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Abstract

Recent research focuses on utilizing more test-001
time computation to enhance the performance002
of Large Language Models in solving com-003
plex mathematical and logical reasoning tasks.004
However, these methods allocate more compu-005
tational resources during the inference phase to006
explore the solution space by some tree search007
method such as Monte Carlo Tree Search, re-008
sulting in a significant increase in inference009
time. In this paper, We construct atom rea-010
soning steps, which are subsequently utilized011
to develop MCTS for self-preference learn-012
ing to enhance the reasoning capabilities of013
LLMs, without employing a larger model for014
data distillation. Extensive evaluations on var-015
ious mathematic and common sense reason-016
ing tasks demonstrate demonstrate remarkable017
performance improvements over existing mod-018
els. For instance, our approach outperforms019
the Qwen2.5-7B-instruct baseline on MATH,020
GSM8K, ARC and SCIQ with substantial in-021
creases in accuracy to 50.0% (+14.2%), 92.1%022
(+10.4%), 89.6% (+13.3%), and 94.0 (+19.8%)023
respectively.024

1 Introduction025

Large language models (LLMs) have demonstrated026

impressive capabilities in a wide range of tasks and027

fields (OpenAI et al., 2024). Developing AI sys-028

tems that can mimic human-like reasoning contin-029

ues to be a central objective in the research commu-030

nity. A critical aspect of this process involves the031

collection of reasoning chains that reflect human-032

like thinking (Madaan et al., 2023). There are two033

dominant approaches for integrating these data:034

The first method generates reasoning chains by con-035

structing linear data structures, breaking through036

solutions into step-by-step reasoning paths (Light-037

man et al., 2023; Luo et al., 2024), while the other038

method combines non-linear data structures, such039

as tree structures, to search for reasoning trajec-040

tories integrating the Monte Carlo Tree Search041

(MCTS) method (Qi et al., 2024). Current research 042

often combines MCTS for preference data collec- 043

tion to train LLMs to enhance the model’s ability 044

for complex reasoning (Zhang et al., 2024b). 045

A typical approach is the chain-of-thought 046

(CoT), which expands the reasoning space by gen- 047

erating additional tokens or solutions (Wei et al., 048

2022; Wang et al., 2023). Although straightfor- 049

ward and intuitive, recent studies have noted that 050

the CoT method can frequently miss optimal rea- 051

soning pathways and display an automatic response 052

style due to its emphasis on a single pathway (Besta 053

et al., 2024). A striking example of the effective- 054

ness of this iterative approach is AlphaZero (Silver 055

et al., 2017), which demonstrates superhuman per- 056

formance in multiple domains by integrating the 057

advantages of the self-play system, RL techniques, 058

and MCTS (Kocsis and Szepesvári, 2006; Chung 059

et al., 2005). The success of AlphaZero highlights 060

the possibilities that arise from the integration of 061

these advanced techniques into LLMs. 062

However, the incorporation of MCTS in the col- 063

lection of preference data for the enhancement of 064

current policy is complex and requires thoughtful 065

deliberation. One primary challenge lies in con- 066

structing human-like reasoning trajectories (Zhang 067

et al., 2024b). Conventionally, reasoning trajecto- 068

ries are structured in a step-by-step strategy, which 069

may lead to insufficient exploration of the action 070

space (Qi et al., 2024). Another challenge is the 071

critic or reward function for each intermediate rea- 072

soning step. This function is crucial for providing 073

meaningful feedback on different rollouts gener- 074

ated by MCTS, thus guiding the policy improve- 075

ment process (Liu et al., 2024a). 076

To address the issues above, evidence from LLM 077

research indicates the superiority of atom reasoning 078

actions as fundamental components for construct- 079

ing chain-structured patterns (Wu et al., 2024). In- 080

spired by the preceding conclusion, our approach 081

defines five atom reasoning actions and utilizes 082
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Figure 1: Monte Carlo Tree Search (MCTS) improves model performance through Direct Preference Learning
(DPO). Our framework consists of two stages after the atom reasoning steps have been defined: MCTS constructs
atom reasoning paths as preference data, and then performs DPO to enhance the model.

MCTS rollouts to collect preference data for Direct083

Preference Optimization (DPO) (Rafailov et al.,084

2024). Moreover, we implement self-evaluation,085

allowing the model to assess its own outputs,086

which creates a more efficient policy improvement087

pipeline by functioning as both the policy and the088

critic (Kadavath et al., 2022; Xie et al., 2023).089

In summary, we present an algorithm based on090

MCTS that breaks down the entire reasoning path091

into five different atom reasoning steps. MCTS al-092

lows us to thoroughly explore the reasoning space,093

enabling LLMs to behave in a manner akin to hu-094

man reasoning. we utilize the LLMs to evaluate the095

intermediate steps toward solving the problem, and096

prune the nodes with lower scores. During the train-097

ing phrase, we select preferred and dispreferred098

paths according to the average scores assigned to099

each step during the self-evaluation process, con-100

structing preference data for DPO training.101

2 Related Work102

2.1 Reasoning with LLMs103

LLMs reasoning often requires breaking down com-104

plex questions into a series of sequential interme-105

diate steps prior to generate the final answer, as106

illustrated by Chain-of-Thought (CoT) and its vari-107

ations (Wei et al., 2022; Kojima et al., 2023). Fol-108

lowing this, a variety of prompting techniques have109

been introduced to enhance the generated rationales110

(Zhou et al., 2023; Hao et al., 2023). Another group111

of research converts the linear reasoning structure112

into a non-linear format, such as a tree or graph,113

integrating thought evaluation with search algo-114

rithms like depth-first search (DFS) (Yao et al., 115

2024; Long, 2023). To generate more reasonable 116

intermediate processes, LLMs themselves often 117

serve as the evaluator to give feedback to interme- 118

diate states (Hao et al., 2023; Yao et al., 2024). 119

Different from our Atom Reasoner, these methods 120

require searching during inference, which signifi- 121

cantly increases latency. 122

2.2 LLM Self-Improving 123

Reinforcement learning (RL) has been increasingly 124

utilized for large language models (LLMs) by treat- 125

ing them as RL agents to align their outputs with 126

human feedback (Christiano et al., 2023; Ouyang 127

et al., 2022). For instance, reinforced self-training 128

methods introduce mechanisms to curate new high- 129

quality examples and iteratively enrich the train- 130

ing dataset for enhancing model performance (Gul- 131

cehre et al., 2023; Wang et al., 2024b). However, 132

these methods generally depend on either an exter- 133

nal reward model (Yang et al., 2024b; Aksitov et al., 134

2023) or labeled datasets (Gulcehre et al., 2023). In 135

contrast, methods such as self-rewarding leverage 136

LLMs themselves to assess the generated content, 137

which aligns more closely with our approach. In 138

contrast, methods such as self-rewarding leverage 139

LLMs themselves to assess the generated content 140

(Chen et al., 2024; Lee et al., 2024), which aligns 141

more closely with our approach. 142

2.3 Monte Carlo Tree Search for LLMs 143

Monte Carlo Tree Search (MCTS) is a decision- 144

making algorithm commonly employed in games 145
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and intricate decision-making processes (Browne146

et al., 2012; Chaslot et al., 2021). Recent research147

indicates that MCTS can improve the decoding pro-148

cess in LLMs by expanding the action space during149

the inference process.(Liu et al., 2024a; Qi et al.,150

2024). However, a major challenge associated with151

MCTS is the increased latency during inference,152

especially when dealing with complex reasoning153

tasks (Liu et al., 2023). While certain approaches154

have tried to enhance LLMs by utilizing reason-155

ing paths discovered via MCTS (Tian et al., 2024;156

Feng et al., 2024), these methods still depend on157

manually labeled data to train distinct policy and158

reward models for investigating and assess poten-159

tial reasoning step at the leaves of the tree (Jiang160

et al., 2024). In contrast, our approach eliminates161

the requirement for human annotations and simpli-162

fies the tuning process of LLMs without additional163

inference burden.164

3 Preliminaries165

3.1 Monte Carlo Tree Search166

To enhance the reasoning capabilities of LLMs, we167

dissect the reasoning process into discrete steps,168

each represented by a token sequence of atom rea-169

soning steps. We define st as the state at time t,170

which represents the prefix of the reasoning chain,171

with the addition of a new reasoning step a transi-172

tioning the state to st+1, where st+1 is the concate-173

nation of st and a. Utilizing the model as current174

policy πθ, we sample candidate solution steps from175

its probability distribution πθ(a|x, st). with x be-176

ing the specific task input prompt. MCTS serves177

as an approximate policy improvement operator by178

leveraging the UCT strategy to search through the179

action space, thereby predicting the optimal state at180

the next step. The tree-structured search supports a181

balance between exploring diverse possibilities and182

exploiting promising paths, essential for navigating183

the vast search space in LLM reasoning.184

The MCTS process begins from a root node s0,185

as the query input. The algorithm follows four key186

steps: selection, expansion, and backup, which we187

will detail further.188

Selection Phase. The goal of this phase is to iden-189

tify nodes that strike a balance between search qual-190

ity and computational efficiency. The selection is191

directed by two primary variables: Q(st, a), the192

value function of taking action a at the state st, and193

N(st), the visitation frequency of state st. To nav-194

igate the trade-off between exploring new nodes195

and exploiting visited ones, the Upper Confidence 196

Bound applied to Trees (UCT) algorithm (Rosin, 197

2011) is employed to select the optimal node, with 198

dynamic pruning used to avoid local optima. At 199

node st, the choice of the subsequent node follows 200

the formula: 201

a = argmax
a∈A(S)

(
Q(st, a) + c ·

√
lnN(st)

N(st, a)

)
(1) 202

Expansion Phase. Expansion occurs at a leaf node 203

during the selection process to integrate new nodes. 204

If the selected leaf node is not in a terminal state, 205

the node will be expanded into k child node in 206

depth with i as {sij | j ∈ [1, k]} by decoding for 207

one step using the policy model πθ. Following (Xie 208

et al., 2023), we define self-evaluation score C(st) 209

as Eq.2, where prompteval denotes the evaluation 210

prompt. 211

C(st) = πθ (prompteval | x, st) (2) 212

Backup Phase. Once a terminal state is reached, 213

we perform a bottom-up update that propagates 214

from the terminal node up to the root. The visit 215

count N , the state value V , and the transition value 216

Q will be updated as follows: 217

Q(st, a)← r(st, a) + γV (st+1) (3) 218

219
V (st)←

∑
a

Q(st, a) (4) 220

221
N(st)← N(st) + 1 (5) 222

3.2 Direct Preference Optimization 223

As a sufficient quantity of preference data has been 224

sampled through MCTS, we employ Direct Pref- 225

erence Optimization (DPO) (Rafailov et al., 2024) 226

for training to update current policy πθ. DPO 227

is a method designed to directly optimize LLMs 228

to align with preference data collected by human 229

or AI feedback (Liu et al., 2024b; Zeng et al., 230

2024b). The standard RLHF paradigm trains a 231

reward model (Ouyang et al., 2022) on the pref- 232

erence data and employs PPO (Schulman et al., 233

2017) to optimize the policy πθ with the feedback 234

provided by the reward model, where πθ is also 235

initialized to πsft in practice. DPO avoids fitting a 236

reward model by optimizing the policy πθ using 237

preferences directly. 238

After a pair of outcomes (y1, y2) are sampled 239

from policy model π(y|x) conditioned on input 240

x, which are labeled to be (yw, yl) according 241
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to some preference density p as Pr [(yw, yl)] =242

p (y1 > y2 | x). Let the ground-truth reward func-243

tion be r, then estimate the optimal policy πθ by244

fitting the Bradley-Terry model (Bradley and Terry,245

1952) on preference data. The DPO objective is246

formulated as follows, where σ is the logistic func-247

tion, the hyperparameter β regulates the penalty248

imposed for the deviations from the base reference249

model πref.250

p(y1 ≻ y2 | x) = σ (r(x, y1)− r(x, y2))

= σ
(
β log

(
πθ(yw|x)
πref(yw|x)

)
− β log

(
πθ(yl|x)
πref(yl|x)

))
(6)251

4 Method252

In this paper, we introduce an approach for im-253

proving LLMs reasoning, centered around a direct254

preference learning process based on the reasoning255

paths derived from MCTS. The proposed method256

consists of two stages: first, generating reasoning257

steps through MCTS in different action spaces; sec-258

ond, using Q-value filtering of preference data for259

direct preference learning. To solve a complex260

problem, we formulate it as a multi-step reasoning261

generation task, which breaks the reasoning path262

into atom reasoning steps. In addressing the critical263

aspects of this methodology, three key challenges264

emerge: efficient decomposing the reasoning path,265

effective gathering of preference data and training266

with the DPO objective.267

4.1 Define Atom Reasoning Steps268

Current research frequently classifies reasoning269

into two cognitive processes: System 1 and Sys-270

tem 2, thinking in fast and slow (Ji et al., 2025).271

“System 1” refers to the fast, automatic, and intu-272

itive way of thinking, while “System 2” represents273

the slower, more deliberate, and analytical mode274

of thinking (Hagendorff et al., 2023). In light of275

the impressive capabilities of OpenAI’s o1 model276

in complex reasoning, there is a growing focus277

among researchers on developing effective “System278

2” approaches (Qin et al., 2024). Inspired by this,279

we introduce five atom reasoning steps to enhance280

the complex reasoning abilities LLMs. We repre-281

sent the following steps using symbols z1 to z5,282

corresponding to Restate, Recollect, Planning,283

Execution, and Conclusion, respectively. The284

complete chain-of-thoughts can be expressed as285

z = [z1, . . . , z5]. We define the atom reasoning286

steps as follows:287

• Restate: Clarify the problem and the associ- 288

ated conditions, ensuring a clear understand- 289

ing of what needs to be addressed. 290

• Recollect: List the basic mathematical skills, 291

theorems, or concepts that may be needed to 292

solve the problem. 293

• Planning: Develop steps or strategies to ef- 294

fectively address the problem, which will help 295

identify actionable solutions. 296

• Execution: Carry out specific calculations or 297

solution steps rigorously following the plan- 298

ning results above. 299

• Conclusion: Give the final answer in the for- 300

mat of “The answer is: <ANSWER>.”, and 301

will be compared with the gold answer. 302

4.2 Synthesizing Preference Data 303

As shown in Figure 1, our method of collecting 304

preference data closely aligns with the MCTS in- 305

ference process. In particular, the process is divided 306

into three main components: 1) Thought Genera- 307

tion, which generate multiple candidate atom rea- 308

soning steps; 2) Self Evaluation, which evaluate 309

each reasoning step by LLMs and select the top 310

k with the highest scores; 3) Rollout and collec- 311

tion, which collect the preference data for direct 312

preference learning. 313

Thought Generation. We define the partial so- 314

lution state si−1 = [x, z1, . . . , zi−1], where x rep- 315

resents the initial input containing the few-shot 316

examples and the question to be answered, and 317

[z1, . . . , zi−1] denotes a sequence of previous atom 318

steps. we sample k candidate solutions for the next 319

reasoning step as shown in Eq.7. Specifically, it fol- 320

lows the format of demonstrations, starting with the 321

prefix like <restate> and end with </restate>, 322

for instance. When the marker </conclusion> is 323

generated, the model pauses its reasoning and the 324

chain-of-thought is complete. As a result, We ob- 325

tain a set Si containing k new states as shown in 326

Eq.8. 327

zij ∼ πθ(zi | x, si−1), for j = 1, . . . , k (7) 328

329
Si = {sij = [x, z1j , . . . , zij ] | j = 1, . . . , k} (8) 330

Self Evaluation. Considering the set of candidate 331

solution states Si = {sij}kj=1, we employ LLMs 332

as the generative reward model (GRM) to evaluate 333

each state in each reasoning step, thus eliminating 334
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Figure 2: The framework of our method. The left part depicts the self-evaluation process at each reasoning step,
while the right part shows the combination of preference data. The green box represents the preference reasoning
path, whereas the red box indicates the dispreference one.

the requirement to train an external reward model335

or human annotations. A direct implementation336

of GRM involves the construction of assessment337

prompts and then using prior rules to assign scores338

to specific assessment tokens (e.g., Yes or Not) as339

the final reward score. (Mahan et al., 2024).340

Inspired by this, We form the general assessment341

prompt for the evaluation as follows: Evaluate342

whether the thought contributes to a343

partial or direct answer to the original344

question (likely/impossible). And then we345

assign a score, with likely = 10 and impossible346

= 1 to the assessment tokens. To reduce the ran-347

domness effect of the model, we perform multiple348

samplings and take the average of evaluation re-349

sults.350

Rollout and Collection. We use BFS with pruning351

as the search algorithm to select the reasoning steps.352

Once we obtain the reward for each candidate node,353

we select the top k nodes with the highest scores354

based on each solution’s reward as child nodes for355

subsequent simulation or expansion phases. When356

the reasoning chain reaches the stop criteria, which357

includes the </conclusion>, the search algorithm358

returns the model answer, which will be compared359

with the ground truth y. And then caculate the360

Q(st, a) for backpropogation of MCTS as Eq.9.361

After complete a single iteration of the MCTS362

rollout, we split the reasoning paths into two sets363

according to the ground truth label (i.e., correct364

solution set and incorrect solution set). We then365

rank the solution paths in each set by their aver-366

age reward scores in descending order, ultimately367

selecting the top-k solutions from both sets, respec-368

tively. Considering high-scoring correct solutions369

tend to be of higher quality, while high-scoring370

incorrect solutions indicate challenging examples371

that the original reward model struggles to identify372

accurately. These two types of data constitute the 373

preference dataset D and able to improving both 374

the quality and difficulty of the training dataset. 375

Q(st, a) =

{
1, if EXTRACT(st+1) = y

0, else
(9) 376

4.3 Training with DPO Loss 377

Given the preference datasetD collected by MCTS, 378

we finetune the policy model πθ via DPO. For the 379

final step of MCTS rollout, we get the preference 380

data according to the ground truth. Considering 381

prefered data yw and dispreferred data yl, to opti- 382

mize the policy model πθ on the pair of preference 383

data (yw, yl), we can directly substitute it by Eq.6: 384

L(πθ;πref) = − log σ

(
β log

(
πθ(yw | x)
πref(yw | x)

)
385

−β log

(
πθ(yl | x)
πref(yl | x)

))
(10) 386

5 Experiments 387

5.1 Setups 388

Datasets. We assess the effectiveness of our 389

method on mathematic and commonsense reason- 390

ing tasks. Our evaluation benchmarks encompass: 391

1) mathematic reasoning: GSM8K (Cobbe et al., 392

2021), which consists of grade school math word 393

problems, and MATH (Hendrycks et al., 2021) 394

featuring challenging competition math problems. 395

2) commonsense reasoning: ARC (only selected 396

the challenge splits) (Clark et al., 2018) and SciQ 397

(Welbl et al., 2017), containing science questions 398

from student assessments. Performance evaluation 399

is conducted using the corresponding validation 400

sets of each dataset. 401
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Table 1: Evaluation of the reasoning capabilities of our method in comparison to ICL methods and DPO baseline
across four distinct reasoning benchmarks. The best results in each box are highlighted in bold.

MODEL SETTING MATHEMATIC COMMONSENSE AVERAGE
MATH GSM8K ARC SCIQ

Llama-3.1-8B-Instruct

Zero-shot CoT 28.3 76.5 75.7 82.9 65.9
Few-shot CoT 30.2 78.1 77.0 84.8 67.5
CoT+SC@4 32.8 81.0 78.4 85.2 69.4

DPO 35.6 80.7 82.5 89.4 72.1
ours 37.9 84.3 84.5 90.6 74.3

Llama-3-8B-Instruct

Zero-shot CoT 6.8 68.4 73.0 81.1 57.3
Few-shot CoT 17.6 73.8 75.6 84.7 62.9
CoT+SC@4 26.1 76.3 77.4 89.2 67.3

DPO 32.7 79.6 80.2 89.4 70.5
ours 33.4 82.7 82.2 91.1 72.4

Qwen2.5-7B-instruct

Zero-shot CoT 35.8 81.7 76.3 78.4 68.1
Few-shot CoT 39.6 87.2 78.1 83.1 72.0
CoT+SC@4 44.1 90.6 80.5 89.6 76.2

DPO 47.9 91.4 86.2 88.3 78.5
ours 50.0 92.1 89.6 94.0 81.4

Qwen2-7B-instruct

Zero-shot CoT 34.9 74.3 73.8 76.2 64.8
Few-shot CoT 38.0 80.4 76.4 82.3 69.3
CoT+SC@4 41.2 83.6 78.9 87.6 72.8

DPO 42.5 85.0 83.1 88.7 74.8
ours 44.5 86.1 85.0 90.8 76.6

ChatGLM4-9B

Zero-shot CoT 34.2 78.0 83.5 86.4 70.5
Few-shot CoT 37.6 81.4 87.1 91.9 74.5
CoT+SC@4 36.1 84.7 88.6 92.1 75.4

DPO 38.3 84.6 93.4 93.0 77.3
ours 41.6 85.9 94.3 93.5 78.8

Models. Our method represents a versatile ap-402

proach that can be applied to different LLMs. In403

our experiments, we evaluate its effectiveness using404

state-of-the-art opensource models: Llama3-8B-405

Instruct (Grattafiori et al., 2024), Llama-3.1-8B-406

Instruct (Meta, 2024), Qwen2-7B-Instruct (Yang407

et al., 2024a), Qwen2.5-7B-Instruct (Qwen, 2024),408

GLM-4-9B-Chat (Zeng et al., 2024a).409

Baselines. We evaluate our method to three strong410

categories of baseline: 1) In-context Learning411

method (ICL method), including zero-shot CoT412

(Kojima et al., 2023), few-shot CoT (Wei et al.,413

2023) and CoT + SC (Wang et al., 2023). 2) Tree-414

based method, including ToT (Yao et al., 2023),415

RAP (Hao et al., 2023),LiteSearch(Wang et al.,416

2024a), ReST-MCTS* (Zhang et al., 2024a) 3)417

Synthesis methods, Self-Taught Reasoner (STaR)418

(Zelikman et al., 2022). 4) DPO baseline, we per-419

formed multiple samplings and and compared each420

reault with the final answer, reasoning paths leading421

to correct answers were considered positive sam- 422

ples, whereas those leading to incorrect answers 423

were considered negative samples. 424

Implementation Details. The MCTS rollouts and 425

supervised preference learning experiments are 426

conducted with a maximum of 8 × 100GB GPUs 427

(NVIDIA H20). For hyperparameter of MCTS roll- 428

outs, we set the discount factor γ = 1.0, rollout 429

numbers n = 16, temperature set to 0.6, top p set 430

to 0.95, top k set to 40, and max tokens set to 1024. 431

To improve inference speed, we use vLLM 1 as the 432

inference framework. For DPO learning, we use 433

Low-Rank Adaptation (LoRA) (Hu et al., 2021) 434

as our training method. We choose the learning 435

rates 5e-6 with a cosine learning rate scheduler. 436

The maximum sequence length of models is 1024. 437

And we train the model with a batch size of 64. 438

We follow the DPO paper to set the KL constraint 439

parameter β as 0.1. 440

1https://github.com/vllm-project/vllm.
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Figure 3: Results on test-time compute scaling show that the increment in the number of rollouts overall improves
model performance across different benchmarks.

5.2 Main Results441

As shown in Table 1, ICL method serves to boost442

the performance of the original LLMs to some ex-443

tent, given that these tasks require improved step-444

by-step reasoning skills. Among these methods,445

CoT + SC deliver more superior performance as it446

effectively expand the solution space for challeng-447

ing reasoning tasks. Furthermore, the DPO base-448

line achieved a notable improvement compared to449

ICL method. As a result, our method exhibits the450

most substantial performance improvements both451

on ICL method and DPO baseline. For example,452

Qwen2.5-7B-instruct achieve absolute accuracy in-453

creases of 2.3% from ICL to DPO, while increase454

of 1.9% from DPO to ours. And Llama-3.1-8B-455

Instruct achieve 2.7% from ICL to DPO as well as456

2.2% from DPO to ours. These results underscore457

our approach’s potential to efficiently guide LLMs458

in generating and selecting optimal solutions.459

Table 2: Evaluating the reasoning capabilities of our
method against tree-based methods and synthesis meth-
ods.

Model Setting MATH GSM8K ARC SCIQ

Llama3.1-8B

ToT 31.4 78.3 75.9 80.3
RAP 34.6 82.9 75.2 77.5
ReST-MCTS* 35.2 80.3 76.3 79.1
LiteSearch 33.5 81.9 74.5 78.7
STaR 34.8 83.2 77.9 80.4
Ours 37.9 84.3 84.5 90.6

Qwen2.5-7B

ToT 43.9 88.7 82.1 87.8
RAP 44.3 90.2 83.4 90.5
ReST-MCTS* 46.5 91.8 84.0 89.3
LiteSearch 45.4 89.2 85.5 88.2
STaR 47.1 91.4 86.3 91.7
Ours 50.0 92.1 89.6 94.0

ChatGLM4-9B

ToT 35.8 81.2 86.6 87.2
RAP 38.9 82.3 87.9 91.1
ReST-MCTS* 40.3 85.6 92.1 88.7
LiteSearch 39.2 84.9 88.3 92.4
STaR 41.1 84.3 93.5 92.8
Ours 41.6 85.9 94.3 93.5

Furthermore, we compare our approach with 460

other tree-based reasoning methods and synthesis 461

methods on GSM8K and MATH. As shown in Ta- 462

ble 2, our method reveals superior performance and 463

impressive generalizability across diverse models 464

and datasets. Remarkably, as the complexity of 465

benchmarks increases, existing methods such as 466

ToT and RAP experience considerable challenges. 467

However, methods like STaR and LiteSearch show 468

performance comparable to ours on Llama3-8B- 469

Instruct, performance persist also on model like 470

Llama3.1-8B-Instruct. Consequently, our method 471

demonstrates a clear performance improvement 472

compared to other baselines. 473

5.3 Further Analysis 474

Test-Time Compute Scaling. To investigate the 475

potential and emerging trends of scaling with roll- 476

outs during inference time, we present the pass 477

rates of problem-solving by increasing rollouts 478

across three benchmarks of varying difficulty lev- 479

els. As shown in Figure 3, the increment in the 480

number of rollouts overall improves model perfor- 481

mance across different benchmarks, and degree of 482

these improvements varies based on the complex- 483

ity of the benchmark and the reasoning abilities 484

of the base model. The results above highlight 485

that our framework’s performance improves with 486

an increased number of rollouts during inference. 487

However, there are ceiling limitations reveals in the 488

mathematical task, which suggest that the abilities 489

of the base model in reasoning are essential to the 490

overall performance. 491

Ablation Study. We ablate the impact of atom 492

reasoning steps on our MCTS-based approach. Fig- 493

ure 4 shows performance comparisons across math- 494

ematic and commonsense reasoning tasks under 495

different settings. Our method, which focuses on 496

7



Figure 4: Abltation study on MCTS+CoT v.s. MCTS+AR. We also compare the accuracy of the reasoning paths
collected via MCTS by chain-of-thought and atom reasoning steps on Qwen2.5-7B-instruct.

constructing reasoning paths through atom actions,497

consistently outperforms both the base model and498

the CoT counterpart. For example, we achieve499

89.6% on ARC and 94.0% on SciQ, surpassing500

84.6% and 89.9% of the CoT counterpart, and501

76.3% and 78.4% of the base model. This result502

indicates that atom actions significantly enhance503

the reasoning capabilities of the model.504

Complexity Level Analysis. As shown in Table 3,505

we showcase the results of Few-shot CoT, Few-shot506

CoT+SC, and our method on the MATH dataset, as-507

sessed across various levels of difficulty. Compared508

to the first two methods, our approach improved509

performance at all levels. Notably, at the more510

difficult levels 4-5, our method exhibits an aver-511

age improvement of 6.8% compared to Few-shot512

CoT, while Few-shot CoT+SC shows only a 1.5%513

improvement. This indicates that atom reasoning514

steps, as a form of slow thinking, have the potential515

to tackle more challenging problems and enhance516

reasoning performance.517

METHOD 1 2 3 4 5 AVERAGE

CoT 54.1 46.7 44.3 36.1 28.4 39.6
CoT+SC 58.7 50.1 48.3 38.4 29.0 44.1

ours 63.1 58.4 55.3 43.6 34.5 50.0

Table 3: Performance variations across different dif-
ficulty levels on MATH with Qwen2.5-7B-Instruct as
base model.

6 Conclusion518

In this paper, we propose MCTS-enhanced self-519

preference learning framework, utilizing MCTS520

to generate high quality reasoning paths for DPO521

training. MCTS balances quality exploitation and 522

diversity exploration to produce high-quality train- 523

ing data, efficiently pushing the ceiling perfor- 524

mance of the LLM on various reasoning tasks. Ad- 525

ditionally, the introduction of atom reasoning steps 526

and self-evaluation mechanism improves the relia- 527

bility and human-like quality of the model’s reason- 528

ing These results demonstrate the effectiveness and 529

efficiency of Atom Reasoner, offering a scalable 530

framework for developing large language models 531

capable of handling intricate reasoning tasks. 532

7 Limitations 533

We acknowledge that this work has several lim- 534

itations that require further exploration. First of 535

all, we optimize the entire reasoning path for DPO, 536

disregarding the optimization of each atomic step, 537

which may encounter longest common prefix (LCP) 538

gradient cancelation (Zhang et al., 2024c). Further- 539

more, the preference datasets are collected ahead 540

of training and our method is purely offline, as πθ 541

cannot get feedback on its own generations over 542

training.This may lead to significant distribution 543

shift between the policy that generated the dataset 544

and the policy being aligned (Guo et al., 2024). 545

Ethics Statement 546

Our proposed method Atom Reasoner effectively 547

improves the ability of complex problems reason- 548

ing of LLMs without the need for larger models for 549

data distillation. Therefore, this process does not 550

entail additional risks. 551

We utilize a variety of open-source English 552

datasets for training, including MATH, GSM8K, 553
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ARC and SCIQ. And we utilize a variety of open-554

source model for fintuning, including Qwen2.5-7B-555

Instruct and so on. We acknowledge that there may556

be inherent biases present within these datasets and557

the model.558
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