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Abstract. This abstract outline ongoing research using the Solar-SIMS 
Agent-Based Model (ABM) to explore rooftop solar panel adoption in Amster-
dam. The model simulates household decision-making using the HUMAT frame-
work, integrating cognitive dissonance, descriptive and injunctive social norms, 
and financial feasibility. Solar-SIMS captures complex social and economic dy-
namics that influence solar adoption, emphasizing the role of peer influence and 
policy interventions. Running from 2023 to 2030, the model provides insights 
into adoption patterns at the neighborhood level, revealing disparities across so-
cio-economic groups and evaluating different policy scenarios. Expected results 
include empirical observations of spatial and temporal adoption patterns, offering 
policy recommendations for promoting equitable energy transitions. 
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1 Introduction 

The shift towards renewable energy is essential for tackling the global climate crisis. 
Cities are pivotal in this change, with rooftop solar energy providing an accessible and 
scalable solution.  Amsterdam aims for a 55% reduction in CO₂ emissions by 2030 and 
climate neutrality by 2050 (City of Amsterdam, 2020). Rooftop solar panels are a key 
part of this strategy, given the city’s significant solar potential—estimated at over 6.9 
PJ annually, enough to supply nearly 50% of its electricity demand [1]. However, adop-
tion patterns reveal that solar panels remain predominantly accessible to wealthier 
households, leaving low- and middle-income families underserved [2]. This disparity 
is visible in neighborhoods across the city, where clusters of solar panels on affluent 
homes contrast sharply with the rooftops of less privileged areas. This not only limits 
Amsterdam’s ability to meet its climate goals but also exacerbates energy inequality, 
underscoring the need for a comprehensive model that addresses the social, economic, 
and cognitive dynamics influencing adoption [3, 4]. Several agent-based models 
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(ABMs) have explored social influence, socio-economic disparities, and cognitive fac-
tors in household energy transitions [5–8]. These models highlight how adoption be-
haviors are shaped by both social and spatial factors [9].  

The Solar-SIMS agent-based model (ABM) simulates household decision-making 
for adopting rooftop solar in a conceptual neighborhood layer. Here, ‘neighborhood’ 
denotes spatial proximity—households observe nearby rooftops and are influenced by 
visible solar installations [8, 10] . This spatial approach enhances social network dy-
namics, highlighting how observable adoption influences behavior. This spatial per-
spective emphasizes how observable adoption shapes behavior in conjunction with so-
cial network dynamics. Solar-SIMS captures how individual decisions evolve under the 
influence of social networks, cognitive dissonance, and policy interventions, offering 
insights into neighborhood-level adoption patterns from 2023 to 2030. By identifying 
the social and economic factors that drive adoption, Solar-SIMS supports the design of 
more equitable energy policies [11]. 

Through the framework, households evaluate and update their decision-making 
based on satisfaction across three motives. When their motives conflict, agents experi-
ence cognitive dissonance, which drives them to reduce this tension by interacting with 
peers or adjusting their behavior. In this context, cognitive dissonance refers to the psy-
chological discomfort agents experience when their actions (e.g., not adopting solar 
panels) conflict with their values or social expectations (e.g., wanting to be environ-
mentally conscious or keep up with neighbors) [8, 12].  

2 Conceptual Framework 

Solar-SIMS applies the HUMAT framework, which draws upon the established  Cog-
nitive Dissonance Theory, Social Contagion Theory, Theory of Planned Behavior 
(TPB) and diffusion of innovations theory [4, 13, 14]. Agents are embedded in a social 
network that captures both spatial and social influences. Spatial neighbors are concep-
tually defined as nearby rooftops that agents can observe within a defined radius. Alt-
hough the model does not explicitly embed GIS-based data from Amsterdam districts, 
it simulates how visible solar installations are in the immediate surroundings. On the 
other hand, social peers represent individuals with whom agents interact directly, thus 
connecting to others within their network.   

HUMAT agents main assessment is their satisfaction through three main motives: 
experiential (financial feasibility), social (peer influence), and values-based (environ-
mental awareness), which guide their decision to adopt rooftop solar panels. The expe-
riential motive pertains to financial feasibility, emphasizing income, subsidies, and the 
agent’s capability to invest in solar panels. The value-based motive reflects environ-
mental consciousness and the inclination to act according to personal environmental 
ethics and a sense of duty. Both of these motives are static. Lastly, the social motive is 
influenced by dynamic social interactions with spatial neighbors and peers, where de-
scriptive norms emerge from observing others’ adoption behaviors, and direct social 
pressures shape injunctive norms.  
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When these motives are not aligned, agents experience a conflict between their mo-
tives and actions; they seek to reduce this internal tension by adjusting their perceptions, 
modifying their behavior, or interacting with their social network for validation and 
information [8].  This tension can arise from social dilemmas (peer pressure or unmet 
social needs) or non-social dilemmas (financial constraints or misalignment with envi-
ronmental values). For instance, an agent with strong environmental awareness yet fac-
ing financial limitations might feel cognitive dissonance upon seeing neighbors widely 
adopting solar energy. This situation can create conflicting motivations and result in 
delayed decisions. On the other hand, a robust blend of social and values-driven moti-
vations may offset financial barriers, promoting adoption even in the face of economic 
difficulties. 

Additionally, social influence is critical in the model, shaping adoption decisions 
through descriptive and injunctive norms [14, 15]. Descriptive norms influence house-
holds by passively observing solar adoption trends in their surrounding agents, while 
injunctive norms arise from direct peer interactions that create social pressure to con-
form. Solar-SIMS agents are embedded in a social network, which consists of neigh-
bors and peers who influence decision-making in distinct ways [4]. Spatial neighbors 
are defined by physical proximity, influencing others primarily through descriptive 
norms, where visible solar installations in the neighborhood indicate what is typical and 
desirable. This influence grows as more neighbors adopt solar panels, reinforcing an 
agent’s perception of solar adoption as a social norm. On the other hand, peers represent 
individuals with whom the agents communicate (friends or colleagues). They influence 
agents through injunctive norms, exerting direct social pressure to conform [4, 9]. Un-
like passive observation, personal recommendations and validation from peers which 
often have a more substantial impact on individual decisions [2, 13].  

At the conceptual level,  the interaction between social norms and agents' evolving 
motives creates feedback loops that lead to emergent neighborhood-level adoption pat-
terns [16]. These patterns provide insights into the clustering of adoption behavior and 
the conditions under which adoption spreads more rapidly [4, 5]. Solar-SIMS explores 
how these motives interact and evolve, revealing adoption patterns across neighbor-
hoods and socio-economic groups. The framework highlights key behavioral dynamics 
often overlooked in traditional models by focusing on the interaction between social 
influence, financial capacity, and environmental values. These patterns offer valuable 
insights for policymakers designing targeted interventions to promote equitable and 
widespread adoption. 

3 Process Overview 

This section explains a high-level description of the key processes and sequence of 
actions in Solar-SIMS, focusing on agent behaviors, interactions, and the key steps of 
the simulation. Fig 1. shows how an agent makes decisions. It all starts with initializing 
and evaluating motives. Next, the agent checks whether adoption is feasible by consid-
ering whether the roof is suitable, whether there are any building regulations to follow, 
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and who owns the property. Finally, the agent either decides to adopt or waits and re-
visits the decision later. 

 
Fig. 1. Conceptual Flowchart of Solar-SIMS Decision-Making. 
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This flowchart outlines the decision-making steps in Solar-SIMS, focusing on five 
stages: initialization, motive evaluation, dilemma resolution, adoption intent, and post-
decision updates. During initialization, agents are characterized by socio-economic, so-
cio-psychological, house-related, and social network attributes. Socio-economic traits 
include income, education (linked to environmental awareness), migration background, 
and house ownership. Socio-psychological traits reflect environmental awareness, the 
importance of motives, and social norm perceptions. House characteristics, such as roof 
suitability, building regulations, and building type, determine adoption feasibility. So-
cial network attributes capture the size and strength of influence from peers and neigh-
bors. Agents evaluate satisfaction in experiential, social, and values-based motives 
while assessing adoption feasibility. If cognitive dissonance arises, agents resolve it by 
adjusting perceptions or interacting with peers. Post-decision updates create feedback 
loops that influence future decisions and shape neighborhood-level adoption patterns 
over time.  

3.1 Overview of Agent Behavior 

Solar-SIMS simulates household agents' decision-making on rooftop solar adoption 
over 28 quarterly time steps from 2023 to 2030. Each agent represents a household in 
an Amsterdam neighborhood with distinct attributes (e.g., income, environmental 
awareness, social network connections) and decision motives (experiential, social, and 
values-based).  

Agent behavior is shaped by internal motives, external social influences, and policy 
interventions, which interact dynamically over time to drive decision-making. First, 
internal motives, including financial feasibility (experiential motive) and environmen-
tal values (values-based motive). These motives reflect agents’ long-term characteris-
tics—financial capacity and personal commitment to sustainability. For example, 
agents with high environmental awareness are more likely to adopt, provided they have 
sufficient financial resources [2, 5]. Second, social influences are through descriptive 
norms (observation of nearby solar installations) and injunctive norms (direct interac-
tions with social peers, such as friends or colleagues). The strength of social influence 
depends on the credibility and similarity of peers [2, 6, 9]. Lastly, policy interventions, 
like economic incentives and communication campaigns, can modify agents' financial 
feasibility or enhance their social awareness. These factors interact during each decision 
cycle, resulting in dynamic shifts in agent behavior and higher level patterns.  

3.2 Stepwise Process 

The agent decision-making process in Solar-SIMS follows a stepwise sequence, as il-
lustrated in Fig 1. Each timestep consists of several key stages: initialization and motive 
evaluation, cognitive dissonance check, adoption feasibility check, and post-decision 
updates. The process begins with initialization and motive evaluation, during which 
agents update their attributes and evaluate their satisfaction with experiential, social, 
and values-based motives. These updated motives reflect the agent’s internal prefer-
ences and external circumstances. 
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At each time step, cognitive dissonance may arise from conflicting motivations re-
garding adoption; agents seek resolution by interacting with a social peer from their 
network. They then re-evaluate their motives for adoption using an importance-
weighted sum, where each weight signifies its significance in the agent’s decision-mak-
ing. If overall satisfaction exceeds the adoption threshold, the agent assesses feasibility 
before installing solar panels. Lastly, agents must pass a technical feasibility check to 
meet key external adoption conditions if they choose to adopt. First, the household's 
ownership status is confirmed—only homeowners are eligible to proceed with adop-
tion. Additionally, the roof's suitability is evaluated against criteria such as adequate 
space, optimal orientation, and structural integrity to support solar panel installation. 
Finally, agents must comply with local building regulations, which may restrict instal-
lations in areas with heritage protections or specific limits. If any of these feasibility 
criteria are not met, agents must delay their adoption decision to a later time step. 

The final step is the post-decision update, where agents adjust their satisfaction lev-
els and perceptions of social norms based on their evaluations. These updates create 
feedback loops that reinforce social norms and promote future adoption within the 
neighborhood. Over time, this process drives the emergence of neighborhood-level 
adoption patterns, revealing clusters of rapid adoption and highlighting the socio-eco-
nomic factors influencing solar adoption rates.  [6]. 

4 Model Calibration and Sensitivity Analysis 

Calibration and sensitivity analysis are essential in ensuring the validity, robustness, 
and reliability of Solar-SIMS model outcomes. These processes refine agent behaviors, 
verify the accuracy of adoption patterns, and identify key parameters that influence 
model dynamics. Calibration will rely on real-world data from the WoON Dutch survey 
(2021), which provides population attributes of Amsterdam. This ensures that the initial 
agent population accurately represents the diversity of households in Amsterdam dis-
tricts and building characteristics (data on roof suitability, ownership status, and build-
ing type). We will adjust the model until it closely aligns with the real-world data re-
garding how many people adopted solar panels in each district, when they adopted 
them, and where they were located. Sensitivity analysis will be carried out to evaluate 
the robustness of the model outcomes. Key parameters will be systematically varied to 
assess their impact on adoption patterns, neighborhood-level clustering in social net-
work models, policy effects, and decision-making thresholds. Additional parameters, 
such as agent heterogeneity, policy duration, and time lag in decision-making, will help 
identify critical conditions under which adoption accelerates or stagnates. This com-
prehensive analysis will illustrate the robustness of model outcomes and highlight the 
key drivers of adoption, ensuring that simulation results remain consistent across mul-
tiple scenarios [7, 8]. 
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5 Expected Results 

Solar-SIMS is expected to generate insights into the spatial and temporal patterns of 
rooftop solar adoption at the neighborhood level, revealing how social influence, finan-
cial capacity, and policy interventions shape adoption decisions. Solar-SIMS is ex-
pected to generate insights into rooftop solar adoption's spatial and temporal patterns, 
revealing how neighborhood effects and reinforcing social norms drive clustering be-
havior. The model will illustrate conditions under which spatial clusters of adoption 
emerge, creating areas of high adoption while leaving others underserved. The model 
will also reveal adoption temporal dynamics, specifically how it accelerates after reach-
ing tipping points to see the strength of descriptive and injunctive norms. 

 Policy scenario simulations will assess how targeted interventions, such as finan-
cial incentives or communication campaigns, affect adoption outcomes [9, 17]. For ex-
ample, increasing subsidies or focusing communication on neighborhoods with low 
adoption could trigger tipping points, boosting adoption and reducing spatial dispari-
ties. The results will help identify leverages for system transformation, tipping points 
and the most effective combinations of policies to encourage equitable adoption and 
maximize solar potential [18]. 

 The model is expected to highlight significant socio-economic disparities in adop-
tion patterns as previous studies have shown [2, 7]. While wealthier households are 
more likely to adopt early due to their greater financial capacity, low- and middle-in-
come households may experience delays or remain excluded, even with high environ-
mental awareness. This disparity highlights the need for targeted policy interventions, 
such as subsidies and communication campaigns, to reduce adoption gaps and ensure a 
fair energy transition [7].  

Unlike traditional economic models, Solar-SIMS emphasizes the role of social in-
fluence and cognitive processes, providing a more comprehensive understanding of 
adoption dynamics through the HUMAT cognitive framework while also focusing on 
social influence. The model’s conceptual framework is based on real-world data, which 
makes it highly relevant for policymakers. Moreover, the framework can be adapted to 
other urban contexts, enabling comparative studies across cities with different socio-
economic and regulatory environments. Lastly, Solar-SIMS contributes to the growing 
field of energy justice by exploring the intersection of technology adoption and social 
equity. 

Disclosure of Interests. This study was conducted as part of the MSc program at Wageningen 
University, and the authors have no competing interests to declare that are relevant to the content 
of this article. 
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