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ABSTRACT

Fragment-based drug discovery is an effective strategy for discovering drug can-
didates in the vast chemical space, and has been widely employed in molecular
generative models. However, many existing fragment extraction methods in such
models do not take the target chemical properties into account or rely on heuristic
rules. Additionally, the existing fragment-based generative models cannot up-
date the fragment vocabulary with goal-aware fragments newly discovered during
the generation. To this end, we propose a molecular generative framework for
drug discovery, named Goal-aware fragment Extraction, Assembly, and Modifica-
tion (GEAM). GEAM consists of three modules, each responsible for goal-aware
fragment extraction, fragment assembly, and fragment modification. The fragment
extraction module identifies important fragments that contribute to the desired tar-
get properties with the information bottleneck principle, thereby constructing an
effective goal-aware fragment vocabulary. Moreover, GEAM can explore beyond
the initial vocabulary with the fragment modification module, and the exploration
is further enhanced through the dynamic goal-aware vocabulary update. We exper-
imentally demonstrate that GEAM effectively discovers drug candidates through
the generative cycle of the three modules in various drug discovery tasks.

1 INTRODUCTION

The problem of drug discovery aims to find molecules with desired properties within the vast chem-
ical space. Fragment-based drug discovery (FBDD) has been considered as an effective strategy in
the recent decades as a means of exploring the chemical space and has led to the discovery of many
potent compounds against various targets (Li, 2020). Inspired by the effectiveness of FBDD, many
molecular generative models have also adopted it as a strategy to narrow down the search space and
simplify the generation process, resulting in meaningful success (Jin et al., 2018; 2020a;b; Xie et al.,
2020; Maziarz et al., 2022; Kong et al., 2022; Geng et al., 2023).

In FBDD, the first step, fragment library construction, directly impacts the final generation re-
sults (Shi & von Itzstein, 2019) as the constructed fragments are used in the entire generation pro-
cess. However, existing fragment extraction or motif mining methods suffer from two limitations:
they 1) do not take the target chemical properties of drug discovery problems into account and/or 2)
rely on heuristic fragment selection rules. For example, it is a common strategy to randomly select
fragments (Yang et al., 2021) or extract fragments based on frequency (Kong et al., 2022; Geng
et al., 2023) without considering the target properties. Jin et al. (2020b) proposed to find molecular
substructures that satisfy the given properties, but the extraction process is computationally very
expensive and the substructures cannot be assembled together.

To this end, we first propose a novel deep learning-based goal-aware fragment extraction method,
namely, Fragment-wise Graph Information Bottleneck (FGIB, Figure 1(a)). There is a strong con-
nection between molecular structures and their activity, which is referred to as structure-activity
relationship (SAR) (Crum-Brown & Fraser, 1865; Bohacek et al., 1996). Inspired by SAR, FGIB
utilizes the graph information bottleneck (GIB) theory to identify important subgraphs in the given
molecular graphs for predicting the target chemical property. These identified subgraphs then serve
as building blocks in the subsequent generation. As shown in Figure 1(b), the proposed usage of
goal-aware fragments extracted by FGIB improves the optimization performance by a significant
margin compared to existing FBDD methods.
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Figure 1: (a) The architecture of FGIB. Using the GIB theory, FGIB aims to identify the important subgraphs
that contribute much to the target chemical property in the given molecular graphs. The trained FGIB is then
used to extract fragments in a molecular dataset in the goal-aware manner. (b) Performance comparison of
GEAM and other FBDD methods on the jak2 ligand generation task.

To effectively utilize the extracted fragments in molecular generation, we next construct a generative
model consisting of a fragment assembly module and a fragment modification module. In this
work, we employ soft-actor critic (SAC) for the assembly module and a genetic algorithm (GA)
for the modification module. Through the interplay of the two modules, the generative model can
both exploit the extracted goal-aware fragments and explore beyond the initial fragment vocabulary.
Moreover, to further enhance molecular novelty and diversity, we propose to extract new fragments
on-the-fly during the generation using FGIB and dynamically update the fragment vocabulary.

Taken as a whole, the fragment extraction module, the fragment assembly module, and the fragment
modification module in the form of FGIB, SAC, and GA, respectively, collectively constitute the
generative framework which we refer to as Goal-aware fragment Extraction, Assembly, and Modifi-
cation (GEAM). As illustrated in Figure 2, GEAM generates molecules through the iterative process
that sequentially runs each module as follows: 1) After FGIB constructs an initial goal-aware frag-
ment vocabulary, SAC assembles these fragments and generates a new molecule. 2) GEAM keeps
track of the top generated molecules as the initial population of GA, and GA generates an offspring
molecule from the population. 3) As a consequence of the crossover and mutation procedures, the
offspring molecule contains new subgraphs that cannot be constructed from the current fragment
vocabulary, and FGIB extracts the meaningful subgraphs from the offspring molecule and update
the vocabulary. Through the collaboration of the three modules where FGIB provides goal-aware
fragments to SAC, SAC provides high-quality population to GA, and GA provides novel fragments
to FGIB, GEAM effectively explores the chemical space to discover novel drug candidates.

We experimentally validate the proposed GEAM on various molecular optimization tasks that sim-
ulate real-world drug discovery scenarios. The experimental results show that GEAM significantly
outperforms existing state-of-the-art methods, demonstrating its effectiveness in addressing real-
world drug discovery problems. We summarize our contributions as follows:

• We propose FGIB, a novel goal-aware fragment extraction method that applies the GIB
theory to construct a fragment vocabulary for target chemical properties.

• We propose to leverage SAC and GA jointly as a generative model to effectively utilize the
extracted fragments while enabling exploration beyond the vocabulary.

• We propose GEAM, a generative framework that combines FGIB, SAC, and GA to dy-
namically update the fragment vocabulary by extracting goal-aware fragments on-the-fly
to further improve diversity and novelty.

• We experimentally demonstrate that GEAM is highly effective in discovering drug candi-
dates, outperforming existing molecular optimization methods.

2 RELATED WORK

Fragment extraction Fragment extraction methods fragmentize the given molecules into molec-
ular substructures, i.e., fragments, for subsequent generation. Yang et al. (2021) chose to randomly
select fragments after breaking bonds in the given molecules with a predefined rule. Xie et al. (2020)
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Figure 2: The overall framework of GEAM. GEAM consists of three modules, FGIB, SAC, and GA for
fragment extraction, fragment assembly, and fragment modification, respectively.

and Maziarz et al. (2022) proposed to obtain fragments by breaking some of the bonds with a pre-
defined rule (e.g., acyclic sing bonds), then select the most frequent fragments. Kong et al. (2022)
and Geng et al. (2023) utilized merge-and-update rules to find the frequent fragments in the given
molecules. All of these methods do not consider the target properties. On the other hand, Jin et al.
(2020b) proposed to find molecular substructures that satisfy the given properties, but the approach
requires an expensive oracle call to examine each building block candidate in a brute-force manner,
and the substructures are not actually fragments in that they are already full molecules that have
chemical properties and are not assembled together. Consequently, the found substructures are large
in size and often few in number, resulting in low novelty and diversity of the generated molecules.

Fragment-based molecule generation Fragment-based molecular generative models denote the
models that use the extracted fragments as building blocks and learn to assemble the blocks into
molecules. Xie et al. (2020) proposed to use MCMC sampling when assemble or delete the frag-
ments. Yang et al. (2021) proposed to use a reinforcement learning (RL) model and view fragment
addition as actions. Maziarz et al. (2022), Kong et al. (2022) and Geng et al. (2023) proposed to use
a VAE to assemble the fragments. The model of Jin et al. (2020b) learns to complete the obtained
molecular substructures into final molecules by adding molecular branches.

Subgraph recognition Given a graph, subgraph recognition aims to find a compressed subgraph
that contains salient information to predict the property of the graph. Graph information bottleneck
(GIB) (Wu et al., 2020) approached this problem by considering the subgraph as a bottleneck ran-
dom variable and applying the information bottleneck theory. Yu et al. (2022) proposed to utilize
Gaussian noise injection into node representations to confine the information and recognize impor-
tant subgraphs, while Miao et al. (2022) proposed to consider the subgraph attention process as the
information bottleneck. Lee et al. (2023a) applied the GIB principle to molecular relational learning
tasks. In practice, it is common for these methods to recognize disconnected substructures rather
than connected fragments. Subgraph recognition by GIB has been only employed in classification
and regression tasks, and this is the first work that applies GIB to fragment extraction.

3 METHOD

We now introduce our Goal-aware fragment Extraction, Assembly, and Modification (GEAM)
framework which aims to generate molecules that satisfy the target properties with goal-aware frag-
ments. We first describe the goal-aware fragment extraction method in Section 3.1. Then we de-
scribe the fragment assembly method in Section 3.2. Finally, we describe the fragment modification
method, the dynamic vocabulary update, and the resulting GEAM in Section 3.3.

3.1 GOAL-AWARE FRAGMENT EXTRACTION

Assume that we are given a set of N molecular graphs Gi with its corresponding properties Yi ∈
[0, 1], denoted as D = {(Gi, Yi)}Ni=1. Each graph Gi = (Xi,Ai) consists of n nodes with a node
feature matrix Xi ∈ Rn×d and an adjacency matrix Ai ∈ Rn×n. Let V be a set of all nodes from
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the graphs G = {Gi}Ni=1 and let E be a set of all edges from G. Our goal is to extract goal-aware
fragments from G such that we can assemble these fragments to synthesize graphs with desired
properties. In order to achieve this goal, we propose Fragment-wise Graph Information Bottleneck
(FGIB), a model that learns to identify salient fragments of Gi for predicting the target property Yi.

Concretely, we first decompose a set of the graphs G into M candidate fragments, denoted as F with
BRICS (Degen et al., 2008), a popular method that fragmentizes molecules into retrosynthetically
interesting substructures. Each fragment F = (V,E) ∈ F is comprised of vertices V ⊂ V and
edges E ⊂ E . Then each graph G can be represented as m fragments, {Fj = (Vj , Ej)}mj=1, with
Fj ∈ F . Inspired by graph information bottleneck (Wu et al., 2020), FGIB identifies a subgraph Gsub

that is maximally informative for predicting the target property Y while maximally compressing the
original graph G:

min
Gsub
−I(Gsub, Y ) + βI(Gsub, G), (1)

where β > 0 and I(X,Y ) denotes the mutual information between the random variables X and Y .

FGIB first calculates the node embeddings {h}ni=1 from the graph G with an MPNN (Gilmer et al.,
2017) and use average pooling to obtain the fragment embedding ej of the fragment Fj as follows:

[h1 · · ·hn]
⊤ = MPNN(X,A), ej = AvgPool({hl : vl ∈ Vj}) ∈ Rd, (2)

where vl denotes the node whose corresponding node embedding is hl. Using an MLP with a
sigmoid activation function, we obtain wj ∈ [0, 1], the importance of the fragment Fj for predicting
the target property Y , as wj = MLP(ej). We denote θ as the parameters of the MPNN and the
MLP. Following Yu et al. (2022), we inject a noise to the fragment embedding ej according to wj

to control the information flow from G as follows:

ẽj = wjej + (1− wj)µ̂j + ϵ, wj = MLP(ej), ϵ ∼ N (0, (1− wj)Σ̂), (3)

where µ̂j ∈ Rd and Σ̂ ∈ Rd×d denote an empirical mean vector and a diagonal covariance matrix
estimated from {ej}mj=1, respectively. Intuitively, the more a fragment is considered to be irrelevant
for predicting the target property (i.e., small weight w), the more the transmission of the fragment in-
formation is blocked. Let Z = vec([ẽ1 · · · ẽm]) be the embedding of the perturbed fragments, which
is a Gaussian-distributed random variable, i.e., pθ(Z|G) = N (µθ(G),Σθ(G)). Here vec denotes
a vectorization of a matrix, and µθ(G) and Σθ(G) denote the mean and the covariance induced by
the MPNN and the MLP with the noise ϵ, respectively. Assuming that there is no information loss
in the fragments after encoding them, our objective function in Eq. (1) becomes optimization the
parameters θ such that we can still predict the property Y from the perturbed fragment embedding
Z while minimizing the mutual information between G and Z as follows:

min
θ
−I(Z, Y ; θ) + βI(Z,G; θ)︸ ︷︷ ︸

LIB(θ)

(4)

Following Alemi et al. (2017), we can derive the upper bound of LIB(θ) with variational inference:

L(θ, ϕ) := 1

N

N∑
i=1

(
− log qϕ(Yi|Zi) + βDKL(pθ(Z|Gi) ∥ u(Z))

)
, (5)

where qϕ is a property predictor that takes the perturbed fragment embedding Z as an input, u(Z) is
a variational distribution that approximates the marginal pθ(Z), and Zi is drawn from pθ(Z|Gi) =
N (µθ(Gi),Σθ(Gi)) for i ∈ {1, . . . , N}. We optimize θ and ϕ to minimize the objective function
L(θ, ϕ). Note that the variational distribution u(·) is chosen to be Gaussian with respect to Z,
enabling analytic computation of the KL divergence. A detail proof is included in Appendix B.

After training FGIB, we score each fragment Fj = (Vj , Ej) ∈ F with FGIB as follows:

score(Fj) =
1

|S(Fj)|
∑

(G,Y )∈S(Fj)

wj(G,Fj)√
|Vj |

· Y ∈ [0, 1], (6)

where S(Fj) = {(G, Y ) ∈ D : Fj is a subgraph of G} and wj(G,Fj) is an importance of the
fragment Fj in the graph G, computed as Eq. (3). Intuitively, the score quantifies the extent to which
a fragment contributes to achieving a high target property. Specifically, the term wj(G,Fj)/

√
|Vj |
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measures how much a fragment contributes to its whole molecule in terms of the target property,
while the term Y measures the property of the molecule. As the number of nodes of the fragment
becomes larger, FGIB is more likely to consider it important when predicting the property. In order
to normalize the effect of the fragment size, we include

√
|Vj | in the first term. Based on the scores

of all fragments, we choose the top-K fragments as the goal-aware vocabulary S ⊂ F for the
subsequent generation of molecular graphs with desired properties.

3.2 FRAGMENT ASSEMBLY

The next step is to generate molecules with the extracted goal-aware fragment vocabulary. For
generation, we introduce the fragment assembly module, which is a soft-actor critic (SAC) model
that learns to assemble the fragments to generate molecules with desired properties.

We formulate fragment assembly as an RL problem, following Yang et al. (2021). Given a partially
generated molecule gt which becomes a state st at time step t, a policy network adds a fragment
to gt by sequentially selecting three actions: 1) the attachment site of gt to use in forming a new
bond, 2) the fragment F ∈ S to be attached to gt, and 3) the attachment site of F to use in forming
a new bond. Following Yang et al. (2021), we encode the nodes of the graph gt with a GCN (Kipf
& Welling, 2017) as H = GCN(gt) and obtain the graph embedding with sum pooling as hgt =
SumPool(H). Given H and hgt , we parameterize the policy network π with three sub-policy
networks to sequentially choose actions conditioned on previous ones:

pπ1(·|st) = π1(Z1), Z1 = [z1,1 · · · z1,n1 ]
⊤ = f1(hgt ,Hatt) (7)

pπ2
(·|a1, st) = π2(Z2), Z2 = [z2,1 · · · z2,n2

]⊤ = f2(z1,a1
,ECFP(S)) (8)

pπ3
(·|a1, a2, st) = π3(Z3), Z3 = [z3,1 · · · z3,n3

]⊤ = f3(SumPool(GCN(Fa2
)),Hatt,Fa2

), (9)

where Hatt denotes the node embeddings of the attachment sites. We employ multiplicative interac-
tions (Jayakumar et al., 2020) for f1, f2 and f3 to fuse two inputs from heterogeneous spaces. The
first policy network π1 outputs categorical distribution over attachment sites of the current graph gt
conditioned on hgt and Hatt, and chooses the attachment site with a1 ∼ pπ1(·|st). The second pol-
icy network π2 selects the fragment Fa2 ∈ S with a2 ∼ pπ2(·|a1, st), conditioned on the embedding
of the previously chosen attachment site z1,a1 and the ECFPs of all the fragments ECFP(S). Then
we encode the node embeddings of the fragment Fa2

with the same GCN as HFa2
= GCN(Fa2

),
and get the fragment embedding hFa2

= SumPool(HFa2
). The policy network π3 chooses the

attachment site of the fragment Fa2
with a3 ∼ pπ3

(·|a1, a2, st), conditioned on the fragment em-
bedding hFa2

and the attachment site embeddings of the fragment Hatt,Fa2
. Finally, we attach the

fragment Fa2
to the current graph gt with the chosen attachment sites a1 and a3, resulting in a new

graph gt+1. With T steps of sampling actions (a1, a2, a3) using the policy network, we generate a
new molecule gT = G, call the oracle to evaluate the molecule G and calculate the reward rT .

With the SAC objective (Haarnoja et al., 2018), we train the policy network π as follows:

π∗ = argmax
π

∑
t

E(st,at)∼ρπ
[r(st,at) + αH(π(·|st))], (10)

where r(st,at) is a reward function1, H(π(·|st)) is entropy of action probabilities given st with a
temperature parameter α > 0, and ρπ(st,at) is a state-action marginal of the trajectory distribu-
tion induced by the policy π(at|st) = pπ3(a3,t|a2,t, a1,t, st) · pπ2(a2,t|at,1, st) · pπ1(at,1|st) with
at = (a1,t, a2,t, a3,t). In order to sample discrete actions differentiable for backpropagation, we use
Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017) to optimize Eq. (10).

3.3 FRAGMENT MODIFICATION AND DYNAMIC VOCABULARY UPDATE

With the fragment assembly module only, we are unable to generate molecules consisting of frag-
ments not included in the predefined vocabulary, which hinders generation of diverse molecules and
precludes exploration beyond the vocabulary. In order to overcome this problem, we introduce the
fragment modification module, which utilizes a genetic algorithm (GA) to generate molecules that
contain novel fragments.

1We set the intermediate rewards to 0.05, so that only final molecules are evaluated by the oracle.
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Specifically, we employ a graph-based genetic algorithm (GA) (Jensen, 2019). At the first round
of the GA, we initialize the population with the top-P molecules generated by the fragment assem-
bly module. The GA then selects parent molecules from the population and generates offspring
molecules by performing crossover and mutation. As a consequence of the crossover and mutation
operations, the generated offspring molecules contain novel fragments not in the initial vocabulary.
In the subsequent rounds, we choose the top-P molecules generated so far by both SAC and GA to
construct the GA population of the next round.

We iteratively run the fragment assembly module described in Section 3.2 and the fragment mod-
ification in turn, and this generative scheme is referred to as GEAM-static. To further enhance
molecular diversity and novelty, we propose incorporating the fragment extraction module into this
generative cycle. Concretely, in each cycle after the fragment assembly and the fragment modifica-
tion modules generate molecules, FGIB extracts novel goal-aware fragments S ′ from the offspring
molecules as described in Section 3.1. Then the vocabulary is dynamically updated as S ∪S ′. When
the size of the vocabulary becomes larger than the maximum size L, we choose the top-L fragments
as the vocabulary based on the scores in Eq. (6). The fragment assembly module assembles frag-
ments of the updated vocabulary in the next iteration, and we refer to this generative framework as
GEAM. The single generation cycle of GEAM is described in Algorithm 1 in Section A.

4 EXPERIMENTS

We demonstrate the efficacy of our proposed GEAM in two sets of multi-objective molecular opti-
mization tasks that simulate real-world drug discovery problems. We first conduct the experiment
to generate novel molecules that have high binding affinity, drug-likeness, and synthesizability in
Section 4.1. We then experiment on the practical molecular optimization (PMO) benchmark in
Section 4.2. We further conduct extensive ablation studies and qualitative analysis in Section 4.3.

4.1 OPTIMIZATION OF BINDING AFFINITY UNDER QED, SA AND NOVELTY CONSTRAINTS

Experimental setup Following Lee et al. (2023b), we validate GEAM in the five docking score
(DS) optimization tasks under the quantitative estimate of drug-likeness (QED) (Bickerton et al.,
2012), synthetic accessibility (SA) (Ertl & Schuffenhauer, 2009), and novelty constraints. In these
tasks, the goal is to generate novel, drug-like, and synthesizable molecules that have a high absolute
value of the docking score. Following Lee et al. (2023b), we set the property Y as follows:

Y (G) = D̂S(G)× QED(G)× ŜA(G) ∈ [0, 1], (11)

where D̂S and ŜA are the normalized DS and the normalized SA, respectively (Eq. (16)). We use
ZINC250k (Irwin et al., 2012) to train FGIB to predict Y and extract initial fragments. Optimization
performance is evaluated with 3,000 generated molecules using the following metrics. Novel hit
ratio (%) measures the fraction of unique and novel hits among the generated molecules. Here,
novel molecules is defined as the molecules that have the maximum Tanimoto similarity less than
0.4 with the molecules in the training set, and hit is the molecules that satisfy the following criteria:
DS < (the median DS of known active molecules), QED > 0.5 and SA < 5. Novel top 5% DS
(kcal/mol) measures the average DS of the top 5% unique, novel hits. parp1, fa7, 5ht1b, braf and
jak2 are used as the protein targets the docking scores are calculated for. In addition, we evaluate the
fraction of novel molecules, novelty (%), and the extent of chemical space covered, #Circles (Xie
et al., 2023) of the generated hits. The details are provided in Section C.1 and Section C.2.

Baselines REINVENT (Olivecrona et al., 2017) is a SMILES-based RL model with a pretrained
prior. Graph GA (Jensen, 2019) is a GA-based model that utilizes predefined crossover and muta-
tion rules. MORLD (Jeon & Kim, 2020) is an RL model that uses the MolDQN algorithm (Zhou
et al., 2019). HierVAE (Jin et al., 2020a) is a VAE-based model that uses the hierarchical motif
representation of molecules. RationaleRL (Jin et al., 2020b) is an RL model that first identifies
subgraphs that are likely responsible for the target properties (i.e., rationale) and then extends those
to complete molecules. FREED (Yang et al., 2021) is an RL model that assembles the fragments
obtained using CReM (Polishchuk, 2020). PS-VAE (Kong et al., 2022) is a VAE-based model that
uses the mined principal subgraphs as the building blocks. MOOD (Lee et al., 2023b) is a diffusion
model that incorporates an out-of-distribution (OOD) control to enhance novelty. The details are
provided in Section C.2, and the results of additional baselines are included in Table 7 and Table 8.

6



Under review as a conference paper at ICLR 2024

Table 1: Novel hit ratio (%) results. The results are the means and the standard deviations of 3 runs. The
results for the baselines except for RationaleRL and PS-VAE are taken from Lee et al. (2023b). The best results
are highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
REINVENT (Olivecrona et al., 2017) 0.480 (± 0.344) 0.213 (± 0.081) 2.453 (± 0.561) 0.127 (± 0.088) 0.613 (± 0.167)
Graph GA (Jensen, 2019) 4.811 (± 1.661) 0.422 (± 0.193) 7.011 (± 2.732) 3.767 (± 1.498) 5.311 (± 1.667)
MORLD (Jeon & Kim, 2020) 0.047 (± 0.050) 0.007 (± 0.013) 0.880 (± 0.735) 0.047 (± 0.040) 0.227 (± 0.118)
HierVAE (Jin et al., 2020a) 0.553 (± 0.214) 0.007 (± 0.013) 0.507 (± 0.278) 0.207 (± 0.220) 0.227 (± 0.127)
RationaleRL (Jin et al., 2020b) 4.267 (± 0.450) 0.900 (± 0.098) 2.967 (± 0.307) 0.000 (± 0.000) 2.967 (± 0.196)
FREED (Yang et al., 2021) 4.627 (± 0.727) 1.332 (± 0.113) 16.767 (± 0.897) 2.940 (± 0.359) 5.800 (± 0.295)
PS-VAE (Kong et al., 2022) 1.644 (± 0.389) 0.478 (± 0.140) 12.622 (± 1.437) 0.367 (± 0.047) 4.178 (± 0.933)
MOOD (Lee et al., 2023b) 7.017 (± 0.428) 0.733 (± 0.141) 18.673 (± 0.423) 5.240 (± 0.285) 9.200 (± 0.524)

GEAM-static (ours) 39.667 (± 4.493) 16.989 (± 1.959) 38.433 (± 2.103) 27.422 (± 0.494) 42.056 (± 1.855)
GEAM (ours) 40.567 (± 0.825) 20.711 (± 1.873) 38.489 (± 0.350) 27.900 (± 1.822) 42.950 (± 1.117)

Table 2: Novel top 5% docking score (kcal/mol) results. The results are the means and the standard devi-
ations of 3 runs. The results for the baselines except for RationaleRL and PS-VAE are taken from Lee et al.
(2023b). The best results are highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
REINVENT (Olivecrona et al., 2017) -8.702 (± 0.523) -7.205 (± 0.264) -8.770 (± 0.316) -8.392 (± 0.400) -8.165 (± 0.277)
Graph GA (Jensen, 2019) -10.949 (± 0.532) -7.365 (± 0.326) -10.422 (± 0.670) -10.789 (± 0.341) -10.167 (± 0.576)
MORLD (Jeon & Kim, 2020) -7.532 (± 0.260) -6.263 (± 0.165) -7.869 (± 0.650) -8.040 (± 0.337) -7.816 (± 0.133)
HierVAE (Jin et al., 2020a) -9.487 (± 0.278) -6.812 (± 0.274) -8.081 (± 0.252) -8.978 (± 0.525) -8.285 (± 0.370)
RationaleRL (Jin et al., 2020b) -10.663 (± 0.086) -8.129 (± 0.048) -9.005 (± 0.155) No hit found -9.398 (± 0.076)
FREED (Yang et al., 2021) -10.579 (± 0.104) -8.378 (± 0.044) -10.714 (± 0.183) -10.561 (± 0.080) -9.735 (± 0.022)
PS-VAE (Kong et al., 2022) -9.978 (± 0.091) -8.028 (± 0.050) -9.887 (± 0.115) -9.637 (± 0.049) -9.464 (± 0.129)
MOOD (Lee et al., 2023b) -10.865 (± 0.113) -8.160 (± 0.071) -11.145 (± 0.042) -11.063 (± 0.034) -10.147 (± 0.060)

GEAM-static (ours) -12.810 (± 0.124) -9.682 (± 0.026) -12.369 (± 0.084) -12.336 (± 0.157) -11.812 (± 0.055)
GEAM (ours) -12.891 (± 0.158) -9.890 (± 0.116) -12.374 (± 0.036) -12.342 (± 0.095) -11.816 (± 0.067)

Table 3: Novelty (%) results. The results are the means and the standard deviations of 3 runs. The results
for the baselines except for RationaleRL and PS-VAE are taken from Lee et al. (2023b). The best results are
highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
REINVENT (Olivecrona et al., 2017) 9.894 (± 2.178) 10.731 (± 1.516) 11.605 (± 3.688) 8.715 (± 2.712) 11.456 (± 1.793)
MORLD (Jeon & Kim, 2020) 98.433 (± 1.189) 97.967 (± 1.764) 98.787 (± 0.743) 96.993 (± 2.787) 97.720 (± 0.995)
HierVAE (Jin et al., 2020a) 60.453 (± 17.165) 24.853 (± 15.416) 48.107 (± 1.988) 59.747 (± 16.403) 85.200 (± 14.262)
RationaleRL (Jin et al., 2020b) 9.300 (± 0.354) 9.802 (± 0.166) 7.133 (± 0.141) 0.000 (± 0.000) 7.389 (± 0.220)
FREED (Yang et al., 2021) 74.640 (± 2.953) 78.787 (± 2.132) 75.027 (± 5.194) 73.653 (± 4.312) 75.907 (± 5.916)
PS-VAE (Kong et al., 2022) 60.822 (± 2.251) 56.611 (± 1.892) 57.956 (± 2.181) 57.744 (± 2.710) 58.689 (± 2.307)
MOOD (Lee et al., 2023b) 84.180 (± 2.123) 83.180 (± 1.519) 84.613 (± 0.822) 87.413 (± 0.830) 83.273 (± 1.455)

GEAM-static (ours) 84.344 (± 5.290) 86.144 (± 6.807) 79.389 (± 3.903) 87.122 (± 2.163) 86.633 (± 1.817)
GEAM (ours) 88.611 (± 3.107) 89.378 (± 2.619) 84.222 (± 2.968) 90.322 (± 3.467) 89.222 (± 1.824)

Table 4: #Circles of generated hit molecules. The #Circles threshold is set to 0.75. The results are the means
and the standard deviations of 3 runs. The results for the baselines except for RationaleRL and PS-VAE are
taken from Lee et al. (2023b). The best results are highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
REINVENT (Olivecrona et al., 2017) 44.2 (± 15.5) 23.2 (± 6.6) 138.8 (± 19.4) 18.0 (± 2.1) 59.6 (± 8.1)
MORLD (Jeon & Kim, 2020) 1.4 (± 1.5) 0.2 (± 0.4) 22.2 (± 16.1) 1.4 (± 1.2) 6.6 (± 3.7)
HierVAE (Jin et al., 2020a) 4.8 (± 1.6) 0.8 (± 0.7) 5.8 (± 1.0) 3.6 (± 1.4) 4.8 (± 0.7)
RationaleRL (Jin et al., 2020b) 61.3 (± 1.2) 2.0 (± 0.0) 312.7 (± 6.3) 1.0 (± 0.0) 199.3 (± 7.1)
FREED (Yang et al., 2021) 34.8 (± 4.9) 21.2 (± 4.0) 88.2 (± 13.4) 34.4 (± 8.2) 59.6 (± 8.2)
PS-VAE (Kong et al., 2022) 38.0 (± 6.4) 18.0 (± 5.9) 180.7 (± 11.6) 16.0 (± 0.8) 83.7 (± 11.9)
MOOD (Lee et al., 2023b) 86.4 (± 11.2) 19.2 (± 4.0) 144.4 (± 15.1) 50.8 (± 3.8) 81.8 (± 5.7)

GEAM-static (ours) 114.0 (± 2.9) 60.7 (± 4.0) 134.7 (± 8.5) 70.0 (± 2.2) 99.3 (± 1.7)
GEAM (ours) 123.0 (± 7.8) 79.0 (± 9.2) 144.3 (± 8.6) 84.7 (± 8.6) 118.3 (± 0.9)

Results The results are shown in Table 1 and Table 2. GEAM and GEAM-static significantly
outperform all the baselines in all the tasks, demonstrating that the proposed goal-aware extraction
method and the proposed combination of SAC and GA are highly effective in discovering novel,
drug-like, and synthesizable drug candidates that have high binding affinity. GEAM shows com-
parable or better performance than GEAM-static, and as shown in Table 3 and Table 4, the usage
of the dynamic vocabulary update enhances novelty and diversity without degrading optimization
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Table 5: PMO MPO AUC top-100 results. The results are the means of 3 runs. The results for the baselines
are taken from Gao et al. (2022). The best results are highlighted in bold.

Method
Benchmark

Average
Amlodipine Fexofenadine Osimertinib Perindopril Ranolazine Sitagliptin Zaleplon

REINVENT (Olivecrona et al., 2017) 0.608 0.752 0.806 0.511 0.719 0.006 0.325 0.532
Graph GA (Jensen, 2019) 0.622 0.731 0.799 0.503 0.670 0.330 0.305 0.566
STONED (Nigam et al., 2021) 0.593 0.777 0.799 0.472 0.738 0.351 0.307 0.577
GEAM-static (ours) 0.602 0.796 0.828 0.501 0.703 0.346 0.397 0.596
GEAM (ours) 0.626 0.799 0.831 0.514 0.714 0.417 0.402 0.615

Table 6: PMO MPO novelty (%) / #Circles results. The #Circles threshold is set to 0.75. The results are the
means of 3 runs. The best results are highlighted in bold.

Method
Benchmark

Amlodipine Fexofenadine Osimertinib Perindopril Ranolazine Sitagliptin Zaleplon
REINVENT (Olivecrona et al., 2017) 17.0 / 303.7 13.4 / 343.3 25.0 / 452.3 33.1 / 318.3 15.6 / 253.3 15.7 / 398.3 7.6 / 275.3
Graph GA (Jensen, 2019) 61.1 / 258.7 76.2 / 333.3 64.1 / 270.3 44.4 / 278.7 78.2 / 364.7 88.0 / 306.3 41.3 / 272.7
STONED (Nigam et al., 2021) 82.7 / 303.7 91.6 / 330.3 88.1 / 301.3 65.8 / 301.0 92.4 / 316.7 89.5 / 326.3 63.1 / 280.3
GEAM-static (ours) 83.1 / 412.0 97.6 / 397.7 94.5 / 315.3 93.2 / 318.0 68.9 / 256.7 73.7 / 233.0 76.2 / 267.0
GEAM (ours) 84.2 / 424.0 98.0 / 502.0 97.0 / 435.0 95.3 / 377.3 82.7 / 295.3 86.9 / 257.0 81.7 / 336.0

performance. There is a general trend that the more powerful the molecular optimization model, the
less likely it is to generate diverse molecules (Gao et al., 2022), but GEAM effectively overcomes
this trade-off by discovering novel and high-quality goal-aware fragments on-the-fly. Note that the
high novelty values of MORLD are trivial due to its poor optimization performance and very low
diversity. In the same vein, the high diversity values of RationaleRL on the target proteins 5ht1b and
jak2 are not meaningful due to its poor optimization performance and novelty.

4.2 OPTIMIZATION OF MULTI-PROPERTY OBJECTIVES IN PMO BENCHMARK

Experimental setup We validate GEAM in the seven multi-property objective (MPO) optimiza-
tion tasks in the practical molecular optimization (PMO) benchmark (Gao et al., 2022), which are the
tasks in the Guacamol benchmark (Brown et al., 2019) that additionally take the number of oracle
calls into account for realistic drug discovery. The details are provided in Section C.1 and C.3.

Baselines We use the top three models reported by Gao et al. (2022) as our baselines. In addition
to REINVENT (Olivecrona et al., 2017) and Graph GA (Jensen, 2019), STONED (Nigam et al.,
2021) is a GA-based model that manipulates SELFIES strings.

Results As shown in Table 5, GEAM outperform the baselines in most of the tasks, demonstrating
its applicability to various drug discovery problems. Note that GEAM distinctly improves the per-
formance of GEAM-static in some tasks. Furthermore, as shown in Table 6, GEAM shows higher
novelty and diversity than other methods. Especially, GEAM generates more novel and diverse
molecules than GEAM-static, again verifying the dynamic vocabulary update of GEAM effectively
improves novelty and diversity without degrading optimization performance.

4.3 ABLATION STUDIES AND QUALITATIVE ANALYSIS

Effect of the goal-aware fragment extraction To examine the effect of the proposed goal-aware
fragment extraction method with FGIB, in Figure 3(a), we compare FREED with FREED (FGIB),
which is a variant of FREED that uses the fragment vocabulary extracted by FGIB as described in
Section 3.1. FREED (FGIB) outperforms FREED by a large margin, indicating the proposed goal-
aware fragment extraction method with FGIB largely boosts the optimization performance. We
also compare GEAM against GEAM with different fragment vocabularies in Figure 3(b). GEAM
(FREED), GEAM (MiCaM), GEAM (BRICS) are the GEAM variants that use the FREED vocab-
ulary, the MiCaM (Geng et al., 2023) vocabulary, the random BRICS (Degen et al., 2008) vocab-
ulary, respectively. GEAM (property) is GEAM which only uses the property instead of Eq. (6)
when scoring fragments, i.e., score(Fj) =

1
|S(Fj)|

∑
(G,Y )∈S(Fj)

Y . GEAM significantly outper-
forms all the variants, verifying the importance of our goal-aware fragment vocabulary. Notably,
GEAM (property) uses the topmost fragments in terms of the target property, but performs worse
than GEAM because it does not use FGIB to find important subgraphs that contribute to the property.
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Figure 3: (a-c) Ablation studies on FGIB, SAC and GA on the ligand generation task with the target protein
jak2 and (d) the PLIP image showing hydrophobic interactions between an example molecule and jak2.
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Figure 4: The generation progress of GEAM and GEAM-static on the ligand generation task against jak2.

Effect of the fragment assembly and modification To examine the effect of the proposed com-
binatorial use of the assembly and the modification modules, we compare GEAM with GEAM-w/o
A and GEAM-w/o M in Figure 3(c). GEAM-w/o A does not use the assembly module and con-
structs its population as the top-P molecules from ZINC250k, while GEAM-w/o M does not use the
modification module. GEAM-random A uses random fragment assembly instead of SAC. We can
observe GEAM-w/o A significantly underperforms as the fragment modification module alone can-
not take the advantage of the goal-aware fragments, and GEAM-random A largely improves over
GEAM-w/o A. GEAM outperforms all the ablated variants, demonstrating that jointly leveraging
the fragment assembly module and the fragment modification module is crucial to the performance.

Effect of the dynamic vocabulary update To thoroughly examine the effect of the proposed
dynamic update of the fragment vocabulary, we compare the generation progress of GEAM with
that of GEAM-static in Figure 4. GEAM-static-1000 is GEAM-static with the vocabulary size K =
1,000. When the initial vocabulary size K = 300 and the maximum vocabulary size L = 1,000,
the vocabulary size of GEAM increases during generation from 300 to 1,000 as GEAM dynamically
collects fragments on-the-fly while the vocabulary sizes of GEAM-static and GEAM-static-1000 are
fixed to 300 and 1,000, respectively. As expected, GEAM-static-1000 shows the worst optimization
performance since its vocabulary consists of top-1,000 fragments instead of top-300 from the same
training molecules, and shows the highest diversity as it utilizes more fragments than GEAM and
GEAM-static throughout the generation process. GEAM shows the best optimization performance
and novelty thanks to its vocabulary update strategy that constantly incorporates novel fragments
outside the training molecules, as well as improved diversity compared to GEAM-static.

Qualitative analysis We qualitatively analyze the extracted goal-aware fragments. In Figure 3(d),
we present an example of the binding interactions of a molecule and the target protein jak2 using
the protein-ligand interaction profiler (PLIP) (Adasme et al., 2021). Additionally, we show the
fragments of the molecule and w of the fragments calculated by FGIB. We observe that the important
fragments identified by FGIB with high w (red and blue) indeed play crucial role for interacting with
the target protein, while the fragments with low w (gray) are not involved in the interactions. This
analysis validates the efficacy of the proposed goal-aware fragment extraction method using FGIB
and suggests the application of FGIB as a means to improve the explainability of drug discovery.

5 CONCLUSION

In this paper, we proposed GEAM, a fragment-based molecular generative framework for drug dis-
covery. GEAM consists of three modules, FGIB, SAC, and GA, responsible for goal-aware fragment
extraction, fragment assembly, and fragment modification, respectively. In the generative cycle of
the three modules, FGIB provides goal-aware fragments to SAC, SAC provides high-quality pop-
ulation to GA, and GA provides novel fragments to FGIB, enabling GEAM to achieve superior
optimization performance with high molecular novelty and diversity on a variety of drug discovery
tasks. These results highlight its strong applicability to real-world drug discovery.
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Ethics statement Given the effectiveness of GEAM to real-world drug discovery tasks, GEAM
has the possibility to be used maliciously to generate harmful or toxic molecules. This can be
prevented by setting the target properties to comprehensively consider toxicity and other side effects.

Reproducibility statement The code to reproduce the experimental results of this paper is avail-
able at https://anonymous.4open.science/r/GEAM-45EF. Experimental details re-
garding the experiments of Section 4.1 are provided in Section C.1 and Section C.2. Experimental
details regarding the experiments of Section 4.2 are provided in Section C.1 and Section C.3.
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A GENERATION PROCESS OF GEAM

Algorithm 1 A Single Generation Cycle of GEAM

Input: Fragment vocabulary S, termination number of atoms in SAC nSAC,
trained FGIB, population size of GA P , maximum vocabulary size L

▷ Fragment assembly
Initialize s0 = benzene
for t = 0, 1, . . . do

Sample at from pπ1 , pπ2 and pπ3 in Eq. (7-9) with S
Construct st+1 by taking at on st
if no attachment point left in st+1 or nt+1 > nSAC then
T ← t+ 1
break

end if
end for
Calculate the property Y of sT
Set rT ← Y
Train SAC with Eq. (10)
▷ Fragment modification
Initialize a population with the top-P molecules generated so far
Select parent molecules from the population
Perform crossover and mutation to generate an offspring o
Calculate the property Y of o
▷ Fragment extraction
Extract fragments S ′ from o with FGIB
Set S ← the top-L fragments in S ∪ S ′ in terms of Eq. (6)
Output: Generated molecules (sT and o), updated vocabulary S

B PROOF OF EQUATION 5

In this section, we prove that our objective function L(θ, ϕ) in Eq. (5) is the upper bound of the
intractable objective LIB(θ) in Eq. (4). At this point, we only have joint data distribution p(G, Y )
and the stochastic encoder pθ(Z|G) = N (µθ(G),Σθ(G)).

Proof. Following standard practice in Information Bottleneck literature (Alemi et al., 2017), we
assume Markov Chains so that joint distribution pθ(G,Z, Y ) factorizes as:

pθ(G,Z, Y ) = pθ(Z|G, Y )p(Y |G)p(G) = pθ(Z|G)p(Y |G)p(G). (12)

Firstly, we derive the upper bound of the mutual information between Z and Y :

I(Z, Y ; θ) =

∫ ∫
pθ(y, z) log

pθ(y, z)

p(y)pθ(z)
dydz =

∫ ∫
pθ(y, z) log

pθ(y|z)
p(y)

dydz,

where y and z are realization of random variables Y and Z, respectively. The posterior is fully
defined as:

pθ(y|z) =
∑
g

pθ(g, y|z) =
∑
g

p(y|g)pθ(g|z) =
∑
g

p(y|g)pθ(z|g)p(g)
pθ(z)

,

where g is a realization of the random variable G. Since this posterior pθ(y|z) is intractable, we
utilize a variational distribution qϕ(y|z) to approximate the posterior. Since KL divergence is always
non-negative, we get the following inequality:

DKL(pθ(Y |Z = z) ∥ qϕ(Y |Z = z)) ≥ 0⇒
∫

pθ(y|z) log pθ(y|z)dy ≥
∫

pθ(y|z) log qϕ(y|z)dy.
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With this inequality, we get the lower bound of I(Z, Y ):

I(Z, Y ; θ) =

∫ ∫
pθ(y, z) log

pθ(y|z)
p(y)

dydz

≥
∫ ∫

pθ(y, z) log
qϕ(y|z)
p(y)

dydz

=

∫ ∫
pθ(y, z) log qϕ(y|z)dydz −

∫ ∫
pθ(y, z) log p(y)dydz

=

∫ ∫
pθ(y, z) log qϕ(y|z)dydz −

∫
log p(y)

∫
pθ(y, z)dzdy

=

∫ ∫
pθ(y, z) log qϕ(y|z)dydz −

∫
p(y) log p(y)dy

=

∫ ∫
pθ(y, z) log qϕ(y|z)dydz +H(Y ),

where H(Y ) is the entropy of labels Y . Since Y is ground truth label, it is independent of our
parameter θ. It means the entropy is constant for our optimization problem and thus we can ignore
it. By the assumption in Eq. (12),

pθ(y, z) =
∑
g

pθ(g, y, z) =
∑
g

p(g)p(y|g)pθ(z|g).

Thus, we get the lower bound as follows:

I(Z, Y ; θ) ≥
∑
g

∫ ∫
p(g)p(y|g)pθ(z|g) log qϕ(y|z)dydz. (13)

Now, we derive the upper bound of the mutual information between Z and G:

I(Z,G; θ) =
∑
g

∫
pθ(g, z) log

pθ(z|g)
pθ(z)

dz

=
∑
g

∫
pθ(g, z) log pθ(z|g)dz −

∑
g

∫
pθ(g, z) log pθ(z)dz

=
∑
g

∫
pθ(g, z) log pθ(z|g)dz −

∫
pθ(z) log pθ(z)dz. (14)

The marginal distribution pθ(z) is intractable since

pθ(z) =
∑
g

pθ(z|g)p(g).

We utilize another variational distribution u(z) that approximate the marginal. Since KL divergence
is always non-negative,

DKL(pθ(Z) ∥ r(Z)) ≥ 0⇒
∫

pθ(z) log pθ(z)dz ≥
∫

pθ(z) log u(z)dz.

Combining this inequality with Eq. (14), we get the upper bound as:

I(Z,G; θ) ≤
∑
g

∫
pθ(g, z) log pθ(z|g)dz −

∫
pθ(z) log u(z)dz

=
∑
g

∫
pθ(g, z) log pθ(z|g)dz −

∫ ∑
g

pθ(z, g) log u(z)dz

=
∑
g

∫
pθ(z|g)p(g) log

pθ(z|g)
u(z)

. (15)
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Combining Eq. (13) and Eq. (15), and using the empirical data distribution p(g, y) =
1
N

∑N
n=1 δGi

(g)δYi
(y), we get

LIB(θ) = −I(Z, Y ; θ) + βI(Z,G; θ)

≤ −
∫ ∫

p(g)p(y|g)pθ(z|g)dydz

+ β
∑
g

∫
pθ(z|g)p(g) log

pθ(z|g)
u(z)

≈ 1

N

N∑
i=1

[∫
−pθ(z|Gi) log qϕ(Yi|z) + βpθ(z|Gi) log

pθ(z|g)
u(z)

dz

]

=
1

N

N∑
i=1

Epθ(Z|Gi)[− log qϕ(Yi|Z)] + βDKL(pθ(Z|Gi) ∥ u(Z))

≈ 1

N

N∑
i=1

(− log qϕ(Yi|Zi) + βDKL(pθ(Z|Gi) ∥ u(Z)))

= L(θ, ϕ),

where we sample Zi from N (µθ(Gi),Σθ(Gi)) = pθ(Z|Gi). Therefore, we conclude that L(θ, ϕ)
is the upper bound of LIB(θ).

C EXPERIMENTAL DETAILS

C.1 COMMON EXPERIMENTAL DETAILS

Here, we describe the common implementation details of GEAM throughout the experiments. Fol-
lowing Yang et al. (2021), Lee et al. (2023b) and Gao et al. (2022), we used the ZINC250k (Irwin
et al., 2012) dataset with the same train/test split used by Kusner et al. (2017) in all the experiments.
To calculate novelty, we used the RDKit (Landrum et al., 2016) library to calculate similarities be-
tween Morgan fingerprints of radius 2 and 1024 bits. To calculate #Circles, we used the public code2

and set the threshold to 0.75 as suggested by Xie et al. (2023).

The fragment extraction module Regarding the architecture of FGIB, we set the number of mes-
sage passing in the MPNN to 3 and the number of layers of the MLP to 2. Given the perturbed
fragment embedding Z, the property predictor qϕ first get the perturbed graph embedding with aver-
age pooling and pass it through an MLP of 3 layers as Ŷ = MLPϕ(AvgPool(Z)). FGIB was trained
to 10 epochs in each of the task with a learning rate of 1e−3 and β of 1e−5. The initial vocabulary
size was set to K = 300. Regarding the dynamic vocabulary update, the maximum vocabulary
update in a single cycle was set to 50 and the maximum vocabulary size was set to L = 1,000.
Following Yang et al. (2021), fragments that induce the sanitization error of the RDKit (Landrum
et al., 2016) library are filtered out in the fragment extraction step.

The fragment assembly module Following Yang et al. (2021), we allowed GEAM to randomly
generate molecules during the first 4,000 SAC steps to collect experience. Note that unlike Yang
et al. (2021), we included these molecules in the final evaluation to equalize the total number of
oracle calls for a fair comparison. SAC starts each of the generation episode from benzene with
attachment points on the ortho-, meta-, para-positions, i.e., c1(*)c(*)ccc(*)c1. We set the
termination number of atoms in the SAC to nSAC = 40, so that an episode ends when the size of the
current molecule exceeds 40. Other architectural details followed Yang et al. (2021).

The fragment modification module The population size of the GA was set to P = 100 and the
mutation rate was set to 0.1. The minimum number of atoms of generated molecules was set to 15.
The crossover and the mutation rules followed those of Jensen (2019).

2https://openreview.net/forum?id=Yo06F8kfMa1
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C.2 OPTIMIZATION OF BINDING AFFINITY UNDER QED, SA AND NOVELTY CONSTRAINTS

We used the RDKit (Landrum et al., 2016) library to calculate QED and SA. We used QuickVina
2 (Alhossary et al., 2015), a popular docking program, to calculate docking scores with the exhaus-
tiveness of 1. Following Lee et al. (2023b), we first clip DS in the range [−20, 0] and compute D̂S
and ŜA to normalize each of the properties in Eq. (11) as follows:

D̂S = −DS
20

, ŜA =
10− SA

9
. (16)

In this way, each property in Eq. (11), D̂S, QED, ŜA, as well as the total property Y are confined to
the range [0, 1].

For the baselines, we mostly followed the settings in the respective original paper. For RationaleRL,
we used the official code3. Following the instruction, we extracted the rationales for parp1, fa7,
5ht1b, braf and jak2, respectively, then filtered them out with the QED > 0.5 and the SA < 5
constraints. Each rationale was expanded for 200 times and the model was trained for 50 iterations
during the finetune. To generate 3,000 molecules, each rationale was expanded for ⌊ 3,000

# of rationales⌋
times, then 3,000 molecules were randomly selected. For FREED, we used the official code4 and
used the predictive error-PER model. We used the provided vocabulary of 91 fragments extracted
by CReM (Polishchuk, 2020) with the ZINC250k dataset and set the target property to Eq. (11).
Note that this was referred to as FREED-QS in the paper of Lee et al. (2023b). For PS-VAE,
we used the official code5 and trained the model with the target properties described in Eq. (11),
then generated 3,000 molecules with the trained model. For MiCaM, we used the official code6 to
extract fragments from the ZINC250k training set. As this resulted in a vocabulary of large size and
worsened the performance when applied to GEAM, we randomly selected K = 300 to construct the
final vocabulary. The code regarding goal-directed generation is not publicly available at this time.

C.3 OPTIMIZATION OF MULTI-PROPERTY OBJECTIVES IN PMO BENCHMARK

We directly used the score function in each of the tasks as the property function Y of FGIB. We
set the number of the GA reproduction per one SAC episode to 3. For the baselines, the results in
Table 5 were taken from Gao et al. (2022) and the novelty and the #Circles results in Table 6 were
obtained using the official repository of Gao et al. (2022)7.

3https://github.com/wengong-jin/multiobj-rationale
4https://github.com/AITRICS/FREED
5https://github.com/THUNLP-MT/PS-VAE
6https://github.com/MIRALab-USTC/AI4Sci-MiCaM
7https://github.com/wenhao-gao/mol_opt
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Table 7: Novel hit ratio (%) results of additional baselines. The results are the means and the standard
deviations of 3 runs. The results for the baselines are taken from Lee et al. (2023b). The best results are
highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
GCPN (You et al., 2018) 0.056 (± 0.016) 0.444 (± 0.333) 0.444 (± 0.150) 0.033 (± 0.027) 0.256 (± 0.087)
JTVAE (Jin et al., 2018) 0.856 (± 0.211) 0.289 (± 0.016) 4.656 (± 1.406) 0.144 (± 0.068) 0.815 (± 0.044)
GraphAF (Shi et al., 2019) 0.689 (± 0.166) 0.011 (± 0.016) 3.178 (± 0.393) 0.956 (± 0.319) 0.767 (± 0.098)
GA+D (Nigam et al., 2020) 0.044 (± 0.042) 0.011 (± 0.016) 1.544 (± 0.273) 0.800 (± 0.864) 0.756 (± 0.204)
MARS (Xie et al., 2020) 1.178 (± 0.299) 0.367 (± 0.072) 6.833 (± 0.706) 0.478 (± 0.083) 2.178 (± 0.545)
GEGL (Ahn et al., 2020) 0.789 (± 0.150) 0.256 (± 0.083) 3.167 (± 0.260) 0.244 (± 0.016) 0.933 (± 0.072)
GraphDF (Luo et al., 2021) 0.044 (± 0.031) 0.000 (± 0.000) 0.000 (± 0.000) 0.011 (± 0.016) 0.011 (± 0.016)
LIMO (Eckmann et al., 2022) 0.455 (± 0.057) 0.044 (± 0.016) 1.189 (± 0.181) 0.278 (± 0.134) 0.689 (± 0.319)
GDSS (Jo et al., 2022) 1.933 (± 0.208) 0.368 (± 0.103) 4.667 (± 0.306) 0.167 (± 0.134) 1.167 (± 0.281)

GEAM (ours) 40.567 (± 0.825) 20.711 (± 1.873) 38.489 (± 0.350) 27.900 (± 1.822) 42.950 (± 1.117)

Table 8: Novel top 5% docking score (kcal/mol) results of additional baselines. The results are the means
and the standard deviations of 3 runs. The results for the baselines are taken from Lee et al. (2023b). The best
results are highlighted in bold.

Method
Target protein

parp1 fa7 5ht1b braf jak2
GCPN (You et al., 2018) -7.464 (± 0.089) -7.024 (± 0.629) -7.632 (± 0.058) -7.691 (± 0.197) -7.533 (± 0.140)
JTVAE (Jin et al., 2018) -9.482 (± 0.132) -7.683 (± 0.048) -9.382 (± 0.332) -9.079 (± 0.069) -8.885 (± 0.026)
GraphAF (Shi et al., 2019) -9.327 (± 0.030) -7.084 (± 0.025) -9.113 (± 0.126) -9.896 (± 0.226) -8.267 (± 0.101)
GA+D (Nigam et al., 2020) -8.365 (± 0.201) -6.539 (± 0.297) -8.567 (± 0.177) -9.371 (± 0.728) -8.610 (± 0.104)
MARS (Xie et al., 2020) -9.716 (± 0.082) -7.839 (± 0.018) -9.804 (± 0.073) -9.569 (± 0.078) -9.150 (± 0.114)
GEGL (Ahn et al., 2020) -9.329 (± 0.170) -7.470 (± 0.013) -9.086 (± 0.067) -9.073 (± 0.047) -8.601 (± 0.038)
GraphDF (Luo et al., 2021) -6.823 (± 0.134) -6.072 (± 0.081) -7.090 (± 0.100) -6.852 (± 0.318) -6.759 (± 0.111)
LIMO (Eckmann et al., 2022) -8.984 (± 0.223) -6.764 (± 0.142) -8.422 (± 0.063) -9.046 (± 0.316) -8.435 (± 0.273)
GDSS (Jo et al., 2022) -9.967 (± 0.028) -7.775 (± 0.039) -9.459 (± 0.101) -9.224 (± 0.068) -8.926 (± 0.089)

GEAM (ours) -12.891 (± 0.158) -9.890 (± 0.116) -12.374 (± 0.036) -12.342 (± 0.095) -11.816 (± 0.067)

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 OPTIMIZATION OF BINDING AFFINITY UNDER QED, SA AND NOVELTY CONSTRAINTS

We include the novel hit ratio and the novel top 5% DS results of the additional baselines in Table 7
and Table 8. As shown in the tables, the proposed GEAM outperforms all the baselines by a large
margin.

We also provide examples of the generated novel hits by GEAM for each protein target in Figure 5.
The examples were collected without curation.

D.2 OPTIMIZATION OF MULTI-PROPERTY OBJECTIVES IN PMO BENCHMARK

We provide examples of the generated top-5 molecules by GEAM for each task in Figure 6. The
examples are from a single run with a random seed for each task.
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Figure 5: The examples of the generated novel hits by GEAM. The values of docking score (kcal/mol),
QED, SA, and the maximum similarity with the training molecules are provided at the bottom of each molecule.

18



Under review as a conference paper at ICLR 2024

A
m
lo
di
pi
ne

Fe
xo
fe
na
di
ne

O
si
m
er
tin
ib

Pe
ri
nd
op
ri
l

R
an
ol
az
in
e

Si
ta
gl
ip
tin

Z
al
ep
lo
n

Figure 6: The reference molecules of the PMO MPO tasks and the examples of the generated top-5
molecules from a single run of GEAM. The scores are provided at the bottom of each generated molecule.
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