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ABSTRACT

Multi-agent AI systems powered by large language models (LLMs) are increas-
ingly applied to solve complex tasks. However, these systems often rely on fragile,
manually designed prompts and heuristics, making optimization difficult. A key
challenge in optimizing multi-agent systems is acquiring suitable training data
for specialized agents. We introduce SIRIUS, a self-improving, reasoning-driven
optimization framework for multi-agent systems. Central to our approach is the
construction of an experience library: a repository of high-quality reasoning tra-
jectories. The library is built by retaining reasoning steps that lead to successful
outcomes, providing a robust training set for optimizing multi-agent system. Ad-
ditionally, we introduce a library augmentation procedure that refines unsuccessful
trajectories, further enriching the library. SIRIUS boosts performance by 2.86% to
21.88% on reasoning and biomedical QA and enhances agent negotiation in com-
petitive settings. Our results show that SIRIUS enhances multi-agent performance
while generating reusable data for self-correction and self-play enhancement in
the future.

1 INTRODUCTION

Multi-agent AI systems powered by large language models (LLMs), where specialized agents col-
laborate to solve complex tasks, are becoming increasingly successful in real-world applications.
Recent work has demonstrated their effectiveness in complex reasoning (Wang et al., 2024; Smit
et al., 2024), coding (Wu et al., 2023), drug discovery (Swanson et al., 2024) and ensuring safety via
debate (Chern et al., 2024; Irving et al., 2018). These successes arise from specialized agents inte-
grating their distinct capabilities through structured interactions, enabling more effective problem-
solving than single agents. Moreover, multi-agent scrutiny acts as a built-in self-correction mech-
anism, where agents refine and verify each other’s outputs. This often outperforms single agent
setting, particularly on tasks demanding rigorous reasoning or factual validation. Despite these suc-
cesses, optimizing multi-agent systems remains a fundamental challenge due to (1) the difficulty of
acquiring appropriate training signals for each agent and (2) the sensitivity to multiple moving parts
that influence overall performance (Smit et al., 2024). While task-level reward feedback is avail-
able, credit assignment across agents remains ambiguous—it is unclear how to attribute success or
failure to specific intermediate decisions and reasoning steps made by each LLM agent. This chal-
lenge parallels the multi-agent credit assignment problem in reinforcement learning (Foerster et al.,
2018). However, in language-based systems, reasoning unfolds through complex and unstructured
interactions, making attribution far more difficult than in traditional RL settings with well-defined
action spaces.

We present SIRIUS, a framework for learning effective multi-agent behaviors from outcome rewards.
Our key insight is that when multiple agents successfully solve a task together, their entire interaction
trajectory likely contains useful patterns - even if we cannot pinpoint exactly which steps or decisions
were crucial for success. Drawing inspiration from recent advances in bootstrapping reasoning
capabilities (Zelikman et al., 2022), we collect and learn from successful agent interactions across
many tasks, allowing the system to iteratively discover effective collaboration strategies from self-
generated data. This approach sidesteps the need for direct supervision of intermediate steps, instead
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Figure 1: General training pipeline of SIRIUS.Agents solve problems sequentially, storing correct responses
for fine-tuning and augmenting incorrect ones through feedback, regeneration, and rephrasing. This iterative
process improves performance via reward-based evaluation and supervised fine-tuning. The module colors in
the figure correspond to those in Algorithm 1.

letting agents learn which interaction patterns tend to lead to successful outcomes. For trajectories
that result in failed attempts, we perform trajectory augmentation by resampling original attempts
with feedback from an additional agent grounded in the ground truth.

Our experiments demonstrate that SIRIUS significantly enhances multi-agent performance across
multiple domains. It improves reasoning and biomedical QA accuracy by 2.86% to 21.88%, while
also strengthening agent negotiation in competitive scenarios. Beyond these gains, our approach of-
fers a scalable mechanism for self-improvement, enabling agents to iteratively refine their reasoning
and collaboration strategies. More broadly, SIRIUS provides a general framework for optimizing
multi-agent systems via self-generated synthetic data, offering a principled way to enhance perfor-
mance without requiring fine-grained human supervision.

2 METHOD

2.1 MULTI-AGENT SYSTEMS WITH LLMS

We define a multi-agent system by a tuple ⟨S,A, T ,R,N ,G⟩. Here, N ≜ {A(1), A(2), . . . , A(N)}
is the set of N agents, each agent A(i) uses a policy πi parameterized by θ(i). s ∈ S is the state of
the environment, a ∈ A is the joint actions, and A is the joint action space. T : S × A → S is the
transition function where T (s,a) yields the next state of the environment given the current state and
joint actions a. The environment feedback is modeled via a payoff function Ri : S × A → RN ,
which provides rewards for each agent k based on the state-action pairs.

The communication structure between agents is modeled as a directed graph G = (V, E,P), where
V represents agents, and E defines interaction order.

For each edge (i, j) ∈ E, agent A(j) receives an input derived from the state-action pair (s,a) and
the output of agent A(i). This input determines agent A(j)’s subsequent action. For each agent A(i)

in a topological graph G, its predecessors are the set of agents that influence its output: Pre(A(i)) =
{A(j) | (A(j), A(i)) ∈ G}. Here, (A(j), A(i)) denotes a directed edge in the graph, indicating that
the output of agent A(j) directly influences the input of agent A(i).

Throughout this paper, the collection of our agents will be based on language models and the primary
environment that we use will be natural language. In particular:

ai ∼ πi(·|st, {aj}A(j)∈Pre(A(i))) ∀A(i) ∈ N
at = (a1, ..., aN )

st+1 = T (st,at) = Concat(st,at)

(1)
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where πi denotes the probability distribution of the i-th language model, Concat is the concatenation
of the previous state and the responses, and we will use π = {π1, . . . , πN} to denote the joint policy.
Generally, each agent aims to maximize its own reward: maxπi

Eπ [
∑∞

t=0 Ri(st,at)] , where Ri

denotes the i-th component of the reward vector R and the expectation is taken under the joint
policy π.

2.2 SIRIUS

The training pipeline of the proposed framework, denoted as SIRIUS, is illustrated in Figure 1.
SIRIUS adopts a fine-tuning strategy to iteratively improve the policy parameters θ(n) of each agent
A(n) over T iterations. The process is initialized with a dataset D = {(xi, yi)}Di=1, where each pair
(xi, yi) represents a problem and its solution. The core training procedure is outlined in Algorithm 1.

Algorithm 1 SIRIUS

1: Input: A group of agents A(1), · · · , A(N) An initial dataset of problems x with answer y : D =
{(xi, yi)}Di=1, total number of fine-tuning Iterations T .

2: Initialize: Initialize policy parameters θ(n) for each agent A(n), k = 1, 2, . . . , N .
3: for Fine-tuning Iteration t = 1, · · · , T do

4: a
(n)
i = P

θ
(n)
t

(·|xi, aPre(A(n))
i ), k = 1, 2, . . . ,K.

5: for each agent k = 1, 2, . . . ,K do

6: C(n)
t ← {(xi, a

(n)
i |i ∈ [1, D] ∧Ri(s, a) > ϵ)}

Good Trajectory Set of Each Agent.

7: Augmentation({(xi, a
(n)
i ∧Ri(s, a) < ϵ)})

8: end for
9: θ

(n)
t ← Standard SFT on C(n)

t , n = 1, · · · , N
10: end for

At each fine-tuning iteration t:

• Action Sampling: For each agent A(n), an action a
(n)
i is sampled from its policy,

a
(n)
i = Pθ(n)(·|xi,a

Pre(A(n))
i ),

conditioned on the input problem xi and the action set aPre(A(n))
i generated by previous

agents. In scenarios involving multiple interaction rounds, such as the Competitive Setting,

a
Pre(A(n))
i includes outputs from all agents in all preceding rounds.

• Trajectory Evaluation and Augmentation: The trajectories generated by each agent are
evaluated using the payoff function R(s,a). Based on a reward threshold ϵ, high-reward
trajectories (R(s,a) > ϵ) are added to the good trajectory set C(n)t . Since the tasks are
challenging, the good trajectory set tends to be small. To leverage more data for fine-
tuning, we propose trajectory augmentation pipeline for each task, detailed in the Appendix
A. Specifically, we first generate feedback to refine the agent’s original response. The
feedback and original response are then combined to prompt the agent to regenerate a new
solution, which is then rephrased into a direct problem-solving step. Afterward, we return
to the action sampling process to produce the final answer and evaluate it.

• Fine-Tuning: The policy parameters θ(n) are updated via supervised fine-tuning on C(n)t .

This iterative process ensures that each agent’s policy is progressively refined to maximize perfor-
mance based on the joint system dynamics and reward.

3 MULTI-AGENT SETTINGS

In this section, we explore several settings where agents with distinct expertise interact to solve
challenging tasks. As shown in Table 1, we systematically analyze different agent configurations.
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Table 1: Different settings and tasks. In the rows corresponding to Communication Structure, nodes
denote agents (V), arrows represent edges (E), and color indicates the role of agents.

Settings Problem-Solving Actor-Critic Competitive

Structure (V, E,P)

Phy

Math

Question

Sum

Answer

Question Answer

Context Analyst

Solver

Actor

Critic

Question  
Context

AnswerJudgment Player1

Player2

Tasks College-Physics
College-Chemistry PubMedQA PubMedQA

Resource Exchange
Seller-Buyer
Ultimatum

Reward for each agent Ri Final Output Correctness Final Output Correctness Utility Function Value

3.1 PROBLEM SOLVING SETTINGS

Agents with Specific Expertise. In this setting, each agent is assigned a domain-specific role to fa-
cilitate a structured and efficient problem-solving process. For instance, in the physics and chemistry
domains, the problem-solving pipeline begins with a domain expert (e.g., a physicist or chemist) who
analyzes the domain-specific problem, followed by a mathematician who formalizes the reasoning
with quantitative models, and finally, a summarizer who consolidates the insights into a clear and
comprehensive answer. This sequential collaboration ensures that the expertise of each agent is
leveraged effectively while maintaining clarity in the solution process.

The sequential dependency between the agents can be described as follows:

aPhy ∼ πPhy(·|q), (2)
aMath ∼ πMath(·|q, aPhy), (3)
aSum ∼ πSum(·|q, aPhy, aMath), (4)

where q is the input question, aPhy is the response generated by the Physicist, aMath is the response
generated by the Mathematician based on both the question and the Physicist’s response,aSum is the
final answer synthesized by the Summarizer using the question, the Physicist’s response, and the
Mathematician’s response.

Analyze Long Context and Answer Question. In scenarios involving lengthy and complex con-
texts, we consider a common two-agent setup: the Context Analyst and the Problem Solver. The
Context Analyst’s responsibility is to thoroughly examine the context, extract essential information,
and provide a concise and accurate summary. The Problem Solver then uses this summary to analyze
the question and formulate the final answer. This division of labor not only improves interpretability,
but also reduces the cognitive load on each agent.

3.2 ACTOR-CRITIC SETTING

The popular Actor-Critic framework facilitates iterative agent improvement through a feedback loop:
the Actor Agent generates solutions while the critic evaluates and refines them, enhancing both the
Actor Agent’s reasoning and the Critic Agent’s error correction capabilities. In practice, we separate
judgment and feedback tasks by introducing a Judgment Agent alongside the Critic Agent, where
the Judgment Agent classifies the Actor Agent’s solutions as correct or incorrect, and for incorrect
solutions, the critic provides feedback to guide the Actor Agent in regenerating improved solutions.
Reward mechanisms are designed as: the Actor Agent receives rewards for correct solutions, the
Judgment Agent for accurate classifications, and the critic for providing actionable feedback that
leads to correct regenerations.

3.3 COMPETITIVE SETTINGS

Competitive scenarios (Bianchi et al., 2024) examine multi-agent interactions under opposing ob-
jectives, where agents must balance cooperation and competition to achieve their goals. In this
framework, two agent roles are defined: Player 1 and Player 2. Each player is initialized with a
specific amount of resources, which evolve over the course of the game based on their interactions.
The game progresses as a sequence of moves, resulting in a trajectory of states:

Player 1 Trajectory: xplayer1
0 , xplayer1

1 , · · · , xplayer1
T

Player 2 Trajectory: xplayer2
0 , xplayer2

1 , · · · , xplayer2
T

(5)
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Table 2: Tasks and setups in the competitive setting. Each task involves two agents with distinct roles, initial
resources, and objectives. Resource Exchange focuses on maximizing total resources through trade. Ultimatum
requires negotiating a split of $100. Sell&Buy involves price negotiation for an item. Each task follows a turn-
based structure with a fixed maximum number of rounds and ends when an agreement is reached.

Task Resource Exchange Ultimatum Sell&Buy
Roles Player 1 Player 2 Player 1 Player 2 Seller Buyer

Initial resources 25Xs, 5Ys 5Xs, 25Ys $ 100 0 1X 100 ZUPs
Goal Maximize total resources Negotiate a split Maximize price Minimize price

Utility Xs + Ys Xs + Ys Split amount-50 Split amount-50 Selling price - 50 50-Selling price
Ending condition When either player accepts When either player accepts When either player accepts
Max. # of turns 8 rounds of interaction 8 rounds of interaction 10 rounds of interaction

The sequence captures the evolution of game states as players compete at each timestep t =
0, 1, . . . , T , ultimately determining a winner and a loser. Our goal is to optimize each player’s
policy to maximize its own expected reward based on trajectory data and role-specific context. This
can be formulated as:

max

T∑
i=1

Pθ(x
player1
i |xplayer1

0:i−1, x
player2
0:i−1) (6)

where Player 1 optimizes its policy based on the historical trajectory of both itself and Player 2,
and similarly for Player 2. We explore three distinct competitive settings, all of which unfold over
multiple rounds:

Resource Exchange Scenario. In this scenario, agents engage in a simulated environment where
they exchange resources to maximize their individual utility.

Seller and Buyer Scenario. This setting models economic interactions where one agent assumes
the role of a seller and another the role of a buyer. The agents negotiate prices and terms to complete
transactions, testing their ability to strategize under asymmetric setting.

Multi-Turn Ultimatum Game. The Multi-Turn Ultimatum Game explores scenarios of fairness,
cooperation, and negotiation over multiple rounds. One agent proposes a division of a resource, and
the other agent decides whether to accept or reject it.

4 EXPERIMENTS

4.1 BASELINE

We compare our SIRIUS against the following baselines:

Single-Agent utilizes a single language model to process input and generate responses.

STaR (Zelikman et al., 2022), the Self-Taught Reasoner, focuses on enhancing the reasoning ca-
pabilities of a single agent by iteratively training it to improve its step-by-step reasoning through
self-supervised fine-tuning.

Prompt Multi-Agent System (CoMM) (Chen et al., 2024a) introduces a training-free, multi-agent
collaborative framework where agents interact and share information to solve tasks collectively.

TextGrad (Yuksekgonul et al., 2024) optimizes prompts for each agent in a multi-agent system by
backpropagating natural language feedback through each interaction.

4.2 SETUP AND DATASETS

Backbone Model. For a fair comparison, we use gpt-3.5-turbo-0125 and gpt-4o-mini-2024-07-18
as the backbone model, and set the temperature to 0 in all our experiments. We use OpenAI’s
Fine-tuning API for supervised fine-tuning.

College Physics/Chemistry. These two datasets are constructed by combining questions from
Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2020), Graduate-Level
Google-Proof Q&A (GPQA) (Rein et al., 2023), and Theorem-Driven Question Answering (The-
oremQA) (Chen et al., 2023). It focuses on college-level physics problems, which remain difficult
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Table 3: Evaluation results of the proposed method and baselines on accuracy(%). Best results are
in bold numbers and second-best results are in underline numbers.

Model Method College Physics College Chemistry PubMedQA

GPT-3.5-turbo

Single-Agent 24.30 38.46 56.40
STaR 29.91 47.69 63.80
COMM 30.84 50.77 71.80
TextGrad 32.71 41.54 NA
SIRIUS 33.64 56.92 74.20

GPT-4o-mini

Single-Agent 39.25 41.54 67.40
STaR 42.06 47.69 69.20
COMM 42.06 49.23 70.60
TextGrad 42.99 44.62 68.20
SIRIUS 46.73 60.00 73.40

and demonstrate room for improvement in performance with large language models. We split the
dataset into training and test sets, with the detailed data distribution provided in Appendix B.

PubMedQA. This is a biomedical question-answering dataset comprising 1000 open-domain ques-
tions (Jin et al., 2019), each paired with context from PubMed abstracts and corresponding answers.
It focuses on research-driven queries, requiring domain-specific understanding and reasoning over
scientific texts. We follow the original split of the dataset for training (500) and testing (500) sets.

4.3 EXPERIMENTAL RESULT OF PROBLEM SOLVING SETTING

4.3.1 MAIN RESULT

Table 3 presents a performance comparison of various models and methods under the Problem Solv-
ing Setting. We observe that the prompted Multi-Agent System (COMM) generally improves per-
formance, as agent collaboration enhances the ability to solve complex problems. STaR outperforms
the base Single-Agent, indicating that fine-tuning contributes to improved performance. For smaller
and weaker models, and in scenarios with long context lengths such as PubMedQA, TextGrad faces
significant challenges in instruction-following during optimization. TextGrad (GPT-3.5-turbo) could
not be applied to PubMedQA as its optimizer failed to parse instructions due to the model’s limited
capability and the excessive context length of the problem. Similarly, TextGrad (GPT-4o-mini)
struggles to generate answers in the required format, requiring manual extraction of answers. Our
proposed method, SIRIUS, consistently outperforms across all tasks. By decomposing tasks into
manageable sub-tasks assigned to agents and, crucially, fine-tuning each agent to specialize in its
designated task, SIRIUS maximizes the effectiveness of collaboration, ensuring a more coordinated
and efficient overall performance.

4.3.2 ABLATION EXPERIMENTS

To evaluate the contributions of various components in SIRIUS, we conducted a series of ablation
experiments. Each experiment was designed to answer a key question about the effectiveness of
the multi-agent system. All ablations were performed on representative tasks within the Problem
Solving Setting (PubMedQA) to ensure consistency in evaluation as shown in Table 4.

Does mixing SIRIUS with a base agent degrade performance? To understand the benefits of
a jointly optimizing a collaborative multi-agent system, we first train all the agents together using
SIRIUS. Then we replaced one SIRIUS agent with the original base agent—either SIRIUS Analyst +
base Solver or base Analyst + SIRIUS Solver. This substitution hurts performance, demonstrating
benefits from joint multi-agent optimization compared to optimizing a single agent.

Should we fine-tune different LLMs for different roles, or optimize one LLM for all roles? We
explored whether a single LLM fine-tuned on the combined training data of multiple roles could
match the performance of separate role-specific models. The results showed a notable performance
decline, highlighting that different roles require specialized adaptation and that a shared model strug-
gles to effectively generalize across distinct agent functions.
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Table 4: Ablation results on PubMedQA.

Model method PubMed

GPT-3.5-turbo

SIRIUS 74.20
SIRIUS + Base 72.00
Base + SIRIUS 73.20
FT on One Base LLM 70.40
SIRIUS w/o Aug. 73.40
Additional FT Itr 75.00

GPT-4o-mini

SIRIUS 73.40
SIRIUS + Base 72.80
Base + SIRIUS 71.60
FT on One Base LLM 72.00
SIRIUS w/o Aug. 72.20
Additional FT Itr 73.60

How useful is experience augmentation? To as-
sess the impact of experience augmentation, we
removed the augmentation module while keep-
ing the rest of the pipeline unchanged. Data aug-
mentation introduces more diverse and challeng-
ing experiences as training data, enhancing the
model’s capability; therefore, omitting the aug-
mentation module could negatively impact per-
formance.

Does additional fine-tuning improve perfor-
mance? We investigated whether increasing the
number of fine-tuning iterations leads to further
performance gains. Each iteration follows the full
optimization pipeline illustrated in Figure 1, the
previously fine-tuned SIRIUS is used to generate
a new experience library, which is then used to further fine-tune the base model. As expected, an
additional iteration yielded marginal performance gains, suggesting that the model can benefit from
extended training.

4.4 EXPERIMENTAL RESULT OF ACTOR-CRITIC SETTING

Table 5 presents a performance comparison of various models, methods, and ablations under the
Actor-Critic Setting on PubMedQA. As mentioned in Section 3.2, the Actor Agent first generates a
solution, which is then evaluated by the Judgment Agent to determine its correctness. For solutions
deemed incorrect by the Judgment Agent, the Critic Agent analyzes the original solution and pro-
vides feedback without access to the correct answer. The Actor Agent then regenerates the solution
based on this feedback.

A key challenge in this setting is the Judgment Agent’s limited ability to differentiate between correct
and incorrect solutions leading to two potential issues: (1) correct solutions may be mistakenly
judged as incorrect and potentially modified into incorrect ones during the feedback and regeneration
stages; (2) incorrect solutions may be judged as correct, failing to receive the necessary corrections.
We report TP (True Positive) Accuracy as the ratio of solutions both correctly generated by the Actor
and accurately validated by the Judgment Agent, while Overall Accuracy measures the total correct
solutions after regeneration, accounting for the combined contributions of all agents.

We evaluate our method against two representative baselines: (1) Self-Correct, where Actor-
generated solutions are refined through direct feedback-guided regeneration, and (2) Prompt, which
exclusively employs prompting strategies to coordinate Actor-Judgment-Critic interactions without
optimization mechanisms. A critical limitation observed in the Self-Correct framework is its sig-
nificantly lower TP accuracy. This issue arises from its feedback mechanism, which modifies all
generated responses with high probability, potentially leading to erroneous modifications of the ini-
tially correct solution. This is a common issue with using out-of-the-box LLMs for self-correction
with no specialized training (Kumar et al., 2024).

Table 5: Evaluation results of the proposed method and baselines on accuracy(%).

Model GPT-3.5-Turbo GPT-4o-mini

Method TP Accuracy Overall Accuracy TP Accuracy Overall Accuracy

Self-Correct 11.80 16.40 24.60 28.80
Prompt 18.40 47.60 51.60 58.20
SIRIUS 35.00 50.60 59.80 66.80

———————— Ablation Study ————————
SIRIUS + BASE Actor Agent 34.20 49.00 49.60 54.40
SIRIUS + BASE Judgment Agent 20.20 40.20 53.00 59.40
SIRIUS + BASE Critic Agent 35.00 50.40 59.80 64.20
FT on One Base LLM 33.80 43.60 56.00 59.60
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Comparing GPT-3.5-Turbo and GPT-4o-mini, we also find that GPT-3.5-Turbo struggles more with
misjudging correct answers as incorrect, leading to a severe drop in TP Accuracy. Our method, SIR-
IUS, achieves a notable improvement in TP Accuracy, highlighting the Judgment Agent’s enhanced
ability to assess whether a response requires modification. The overall higher accuracy underscores
the effectiveness of SIRIUS’s framework, where fine-tuning enhances each agent’s task-specific ca-
pabilities, and the collaboration of Judgment, Critic, and Actor Agents ensures appropriate revision
of incorrect responses while minimizing unnecessary changes to correct answers.

The ablation study further underscores the contribution of each agent in SIRIUS. Fine-tuning only a
single base LLM leads to a performance drop, highlighting the necessity of specialized agent roles
and joint optimization. Notably, replacing the Judgment Agent with a baseline version significantly
reduces TP Accuracy, reinforcing its essential role in filtering correct responses before feedback is
applied.

4.5 EXPERIMENTAL RESULT OF COMPETITIVE SETTINGS

To analyze the effect of training in the competitive setting, we study the performance of agents in
scenarios where one player initially had a higher probability of winning, referred to as the ”winning
player,” while the other player was at a disadvantage, called the ”losing player.” In general, when
SIRIUS took on the role of the winning player competing against a base agent, it demonstrated an
increased win rate and payoff. Additionally, when SIRIUS played the role of the losing player, it
experienced fewer losses. Similarly, for both GPT-3.5 and GPT-4o-mini when they compete with
each other, SIRIUS-GPT-3.5 and SIRIUS-GPT-4o-mini both demonstrate improved performance.

4.5.1 RESOURCE EXCHANGE

GPT-3.5

SiriuS-GPT-3.5

GPT-4o-mini

SiriuS-GPT-4o-mini

Player 2

GPT-3.5

SiriuS-GPT-3.5

GPT-4o-mini

SiriuS-GPT-4o-mini

Pl
ay

er
 1

0.86 0.90 0.89 1.00

0.54 0.68 0.57 0.80

0.00 0.00 0.20 0.86

0.00 0.00 0.00 0.57

Player 2 Win Rate

GPT-3.5

SiriuS-GPT-3.5

GPT-4o-mini

SiriuS-GPT-4o-mini

Player 2

2.36 4.72 2.72 1.80

0.72 3.52 0.88 3.28

-0.48 0.00 -0.80 1.20

-1.20 0.00 -2.80 0.36

Player 2 Payoff

0.0

0.2

0.4

0.6

0.8

1.0

2

0

2

4

Figure 2: Resource Exchange Game: Player 1 (25Xs
+ 5Ys), Player 2 (5Xs + 25Ys). Win Rate in decisive
games and Payoff in all games. We show Player 2 Win
rate/payoff in all cells.

The win rates and average payoffs for the Re-
source Exchange game are presented in Fig-
ure 2. Overall, the agent going second tends
to beat the first agent. Furthermore, the fine-
tuned SIRIUS demonstrates a significant im-
provement in both the win rate and payoff for
the current player. To evaluate the generaliza-
tion capability of our approach, we conducted
additional experiments with models fine-tuned
on games featuring Initial Resource configura-
tions of 25Xs + 5Ys and 5Xs + 25Ys, and then
tested them on games with different Initial Re-
source configurations (35Xs + 15Ys and 15Xs
+ 35Ys). As demonstrated in Figure 5, SIRIUS
maintains notable improvements in the new Initial Resource configurations, effectively validating
the generalizability of our proposed pipeline.

4.5.2 MULTI-TURN ULTIMATUM

In this setting, Player 1 consistently dominates the game. As shown in the Figure 3 , SIRIUS fine-
tuned Player 1 effectively secure a higher share of the split. Generalization experiments show that
SIRIUS Player 1 trained in the Resource = 100 setting maintains utility gains in the new Resource =
1000 setting (Figure 7).

4.5.3 BUYER-SELLER

In this setting, sellers are willing to sell when the price exceeds 40, while buyers are willing to
buy when the price is below 60. We plot the final selling price as shown in Figure 4. Notably, it
is consistently below 50 for most buyer-seller pairs, indicating that the LLM agent performs better
as a buyer than as a seller. After fine-tuning, SIRIUS as a seller shows significant improvement,
consistently selling at 50, resulting in a tie with the buyer. To test the generalization capability and
ensure the seller is not overfitting to a price of 50, we adjusted the initial configuration to 30 and
70. Figure 6 shows that the SIRIUS seller trained in the previous setup still demonstrates significant
improvement.
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Figure 4: Final Selling Price for a Seller&Buyer
with object valuations of 40 and 60. A higher number
means a greater payoff for Seller.

5 RELATED WORK

Enhancing Reasoning in Single-Agent Systems. Building on the reasoning capabilities of state-of-
the-art foundation models (Schulman et al., 2022; OpenAI, 2023; Liu et al., 2024), recent research
explores approaches beyond scaling model parameters. Chain-of-Thought (Wei et al., 2022) en-
hances reasoning through step-by-step inference, while Tree of Thoughts (Yao et al., 2024), Graph
of Thought (Besta et al., 2024), and Program of Thoughts (Chen et al., 2022) structure reasoning
as tree searches with backtracking. Reasoning with Planning (RAP) (Hao et al., 2023) incorporates
explicit planning, and Reflexion (Shinn et al., 2024) enables self-evaluation and refinement. Wu
et al. (2024) introduce contrastive reasoning for instruction generation, while TextGrad (Yuksek-
gonul et al., 2024) applies gradient-based optimization to refine outputs. These methods enhance
reasoning through structured decomposition, search, and planning.

Self-improvement. Self-improving models (Huang et al., 2022; Yu et al., 2023; Yuan et al., 2024;
Zhang et al., 2024; Welleck et al., 2022) have garnered increasing attention for their potential to
enhance reasoning capabilities through iterative feedback and refinement. Several studies (Zelikman
et al., 2022; Li et al., 2024a; Pang et al., 2024; Lee et al., 2024)employ bootstrapping strategies by
leveraging self-generated rationales, while others (Yuan et al., 2024; Chen et al., 2024b; Guo et al.,
2025) introduces a self-refinement mechanism through reinforcement learning.

Multi-Agent Systems with LLMs. Multi-Agent Systems with LLMs. Recent advancements
in multi-agent systems (Smit et al., 2024; Guo et al., 2024; Li et al., 2024b; Han et al., 2024)
highlight the potential of large language models in tackling complex tasks. Society of Minds (Du
et al., 2023) enables agents to exchange answers, fostering collaboration. Mixture-of-Agents (Wang
et al., 2024) employs a layered architecture where agents refine responses based on prior outputs.
CoMM (Chen et al., 2024a) enhances problem-solving through structured communication and role
division. Multi-Persona (Liang et al., 2023) encourages diverse agent behaviors by assigning dis-
tinct personas. ChatEval (Chan et al., 2023) explores different multi-agent debate strategies for
interaction and response management. Building on advances in multi-agent systems, recent work
has explored fine-tuning with independently specialized agents that interact to generate diverse rea-
soning chains (Subramaniam et al., 2025). Unlike these approaches, our method prioritizes collab-
orative optimization through a shared experience library, enabling agents to collectively learn from
and refine successful reasoning trajectories.

6 CONCLUSIONS

We introduced SIRIUS, a framework for optimizing multi-agent LLM systems by learning from
successful interactions and augmenting failed trajectories with feedback. Our approach enables
agents to refine collaboration strategies without explicit supervision. Experiments show that SIRIUS
significantly improves performance across college-level reasoning, biomedical QA, and negotiation
tasks. More broadly, our work provides a scalable mechanism for multi-agent self-improvement,
offering a principled approach to optimizing collaborative AI systems.
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A DETAILED PIPELINE

Given the wrong answer problem setW = {(xi, yi)}wi=1,In each iteration, we first select the agent
to be optimized. For instance, as shown in the diagram, the selected agent is the physicist (A).
The external agent provides feedback fi = Pθ(ext)(·|xi, âi, yi) based on the question xi, the original
response âi, and the correct answer yi.

The physicist then regenerates the solution by incorporating the feedback: âri = Pθ(A)(·|xi, ŷi, fi).

To ensure clarity and coherence, the regenerated response âri is subsequently rephrased to produce
ŷfinal
i , making it appear as if derived directly through problem-solving without mentioning any mod-

ifications or feedback. This updated response is then used in subsequent collaborations with other
agents to refine the overall solution further.

Algorithm 2 Training Multi-Agent LLM System

1: Input: A group of agents A(1), · · · , A(K), the system’s topological graph G, maximum solution
generation tries maxsol, maximum feedback generation tries maxf, maximum regeneration tries
maxre. An initial dataset of problems x with answer y : D = {(xi, yi)}Di=1, total number of
fine-tuning Iterations T .

2: Initialize: Initialize policy parameters θ(k) for each agent A(k), k = 1, 2, . . . ,K. θ(c) for Critic
Agent A(c)

3: for Fine-tuning Iteration tft = 1, · · · , T do
4: while tsol ≤ maxsol do
5: a

(k)
i = Pθ(k)(·|xi, aPre(A(k))

i ).
6: ŷi = a

(K)
i

7: for each agent k = 1, 2, . . . ,K do
8: C(k)tft ← {(xi, a

(k)
i |i ∈ [1, D] ∧ ŷi = yi)}

9: W(k)
tft ← {(xi, a

(k)
i |i ∈ [1, D] ∧ ŷi ̸= yi)}

10: for xi ∈W
(k)
t do

11: while tf ≤ maxf do
12: f

(k)
i = Pθ(c)(·|xi, a

(k)
i , yi)

13: while tre ≤ maxre do
14: a

(k),re
i = Pθ(k)(·|xi, a

(k)
i , f

(k)
i )

15: Sj = Sus(A(k)) ∩ Pre(A(j)), j ∈ Sus(A(k))

16: a
(j),re
i = P

θ(j)
(·|xi, a

Pre(A(j))\Sj
i ∪ a

Sj ,re

i )

17: ŷrei = a
(K),re
i

18: if ŷrei = yi then
19: C(j)tft ← {(xi, a

(j),re
i }, j = k, · · · ,K

20: break while
21: end if
22: end while
23: end while
24: end for
25: end for
26: end while
27: θ

(k)
tft ← Standard SFT on C(k)tft , k = 1, · · · ,K

28: end for

B DATASET DETAIL

B.1 DATASET SPLIT STATISTICS

In this work, we use three datasets for evaluating the performance of our model: Massive Multitask
Language Understanding (MMLU) (Hendrycks et al., 2020), Graduate-Level Google-Proof Q&A
(GPQA) (Rein et al., 2023), and Theorem-Driven Question Answering (TheoremQA) (Chen et al.,
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2023). These datasets contain a variety of question types, with a focus on college-level physics and
chemistry problems that remain difficult and present room for improvement in performance with
large language models.

The dataset was split into training and test sets with a 2:1 ratio, and the data distribution for each
dataset is shown in Table 6.

Table 6: Dataset Split Statistics.

Task College Physics College Chemistry

Dataset Train Size Test Size Train Size Test Size
MMLU 68 34 66 34
GPQA 57 29 62 31
TheoremQA 87 44 - -

C ADDITIONAL EXPERIMENT RESULT

In this section, we present additional experiments conducted in a competitive setting to assess the
generalization of SIRIUS. These results demonstrate the adaptability of SIRIUS across various con-
figurations.
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Figure 5: Resource Exchange Game with Initial Resource Player 1: 35Xs + 15Ys, Player 2: 15Xs +
35Ys. Win Rate in decisive games and Payoff in all games. We show Player 2 Win rate/payoff in all
cells.
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D AGENT PROMPTS

D.1 PROBLEM SOLVING SETTING

Prompts for College-Physics Task

System prompt = ”’You are part of a team with multiple experts from different disciplines.
Your team aims to solve a given cross-discipline problem collectively.
The team is composed of three experts:
1. The Physicist
Role Definition: You are a physicist with a specialization in the field of college-level physics.
Your vast knowledge covers multiple aspects of physics including classical mechanics, ther-
modynamics, electromagnetism, quantum mechanics, and statistical physics. You under-
stand these topics in depth and have the ability to explain them in a way that is easily com-
prehensible to those less familiar with them.
Responsibility: Focus on contributing physics-specific insights and collaborate with the
mathematician to help develop and validate mathematical models.**Do not perform cal-
culations or solve the entire problem**. Your goal is to provide a clear explanation of the
physics, leaving calculations to the mathematician.
Principles: Emphasize empirical, systematic, and data-driven approaches while fostering
curiosity, innovation, and ethical scientific practices.
2. The Mathematician
Role Definition: You are a mathematician, specializing in the broad and complex field of
mathematics at the college level. Your expertise ranges from pure mathematical theory, in-
cluding algebra, calculus, geometry, number theory, and statistics, to applied mathematics
such as optimization and probability theory. You have an innate ability to abstract and gener-
alize problems, solving them with elegance and precision. You excel at creating mathemat-
ical models that represent real-world situations and can interpret the implications of those
models. You are not only well-versed in complex equations and proofs, but also experienced
in conveying these concepts to others through teaching.
Responsibilities: Apply mathematical reasoning to analyze and address complex, cross-
disciplinary problems; Collaborate with the physicist to refine mathematical models and
validate their conclusions; Convey mathematical insights in a clear manner to facilitate team
decision making.
Principles: Foster a culture of analytical thinking and evidence-based decisions; Encourage
an atmosphere of curiosity, innovation, and continuous learning; Maintain high mathemati-
cal integrity and respect for varying perspectives.
3. The Final Answer Synthesizer
Role Definition: You are the Final Answer Synthesizer, an integrative role in the team re-
sponsible for coalescing the insights provided by the experts. With a clear understanding of
the different disciplines, you effectively distill the responses from the physicist and the math-
ematician into a coherent, final solution. Your role involves keenly interpreting expert input,
synthesizing various problem-solving approaches, and presenting a clear, well-rounded an-
swer that incorporates the collective wisdom of the team.
Responsibility: summarize the solutions; give a final answer.
Principles: make sure to give a specific answer to the given task.”’

Physicist prompt = ”’Your role is the physicist. Here is the given problem: ”question” Your
task is to explain the relevant physics concepts and principles that apply to this problem.”’

Mathematician prompt = ”’Your role is the mathematician. Here is the given problem:
”question” Here is the response from the physicist: ”{agent 1 response}” Please give your
opinion on how to solve the problem in consideration of the response from the physicist.”’

Summarizer prompt = ”’Your role is the Final Answer Synthesizer. Here is the given
problem: ”question” Here is the response from the physicist: ”{agent 1 response}” Here is
the response from the mathematician: ”{agent 2 response}”
Please provide a final answer to the given problem. {format prompt}”’
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Prompts for College-Chemistry Task

System prompt = ”’You are part of a team with multiple experts from different disciplines.
Your team aims to solve a given cross-discipline problem collectively.
The team is composed of three experts:
1. The Chemist
Role Definition: You are a chemist with a specialization in the field of college-level chem-
istry. Your vast knowledge covers multiple aspects of chemistry including organic, inorganic,
physical, analytical, and biochemistry. You understand these topics in depth and have the
ability to explain them in a way that is easily comprehensible to those less familiar with
them.
Responsibility: Focus on contributing chemistry-specific insights and collaborate with the
mathematician to help develop and validate mathematical models.**Do not perform calcu-
lations or solve the entire problem**. Your goal is to provide a clear explanation of the
chemistry concepts, leaving calculations to the mathematician.
Principles: Emphasize empirical, systematic, and data-driven approaches while fostering
curiosity, innovation, and ethical scientific practices.
2. The Mathematician
Role Definition: You are a mathematician, specializing in the broad and complex field of
mathematics at the college level. Your expertise ranges from pure mathematical theory, in-
cluding algebra, calculus, geometry, number theory, and statistics, to applied mathematics
such as optimization and probability theory. You have an innate ability to abstract and gener-
alize problems, solving them with elegance and precision. You excel at creating mathemat-
ical models that represent real-world situations and can interpret the implications of those
models. You are not only well-versed in complex equations and proofs, but also experienced
in conveying these concepts to others through teaching.
Responsibilities: Apply mathematical reasoning to analyze and address complex, cross-
disciplinary problems; Collaborate with the chemist to refine mathematical models and val-
idate their conclusions; Convey mathematical insights in a clear manner to facilitate team
decision making.
Principles: Foster a culture of analytical thinking and evidence-based decisions; Encourage
an atmosphere of curiosity, innovation, and continuous learning; Maintain high mathemati-
cal integrity and respect for varying perspectives.
3. The Final Answer Synthesizer
Role Definition: You are the Final Answer Synthesizer, an integrative role in the team re-
sponsible for coalescing the insights provided by the experts. With a clear understanding of
the different disciplines, you effectively distill the responses from the chemist and the math-
ematician into a coherent, final solution. Your role involves keenly interpreting expert input,
synthesizing various problem-solving approaches, and presenting a clear, well-rounded an-
swer that incorporates the collective wisdom of the team.
Responsibility: Summarize the solutions; give a final answer.
Principles: Make sure to give a specific answer to the given task.”’

Chemist prompt = ”’Your role is the chemist. Here is the given problem: ”question” Your
task is **only to explain** the relevant chemistry concepts and principles that apply to this
problem. **Do not** perform any calculations or try to find the final solution. Your role is to
explain the chemical reasoning, such as reactions or principles, but refrain from solving the
equations or completing the solution. Leave the mathematical work to the mathematician.”’

Mathematician prompt = ”’Your role is the mathematician. Here is the given problem:
”question” Here is the response from the physicist: ”{agent 1 response}” Please give your
opinion on how to solve the problem in consideration of the response from the physicist.”’

Summarizer prompt = ”’Your role is the Final Answer Synthesizer. Here is the given
problem: ”question” Here is the response from the physicist: ”{agent 1 response}” Here is
the response from the mathematician: ”{agent 2 response}”
Please provide a final answer to the given problem. {format prompt}”’

16



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Prompts for PubMedQA Task

System prompt = ”’You are part of a team of experts working collaboratively to solve
science-related yes/no questions using contextual evidence. The goal is to analyze the pro-
vided question and context thoroughly to determine the correct answer.
The team is composed of two roles:
1. The Context Analyst
**Role Definition:** You are the Context Analyst, skilled in extracting and summarizing
key information from the given context to address the question.
**Responsibility:** Read the provided question and context carefully, then summarize the
most relevant information needed to answer the question. Your summary should focus on
the evidence directly supporting or refuting the question’s claim.
**Principles:** Prioritize clarity and relevance. Extract only the essential details from the
context that will help guide the next agent in making an evidence-based decision.
2. The Problem Solver
**Role Definition:** You are the Problem Solver, responsible for interpreting the Context
Analyst’s summary and determining the correct yes/no answer based on evidence.
**Responsibility:** Review the question and the Context Analyst’s summary, analyze the
evidence, and construct a concise final response (yes or no) supported by clear reasoning. If
the context does not provide sufficient evidence to make a confident decision, clearly state
that the evidence is inconclusive.
**Principles:** Ensure logical coherence, accuracy, and completeness. Justify your answer
with reasoning directly tied to the summarized evidence. ”’

Analyst prompt = ”’Your role is the Context Analyst.
Here is the provided context: ”{context}”
Your task is to carefully read through this context and summarize the main points relevant to
the question. Only provide essential information that would help address the question.”’

Solver prompt = ”’Your role is the Problem Solver.
Here is the question: ”{question}”
Here is the summary from the Context Analyst: ”{agent 1 response}”
Please analyze the question, using the summary to answer the problem. {format prompt}”’

D.2 ACTOR-CRITIC SETTING

Prompts for Actor Agent and Regeneration

System prompt =”’You are a scientist working on solving science-related yes/no questions
using contextual evidence. ”’

Actor prompt = ”’You are supposed to provide a solution to a given problem.
Here is the given context: ”{context}”
Problem: ”{question}”
Please provide yes, no or maybe to the given problem. {format prompt}”’

Actor regenerate prompt = ”’You are supposed to provide a solution to a given problem.
Here is the given context: ”{context}”
Problem: ”{question}”
Here is your original response: {original response}
Here is the feedback for your original response: ”{feedback}”
Please first consider the feedback and then update your opinion on how to solve the problem.
Please provide a final answer to the given problem. {format prompt}”’
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Prompts for Judgment Agent

System prompt = ”’Below is a yes/no question and a prediction. You are a critical and
creative scientist tasked with evaluating the prediction. Your responsibility is to thoroughly
investigate the reasoning behind the prediction. If the original response is entirely correct,
output ”True.” If you identify any errors, inconsistencies, or flaws in the reasoning, output
”False.” ”’

Judgment prompt = ”’Here is the given context: ”{context}”
Problem: ”{question}”
Original response: {original response}
Provide your response in the following format:
1. Analysis: Provide a detailed and objective critique of the reasoning in the language
model’s answer. Discuss whether the logic, assumptions, and conclusions are valid. High-
light any errors, alternative perspectives, or missing considerations.
2. Decision: ’Opinion: True or False’ (without quotes) where Opinion is your final Decision
based on your analysis. Your Decision should be either ”True” or ”False”. Ensure this
conclusion directly reflects the correctness of the reasoning in the language model’s answer.
”’

Prompts for Critic Agent

System prompt = ”’Below is a biomedical yes/no question, the context, and a prediction.
You are a critical and creative scientist. Your job is to investigate the prediction. Critically
go through reasoning steps, and see if there is a reason why the prediction could be incorrect.
Use the Janusian Process, think about whether alternative answers could be true.”’

Critic prompt = ”’Here is the given context: ”{context}”
Question: ”{question}”
Answer by the language model: {original response} ”’

Prompts for Rephrasing

System prompt = ”’Rephrase the following solution process to ensure that it appears as
though the solution was arrived at directly, with no traces of mistakes or corrections. Retain
all key steps and avoid generating any new content. The focus should be on smoothing the
flow and ensuring logical consistency, without altering the meaning or introducing additional
information. ”’

Rephrase prompt = ”’Here is the problem and the original solution process: Problem:
{question}
Original Solution Process:{original response}
Please output the rephrased solution process”’

D.3 COMPETITIVE SETTING

We use the NEGOTIATIONARENA Platform (Bianchi et al., 2024).
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Prompts for Resource Exchange

System prompt = ”’You are playing a strategic game of trading resources with another
player whose resources you have no knowledge about.
RULES:
“‘
1. You can either:
A) Accept the trade by saying:
¡player answer¿ ACCEPT ¡/player answer¿
¡newly proposed trade¿ NONE ¡/newly proposed trade¿
B) Reject and propose a new trade (you can only trade integer amounts, not decimals):
¡player answer¿ NONE ¡/player answer¿
¡newly proposed trade¿ Player RED Gives item1: amount, item2: amount, ... — Player
BLUE Gives item1: amount, item2: amount, ... ¡/newly proposed trade¿
C) Don’t accept or propose anything and wait for a new offer:
¡player answer¿ NONE ¡/player answer¿
¡newly proposed trade¿ NONE ¡/newly proposed trade¿

Note: the game will end if one of the players accepts. This means that you have to
be careful about both accepting and proposing a trade.
2. You are allowed at most 3 proposals of your own to complete the game, after which you
can only ACCEPT or NONE.
DO NOT propose a new trade after 3 proposals. Your limit for proposals is 3.
3. You can reason step by step by using the following format:
¡reason¿ [add reasoning] ¡/reason¿
Add as much text as you want. This information will not be sent to the other player.
It is just for you to keep track of your reasoning.
4. At each turn send messages to each other by using the following format:
¡message¿ [add message] ¡/message¿
You can decide if you want disclose your resources and goals in the message.
“‘
Here is what you have access to:
“‘
Resources available in the game: X, Y
¡my resources¿ X: 25, Y: 5 ¡/my resources¿
¡my goals¿ X: 15, Y: 15 ¡/my goals¿
¡my name¿ Player RED ¡/my name¿
“‘
All the responses you send should contain the following and in this order:
“‘
¡my name¿ [add here] ¡/my name¿
¡my resources¿ [add here] ¡/my resources¿
¡my goals¿ [add here] ¡/my goals¿
¡reason¿ [add here] ¡/reason¿
¡player answer¿ [add here] ¡/player answer¿
¡message¿ [add here] ¡/message
¡newly proposed trade¿ [add here] ¡/newly proposed trade¿
“‘
Please be sure to include all.
More resources in general are always better.
This is the last round of trading. There are no future rounds after this one.

”’
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Prompts for Sell&Buy

System prompt = ”’You are playing game where you are buying or selling an object. There
is only one object for sale/purcahse.
Player RED is going to sell one object. Player BLUE gives ZUP to buy resources.
RULES:
“‘
1. You must always respond with:
A) Propose a trade with (you can only trade in integer amounts, not decimals):
¡player answer¿ PROPOSAL ¡/player answer¿
¡newly proposed trade¿ Player RED Gives X: amount, ...— Player BLUE Gives ZUP:
amount ¡/newly proposed trade¿
B) Accept the trade by saying:
¡player answer¿ ACCEPT ¡/player answer¿
¡newly proposed trade¿ NONE ¡/newly proposed trade¿
C) Reject and end the game:
¡player answer¿ REJECT ¡/player answer¿
¡newly proposed trade¿ NONE ¡/newly proposed trade¿
Note: The game will end if one of the players ACCEPT OR REJECT. This means that you
have to be careful about both accepting, rejecting and proposing a trade.
2. You are allowed at most 4 proposals of your own to complete the game, after which you
can only reply with ACCEPT or REJECT.
DO NOT propose a new trade after 4 proposals. Your limit for proposals is 4.
3. You can reason step by step on why you are A) proposing, B) rejecting and C) accepting
a trade with:
¡reason¿ [add reasoning] ¡/reason¿ add as much text as you want
This information will not be sent to the other player. It is just for you to keep track of your
reasoning.
4. At each turn send messages to each other by using the following format:
¡message¿your message here¡/message¿
You can decide if you want disclose your resources, goals, cost and willingness to pay in
the message.
“‘
Here is what you have access to:
“‘
Object that is being bought/sold: X
¡my resources¿ ZUP: 100 ¡/my resources¿
¡my goals¿ Buy resources with ¡ZUP¿. You are willing to pay at most X: 70 ZUP for the
resources. ¡/my goals¿,
“‘
All the responses you send should contain the following and in this order:
“‘
¡proposal count¿ [add here (inclusive of current)] ¡/proposal count¿
¡my resources¿ [add here] ¡/my resources¿
¡my goals¿ [add here] ¡/my goals¿
¡reason¿ [add here] ¡/reason¿
¡player answer¿ [add here] ¡/player answer¿
¡newly proposed trade¿ [add here] ¡/newly proposed trade¿
¡message¿ [add here] ¡/message
“‘
Please be sure to include all.

You are Player BLUE.”’
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Prompts for Ultimatum

System prompt = ”’You are playing a game involving a split of resources.
Player RED starts with Dollars: 100, Player BLUE has none to trade.
RULES:
“‘
1. Player RED has 4 moves while Player BLUE has 4 moves.
2. You must either:
A) Accept the current proposal by saying:
¡player answer¿ ACCEPT ¡/player answer¿
¡newly proposed trade¿ NONE ¡/newly proposed trade¿
B) Reject the current proposal, whereby both players lose all their resources and the game
ends immediately:
¡player answer¿ REJECT ¡/player answer¿
¡newly proposed trade¿ NONE ¡/newly proposed trade¿
C) Propose a new trade:
¡player answer¿ NONE ¡/player answer¿
¡newly proposed trade¿ Player RED Gives item1: amount — Player BLUE Gives item1: 0
¡/newly proposed trade¿
Player BLUE cannot do (C) on move 4/4 and MUST ONLY answer with ACCEPT (A) or
REJECT (B) but Player RED is not affected by this condition.

Note: the game ends immediately if you ACCEPT or REJECT.

3. If either player REJECTS, both players lose all their resources and the ends im-
mediately.
4. There are no future games.
5. You can reason step by step on why you are A) proposing, B) rejecting and C) accepting
a trade with:
¡reason¿ [add reasoning] ¡/reason¿ add as much text as you want
This information will not be sent to the other player. It is just for you to keep track of your
reasoning.
6. At each turn send messages to each other by using the following format:
¡message¿your message here¡/message¿
You can disclose anything in the message.
“‘
Here is what you have access to:
“‘
Resources available in the game: Dollars
¡my resources¿ Dollars: 100 ¡/my resources¿
“‘
All the responses you send should contain the following and in this order:
“‘
¡my name¿ [add here] ¡/my name¿
¡move¿ [add here] / [add here] ¡/move¿
¡my resources¿ [add here] ¡/my resources¿
¡reason¿ [add here] ¡/reason¿
¡player answer¿ [add here] ¡/player answer¿
¡message¿ [add here] ¡/message
¡newly proposed trade¿ [add here] ¡/newly proposed trade¿
“‘
Please be sure to include all.

” ”’
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