BA exhibit steeper progres-
sion trends due to accelerated brain aging. For the SPARE-AD biomarker, we also visualize absolute
error with the number of observations. This highlights how our model adapts with increasing obser-
vations, starting with a single scan using the p-DKGP model (α = 1) and transitioning to adapted
shrinkage estimation for personalization as follow-up observations increase. Evidence are provided
in Table 5 and Figure 7 in Supplementary Section D.2.

3.3 APPLICATION TO EXTERNAL NEUROIMAGING STUDIES

In this section, we demonstrate the generalizability of our method to previously unseen neuroimag-
ing datasets. After training the p-DKGP and adaptive shrinkage estimator on the population and val-
idation datasets from the ADNI and BLSA cohorts, we personalize starting from the first follow-up
point for each subject and predict the remaining trajectory. This process is repeated for all follow-up
points, with the very last follow-up reserved for testing.

We test the performance of our framework on subjects from three independent clinical studies: OA-
SIS (Marcus et al., 2010), AIBL (Ellis et al., 2009), and PreventAD (Tremblay-Mercier et al., 2021).
These datasets differ from the training population in terms of demographics, diagnosis composition,
and follow-up intervals, presenting a challenging test of the model’s generalizability across diverse
populations. In Supplementary Section A we present details on the demographic and clinical char-
acteristics of these studies.

The three external studies exhibit notable differences in demographics and follow-up intervals:
AIBL: Includes 82 individuals with a mean age of 75 years, which is close to the mean age of
the joint cohort of ADNI and BLSA. It is predominantly composed of AD patients followed by MCI
and Healthy Controls. On average, each subject has approximately 3 follow-up visits, with a mean
interval of 24 months between visits. OASIS: Includes 559 individuals younger on average (67.8
years) compared to both ADNI and BLSA. It is primarily composed of healthy controls, with smaller
representations of MCI and AD cases. The average number of follow-ups is ∼ 3 per subject, with a
mean interval of 32 months. PreventAD: Includes 271 indivuduals and focuses on pre-symptomatic
early detection of AD in a healthier and younger population (mean age 65.3 years) with an average
of 4 follow-up visits per subject and a shorter mean interval of 10 months.

Our method outperforms baseline predictors across three independent clinical studies—AIBL, OA-
SIS, and PreventAD—underscoring its effectiveness in diverse, real-world scenarios (Figure 4). The
model achieves lower MAE compared to baselines, with narrow confidence intervals reflecting its
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stability. In the AIBL study, pers-DKGP achieves a Mean AE of 0.197 ± 0.009, substantially outper-
forming the baseline methods. A similar trend is observed in the OASIS study, where pers-DKGP
attains a Mean AE of 0.259 ± 0.006. Notably, in the PreventAD study, our method achieves the
lowest Mean AE of 0.139 ± 0.004, outperforming LMM and GAM. The narrow CIs of the AE as-
sociated with pers-DKGP across all datasets highlight its reliability and consistent precision, even
in the presence of data variability. Interestingly, the lower error observed in the PreventAD study,
along with the reduced disparity between pers-DKGP and statistical models like LMM and GAM, is
attributed to the younger population and shorter follow-up intervals in this dataset. Predicting Vol-
ume ROIs in a younger, healthier control population, as in PreventAD, is inherently less challenging
compared to the older, partially demented populations in OASIS and AIBL.

Collectively, these results position our model as a robust and reliable framework for personalized
forecasting of neuroimaging biomarkers, offering potential for application in clinical trials and neu-
roimaging studies.

Figure 4: We evaluate the mean absolute error for the seven ROI Volume biomarkers across three
external neuroimaging studies. Error bars denote the 95th percentile of the absolute error. Notice
that the pers-DKGP achieves the lower error across all external studies, in comparison with the
competing baselines

3.4 EXPLAINING ADAPTIVE SHRINKAGE: AN ABLATION STUDY ON THE α FUNCTION

In this section, we demonstrate the effectiveness and interpretability of the Adaptive Shrinkage esti-
mator. We first compare it to alternative posterior correction approaches and then use explainability
analysis to illustrate how Adaptive Shrinkage learns to balance the two posterior predictive distribu-
tions in a data-driven manner, making its decision-making process intuitive.

We explore various strategies for selecting the shrinkage parameter α. First, we experiment with a
constant α = c, where c ∈ (0, 1), representing an uninformative approach to posterior correction.
Next, we employ a semi-informative (deterministic) approach, where the α for each test subject
is determined by optimizing the objective in Equation 10 using only subject’s observed trajectory.
Finally, we use adaptive shrinkage estimator to determine α.

We conduct this experiment for seven ROI Volume biomarkers: Hippocampus R/L, Lateral Ventri-
cle, Thalamus Proper, Amygdala R/L, and the Parahippocampal Gyrus (PHG R). The deterministic
method results in the worst outcomes in terms of both predictive performance and uncertainty quan-
tification, suggesting that the observed trajectory alone is insufficient to determine the α for future
predictions. Here, we present results for Hippocampus R, Lateral Ventricle, and Thalamus Proper
under the constant α and Adaptive Shrinkage. Results for the remaining Volume ROIs are provided
in Table 6 of Supplementary Section D.4.1.

In the constant α section of Table 1, we present the performance of the best constant α values.
This demonstrates that optimal performance is not achieved through simple averaging and that the
optimal α varies significantly across ROIs. For example, the best α is 0.5 for Hippocampus, 0.3
for Lateral Ventricle, and 0.7 for Thalamus Proper. These results highlight the inadequacy of a one-
size-fits-all approach and underscore the necessity for a more sophisticated method. The evidence
suggests that Adaptive Shrinkage provides a more informed approach for determining the ideal α,
leading to improved predictive performance and uncertainty quantification.

To elucidate the decision-making process of Adaptive Shrinkage, we conduct explainability analysis.
We focus on the impact of each input variable—ypp, yss, Vpp, Vss, and Tobs—and their interactions
on the prediction of the adaptive shrinkage parameter α. Specifically, we aim to understand how
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Table 1: Ablation on shrinkage parameter α
Best Constant Adaptive Shrinkage

ROI α Mean AE (CI) Mean Cov. Mean Int. Mean AE (CI) Mean Cov. Mean Int.

Hippocampus R 0.5 0.257 (±0.007) 0.808 0.843 0.243 (±0.003) 0.795 0.902
Lateral Ventricle R 0.3 0.143 (±0.006) 0.853 0.507 0.131 (±0.002) 0.855 0.626
Thalamus Proper R 0.7 0.241 (±0.007) 0.934 1.127 0.219 (±0.003) 0.849 0.911

the deviation between the population and subject-specific predictive means (δy = ypp − yss) and the
observation time Tobs influence the model’s predictions.

We employ SHAP (SHapley Additive exPlanations) values (Lundberg & Lee, 2017) to interpret
the contribution of each feature to individual predictions. Figure 13 in Supplementary Section D.4
reveals that Tobs is the most influential variable in the decision-making process. This is further val-
idated by the observation that the distribution of adaptive shrinkage α decreases as the number of
follow-up observations (and thus Tobs) increases. Figure 12 in Supplementary Section D.4 demon-
strates the distribution of α with the number of observations for the seven ROIs and SPARE scores,
as well as the adaptive shrinkage α obtained from external neuroimaging studies. The consistent
trend of decreasing α as the number of observations increases highlights the biomarker-agnostic
ability of Adaptive Shrinkage to optimally combine population and subject-specific trends. This
behavior is also consistent across external neuroimaging studies, further validating the generaliz-
ability of the approach. Additional qualitative results demonstrating the decision-making process of
Adaptive Shrinkage are provided in Supplementary Section D.3, Figures 10 and 11.

Furthermore, correlation analysis (Supplementary Section D.4, Table 7) reveals a consistent negative
relationship between Tobs and the predicted α when the deviation δy is large. This indicates that,
in the presence of significant deviations between the two predictors, Adaptive Shrinkage reduces
the weight assigned to the population-level model (p-DKGP) for longer observation periods. This
aligns with the intuition that as more follow-up observations are available, greater trust is placed in
the subject-specific predictive distribution.

4 DISCUSSION

In this paper, we introduce deep kernel regression with adaptive shrinkage estimation for predict-
ing personalized biomarker trajectories via posterior correction. Our method learns the adaptive
shrinkage parameter that effectively combines two posterior predictive distributions, enabling the
predictive trajectory to adapt to each subject’s follow-up acquisitions. Additionally, our method is
versatile, effectively modeling the progression of longitudinal biomarkers using multivariate imag-
ing data and clinical covariates. Examples of such biomarkers are the cognitive scores (e.g., MMSE,
ADAS-Cog13) and blood biomarkers (e.g., Amyloid-β, Tau protein). Importantly, our approach ex-
hibits generalization capabilities when applied to external neuroimaging studies with diverse demo-
graphics and follow-up intervals, which is particularly valuable for real-world applications, where
models must perform robustly across heterogeneous populations.

Such property is particularly important as the use of predictive models in healthcare is increasingly
critical for both patient management and drug development. (Cummings et al., 2019) emphasize the
need for AI-informed clinical trials, referred to as precision trial design, while (Maheux et al., 2023)
evaluate predictive models for biomarker trajectories in Alzheimer’s Disease, where derived mea-
sures—such as the rate of change—serve as quantitative indicators of disease progression during
clinical trials. These measures inform decisions on subject inclusion and treatment efficacy, under-
scoring the importance of reliable and interpretable predictive tools. Our method’s adaptive and
intuitive design positions it as a valuable tool for clinical trial design, disease progression modeling,
treatment effect estimation, and neuroimaging research. By leveraging personalized predicted brain
ROIs and neuroimaging biomarkers, such as SPARE-AD, as endpoints for selecting trial subjects,
our framework showcases its potential for real-world application.

At the same time, we acknowledge limitations in our approach, particularly the independence as-
sumption between the α parameter and posterior distributions in the posterior correction step (Sec-
tion 2.4). While this simplification impacts uncertainty quantification, it does not affect the posterior-
corrected predictive mean, ensuring accurate predictions. Further discussion on this assumption,
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including its theoretical justification and potential implications, is provided in Supplementary Sec-
tion C. Future work will explore extending adaptive shrinkage to multivariate biomarker trajectories
and improving uncertainty quantification in personalized trajectories to address this afforementioned
limitation.
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