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ABSTRACT

Annotating human pose images can be costly. Meanwhile, there is an unavoidable
performance drop when a pre-trained pose estimation model is directly evalu-
ated on a new dataset. We observe that pose distributions from different datasets
share similar pose hinge-structure priors with different geometric transformations,
which inspires us to learn a pose generator that can be flexibly adapted to generate
the pose of a new pose distribution with prior and transformation disentangling.
In this paper, we treat human poses as skeleton images and propose a scheme to
transfer a pre-trained pose annotation generator with only a few annotation guid-
ances. By finetuning a limited number of linear layers, the transferred generator is
able to generate any number of pose annotations that are similar to the target pose
distribution. We evaluate the proposed FlexPose on several cross-dataset settings
qualitatively and quantitatively. FlexPose surprisingly achieves around 41.8% av-
erage performance improvement on the Unsupervised Pose Estimation task when
it transfers the pose distribution of COCO, 3DHP and Surreal dataset to that of the
H36M dataset.

1 INTRODUCTION

In this decades, Deep Learning achieves great success on various computer vision tasks. Deep gener-
ative models such as Generative Adversarial Networks (GAN) (Goodfellow et al., 2014), Variational
Anto-Encoder (VAE) (Kingma & Welling, 2014; Vahdat & Kautz, 2020) and Diffusion Models (Ho
et al., 2020) have been well developed. With the complex structure and high model capacity, modern
generative methods (Karras et al., 2019; Brock et al., 2018) can estimate complicated data distribu-
tion and generate high-quality images.

As data-hunger methods, deep neural networks require large-scale datasets with high-quality human
annotations in training. However, annotating on large-scale datasets is costly and time-consuming,
especially on regression-based tasks such as pose estimation. To bypass labor-intense annotating,
machine learning techniques e.g., unsupervised learning (Chen et al., 2020), semi-supervised learn-
ing (Berthelot et al., 2019), and meta-learning (Finn et al., 2017) have been heatedly discussed in
the community. Among these methods, Domain Adaptation (DA) introduces additional informa-
tion from existing annotated datasets to a target dataset and is verified effective on several com-
puter vision tasks. Unfortunately, things become different in the human-related dataset, e.g., human
pose (Ionescu et al., 2014), human face (Wu et al., 2018). As the source human appearance is
required in DA-based methods, they may import unexpected data distribution bias Buolamwini &
Gebru (2018), e.g., gender or color, from the source. Besides, the direct exposure of private portraits
may raise the privacy issue.

On the other side, Pose Distribution Adaptation (PDA), which transfers human pose keypoints only,
can be a choice in the scenario of human datasets when transferring knowledge from one domain
to another. It can avoid directly utilizing the human appearance images and thus tackle the above
issues. A common observation is that different human poses share a similar hinge-structure prior.
Typically, poses in a target dataset can be transferred from poses in a pre-collected source set by ap-
plying geometric transformations. Therefore, pose adaptation can be much easier and safer than DA,
intuitively. Inspired by this observation, we propose FlexPose to transfer source pose distribution to
target and generate a new pose distribution with only few-shot guidances in this paper.
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The proposed FlexPose aims to estimate the pose distribution on the target dataset given few-shot
annotations. We believe that the pose prior can be learned from the source dataset and be utilized
with transformations to approximate the target pose distribution. In FlexPose, we treat pose annota-
tions as skeleton images to well align the annotations with their RGB appearance correspondences,
and to improve the model’s ability on prior learning. We first learn the pose prior and fit the empir-
ical distribution from a source human pose dataset by a multi-layer generative model. Thereafter,
we calibrate specific layers by inserting learnable lightweight transformation modules to transfer the
distribution to the target domain. Considering that only few-shot poses are given, we introduce three
regularizations to avoid a collapse transfer solution. By generating credible pose interpolation by
Pose-mixup and by strictly limiting the complexity of the transfer module, we minimize the data re-
quirement of FlexPose in pose adaptation. The advantages of FlexPose are obvious. First, FlexPose
is computation-efficient. It operates on the pose domain, and hence the convergence of the training
procedure is much faster than on both the pose and image domain together. Second, FlexPose is
data-efficient. We only need few-shot poses from the target dataset to finetune the transfer mod-
ules. At last, FlexPose performs well. Extensive experiments on three pose-based tasks, i.e., human
pose estimation, human face landmarks detection, and pose-conditional image generation, show that
FlexPose outperforms baselines by a large margin both quantitatively and qualitatively.

Our contributions can be summarized as follows:

1. We propose to treat the transfer task of human pose distribution as transfer of skeleton
image generator and demonstrate that a target pose distribution can be well approximated
from a well-learned pose prior.

2. We propose FlexPose, a novel few-shot pose adaptation framework. With three well-
designed regularizations, FlexPose can efficiently transfer a pose distribution to a target
one by referring to few-shot guidance with low computation and storage costs.

3. Extensive experiment results on three pose-related tasks show that training with poses gen-
erated by FlexPose achieves remarkable improvement over baseline methods.

2 RELATED WORKS

Deep Generative Model for Image Generation. Deep generative models such as GAN, Varia-
tional AutoEncoder (VAE) and Diffusion model achieve great success in realistic/artificial image
generating and natural image distribution modeling. Recently proposed generative models such as
StyleGAN (Karras et al., 2019), DDPM (Ho et al., 2020), NVAE (Vahdat & Kautz, 2020) introduce
new mechanisms, new architecture and new regularizations into image generation. VAEs (Kingma &
Welling, 2014) learn to maximize the variational lower bound of likelihood. Diffusion probabilistic
models (Sohl-Dickstein et al., 2015) treat images synthesis by a denoising procedure. GANs (Good-
fellow et al., 2014) train two networks in an adversarial manner to learn how to generate realistic
images. Among them, Karras et al. (Karras et al., 2019) proposed an architecture StyleGAN that
can learn a hierarchical decoupled style code and controls image synthesis. Our method is based on
generators with multi-layer architecture and leverages StyleGAN as the backbone. We are inspired
by the recent works (Zhu et al., 2016; Yin et al., 2022), which manipulate the latent code in the gen-
erative model to edit the output images. These works motivate us to transfer the pose distribution to
the target domain by transferring style codes with few-shot guidance.

Transfer Learning for Generative Models. The literature on transfer learning has been extensively
studied in recent years (Oquab et al., 2014; Long et al., 2015; Ganin & Lempitsky, 2015). Transfer
learning learns to transfer the knowledge from a large-scale source dataset to a small target dataset
to enhance model performance on the target dataset. The methodology of transfer learning is also
treated as as pre-training techquni. It is utilized to accelerate the learning on the target dataset. Wang
et al. (2018) finetunes a pre-trained GAN on a target dataset to get better performance. Noguchi &
Harada (2019) transfers knowledge from a large dataset to a small dataset by re-computing batch
statistics. Existing methods focus on either image domain or neural language processing domain
(Shin et al., 2016) . For these methods, hundreds of training samples are still required. Compared
with these approaches, we focus on pose domain adaptation and our method only requires few-shot
guidance for transferring.

Human Pose Estimation. Human pose estimation is a task that predicts the 2D human pose
from a single image. Fully-supervised methods (Andriluka et al., 2009; Bai & Wang, 2019; Be-
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Figure 1: An Illustration of the FlexPose Framework for Pose Distribution Adaptation.

lagiannis & Zisserman, 2017) utilize large annotated datasets such as COCO (Lin et al., 2014),
Human3.6M (Ionescu et al., 2014) and 3DHP (Mehta et al., 2017) for model training. Weakly-
supervised (Kanazawa et al., 2018; Gecer et al., 2019; Geng et al., 2019) and unsupervised (Shu
et al., 2018; Jakab et al., 2018) methods such as KeypointGAN (Jakab et al., 2020) have been pro-
posed to reduce the dependence on the expensive human pose annotation. These methods can train
a model with prior knowledge learned from weak unpaired annotations or can utilize unpaired im-
age and annotation sets to generate meaningful landmarks. We choose KeypointGAN (Jakab et al.,
2020) as the baseline for comparison in this paper. KeypointGAN is trained in an unpaired way,
which only requires the pose annotations and the images lie in the same distribution, but not one-
to-one aligned. However, when the distribution of pose and images are not aligned, the estimation
performance drops a lot (Jakab et al., 2020). We use this characteristic as an indicator to show how
close the pose distribution transferred by FlexPose is to the target distribution.

3 METHOD

Given a newly collected set of human pose images It = {xn}Nn=1 and its 2D pose annotations
T = {tm}Mm=1 , t ∈ RJ×2 on few-shot level, i.e. M ≪ N , our goal is to estimate the distribution
T of the corresponding pose annotation of IT by only referring a few pose annotations T. J here is
the number of joints in each pose. This task setting is challenging and seems impracticable at the
first glance. However, we believe that with the prior from off-the-shelf annotations S = {sk}Kk=1

(M ≪ K, s ∈ RJ×2), the distribution T can be estimated and well shaped. We transfer the source
distribution S estimated from S to the target domain to estimate the target distribution T , with the
guidance of T. To evaluate the performance of the distribution estimation, we randomly generate
pose annotations from the predicted distribution T̂ , and utilize the generated annotations to train a
neural network for pose estimation from single image x.

3.1 OVERVIEW

As illustrated in Figure 1, our framework consists of three steps: (1) Generic Pose Distribution
Estimation. We learn a generator gs(·) on the pose annotation set S to estimate the pose distribution
Ŝ of source domain. The generator takes a latent code z as input and outputs a pose annotation ŝ, i.e.
ŝ = gs(z). We take the distribution of generated ŝ to mimic that of the generic pose s. (2) Few-shot
Distribution Transformation. Given few-shot target annotation set T, we transfer gs(·) to fit the
pose distribution of the set IT , and learn a new generator gt(·) of the target domain. Considering
the limited knowledge can be acquired from few-shot target pose annotation T, we introduce three
regularizations to avoid reaching collapse solution. (3) Target Pose Sampling. The transferred
generator gt(·) can flexibly generate any number of fake pose annotations by randomly sampling in
the latent space. This generated annotation set T̂ will be treated as an extension of given annotations
set T, and guide the training of a keypoints detector on target domain images IT in an unpaired way.
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3.2 GENERIC POSE DISTRIBUTION ESTIMATION

Deep generative models have been widely verified that they have rich capacity to well approximate
image distributions when given sufficient training data. Motivated by the success of these generative
models Karras et al. (2019) on natural/artificial image generation, we treat 2D pose annotations
s, t ∈ RJ×2 as skeleton images ys,yt ∈ RC×W×H and extend an image generator to synthesize
skeleton images. The transformation between the 2D key points and the skeleton images can be
implemented by functions α(·) and β(·), namely ys = α(s) and s = β(ys). To achieve precise
semantic alignment with the appearance correspondence, each bone in the skeleton image is assigned
with an unique color. Therefore, C of each skeleton image is set as three (RGB channels).

A general generator can be formulated as a mapping function g(·) which maps a latent code z to a
skeleton images y. The probability distribution of skeleton images hence is estimated by p(y) =
p(z)pg(y|z). We assume that the pose distributions of different datasets share similar pose prior.
Therefore their distributions can transfer to one another by geometric transformations. On the basis
of this assumption, we further factorize the generator g(·) as g = δ ◦ ϕ. Therefore, skeleton image
generator of source domain can be formulated as

p(ŷs) = p(z) psg(ŷs|z) = p(z) pϕ(h|z) psδ(ŷs|h), (1)

in which ϕ(·) preserves the learned pose prior and δ(·) records the transformation to a certain
pose domain. h is the learned prior and δ(·) maps h to the skeleton image ys in source domain.
Similarly, the distribution of target domain can be formulated as p(ŷt) = p(z) pϕ(h|z) psδ(ŷt|h).
With the prior sharing assumption, the pose distribution adaptation aims at transferring pre-trained
conditional probability psδ(ŷs|h) to ptδ(ŷt|h) with few-shot guidance T:

psδ(ŷs|h)
T−→ ptδ(ŷt|h). (2)

Considering the ability of StyleGAN in seperating high-level attributes and the quality of attribute
interpolation, we utilize the network architecture of StyleGAN to disentangle the pose prior and the
transformation of the source domain generator,

gs = ϕ ◦ δs = ϕ ◦ (A ◦ f)s, (3)
where f is a non-linear mapping that takes random noise as input and outputs a random vector. A(·)
is a learned affine transformation and can be treated as a block diagonal matrix with L blocks, where
L is the number of layers. The output of A is the style code to modulate the synthesis network ϕ(·)
by adaptive instance normalization. Due to the ability of StyleGAN in style control, we can directly
adapt the distribution of source skeleton image to target domain by adjusting the style code.

3.3 FEW-SHOT DISTRIBUTION TRANSFORMATION

To transfer psδ(ŷs|h) to ptδ(ŷt|h), we adjusting the style code by introducing a transfer function τ(·)
at the output of δ(·), and therefore the target domain generator is defined as

gt = ϕ ◦ δt = ϕ ◦ (τ ◦ δs). (4)

To learn the transfer function τ , we first randomly sample M latent code Z from the latent space,and
map these codes to skeleton images to be close to the guidances. This transferring procedure can be
achieved by minimizing the follow perceptual loss

min
θτ

Ls→t = min
θτ

M∑
m=1

∥∥∥∥ Γ
(
gt(zm); θτ

)
− Γ

(
α(tm)

) ∥∥∥∥2
2

, (5)

where θτ is the parameter of τ(·), Γ is an image feature extractor (VGG-net in our experiment), z is
from the set of Z, and t is from the few-shot 2D pose annotation set T.

The problem however is, we only have few-shot guidance T from the target domain distribution.
Given a data-starving deep learning model, the guidance is insufficient to reach a satisfactory solu-
tion. For that reason, we introduce three regularizations to alleviate the data-insufficient issue.

Linear & Sparse Regularization. Compared with finetuning the whole transformation function δs
to reach δt, only adjusting the affine transformation from As to At, i.e. At = τ ◦As, can efficiently
shrink the searching space of transfer solution, and therefore avoid overfitting. Meanwhile, recent
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GAN inversion technique shows that the layer-wise style code in StyleGAN leads to the hierarchical
disentanglement of local and global attributes, which well aligns with our motivation of adapting
pose distribution by considering the global geometric transformation between poses. We thus ad-
justing the source affine transformation As from the perspective of layer level, and limit the number
of to-be-adjusted layers as small as possible. Considering the form of the affine transformation A
and the layer decoupling characteristics of StyleGAN, we empirically define the transfer function
τ(·) as a block diagonal matrix,

τ ≜ diag(I, ..., I,Ul0 , I, ..., I,Ul1 , I, ..., I), (6)
where only a limited number of block is defined by U , i.e. l0 and l1 in this case, to follow the
sparse regularization. We experimentally find that the earlier layers are most related to the geometric
transformation, and we only learn those layers in our experiments, where only the l-th block is not
an identity matrix I. We experimented with changing different layers and found that setting l = 3,
i.e., transferring the third coarsest layer, forces the transformation to mainly occur on the pose action
level. We have also tried the combination of different layers. But the best of them gets a similar
result with the case when l = 3.

Pose-mixup Regularization. Intuitively, most of pose interpolated between two real poses physi-
cally exists, and their convex combinations build the real-world pose distribution. Inspired by the
mixup regularization Zhang et al. (2017) on images, we therefore extend it to 2D pose annotations,
and propose the Pose-mixup to enrich the guidance set. Pose-mixup regularizes the neural network
to learn the simple linear behavior in-between 2D poses, and thus avoids the model to generate un-
realistic human pose annotations. By mixing up the corresponding joints of any two 2D pose with
mixup ratio λ, the extended guidance set T∗ of size E is then defined as,

T∗ = {t∗ | t∗ = λ ti + (1− λ) tj , λ ∈ [0, 1], ti, tj ∈ T} . (7)

3.4 TARGET POSE SAMPLING

Once the transferred generator gt is obtained, we can generate theoretically as many target skele-
ton images as possible by randomly sampling latent codes in the estimated target distribution T̂ .
Unfortunately, the generated target skeleton images is not perfect and may bring in artifacts which
mislead the training of a neural network. To address this issue, we introduce α(·) and β(·), and
design a information bottleneck to filter out the random noise.

Once a fake skeleton image ỹt is generated from T̂ , we extract the coordinates of interpretable 2D
keypoints t̂ from it, e.g., nose, hands et al. by applying t̂ = β(ỹt). β(·) is a neural network regressor
pre-trained on S. Then, a rule-based render α(·) simply draws keypoints from t̂ and connects them
with straight lines on a blank figure, i.e. ŷt = α(t̂). The visual effect is similar to the stick man.
This re-render process is given by

ŷt = α(t̂) = α
(
β(ỹt)

)
, (8)

where the keypoint coordinates t̂ act as a tight information bottleneck that preserves skeleton infor-
mation and ignore random noise.

With the synthsized skeleton images {ŷt} = α(T̂) and the extended pose-mixuped images α(T∗)
as unpaired supervision, we train a KeypointGAN (Jakab et al., 2020) as our keypoint detector for
unsupervised pose/landmark estimation and pose-conditioned image generation.

4 EXPERIMENTS

Our method is evaluated on three tasks: human pose estimation, human face landmark detection and
pose-conditional image generation. The training and testing setting. We train a StyleGAN (Karras
et al., 2019) by using the annotations from the source datasets, e.g., COCO-2017 (Lin et al., 2014),
300-VW (Sagonas et al., 2013), to estimate the distribution of source human pose/face, respectively.
Meanwhile, several target datasets, e.g., Human3.6M (Ionescu et al., 2014) and WFLW (Wu et al.,
2018) are considered. The training and testing settings are kept the same in all experiments for
fair comparison. At last, we also show FlexPose’s potential application on pose-conditioned image
generation.
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4.1 HUMAN POSE

Source Datasets. COCO-2017 (Lin et al., 2014) is a large-scale dataset including multiple tasks.
We only keep the annotated people instances with full pose annotations to construct a training set of
32 thousand samples. MPI-INF-3DHP (3DHP) (Mehta et al., 2017) contains 2D and 3D human pose
annotations from eight subjects and covers eight complex exercise activities. Its training set consists
of more than 1.8 million frames. SURREAL (Varol et al., 2017) is a synthetic dataset containing
more than six million frames of people in motion.

Target Datasets. In the large-scale dataset Human3.6M (Ionescu et al., 2014), there are 3.6 million
accurate 2D and 3D human pose frames captured from 11 actors in 17 scenarios. The background is
static. As previous works (Jakab et al., 2020; Gholami et al., 2022) do, we use the frist five subjects
(S1, S5, S6, S7, S8) for training and the remaining subjects (S9, S11) for evaluation. The Simplified
Human3.6M dataset collected in Zhang et al. (2018) is a subset of Human3.6M, containing six
activities where human bodies are mostly upright. The dataset consists of 800 thousand training and
around 90k testing images.

In our experiments, the RGB images in the source datasets are not considered in the pose adaptation
task. We only keep their keypoint annotations and crop them into a compact rectangle skeleton image
according to the provided annotations. To align different pose annotation format across different
datasets, we use 15 shared keypoints across different datasets in this paper (three for each limb in
addition to the head, neck, and pelvis). Thanks to the data efficiency of our method, the disk storage
is reduced to one of the thousands of its original size (e.g., 1/1200× in 3DHP). During training,
we use the RGB images and only keep few-shot annotations of the target dataset in the training set
as a clue for pose adaption. Evaluation is conducted on the test set with paired pose annotations.

Evaluation Metrics. We report 2D landmark detection performance in each experiment for evalu-
ation. Two standard evaluation matrices is considered to compare our method with baselines. The
MSE reports a mean square error in pixels over the 15 pre-defined common joints. The Percentage
of Correct Key-points (PCK-ρ) is used as an accuracy metric that measures if the distance between
the predicted keypoint and the true joint is within a certain threshold ρ.

Experiment Settings. Our method focuses on pose adaptation and we transfer the pose distribu-
tion from different source datasets to each target dataset to align with the distribution of the target
human pose image. As mentioned in Section 3.4, we feed the generated skeleton images ŷt and
RGB human pose images x from the target dataset into an off-the-shelf pose estimation algorithm
KeypointGAN (Jakab et al., 2020) to evaluate the effectiveness of FlexPose. As a baseline, we train
the keypoint detector, KeypointGAN, on each target dataset by directly using the pose annotations
S = {sk}Kk=1 from the source dataset, which we denotes as Direct in the comparison. Given that
our proposed FlexPose utilizes both the source annotation S and the mixup-ed few-shot target an-
notation T∗∗ = {t∗e}

E
e=1, in addition to S, we also involve the pose annotations T∗ from the target

dataset in the pose annotations of baseline for fair comparison, unless especially marked. Besides,
we also introduce the version of KeypointGAN trained when the distribution of pose annotations is
well aligned with human pose images, and we denote this version as Aligned.

In our experiments, we use 30 annotations (M = 30) from target dataset when the target dataset is
Human3.6M (two for each class) and 12 annotations (M = 12) when the target dataset is Simplified
Human3.6M. The number of interpolated pose (pose-mixup) E is set as 1000 for all experiments.
With the spirit of fair comparison, in the settings of both baseline and FlexPose, the size of annotation
set is set as 33 thousand (32 thousand to line up with the source COCO and one thousand to line up
with the target mixup) when the source dataset is COCO, and the size is set as 121 thousand when
the source dataset is 3DHP or SURREAL. By this way, the impact of the scale of annotation set
is excluded, even though FlexPose can theoretically generate almost infinite annotations with little
cost. All other hyper-parameters are kept the same as the original work of KeypointGAN Jakab et al.
(2020).

Performance Comparisons. Quantitatively, we compare the performance of baselines with Flex-
Pose on human pose estimation in Table 1. We highlight the ideal result on KeypointGAN by green
when the source dataset is the same as the target dataset. The performance gap between the method
and the ideal case can be treated as a referenced distance between the current pose distribution and
target pose distribution. As shown in Table 1, the keypoint detector has much lower performance
on the target dataset when the pose annotations are from different datasets, especially when some

6



Under review as a conference paper at ICLR 2023

Table 1: Results on Human Pose Estimation Task. S-H36 and H36 are short for Simplified Hu-
man3.6M dataset and Human3.6M dataset respectively. The threshold of PCK is 10% for S-H3.6M
and 20% for H3.6M in this table. K stands for kilo and M stands for million.

Method Target Source Annotation Set Size MSE-Pixel (↓) PCK (↑)

Aligned
Human3.6M

H3.6M 3.6M 12.07 0.443
Direct COCO 33K 17.86 0.015
Ours COCO 33K 13.19 0.585

Aligned

Simplified
Human3.6M

S-H3.6M 800K 2.96 0.843
Direct COCO 33K 5.47 0.685
Direct 3DHP 121K 12.66 0.000
Direct SURREAL 121K 11.18 0.000
Ours COCO 33K 4.61 0.706
Ours 3DHP 121K 5.98 0.467
Ours SURREAL 121K 6.47 0.499

z 1

gs( )

z 2

gt( ) Target

Figure 2: Visualization of Pose Adaptation. The left column is
sampled from the generic distribution (generated from gs(·)).
The middle column is sampled from the adapted distribution
(generated from gt(·)). In right column, the two poses are
from few-shot guidance of the target dataset, corresponding
to the pose in the middle column. Each row of left and middle
columns are generated from the same random noise.

Human3.6M
COCO
Adapted COCO

Figure 3: t-SNE Visualization
of Human Poses before and af-
ter Adaptation. We visualize the
pose distribution (RJ×2) in a two-
dimensional space.

of them have a distinct pose distributions from that of the target dataset, e.g., when 3DHP or SUR-
REAL is the source dataset and Simplified Human3.6M is the target one. FlexPose gets much better
results on all settings under both metrics. FlexPose largely reduces the performance gap when the
pose distribution of the source dataset is very different from that of the target distribution, e.g., MSE
12.7→6.0 and PCK10 0.00→0.47 when adaptation occurs from 3DHP to Simplified Human3.6M.
The results show that FlexPose is effective at generating poses with similar distribution to the target
dataset, even when less to only two poses per class in the target dataset are given.

Visualization. Qualitatively, we show the visual result of pose transformation in Figure 2. For each
row, we show one skeleton (Left) that was randomly sampled from generic pose distribution, one
skeleton (Middle) that was sampled from transferred distribution by using the same latent noise with
Left, and one skeleton (Right) in the few-shot samples set T from target dataset. For each dataset, we
can see that the skeletons Left and the skeleton Middle generated from the same randomly sampled
high-dimensional noise are visually quite different, and the transferred one (Middle) is more similar
to the skeleton (Right) in the target dataset.

In Figure 3, we plot the t-SNE embedding of the poses generated by FlexPose (Adapted COCO),
comparing it with the embedding of poses from the source dataset (COCO) and target dataset (Hu-
man3.6M). As can be seen, the embedding of poses from the source dataset and target dataset are
separated, and the distribution of generated poses significantly overlaps with the target ones. Since
only two shots are utilized as guidance for each class from the target dataset, some poses distribution
are ’missed’ (UPPER RIGHT).

Ablation Study & Parameter Sensitivity Analysis. We conduct ablation studies to evaluate the
impact of:

a) Annotation Set Scale. We study the effect of generated annotation set scale under the human pose
detection setting (COCO→Simplified Human3.6M). We enlarge the generated annotation set to 121
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Table 2: Ablation study on human pose detection. The target dataset is Simplified-Human3.6M for
all experiments. #0 indicates the result of method Aligned as a reference. Others are the results of
FlexPose. CO, 3D and SU are short for COCO, 3DHP and SURREAL. K stands for kilo and M
stands for million.

# Source Dataset Annotation Set Size Channel Shots l MSE-Pixel PCK10

0 N/A 800K 1 N/A N/A 2.96 0.84
1 CO 33K 3 12 3 4.61 0.71
2 CO 61K 3 12 3 4.96 0.69
3 CO 121K 3 12 3 3.79 0.77
4 CO 121K 3 24 3 3.80 0.75
5 CO 121K 3 48 3 3.73 0.70
6 CO 121K 3 12 1,3 3.82 0.78
7 CO 121K 3 12 3,5 4.02 0.61
8 CO 121K 3 12 all 4.50 0.66
9 3D 121K 3 12 3 5.98 0.47

10 SU 121K 3 12 3 6.47 0.50
11 CO+3D 121K 3 12 3 5.28 0.59
12 CO+3D+SU 121K 3 12 3 5.19 0.59
13 CO 121K 1 12 3 4.15 0.79
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Figure 4: Ablation Study on the Number
of Finetuned Layer l.

Reconstructed Image

Generated PoseAppearance

Figure 5: Application on Pose-conditioned Human Im-
age Generation. The transferred generator can generate
new poses as conditions for image generation.

thousand in our method and evaluate the result as shown in Table 2 (#1 to #3). The MSE-Pixel drops
by 0.8 (4.6→3.8) and PCK10 raise by 0.06 (0.71→0.77). The experiment result shows that FlexPose
can bring further potential improvement to pose-related tasks by generating a large number of fake
annotations with minimal cost.

b) Number of Shots. We study the effect of the number of poses from the target dataset. Under the
setting of Simplified Human3.6M → COCO, we increase the number of shots from 12 (2 per class)
to 48 (8 per class) and found that the performance of the pose detector has no obvious difference.
The results can be found in Table 2 (#3 to #5). There is an explanation that the increment of few-shot
samples from the target dataset brings a limited gain of information compared with the strong prior
trained on large-scale datasets. Only 12 samples are enough for target distribution localization.

c) Number of Finetuned Layers. In previous experiments, we empirically choose l = 3 in Equa-
tion (4) for all experiment and get significant improvement. We found that the choice of l is not
strictly fixed. We record the reconstruction loss in Equation (5) on Figure 4 when choosing different
l. We get a similar reconstruction loss in the earlier layer (l ≤ 6), and the loss rises when we choose
a later layer (l > 6), which may indicate the decomposition property of layers in the generative
model. We have also tried a composition of multi-layer, and the results can be found in Table 2 (#3,
#6, #7 and #8). The result in #8 shows the necessity of sparse regularization. We leave the best
choice of l to future work.

d) Multi-source Datasets. To study the effect of the setting where the annotations in the source
set are from different datasets, we conduct two additional experiments (#11 and #12) in Table 2
and compare them with existing experiments (#3, #9 and #10). In #11 and #12, we use the union
of different source datasets to train the generic generator. The result indicates that the mixture of
source datasets brings worse result compared with the result in COCO but better result compared
with the results in 3DHP and SURREAL. The result keeps the same with our previous observation:
FlexPose performs better when the gap between source distribution and target distribution is closer.
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Table 3: Results on Human Face Detection Task.

Method Target Source Annotation Set Size MSE-Pixel (↓) PCK20 (↑)

Aligned
WFLW

WFLW 7.5K 8.25 0.425
Direct 300-VW 96K 18.78 0.101
Ours 300-VW 96K 11.64 0.482

Figure 6: Visualization of Human Face Landmark Detection on WFLW dataset. Upper Row: De-
tected Landmarks Unpairedly Learned from Transferred Poses. Bottom Row: Detected Landmarks
in the upper row with their corresponding Human Face.

e) Color of skeleton. We use colorful skeletons in our FlexPose to embed different human parts. And
we compare it (#3) with the result of the black-and-white version (#13). The result can be found in
Table 2. The results show that the colorful encoding brings marginal improvement to FlexPose in
MSE but slightly harms PCK compared to the black-and-white skeleton.

4.2 HUMAN FACE

It is straightforward to expand FlexPose to human face landmarks transformation, since both human
pose and human face consist of a set of pre-determined keypoints. Therefore in this section, we
extend our method to solve face landmark detection task.

Datasets. WFLW (Wu et al., 2018) has 10 thousand samples with 98 facial landmarks, where 7.5
thousand for training and 2.5 thousand for testing. 300-VW (Sagonas et al., 2013) consists of 300
Videos in the wild and contains ∼95 thousand annotated human face in the training set with 68 facial
landmarks.

We treat 300-VW as the source dataset and only use its annotations for transferring. All the images
and few-shot annotations in the target dataset WFLW are utilized. We only keep the shared 68 facial
landmarks in two datasets.

Experiments Settings and Results. The evaluation metrics and the experiment protocols are the
same as that in the human pose. The number of few-shot guidance is set as 12 (M = 12). We
report the evaluation results on the validation set of WFLW in Table 3 and Figure 6. FlexPose still
outperforms baseline by a large margin (MSE 18.78 → 11.64 and PCK 0.101 → 0.482), which
shows the outstanding task generality of FlexPose.

4.3 APPLICATION ON POSE-CONDITIONED IMAGE GENERATION

Recently, there have been studies work on how to generate human images with given poses based
on one or more reference images. A large amount of reasonable human pose in a certain style or
distribution may be needed to evaluate their performance. FlexPose is born for this job and can
generate infinite suitable human poses with few-shot human poses in the needed style. Figure 5
show some examples. The backbone we used is a pre-trained CycleGAN (Zhu et al., 2017), and the
channel of the skeleton is set as one here.

5 CONCLUSION

We aim to transfer knowledge in the pose domain and propose an effective method named FlexPose.
Our approach allows us to adapt an existing pose distribution to a different target one by using a
few poses from the target dataset and generating theoretically infinite poses following the target
distribution. FlexPose can be used on several pose-related works. In future work, we hope to extend
our method to a more generic pose domain adaptation approach.
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