
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRANSFORMERS CAN LEARN CONNECTIVITY IN
SOME GRAPHS BUT NOT OTHERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Highly competent reasoning capability is essential to ensure the factual correct-
ness of the responses of transformer-based Large Language Models (LLMs),
and robust reasoning about transitive relations is instrumental in many settings,
such as causal inference. Therefore, it is essential to investigate the capabil-
ity of transformers in the task of inferring transitive relations (e.g., knowing
A causes B and B causes C, we can infer that A causes C). The task of in-
ferring transitive relations is equivalent to the task of connectivity in directed
graphs (e.g., knowing there is a path from A to B, and there is a path from
B to C, we can infer that there is a path from A to C). Past research focused
on whether transformers can learn to infer transitivity from in-context examples
provided in the input prompt. However, transformers’ capability to infer tran-
sitive relations from training examples and how scaling affects this ability is
unexplored. In this study, we endeavor to answer this question by generating
directed graphs to train transformer models of varying sizes and evaluate their
ability to infer transitive relations for various graph sizes. Our findings sug-
gest that transformers are capable of learning connectivity on “grid-like” directed
graphs where each node can be embedded in a low-dimensional subspace, and
connectivity is easily inferable from the embeddings of the nodes. We find that
the dimensionality of the underlying grid graph is a strong predictor of trans-
formers’ ability to learn the connectivity task, where higher-dimensional grid
graphs pose a greater challenge than low-dimensional grid graphs. In addition,
we observe that increasing the model scale leads to increasingly better gener-
alization to infer connectivity over grid graphs. However, if the graph is not a
grid graph and contains many disconnected components, transformers struggle to
learn the connectivity task, especially when the number of components is large.
We also find that transformers benefit more from increasing the graph size than
increasing the model size. The code of our experiments is publicly available at
github.com/anonymoususer437/transformers graph connectivity.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs), with their impressive generative capabilities,
are widely adopted in various generative AI applications. Improving the logical reasoning capabili-
ties of LLMs is essential for competent performance on complex reasoning problems. Transitivity is
a fundamental property of many real-world relations (e.g., knowing A causes B and B causes C, we
can infer that A causes C). Reasoning over transitive relations is equivalent to many other reasoning
tasks such as graph connectivity (Fatemi et al., 2024), question answering (Murphy et al., 2025),
deductive reasoning (Saparov et al., 2025; Hoppe et al., 2025), mathematical reasoning (Trinh &
Luong, 2024), logical reasoning (Sullivan & Elsayed, 2024; Gaur & Saunshi, 2024), temporal rea-
soning about multiple events (Fatemi et al., 2025), program analysis (Ceka et al., 2025) as well as
causal reasoning (Vashishtha et al., 2025; Jin et al., 2023; 2024). Existing studies primarily focus on
augmenting the ability of LLMs to reason about transitive relations using in-context examples (i.e.,
about information given in the prompt; Vashishtha et al., 2025). However, LLMs learn vast quan-
tities of information from the pre-training corpus, and whether transformers (Vaswani et al., 2017;
Joshi, 2025) are able to reason about transitive relations from examples given during pretraining is
relatively unexplored.

1

https://github.com/anonymoususer437/transformers_graph_connectivity
https://github.com/anonymoususer437/transformers_graph_connectivity

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Examples of 2 and 3-dimensional grid graphs with 8 and 27 nodes, respectively.

To assess the capability of transformers in learning logical reasoning from training examples gener-
ally, it is essential to investigate their ability to infer transitive relations. This is equivalent to learning
connectivity or path-finding in directed graphs. The problem of connectivity between graph nodes
has been studied in recent work (Vashishtha et al., 2025; Sanford et al., 2024). Reasoning over
transitive relations is an instrumental capability in many reasoning tasks, such as inferring causation
in causal reasoning. In causal discovery, the edges of a directed graph denote causal relationships,
in which case, finding a path in this graph is equivalent to inferring a causal relationship between
two events (Sheth et al., 2025; Joshi et al., 2024). In Sheth et al. (2025), the edges of the directed
graph are provided as in-context examples in the input prompt of LLMs with a path-finding query
(i.e., “A causes B, B causes C. Does A cause C?”). However, it is crucial to investigate the ability
of transformers to infer transitive relations from training, as the LLM heavily relies on knowledge
acquired during pretraining for downstream applications. Some recent studies (Zečević et al., 2023;
Zhang et al., 2024) claim that transformers learn to memorize patterns without understanding the
logical connections between entities (e.g., if “lightning” appears often in the context of “thunder”
in the training corpus, transformers will likely learn that there is a causal relation between the two
entities, even if no such relation exists). Keeping this pattern-learning phenomenon of transformers
in mind, it is essential to investigate the extent to which transformers can generalize when reasoning
about transitivity.

In this work, we aim to understand whether transformers can learn to infer transitivity, and equiv-
alently, whether they can learn connectivity over directed graphs when connectivity information
between node pairs is provided as individual training examples during pre-training. We hypothe-
size that transformers are more likely to learn to infer connectivity over graphs whose nodes are
embeddable into a low-dimensional subspace such that connectivity can be easily inferred from
the embedding of each node. As such, we define the notion of a grid graph. A one-dimensional
grid graph with n nodes can be defined as a chain with n nodes, where the nodes are defined as
points in a line with all edges directed in a single direction. A grid graph with dimensionality k
can be viewed as a k-dimensional grid where nodes are defined as grid points and the edges exist
between adjacent grid points in a single direction for each dimension. In Figure 1, we show ex-
amples of two-dimensional and three-dimensional grid graphs with 8 and 27 nodes, respectively.
Disconnected graphs, on the other hand, are not as easily embeddable into such a low-dimensional
subspace where connectivity can be easily inferred. Therefore, we will explore whether transformers
can learn connectivity in grid graphs more easily as compared to disconnected chain graphs, which
contain multiple components where each component is a connected chain.

Our experimental analysis indicates that transformers are more successful in learning to infer
connectivity on grid graphs and not always successful on disconnected chain graphs. The exis-
tence/nonexistence of a path from the low-dimensional vector representation of nodes helps trans-
formers to infer the connectivity over grid graphs. To understand how well transformers perform
reasoning over transitive relations at scale, we study how scaling the model size and the graph size
(i.e., number of nodes) impacts the ability of transformers to infer transitive relations for grid graphs
and disconnected chain graphs. Our experimental results suggest that scaling the model size facil-
itates learning to infer transitive relations over grid graphs, while comparable improvement is not
observed for disconnected chain graphs. When we scale the graph size, performance remains con-
sistent for both small and large grid graphs. Although transformers struggle to learn connectivity
for smaller disconnected chain graphs, consistent improvement is observed for larger disconnected
chain graphs with a fixed number of components (i.e., chains). In addition, transformers show
better performance for grid graphs with lower dimensionality as compared to higher dimensional-
ity, and increasing the number of nodes in grid graphs helps transformers to learn connectivity on

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

higher-dimensional grid graphs. Similarly, for disconnected chain graphs, transformers show better
performance for a small number of chains, for a fixed number of nodes, and transformers benefit
more from scaling the graph size than model size in learning connectivity for disconnected chain
graphs with a large number of chains.

Research Questions: In this work, we aim to answer the following research questions:
• RQ1: How well do transformers learn the connectivity task from training examples for grid

graphs and disconnected chain graphs?
• RQ2: How does scaling the model size and graph size impact the performance of transformers

to learn connectivity for grid graphs and disconnected chain graphs?
• RQ3: How does the grid dimension and the number of chains impact the performance of trans-

formers to learn connectivity for grid graphs and chain graphs, respectively?
Contributions: The key contributions/findings of this work are as follows:
• We investigate the ability of transformers to learn to infer transitive relations, by evaluating their

ability to infer transitivity, and equivalently, to infer connectivity on directed graphs, where a pair
of nodes and the connectivity information are provided as individual training examples, instead
of in-context examples in the prompt.

• Transformers excel at learning connectivity in low-dimensional grid graphs, as it’s ability de-
teriorates with increasing dimensionality of the underlying grid graph, while scaling graph size
helps more for higher-dimensional grid graphs as compared to scaling model size.

• Scaling the model size makes it easier for transformers to learn connectivity over grid graphs as
compared to disconnected chain graphs, while scaling the graph size, transformers’ performance
stays consistent on grid graphs and improves for disconnected chain graphs with a large number
of nodes.

• Transformers struggle to learn connectivity for higher-dimensional grid graphs and disconnected
chain graphs with a large number of chains, and transformers benefit more from scaling the graph
size than scaling the model size in both settings.

2 RELATED WORK

Language Models for Transitivity/Graph Connectivity: To determine the reasoning abilities of
the transformer architecture, theoretical studies have been conducted, which suggest that a logarith-
mic number of layers is necessary and sufficient to learn the connectivity problem for graphs (San-
ford et al., 2024). To feed the graph into the transformer architecture, several studies (Fatemi et al.,
2024; Vashishtha et al., 2025) provide the edges of the graph in the prompt and ask questions about
the connectivity of the graph. Providing graph edges in the prompt assumes that transformers them-
selves have the capability to reason over the graph structure. However, some recent work shows that
transformers perform pattern memorization in data rather than learning transitive relationships (Joshi
et al., 2024; Zečević et al., 2023). Recently, Saparov et al. (2025) mentioned that transformers strug-
gle to perform depth-first search in graphs. For larger graphs, the context length of LLMs places
an upper bound on the size of in-context graphs. Therefore, it is important to study the problem
of learning connectivity or finding paths in directed graphs by training transformers to infer tran-
sitivity/connectivity between entities, providing the connectivity information as individual training
examples.

Scaling Laws for Language Models: Increasing the size of the model or data and observing the
impact on model performance is essential to understand how scaling impacts the performance of a
model on a particular task (Kaplan et al., 2022; Finzi et al., 2025; Qin et al., 2025; Wu et al., 2025).
Kaplan et al. (2022) suggest that scaling the model size, data size or amount of compute used for
training has a greater effect versus other variations in the architecture such as number of layers.
Therefore, we study how scaling the model size, data size, and amount of training compute change
the performance of transformers on the connectivity task for directed graphs. To identify the optimal
size of the model, scaling experiments have been conducted with language models to predict part of
the knowledge graph triples (Wang et al., 2025). Hence, it is necessary to investigate how scaling
impacts the capabilities of transformers on fundamental tasks such as graph connectivity. The depen-
dence of scaling curves on data complexity has also been covered in recent research (Pandey, 2024;
Yin et al., 2024). Furthermore, Roberts et al. (2025) corroborate the observation that model scaling
has a greater impact on knowledge-intensive downstream tasks, while data scaling has a greater im-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

pact on reasoning-intensive tasks. This motivates us to explore how model and data scaling impact
the performance on the connectivity task for different topologies of directed graphs.

3 GRAPH CONNECTIVITY AND REASONING

In this section, we describe the task that we consider in our study.

Definition 1 (Connectivity in Directed Graphs). Given a directed graph G = (V,E), where
V and E denote the set of nodes and directed edges, respectively, for any two distinct nodes
vstart, vgoal ∈ V where vstart ̸= vgoal, we define the connectivity function T (vstart, vgoal)
as the indicator function that denotes whether there is a path from vstart to vgoal. That is,
T (vstart, vgoal) = 1 if and only if there exists a simple path from vstart to vgoal using the directed
edges in E. Otherwise, T (vstart, vgoal) = 0. For brevity, we will refer to the task of predicting the
connectivity function as the connectivity task.

The connectivity task is equivalent to the task of inferring transitive relations. More pre-
cisely, consider a relation r (e.g., causes) and a set of facts of the form r(x, y) (e.g.,
causes(sunlight,photosynthesis), causes(photosynthesis, oxygen)). We say the re-
lation r is transitive if for any x, y, z, if r(x, y) and r(y, z), then r(x, z). Given a starting concept
xstart (e.g., sunlight) and a goal concept xgoal (e.g., oxygen), the task of inferring transitive rela-
tions is to determine whether r(xstart, xgoal) (e.g., causes(sunlight,oxygen)) is provable from
the given set of facts. It is straightforward to draw a one-to-one correspondence between examples
of the connectivity task and examples of the task of inferring transitive relations: First define a map
M between concepts and nodes, then for any fact r(x, y), we create a directed edge from M(x) to
M(y). The task of finding whether r(xstart, xgoal) is true is equivalent to finding whether there is
a path from M(xstart) to M(xgoal).

The connectivity task is also equivalent to deductive reasoning in a simplified logic called implica-
tional logic. In this logic, all logical forms have the form A → B (i.e., “if A, then B”). Thus, given
a set of facts of the form A → B, a premise Xstart and a goal Xgoal, the deductive reasoning task
is to determine whether Xgoal is provable. For example, given the facts ∀x(panda(x) → bear(x))
(i.e., “all pandas are bears”), ∀x(bear(x) → furry(x)) (“all bears are furry”), and panda(po)
(i.e., “Po is a panda”), we can deduce furry(po) (“Po is furry”). It is similarly straightforward to
construct a one-to-one equivalence between reasoning problems in implicational logic and examples
of the connectivity task.

3.1 LEARNING CONNECTIVITY AT TRAIN-TIME

To train a transformer to perform the connectivity task on a directed graph G = (V,E), we first
define the vocabulary as V = V ∪{“Y”,“N”} (we assume a simple tokenization scheme where each
node is mapped to a single unique token). The training data consists of a large set of examples, where
each example consists of a pair of nodes vstart and vgoal with a corresponding label, “Y” or “N”,
indicating whether there exists a path from vstart to vgoal. The nodes vstart and vgoal form the input
tokens to the transformer architecture, while the “Y” or “N” label is the ground-truth prediction. We
train the transformer architecture using the cross-entropy loss on the output token.

3.2 CONNECTIVITY OVER GRID GRAPHS

We aim to describe a class of graphs for which it is easy for transformers to learn connectivity.

Definition 2 (Grid graph). Given a graph G = (V,E), we say that G is a k-dimensional grid
graph if there exists an embedding Ψ : V 7→ Rk such that: For any two nodes u, v ∈ V , there exists
a path from u to v if and only if the difference between the embedding of v and that of u contains no
negative elements (i.e., [Ψ(v)−Ψ(u)]i ≥ 0 for all elements i ∈ {1, . . . , k}).

Without loss of generality, we may assume that the nodes of a k-dimensional grid graph can be
represented as a k-dimensional vector of positive integers. If we carefully observe the nodes of k-
dimensional grid graph, we can observe that if there is a path from vstart to vend then Ψ(vend) −
Ψ(vstart) will have non-negative entries in all k dimensions, If there is no path from vstart to vend

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

then there will be at least one negative entry in Ψ(vend) − Ψ(vstart). We present an example of a
grid graph with dimensionality k = 2 and 4 nodes, and an example of an embedding Ψ in Figure 12
and Table 13 in the Appendix.

Because of this pattern, for a k-dimensional grid graph, the existence/nonexistence of a path can be
determined by the difference of the k-dimensional embeddings of the endpoints, and therefore, if a
model is able to learn the embedding Ψ on a graph G, it would effectively learn to perfectly solve the
connectivity task on G. Thus, we hypothesize that for small values of k, transformers more easily
learn the connectivity task on k-dimensional grid graphs.

We contrast the notion of a grid graph with that of disconnected chain graphs, which are not as
easily embeddable in low-dimensional subspaces. For example, consider the graph containing the
two components A → B → C and D → E → F . Each component is a 1-dimensional grid
graph, but the nodes are not embeddable in one dimension such that pairwise connectivity is easily
inferable from comparisons of the embeddings (e.g., there is no function Ψ such that Ψ(v) ≥ Ψ(u)
if and only if v is reachable from u, for any two nodes u, v). We experiment training transformers
on grid graphs and disconnected chain graphs and empirically measure how easily the model learns
the connectivity task in each case.

4 EXPERIMENTS

In this section, we perform experimental analysis to understand how transformers can learn the
connectivity task over grid graphs and disconnected chain graphs when we scale the model size and
the graph size. We additionally aim to explore how the grid dimension and the number of chains
affects learning dynamics and scaling behavior.

4.1 EXPERIMENTAL SETUP

Experimental Settings: For our experiments, we first generate a grid graph with number of nodes
n and grid dimensionality k. In addition, we generate a disconnected chain graph with parameters:
total nodes n, number of chains C, with chain length L = ⌊ n

C ⌋1 . For each generated graph, we
produce connectivity examples: For each example, we sample a pair of nodes (vstart, vend), which
forms the two-token input to the transformer, and we utilize their connectivity as the ground truth
label denoted as “Y” or “N” (indicating the presence or absence of a path from vstart to vend). We
use learned token embeddings with dimension demb, initialized randomly. Also, we concatenate
absolute positional encoding of length dpos = 2 for each token with the token embedding and
an additional hidden dimension of dhid = 32 in our experiments. By concatenating the token
embedding, positional encoding, and hidden dimensions, we obtain the input embedding for the
transformer model which has dimension dmodel = demb+dpos+dhid. We experiment with varying
demb and observe the effect on transformers learning the connectivity task. We set the feed-forward
dimension dff = dmodel. In addition, we use pre-layer normalization as in Xiong et al. (2020), set
dropout to 0,and the number of layers l = 4. During the experiments, we record the accuracy and
loss of the model as a function of training compute, in terms of floating point operations (FLOPs).
We report the loss and accuracy for both training and test sets on the y-axis and FLOPs on the x-
axis. We choose to measure model performance vs FLOPs as opposed to epochs, since for different
model/graph sizes, the number of FLOPs for each iteration is not constant. We use a logarithmic
scale with base 10 in the plots for loss and FLOPs for better visualization. For grid graphs, we
experiment with k = 2-dimensional grid graphs with number of nodes n = 50, 100, 200, 400, 800.
For the disconnected chain graphs, we set the number of chains C = 10 and number of nodes
n = 50, 100, 200, 400, 800. To determine the impact of grid dimension and the number of chains,
we experiment with grid dimension k = 1, 2, 3, 4 and 5 and number of chains C = 1, 5, 10, 15 and
20. We chose these parameters to make the number of nodes maximally comparable between grid
graphs and disconnected chain graphs. For all experiments, we run with ten different random seeds,
and plot the mean and standard deviation in all figures.

Grid Graph Generation: To generate a k-dimensional grid graph with n nodes with node IDs
1, . . . , n, we first compute the grid width b = ceil(n

1
k). We convert the ID of each node into a

1If n is not divisible by C, the remainder nodes are formed into an additional chain.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Accuracy and loss vs. training compute on the connectivity task for a grid graph with number of
nodes n = 100 and grid dimension k = 2, for transformers of various sizes/model dimensions with demb =
32, 64, 128, 256, 512 and 1024.

Figure 3: Accuracy and loss vs. training compute on the connectivity task for a disconnected chain graph with
number of nodes n = 100 and number of chains C = 10, with demb = 32, 64, 128, 256, 512 and 1024.

number in base-b and take the digits to form a k-dimensional vector (i.e., in Zk). For any two nodes
u, v, we add an edge u → v if the difference between the vectors, Ψ(v)−Ψ(u) is a one-hot vector.

Chain Graph Generation: To generate each disconnected chain graph, we consider two parame-
ters: The number of nodes n and number of chains C ≪ n. We compute chain length L = ⌊ n

C ⌋ and
generate C chains of length L. In the Appendix, we present pseudocode to generate grid graphs and
disconnected chain graphs in Algorithm 1 and Algorithm 2, respectively.

Training and Test Set Generation: We define (v, u) as a reverse negative node pair if there is a
path from u to v. If there is no path from u to v or from v to u, we define (v, u) as a disconnected
negative node pair. To generate train and test sets of node pairs, we first add all pairs of vertices
(u, v) to the train set. To produce a test set, we randomly sample 40 positive pairs (u, v) from the
train set (i.e., v is reachable from u) and add their reverse negative pairs (v, u) without replacement
to the test set. We repeat this for 40 disconnected negative node pairs. We add details of generating
train and test sets in Algorithm 3 in the Appendix.

4.2 LEARNING CONNECTIVITY ON GRID GRAPHS VS. DISCONNECTED CHAIN GRAPHS

To determine how well transformers learn the connectivity task for grid graphs and disconnected
chain graphs, we train the model for both types of graphs and record the training loss, training
accuracy, test loss and test accuracy on the y-axis over the number of training FLOPs on the x-axis
in Figures 2 and 3 for grid graphs and disconnected chain graphs, respectively. While for the grid
graphs in Figure 2, we achieve low test loss, the test loss continues to diverge for the disconnected
chain graphs in Figure 3. Consequently, transformers achieve near-perfect accuracy for grid graphs
and struggle to generalize for disconnected chain graphs. Intuitively, for disconnected chain graphs
transformers likely struggle as there exists no simple embedding of the graph into a low-dimensional
subspace where connectivity is more easily inferable. However, the results support the hypothesis
that transformers can more easily learn a low-dimensional embedding of a grid graph to predict the
existence/nonexistence of paths between its nodes.

4.3 THE EFFECT OF MODEL SCALE

In Figures 2 and 3, we present results on the connectivity task with n = 100 nodes for grid
graphs and disconnected chain graphs, respectively. In this experiment, we scale the model size
by increasing demb = 32, 64, 128, 256, 512, 1024. Since smaller models use less compute for each
training iteration, we run the models for 15000 epochs for demb ∈ {32, 64}, 10000 epochs for
demb ∈ {128, 256}, and 5000 epochs for demb ∈ {512, 1024}. For both grid graphs and discon-
nected chain graphs, as the training compute increases, the training loss drops, approaching near

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Accuracy and loss vs. training compute on the connectivity task for a grid graph with various graph
sizes containing number of nodes n = 50, 100, 200, 400, 800 and grid dimension k = 2 with demb = 256.

Figure 5: Accuracy and loss vs. training compute on the connectivity task for a disconnected chain graph with
various graph sizes containing number of nodes n = 50, 100, 200, 400, 800 and number of chains C = 10
with demb = 256.

100% training accuracy. For the test loss curve, we can observe that increasing the model size leads
to a lower test loss for grid graphs, and consequently, the test accuracy approaches 100%. However,
for the case of disconnected chain graphs, increasing demb instead increases the test loss. As a re-
sult, the test accuracy does not improve as we scale the model size for disconnected chain graphs.
Therefore, increasing the model size gradually helps transformers to better generalize on the con-
nectivity task over grid graphs; the same behavior is not observed for disconnected chain graphs.
This suggests that, as the model size increases, transformers can better learn connectivity on grid
graphs by utilizing a low-dimensional vertex-embedding heuristic, resulting in better generalization.
But this phenomenon is not observed for the case of disconnected chain graphs.

4.4 THE EFFECT OF GRAPH SIZE

In Figures 4 and 5, we present results of training on the connectivity task for k = 2-
dimensional grid graphs and chain graphs with number of chains C = 10 and number of
nodes n = 50, 100, 200, 400, 800 with a fixed token embedding dimension demb = 256 for
15000, 10000, 10000, 5000, 5000 epochs, respectively, to to enable fair comparison. In this exper-
iment, we endeavor to measure how well transformers can learn the connectivity task when we
increase the graph size by increasing the number of nodes in a graph. From the test loss and test
accuracy curve in Figure 4, we observe that as we scale the graph size, the test loss slightly decreases
and the test accuracy approaches 100%. Transformers’ performance remains consistent as we in-
crease the total number of nodes in grid graphs. As the number of nodes in grid graphs increases, the
number of training pairs also increases, which provides more training data for transformers to learn
the connectivity task by learning the difference between the vector representations of node pairs on
grid graphs. On the other hand, for the case of the disconnected chain graphs, we can observe from
Figure 5 that for graphs with a small number of nodes (n = 50 or 100), test accuracy stays close to
60% and 80%, respectively. However, when we increase the number of nodes to n = 200, 400, 800,
the test accuracy reaches close to 100%. For smaller graphs (e.g. 50 or 100 nodes) with a fixed num-
ber of chains C = 10, there are fewer nodes in each chain. This doesn’t provide enough training
data for transformers to learn graph connectivity for disconnected chain graphs. However, when we
increase the number of nodes for large disconnected chain graphs by fixing the number of chains,
it increases the number of nodes in each chain. As a result, transformers have more examples of
connected node pairs, which helps to generalize better for the graph connectivity task.

4.5 THE EFFECT OF GRID DIMENSIONALITY

To evaluate how transformers learn connectivity for higher-dimensional grid graphs, we present the
training dynamics for k = 1, 2, 3, 4 and 5-dimensional grid graphs in Figures 6, 7 and 8. First, we
show results with number of nodes n = 100 and demb = 256 in Figure 6. Next, we increase the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Accuracy and loss vs. training compute on the connectivity task for a grid graph with grid dimension,
k = 1, 2, 3, 4, and 5 and number of nodes n = 100 with demb = 256.

Figure 7: Accuracy and loss vs. training compute on the connectivity task for a grid graph with grid dimension,
k = 1, 2, 3, 4, and 5 and number of nodes n = 100 with demb = 1024.

Figure 8: Accuracy and loss vs. training compute on the connectivity task for a grid graph with grid dimension,
k = 1, 2, 3, 4, and 5 and number of nodes n = 400 with demb = 256.

model size to demb = 1024, keeping the graph size unchanged, and show the result in Figure 7.
Afterwards, in Figure 8 we increase n to 400, keeping the model size unchanged from Figure 6.
From Figure 6, we observe that the test loss is lower for 1-dimensional grid graphs as compared to
2, 3, 4 and 5-dimensional grid graphs. As a result, the test accuracy for 1-dimensional grid graphs
in Figure 6 is slightly higher as compared to higher-dimensional grid graphs, and much higher than
5-dimensional grids. Next, when we scale the model size by increasing demb = 1024 and with the
number of nodes constant at n = 100 in Figure 7, we can observe that transformers’ performance
for higher grid dimensionality in terms of test accuracy doesn’t improve much. However, when we
increase the number of nodes in the grid graph to n = 400 keeping the model size at demb = 256
in Figure 8, we observe that the test loss seems to decrease and test accuracy approaches closer
to 100% accuracy for higher grid dimensionalities, as compared to the case where n = 100 in
Figures 6 and 7. This suggests that increasing the number of nodes in grid graphs is more effective
than increasing the model size to better learn connectivity for higher-dimensional grids. When we
increase the number of nodes in a grid graph, it provides more training data for transformers to
better learn the low-dimensional embedding heuristic, whereas increasing the model scale does not
provide as much improvement.

4.6 THE EFFECT OF THE NUMBER OF DISCONNECTED COMPONENTS

In Figure 9, we present the training dynamics for chain graphs with the number of nodes n = 100
for the number of chains C = 1, 5, 10, 15, 20 with demb = 256. We can observe that the test loss
is comparatively lower when the number of chains is small (e.g., C = 1 or 5) and although the
test accuracy stays close to 100% when the number of chains is small (e.g., C = 1 or 5), it drops
gradually as the number of chains increases (e.g., C = 10, 15, 20), akin to phase transition. For a
fixed-size graph with fewer chains, the number of nodes within each chain is large, which facilitates
the learning of connectivity via learning an embedding of the nodes within the chain. As we increase
the number of chains while keeping the number of nodes fixed, the length of each chain becomes
smaller. Therefore, transformers struggle to learn a vertex-embedding heuristic to learn connectivity
for disconnected chain graphs. In Figure 10, when we increase the model size to demb = 1024,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 9: Accuracy and loss vs. training compute on the connectivity task for a disconnected chain graph
with various chain sizes with number of chains C = 1, 5, 10, 15, 20 and number of nodes n = 100 with
demb = 256.

Figure 10: Accuracy and loss vs. training compute on the connectivity task for a disconnected chain graph
with various chain sizes with number of chains C = 1, 5, 10, 15, 20 and number of nodes n = 100 with
demb = 1024.

Figure 11: Accuracy and loss vs. training compute on the connectivity task for a disconnected chain graph
with various chain sizes with number of chains C = 1, 5, 10, 15, 20 and number of nodes n = 400 with
demb = 256.

while keeping the graph size the same as in Figure 9, we observe that model scaling does not assist
transformers to learn the graph connectivity task for the number of chains C = 10, 15 and 20.
However, when we increase the graph size to n = 400 in Figure 11, we can observe a sharp increase
in test accuracy for the number of chains C = 10, 15, 20. Increasing the number of nodes in the
graph increases the average chain length and provides transformers with enough data to learn the
connectivity task even for a larger number of chains, which improves their performance.

5 CONCLUSION

In this study, we investigate the reasoning capabilities of transformers by inspecting whether they
can reason about transitive relations, and equivalently, whether they can learn the graph connectivity
task from the connectivity information between node pairs which are provided as individual training
examples. We scale the model dimension and the graph size to observe how it impacts transformers’
performance in learning graph connectivity. We observe that model scaling improves the perfor-
mance of transformers for grid graphs more than the disconnected chain graphs. Moreover, scaling
the graph size, transformers’ performance remains consistent for grid graphs of different graph sizes
and improves their performance for disconnected chain graphs as the graph size increases. In ad-
dition, experimental analysis suggests that data scaling benefits transformer performance more than
model scaling in learning graph connectivity for higher-dimensional grid graphs or disconnected
chain graphs with a larger number of chains.

As our investigation focused on transformers trained on synthetic graphs, one promising direction for
future work is to assess the capabilities of transformers to learn connectivity of graphs that arise in
real-world data, e.g., knowledge graphs, causal graphs, etc. Further research is needed to determine
whether pretrained LLMs have acquired a generalizable node embedding of such real-world graphs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ira Ceka, Saurabh Pujar, Irene Manotas, Gail Kaiser, Baishakhi Ray, and Shyam Ramji. How does
llm reasoning work for code? a survey and a call to action. arXiv preprint arXiv:2506.13932,
2025.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. ICLR, 2024.

Bahare Fatemi, Mehran Kazemi, Anton Tsitsulin, Karishma Malkan, Jinyeong Yim, John Palowitch,
Sungyong Seo, Jonathan Halcrow, and Bryan Perozzi. Test of time: A benchmark for evaluating
llms on temporal reasoning. ICLR, 2025.

Marc Finzi, Sanyam Kapoor, Diego Granziol, Anming Gu, Christopher De Sa, J Zico Kolter, and
Andrew Gordon Wilson. Compute-optimal llms provably generalize better with scale. ICML,
2025.

Vedant Gaur and Nikunj Saunshi. Reasoning in large language models through symbolic math word
problems. ACL, 2024.

Fabian Hoppe, Filip Ilievski, and Jan-Christoph Kalo. Investigating the robustness of deductive
reasoning with large language models. arXiv preprint arXiv:2502.04352, 2025.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fer-
nando Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, et al. Cladder: Assessing
causal reasoning in language models. NeurIPS, 2023.

Zhijing Jin, Jiarui Liu, Zhiheng Lyu, Spencer Poff, Mrinmaya Sachan, Rada Mihalcea, Mona Diab,
and Bernhard Schölkopf. Can large language models infer causation from correlation? ICLR,
2024.

Chaitanya K Joshi. Transformers are graph neural networks. arXiv preprint arXiv:2506.22084,
2025.

Nitish Joshi, Abulhair Saparov, Yixin Wang, and He He. Llms are prone to fallacies in causal
inference. EMNLP, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. ICLR, 2022.

Alexander Murphy, Mohd Sanad Zaki Rizvi, Aden Haussmann, Ping Nie, Guifu Liu, Aryo Pradipta
Gema, and Pasquale Minervini. An analysis of decoding methods for llm-based agents for faithful
multi-hop question answering. arXiv preprint arXiv:2503.23415, 2025.

Rohan Pandey. gzip predicts data-dependent scaling laws. arXiv preprint arXiv:2405.16684, 2024.

Zeyu Qin, Qingxiu Dong, Xingxing Zhang, Li Dong, Xiaolong Huang, Ziyi Yang, Mahmoud
Khademi, Dongdong Zhang, Hany Hassan Awadalla, Yi R Fung, et al. Scaling laws of synthetic
data for language models. COLM, 2025.

Nicholas Roberts, Niladri Chatterji, Sharan Narang, Mike Lewis, and Dieuwke Hupkes. Compute
optimal scaling of skills: Knowledge vs reasoning. arXiv preprint arXiv:2503.10061, 2025.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms. NeurIPS, 2024.

Abulhair Saparov, Srushti Pawar, Shreyas Pimpalgaonkar, Nitish Joshi, Richard Yuanzhe Pang,
Vishakh Padmakumar, Seyed Mehran Kazemi, Najoung Kim, and He He. Transformers strug-
gle to learn to search. ICLR, 2025.

Ivaxi Sheth, Bahare Fatemi, and Mario Fritz. Causalgraph2llm: Evaluating llms for causal queries.
NAACL, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rob Sullivan and Nelly Elsayed. Can large language models act as symbolic reasoners? arXiv
preprint arXiv:2410.21490, 2024.

Trieu Trinh and Thang Luong. Alphageometry: An olympiad-level ai system for geometry. Google
DeepMind, 17, 2024.

Aniket Vashishtha, Abhinav Kumar, Atharva Pandey, Abbavaram Gowtham Reddy, Kabir Ahuja,
Vineeth N Balasubramanian, and Amit Sharma. Teaching transformers causal reasoning through
axiomatic training. ICML, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Xinyi Wang, Shawn Tan, Mingyu Jin, William Yang Wang, Rameswar Panda, and Yikang Shen. Do
larger language models imply better reasoning? a pretraining scaling law for reasoning. arXiv
preprint arXiv:2504.03635, 2025.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models.
ICLR, 2025.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In ICML, 2020.

Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei Guo, Yasheng Wang, Yong Liu, Ruiming
Tang, Defu Lian, and Enhong Chen. Entropy law: The story behind data compression and llm
performance. arXiv preprint arXiv:2407.06645, 2024.

Matej Zečević, Moritz Willig, Devendra Singh Dhami, and Kristian Kersting. Causal parrots: Large
language models may talk causality but are not causal. TMLR, 2023.

Yizhuo Zhang, Heng Wang, Shangbin Feng, Zhaoxuan Tan, Xiaochuang Han, Tianxing He, and
Yulia Tsvetkov. Can llm graph reasoning generalize beyond pattern memorization? EMNLP
Findings, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

6 APPENDIX

6.1 GRID GRAPH GENERATION

In this subsection, we present the pseudocode to generate a grid graph from the number of nodes n
and grid dimension k in Algorithm 1.

Initially, we compute base b as the celling of the k-th root of n. We represent each node as a k-
dimensional vector, which is a number of base b with k digits. First, we add n nodes with index
0 to n − 1 to grid graph. We convert each node index node id in range [0, n − 1] into a number
of base b with k digits. We maintain two different dictionaries node2vector and vector2node, for
each node and their corresponding vector representation.

Next, for each node u in grid graph we obtain the vector representation from the node2vector
dictionary. Next, we obtain a new vector representation new vector by incrementing each of the
k different indexes of node u’s vector representation. Next, we check the dictionary vector2node
whether there exists a node v with the new vector representation, new vector. If such a node v
exists in the dictionary vector2node, then we add an edge (u, v) to the grid graph.

We return grid graph at the end of Algorithm 1.

Algorithm 1: Procedure to generate a k-dimensional grid graph with n nodes.
1 function generate grid graph(n, k)
2 b← ⌈n1/k⌉
3 grid graph← ∅

/* Add nodes to the graph */
4 for node id← 0 to n− 1 do
5 grid graph← grid graph ∪ {node id}

/* Map nodes to k-dimensional vectors */

6 node2vector ← {}
7 vector2node← {}
8 for node id← 0 to n− 1 do
9 vector ← []

10 base← b
11 num← node id
12 for j ← 1 to k do
13 vector.append(num mod b) /* modulo by base */

14 num← ⌊num/b⌋
15 node2vector[node id]← vector
16 vector2node[vector]← node id

/* Add edges between nodes in grid graph */
17 for u ∈ grid graph do
18 vector ← node2vector[u]
19 for j ← 0 to k − 1 do
20 new vector ← vector
21 new vector[j]← new vector[j] + 1
22 if new vector ∈ vector2node.keys()
23 v ← vector2node[new vector]
24 add edge(grid graph, u, v)

25 return grid graph

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

6.2 CHAIN GRAPH GENERATION

Next, we provide the pseudocode to generate a chain graph with parameters total nodes and
number of chains Algorithm 2. For a given number of total nodes and number of chains,
we first compute the average chain length, L for each chain. Next, we add nodes with node id in
range [1, total nodes] in the chain graph.

We add all nodes to a list available nodes. Next, we sample L nodes from the list available nodes
without replacement and form a chain by connecting the nodes in the chain nodes. We repeat this
process as many times as the parameter number of chains.

After creating chains, if more than one node is remaining in the available nodes, we connect them
to produce another chain.

At the end of the Algorithm 2, we return the chain graph.

Algorithm 2: Pseudocode for chain graph generation with parameters total nodes and number of chains.

1 function generate chain graph(total nodes, number of chains)

2 L←
⌊

total nodes

number of chains

⌋
/* average chain length per chain */

/* Initialize node set and empty graph */

3 chain graph← ∅
4 for node id← 1 to total nodes do
5 chain graph← chain graph ∪ {node id}
6 available nodes← [1, 2, . . . , total nodes]

/* Create number of chains disjoint chains of length L */
7 for c← 1 to number of chains do
8 sampled nodes← sample without replacement(available nodes, L)
9 remove chain nodes from available nodes

10 for i← 1 to L− 1 do
11 u← sampled nodes[i]; v ← sampled nodes[i+ 1]
12 add edge(chain graph, u, v)

/* Wire any leftover nodes into one additional chain */

13 if |available nodes| > 1
14 for i← 1 to |available nodes| − 1 do
15 u← available nodes[i]; v ← available nodes[i+ 1]
16 add edge(chain graph, u, v)

17 return chain graph

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

6.3 TRAIN AND TEST SET GENERATION

In algorithm 3, we present the pseudocode to generate a train and test set from a given directed graph.
First, based on reachability, we add all positive and negative pairs to train positive pairs and
train negative pairs, and we exclude node pairs with identical node index e.g., (u, u). Next, we
sample Mtest = 40 pairs (u, v) such that disgraph[u][v] > 1 and add (u, v) to test positive pairs
and the reverse negative pair (v, u) to test negative pairs. Also, we remove (u, v) from
train positive pairs and remove (v, u) to train negative pairs. After that, we compute all pos-
sible disconnected negative pairs (u, v) such that u is not reachable from v and v is not reach-
able from u. Lastly, we sample Mtest pairs (u, v) from disconnected negative pairs and add
{(u, v), (v, u)} to test negative pairs removing from train negative pairs.

Algorithm 3: Generate training and test set from directed graph.
1 function generate train test pairs(graph, Mtest)
2 disgraph ← distances from each node using edges in graph
3 train positive pairs← []; train negative pairs← []
4 test positive pairs← []; test negative pairs← []

/* Populate train sets by reachability */
5 for u ∈ graph do
6 for v ∈ graph do
7 if u = v
8 continue
9 if v ∈ disgraph[u]

10 train positive pairs.append((u, v))
11 else
12 train negative pairs.append((u, v))

/* Move Mtest multi-hop positive and reverse negative pairs to test set */

13 for i← 1 to Mtest/2 do
14 (u, v)← Randomly sample from train positive pairs s.t. disgraph[u][v] > 1
15 test positive pairs← test positive pairs ∪ (u, v)
16 train positive pairs← train positive pairs \ (u, v)
17 test negative pairs← test negative pairs ∪ (v, u)
18 train negative pairs← train negative pairs \ (v, u)

/* Build disconnected negative candidates (no path either direction) */

19 non reverse pairs← []
20 node list← []
21 for node ∈ graph do
22 node list.append(node)

23 l← |node list|
24 for i← 1 to l do
25 for j ← i+ 1 to l do
26 u← node list[i]; v ← node list[j]
27 if (v /∈ disgraph[u]) ∧ (u /∈ disgraph[v])
28 non reverse pairs← non reverse pairs ∪ (u, v)

/* Sample disconnected negatives into test and remove from train negatives */

29 sampled non reverse pairs← sample without replacement(non reverse pairs, Mtest)
30 for edge ∈ sampled non reverse pairs do
31 u← edge[0]; v ← edge[1]
32 test negative pairs← test negative pairs ∪ {(u, v), (v, u)}
33 train negative pairs← train negative pairs \ {(u, v), (v, u)}
34 return train positive pairs, train negative pairs, test positive pairs, test negative pairs

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

6.4 TRANSITIVITY AND GRID GRAPH CO-ORDINATES RELATIONSHIP

We provide an example of a 2-dimensional grid graph with 4 nodes and present the relationship
between the transitivity function between a start and end node with the difference of their vector
representation in Figure 12 and Table 13.

Node 0 (0,0) Node 1 (1,0)

Node 2 (0,1) Node 3 (1,1)

Figure 12: A two-dimensional grid graph with
four nodes.

start, end Ψ(end)−Ψ(start) T (start, end)
0, 1 (1, 0) 1
0, 2 (0, 1) 1
0, 3 (1, 1) 1
1, 0 (-1, 0) 0
1, 2 (-1, 1) 0
1, 3 (0, 1) 1
2, 0 (0, -1) 0
2, 1 (1, -1) 0
2, 3 (1, 0) 1
3, 0 (-1, -1) 0
3, 1 (0, -1) 0
3, 2 (-1, 0) 0

Figure 13: Relation between difference of vec-
tors, Ψ(end) − Ψ(start) and connectivity func-
tion T (start, end) for a two-dimensional grid
graph with four nodes.

6.5 HARDWARE:

All the experiments are performed on a Linux server with a 2GHz AMD EPYC 7662 64-Core
Processor and 1 NVIDIA A100-PCIe GPU with 40GB memory.

15

	Introduction
	Related Work
	Graph Connectivity and Reasoning
	Learning Connectivity at Train-time
	Connectivity over Grid Graphs

	Experiments
	Experimental Setup
	Learning connectivity on grid graphs vs. disconnected chain graphs
	The effect of model scale
	The effect of graph size
	The effect of grid dimensionality
	The effect of the number of disconnected components

	Conclusion
	Appendix
	Grid Graph Generation
	Chain Graph Generation
	Train and Test Set Generation
	Transitivity and Grid Graph Co-ordinates Relationship
	Hardware:

