

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TRANSFORMERS CAN LEARN CONNECTIVITY IN SOME GRAPHS BUT NOT OTHERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Highly competent reasoning capability is essential to ensure the factual correctness of the responses of transformer-based Large Language Models (LLMs), and robust reasoning about transitive relations is instrumental in many settings, such as causal inference. Therefore, it is essential to investigate the capability of transformers in the task of inferring transitive relations (e.g., knowing A causes B and B causes C, we can infer that A causes C). The task of inferring transitive relations is *equivalent* to the task of connectivity in directed graphs (e.g., knowing there is a path from A to B, and there is a path from B to C, we can infer that there is a path from A to C). Past research focused on whether transformers can learn to infer transitivity from in-context examples provided in the input prompt. However, transformers' capability to infer transitive relations from training examples and how scaling affects this ability is unexplored. In this study, we endeavor to answer this question by generating directed graphs to train transformer models of varying sizes and evaluate their ability to infer transitive relations for various graph sizes. Our findings suggest that transformers are capable of learning connectivity on "grid-like" directed graphs where each node can be embedded in a low-dimensional subspace, and connectivity is easily inferable from the embeddings of the nodes. We find that the dimensionality of the underlying grid graph is a strong predictor of transformers' ability to learn the connectivity task, where higher-dimensional grid graphs pose a greater challenge than low-dimensional grid graphs. In addition, we observe that increasing the model scale leads to increasingly better generalization to infer connectivity over grid graphs. However, if the graph is not a grid graph and contains many disconnected components, transformers struggle to learn the connectivity task, especially when the number of components is large. We also find that transformers benefit more from increasing the graph size than increasing the model size. The code of our experiments is publicly available at github.com/anonymoususer437/transformers_graph_connectivity.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs), with their impressive generative capabilities, are widely adopted in various generative AI applications. Improving the logical reasoning capabilities of LLMs is essential for competent performance on complex reasoning problems. Transitivity is a fundamental property of many real-world relations (e.g., knowing A causes B and B causes C, we can infer that A causes C). Reasoning over transitive relations is equivalent to many other reasoning tasks such as graph connectivity (Fatemi et al., 2024), question answering (Murphy et al., 2025), deductive reasoning (Saparov et al., 2025; Hoppe et al., 2025), mathematical reasoning (Trinh & Luong, 2024), logical reasoning (Sullivan & Elsayed, 2024; Gaur & Saunshi, 2024), temporal reasoning about multiple events (Fatemi et al., 2025), program analysis (Ceka et al., 2025) as well as causal reasoning (Vashishtha et al., 2025; Jin et al., 2023; 2024). Existing studies primarily focus on augmenting the ability of LLMs to reason about transitive relations using in-context examples (i.e., about information given in the prompt; Vashishtha et al., 2025). However, LLMs learn vast quantities of information from the pre-training corpus, and whether transformers (Vaswani et al., 2017; Joshi, 2025) are able to reason about transitive relations from examples given during pretraining is relatively unexplored.

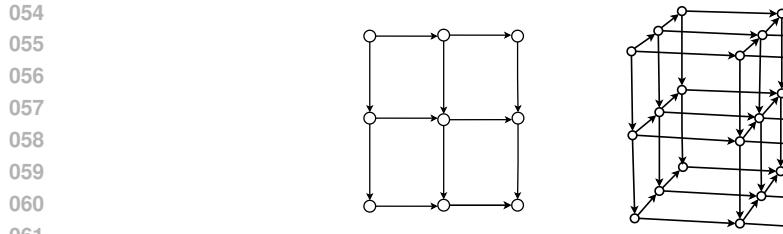


Figure 1: Examples of 2 and 3-dimensional grid graphs with 8 and 27 nodes, respectively.

To assess the capability of transformers in learning logical reasoning from training examples generally, it is essential to investigate their ability to infer transitive relations. This is equivalent to learning connectivity or path-finding in directed graphs. The problem of connectivity between graph nodes has been studied in recent work (Vashishtha et al., 2025; Sanford et al., 2024). Reasoning over transitive relations is an instrumental capability in many reasoning tasks, such as inferring causation in causal reasoning. In causal discovery, the edges of a directed graph denote causal relationships, in which case, finding a path in this graph is equivalent to inferring a causal relationship between two events (Sheth et al., 2025; Joshi et al., 2024). In Sheth et al. (2025), the edges of the directed graph are provided as in-context examples in the input prompt of LLMs with a path-finding query (i.e., “A causes B, B causes C. Does A cause C?”). However, it is crucial to investigate the ability of transformers to infer transitive relations from training, as the LLM heavily relies on knowledge acquired during pretraining for downstream applications. Some recent studies (Zečević et al., 2023; Zhang et al., 2024) claim that transformers learn to memorize patterns without understanding the logical connections between entities (e.g., if “lightning” appears often in the context of “thunder” in the training corpus, transformers will likely learn that there is a causal relation between the two entities, even if no such relation exists). Keeping this pattern-learning phenomenon of transformers in mind, it is essential to investigate the extent to which transformers can generalize when reasoning about transitivity.

In this work, we aim to understand whether transformers can learn to infer transitivity, and equivalently, whether they can learn connectivity over directed graphs when connectivity information between node pairs is provided as individual training examples during pre-training. We hypothesize that transformers are more likely to learn to infer connectivity over graphs whose nodes are embeddable into a low-dimensional subspace such that connectivity can be easily inferred from the embedding of each node. As such, we define the notion of a *grid graph*. A one-dimensional grid graph with n nodes can be defined as a chain with n nodes, where the nodes are defined as points in a line with all edges directed in a single direction. A grid graph with dimensionality k can be viewed as a k -dimensional grid where nodes are defined as grid points and the edges exist between adjacent grid points in a single direction for each dimension. In Figure 1, we show examples of two-dimensional and three-dimensional grid graphs with 8 and 27 nodes, respectively. Disconnected graphs, on the other hand, are not as easily embeddable into such a low-dimensional subspace where connectivity can be easily inferred. Therefore, we will explore whether transformers can learn connectivity in grid graphs more easily as compared to disconnected chain graphs, which contain multiple components where each component is a connected chain.

Our experimental analysis indicates that transformers are more successful in learning to infer connectivity on grid graphs and not always successful on disconnected chain graphs. The existence/nonexistence of a path from the low-dimensional vector representation of nodes helps transformers to infer the connectivity over grid graphs. To understand how well transformers perform reasoning over transitive relations at scale, we study how scaling the model size and the graph size (i.e., number of nodes) impacts the ability of transformers to infer transitive relations for grid graphs and disconnected chain graphs. Our experimental results suggest that scaling the model size facilitates learning to infer transitive relations over grid graphs, while comparable improvement is not observed for disconnected chain graphs. When we scale the graph size, performance remains consistent for both small and large grid graphs. Although transformers struggle to learn connectivity for smaller disconnected chain graphs, consistent improvement is observed for larger disconnected chain graphs with a fixed number of components (i.e., chains). In addition, transformers show better performance for grid graphs with lower dimensionality as compared to higher dimensionality, and increasing the number of nodes in grid graphs helps transformers to learn connectivity on

108 higher-dimensional grid graphs. Similarly, for disconnected chain graphs, transformers show better
 109 performance for a small number of chains, for a fixed number of nodes, and transformers benefit
 110 more from scaling the graph size than model size in learning connectivity for disconnected chain
 111 graphs with a large number of chains.

112 **Research Questions:** In this work, we aim to answer the following research questions:
 113

- 114 • **RQ1:** How well do transformers learn the connectivity task from training examples for grid
 115 graphs and disconnected chain graphs?
- 116 • **RQ2:** How does scaling the model size and graph size impact the performance of transformers
 117 to learn connectivity for grid graphs and disconnected chain graphs?
- 118 • **RQ3:** How does the grid dimension and the number of chains impact the performance of trans-
 119 formers to learn connectivity for grid graphs and chain graphs, respectively?

120 **Contributions:** The key contributions/findings of this work are as follows:
 121

- 122 • We investigate the ability of transformers to *learn to* infer transitive relations, by evaluating their
 123 ability to infer transitivity, and equivalently, to infer connectivity on directed graphs, where a pair
 124 of nodes and the connectivity information are provided as individual training examples, instead
 125 of in-context examples in the prompt.
- 126 • Transformers excel at learning connectivity in low-dimensional grid graphs, as it's ability de-
 127 teriorates with increasing dimensionality of the underlying grid graph, while scaling graph size
 128 helps more for higher-dimensional grid graphs as compared to scaling model size.
- 129 • Scaling the model size makes it easier for transformers to learn connectivity over grid graphs as
 130 compared to disconnected chain graphs, while scaling the graph size, transformers' performance
 131 stays consistent on grid graphs and improves for disconnected chain graphs with a large number
 132 of nodes.
- 133 • Transformers struggle to learn connectivity for higher-dimensional grid graphs and disconnected
 134 chain graphs with a large number of chains, and transformers benefit more from scaling the graph
 135 size than scaling the model size in both settings.

136 2 RELATED WORK

137 **Language Models for Transitivity/Graph Connectivity:** To determine the reasoning abilities of
 138 the transformer architecture, theoretical studies have been conducted, which suggest that a logarith-
 139 mic number of layers is necessary and sufficient to learn the connectivity problem for graphs (San-
 140 ford et al., 2024). To feed the graph into the transformer architecture, several studies (Fatemi et al.,
 141 2024; Vashishtha et al., 2025) provide the edges of the graph in the prompt and ask questions about
 142 the connectivity of the graph. Providing graph edges in the prompt assumes that transformers them-
 143 selves have the capability to reason over the graph structure. However, some recent work shows that
 144 transformers perform pattern memorization in data rather than learning transitive relationships (Joshi
 145 et al., 2024; Zečević et al., 2023). Recently, Saparov et al. (2025) mentioned that transformers strug-
 146 gle to perform depth-first search in graphs. For larger graphs, the context length of LLMs places
 147 an upper bound on the size of in-context graphs. Therefore, it is important to study the problem
 148 of learning connectivity or finding paths in directed graphs by training transformers to infer trans-
 149 itivity/connectivity between entities, providing the connectivity information as individual training
 150 examples.

151 **Scaling Laws for Language Models:** Increasing the size of the model or data and observing the
 152 impact on model performance is essential to understand how scaling impacts the performance of a
 153 model on a particular task (Kaplan et al., 2022; Finzi et al., 2025; Qin et al., 2025; Wu et al., 2025).
 154 Kaplan et al. (2022) suggest that scaling the model size, data size or amount of compute used for
 155 training has a greater effect versus other variations in the architecture such as number of layers.
 156 Therefore, we study how scaling the model size, data size, and amount of training compute change
 157 the performance of transformers on the connectivity task for directed graphs. To identify the optimal
 158 size of the model, scaling experiments have been conducted with language models to predict part of
 159 the knowledge graph triples (Wang et al., 2025). Hence, it is necessary to investigate how scaling
 160 impacts the capabilities of transformers on fundamental tasks such as graph connectivity. The depen-
 161 dence of scaling curves on data complexity has also been covered in recent research (Pandey, 2024;
 162 Yin et al., 2024). Furthermore, Roberts et al. (2025) corroborate the observation that model scaling
 163 has a greater impact on knowledge-intensive downstream tasks, while data scaling has a greater im-

162 pact on reasoning-intensive tasks. This motivates us to explore how model and data scaling impact
 163 the performance on the connectivity task for different topologies of directed graphs.
 164

165 3 GRAPH CONNECTIVITY AND REASONING

167 In this section, we describe the task that we consider in our study.
 168

169 **Definition 1** (*Connectivity in Directed Graphs*). *Given a directed graph $G = (V, E)$, where*
 170 *V and E denote the set of nodes and directed edges, respectively, for any two distinct nodes*
 171 *$v_{start}, v_{goal} \in V$ where $v_{start} \neq v_{goal}$, we define the **connectivity function** $\mathcal{T}(v_{start}, v_{goal})$*
 172 *as the indicator function that denotes whether there is a path from v_{start} to v_{goal} . That is,*
 173 *$\mathcal{T}(v_{start}, v_{goal}) = 1$ if and only if there exists a simple path from v_{start} to v_{goal} using the directed*
 174 *edges in E . Otherwise, $\mathcal{T}(v_{start}, v_{goal}) = 0$. For brevity, we will refer to the task of predicting the*
 175 *connectivity function as the **connectivity task**.*

176 The connectivity task is equivalent to the task of inferring transitive relations. More pre-
 177 cisely, consider a relation r (e.g., causes) and a set of facts of the form $r(x, y)$ (e.g.,
 178 causes(sunlight, photosynthesis), causes(photosynthesis, oxygen)). We say the re-
 179 lation r is *transitive* if for any x, y, z , if $r(x, y)$ and $r(y, z)$, then $r(x, z)$. Given a starting concept
 180 x_{start} (e.g., sunlight) and a goal concept x_{goal} (e.g., oxygen), the task of inferring transitive relations
 181 is to determine whether $r(x_{start}, x_{goal})$ (e.g., causes(sunlight, oxygen)) is provable from
 182 the given set of facts. It is straightforward to draw a one-to-one correspondence between examples
 183 of the connectivity task and examples of the task of inferring transitive relations: First define a map
 184 \mathcal{M} between concepts and nodes, then for any fact $r(x, y)$, we create a directed edge from $\mathcal{M}(x)$ to
 185 $\mathcal{M}(y)$. The task of finding whether $r(x_{start}, x_{goal})$ is true is equivalent to finding whether there is
 186 a path from $\mathcal{M}(x_{start})$ to $\mathcal{M}(x_{goal})$.

187 The connectivity task is also equivalent to deductive reasoning in a simplified logic called *implica-
 188 tional logic*. In this logic, all logical forms have the form $A \rightarrow B$ (i.e., “if A , then B ”). Thus, given
 189 a set of facts of the form $A \rightarrow B$, a premise X_{start} and a goal X_{goal} , the deductive reasoning task
 190 is to determine whether X_{goal} is provable. For example, given the facts $\forall x(\text{panda}(x) \rightarrow \text{bear}(x))$
 191 (i.e., “all pandas are bears”), $\forall x(\text{bear}(x) \rightarrow \text{furry}(x))$ (“all bears are furry”), and panda(po)
 192 (i.e., “Po is a panda”), we can deduce furry(po) (“Po is furry”). It is similarly straightforward to
 193 construct a one-to-one equivalence between reasoning problems in implicational logic and examples
 194 of the connectivity task.

195 3.1 LEARNING CONNECTIVITY AT TRAIN-TIME

196 To train a transformer to perform the connectivity task on a directed graph $G = (V, E)$, we first
 197 define the vocabulary as $\mathcal{V} = V \cup \{\text{“Y”, “N”}\}$ (we assume a simple tokenization scheme where each
 198 node is mapped to a single unique token). The training data consists of a large set of examples, where
 199 each example consists of a pair of nodes v_{start} and v_{goal} with a corresponding label, “Y” or “N”,
 200 indicating whether there exists a path from v_{start} to v_{goal} . The nodes v_{start} and v_{goal} form the input
 201 tokens to the transformer architecture, while the “Y” or “N” label is the ground-truth prediction. We
 202 train the transformer architecture using the cross-entropy loss on the output token.
 203

205 3.2 CONNECTIVITY OVER GRID GRAPHS

207 We aim to describe a class of graphs for which it is easy for transformers to learn connectivity.

208 **Definition 2** (*Grid graph*). *Given a graph $G = (V, E)$, we say that G is a **k -dimensional grid***
 209 *graph* if there exists an embedding $\Psi : V \mapsto \mathbb{R}^k$ such that: For any two nodes $u, v \in V$, there exists
 210 *a path from u to v if and only if the difference between the embedding of v and that of u contains no*
 211 *negative elements (i.e., $[\Psi(v) - \Psi(u)]_i \geq 0$ for all elements $i \in \{1, \dots, k\}$).*

213 Without loss of generality, we may assume that the nodes of a k -dimensional grid graph can be
 214 represented as a k -dimensional vector of positive integers. If we carefully observe the nodes of k -
 215 dimensional grid graph, we can observe that if there is a path from v_{start} to v_{end} then $\Psi(v_{end}) -$
 $\Psi(v_{start})$ will have non-negative entries in all k dimensions. If there is no path from v_{start} to v_{end}

216 then there will be at least one negative entry in $\Psi(v_{end}) - \Psi(v_{start})$. We present an example of a
 217 grid graph with dimensionality $k = 2$ and 4 nodes, and an example of an embedding Ψ in Figure 12
 218 and Table 13 in the Appendix.

219 Because of this pattern, for a k -dimensional grid graph, the existence/nonexistence of a path can be
 220 determined by the difference of the k -dimensional embeddings of the endpoints, and therefore, if a
 221 model is able to learn the embedding Ψ on a graph G , it would effectively learn to perfectly solve the
 222 connectivity task on G . Thus, we hypothesize that for small values of k , transformers more easily
 223 learn the connectivity task on k -dimensional grid graphs.

224 We contrast the notion of a grid graph with that of disconnected chain graphs, which are not as
 225 easily embeddable in low-dimensional subspaces. For example, consider the graph containing the
 226 two components $A \rightarrow B \rightarrow C$ and $D \rightarrow E \rightarrow F$. Each component is a 1-dimensional grid
 227 graph, but the nodes are not embeddable in one dimension such that pairwise connectivity is easily
 228 inferable from comparisons of the embeddings (e.g., there is no function Ψ such that $\Psi(v) \geq \Psi(u)$
 229 if and only if v is reachable from u , for any two nodes u, v). We experiment training transformers
 230 on grid graphs and disconnected chain graphs and empirically measure how easily the model learns
 231 the connectivity task in each case.

233 4 EXPERIMENTS

235 In this section, we perform experimental analysis to understand how transformers can learn the
 236 connectivity task over grid graphs and disconnected chain graphs when we scale the model size and
 237 the graph size. We additionally aim to explore how the grid dimension and the number of chains
 238 affects learning dynamics and scaling behavior.

240 4.1 EXPERIMENTAL SETUP

242 **Experimental Settings:** For our experiments, we first generate a grid graph with number of nodes
 243 n and grid dimensionality k . In addition, we generate a disconnected chain graph with parameters:
 244 total nodes n , number of chains C , with chain length $L = \lfloor \frac{n}{C} \rfloor$ ¹. For each generated graph, we
 245 produce connectivity examples: For each example, we sample a pair of nodes (v_{start}, v_{end}) , which
 246 forms the two-token input to the transformer, and we utilize their connectivity as the ground truth
 247 label denoted as “Y” or “N” (indicating the presence or absence of a path from v_{start} to v_{end}). We
 248 use learned token embeddings with dimension d_{emb} , initialized randomly. Also, we concatenate
 249 absolute positional encoding of length $d_{pos} = 2$ for each token with the token embedding and
 250 an additional hidden dimension of $d_{hid} = 32$ in our experiments. By concatenating the token
 251 embedding, positional encoding, and hidden dimensions, we obtain the input embedding for the
 252 transformer model which has dimension $d_{model} = d_{emb} + d_{pos} + d_{hid}$. We experiment with varying
 253 d_{emb} and observe the effect on transformers learning the connectivity task. We set the feed-forward
 254 dimension $d_{ff} = d_{model}$. In addition, we use pre-layer normalization as in Xiong et al. (2020), set
 255 dropout to 0, and the number of layers $l = 4$. During the experiments, we record the accuracy and
 256 loss of the model as a function of training compute, in terms of floating point operations (FLOPs).
 257 We report the loss and accuracy for both training and test sets on the y -axis and FLOPs on the x -
 258 axis. We choose to measure model performance vs FLOPs as opposed to epochs, since for different
 259 model/graph sizes, the number of FLOPs for each iteration is not constant. We use a logarithmic
 260 scale with base 10 in the plots for loss and FLOPs for better visualization. For grid graphs, we
 261 experiment with $k = 2$ -dimensional grid graphs with number of nodes $n = 50, 100, 200, 400, 800$.
 262 For the disconnected chain graphs, we set the number of chains $C = 10$ and number of nodes
 263 $n = 50, 100, 200, 400, 800$. To determine the impact of grid dimension and the number of chains,
 264 we experiment with grid dimension $k = 1, 2, 3, 4$ and 5 and number of chains $C = 1, 5, 10, 15$ and
 265 20. We chose these parameters to make the number of nodes maximally comparable between grid
 266 graphs and disconnected chain graphs. For all experiments, we run with ten different random seeds,
 267 and plot the mean and standard deviation in all figures.

268 **Grid Graph Generation:** To generate a k -dimensional grid graph with n nodes with node IDs
 269 $1, \dots, n$, we first compute the grid width $b = \text{ceil}(n^{\frac{1}{k}})$. We convert the ID of each node into a

¹If n is not divisible by C , the remainder nodes are formed into an additional chain.

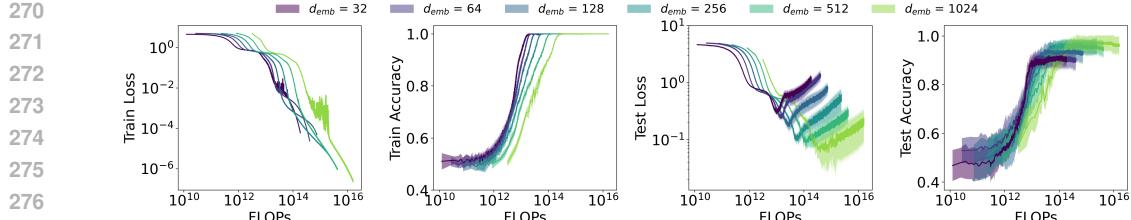


Figure 2: Accuracy and loss vs. training compute on the connectivity task for a grid graph with number of nodes $n = 100$ and grid dimension $k = 2$, for transformers of various sizes/model dimensions with $d_{emb} = 32, 64, 128, 256, 512$ and 1024 .

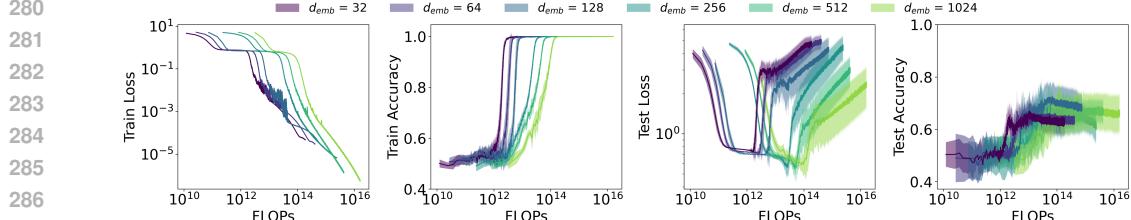


Figure 3: Accuracy and loss vs. training compute on the connectivity task for a disconnected chain graph with number of nodes $n = 100$ and number of chains $C = 10$, with $d_{emb} = 32, 64, 128, 256, 512$ and 1024 .

number in base- b and take the digits to form a k -dimensional vector (i.e., in \mathbb{Z}^k). For any two nodes u, v , we add an edge $u \rightarrow v$ if the difference between the vectors, $\Psi(v) - \Psi(u)$ is a one-hot vector.

Chain Graph Generation: To generate each disconnected chain graph, we consider two parameters: The number of nodes n and number of chains $C \ll n$. We compute chain length $L = \lfloor \frac{n}{C} \rfloor$ and generate C chains of length L . In the Appendix, we present pseudocode to generate grid graphs and disconnected chain graphs in Algorithm 1 and Algorithm 2, respectively.

Training and Test Set Generation: We define (v, u) as a *reverse negative node pair* if there is a path from u to v . If there is no path from u to v or from v to u , we define (v, u) as a *disconnected negative node pair*. To generate train and test sets of node pairs, we first add all pairs of vertices (u, v) to the train set. To produce a test set, we randomly sample 40 positive pairs (u, v) from the train set (i.e., v is reachable from u) and add their reverse negative pairs (v, u) without replacement to the test set. We repeat this for 40 disconnected negative node pairs. We add details of generating train and test sets in Algorithm 3 in the Appendix.

4.2 LEARNING CONNECTIVITY ON GRID GRAPHS VS. DISCONNECTED CHAIN GRAPHS

To determine how well transformers learn the connectivity task for grid graphs and disconnected chain graphs, we train the model for both types of graphs and record the training loss, training accuracy, test loss and test accuracy on the y-axis over the number of training FLOPs on the x-axis in Figures 2 and 3 for grid graphs and disconnected chain graphs, respectively. While for the grid graphs in Figure 2, we achieve low test loss, the test loss continues to diverge for the disconnected chain graphs in Figure 3. Consequently, transformers achieve near-perfect accuracy for grid graphs and struggle to generalize for disconnected chain graphs. Intuitively, for disconnected chain graphs transformers likely struggle as there exists no simple embedding of the graph into a low-dimensional subspace where connectivity is more easily inferable. However, the results support the hypothesis that transformers can more easily learn a low-dimensional embedding of a grid graph to predict the existence/nonexistence of paths between its nodes.

4.3 THE EFFECT OF MODEL SCALE

In Figures 2 and 3, we present results on the connectivity task with $n = 100$ nodes for grid graphs and disconnected chain graphs, respectively. In this experiment, we scale the model size by increasing $d_{emb} = 32, 64, 128, 256, 512, 1024$. Since smaller models use less compute for each training iteration, we run the models for 15000 epochs for $d_{emb} \in \{32, 64\}$, 10000 epochs for $d_{emb} \in \{128, 256\}$, and 5000 epochs for $d_{emb} \in \{512, 1024\}$. For both grid graphs and disconnected chain graphs, as the training compute increases, the training loss drops, approaching near

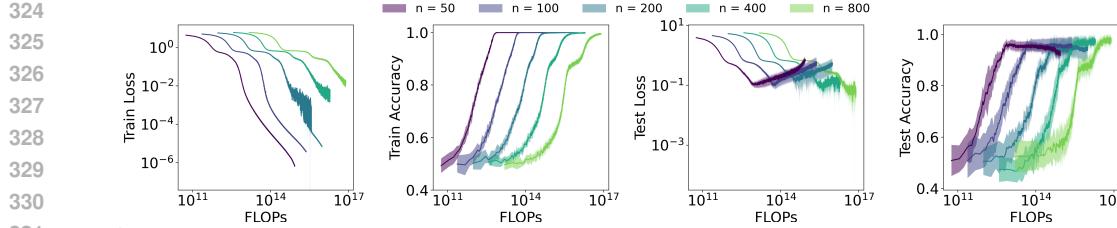


Figure 4: Accuracy and loss vs. training compute on the connectivity task for a grid graph with various graph sizes containing number of nodes $n = 50, 100, 200, 400, 800$ and grid dimension $k = 2$ with $d_{emb} = 256$.

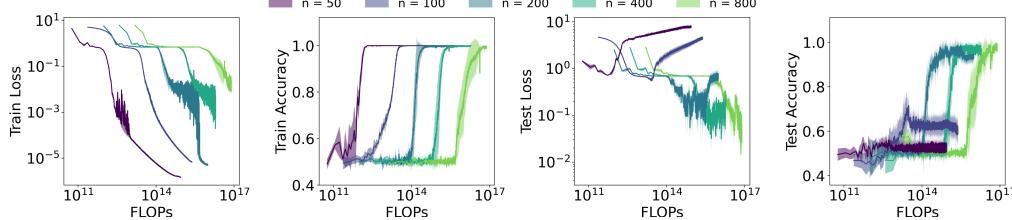


Figure 5: Accuracy and loss vs. training compute on the connectivity task for a disconnected chain graph with various graph sizes containing number of nodes $n = 50, 100, 200, 400, 800$ and number of chains $C = 10$ with $d_{emb} = 256$.

100% training accuracy. For the test loss curve, we can observe that increasing the model size leads to a lower test loss for grid graphs, and consequently, the test accuracy approaches 100%. However, for the case of disconnected chain graphs, increasing d_{emb} instead increases the test loss. As a result, the test accuracy does not improve as we scale the model size for disconnected chain graphs. Therefore, increasing the model size gradually helps transformers to better generalize on the connectivity task over grid graphs; the same behavior is not observed for disconnected chain graphs. This suggests that, as the model size increases, transformers can better learn connectivity on grid graphs by utilizing a low-dimensional vertex-embedding heuristic, resulting in better generalization. But this phenomenon is not observed for the case of disconnected chain graphs.

4.4 THE EFFECT OF GRAPH SIZE

In Figures 4 and 5, we present results of training on the connectivity task for $k = 2$ -dimensional grid graphs and chain graphs with number of chains $C = 10$ and number of nodes $n = 50, 100, 200, 400, 800$ with a fixed token embedding dimension $d_{emb} = 256$ for 15000, 10000, 10000, 5000, 5000 epochs, respectively, to enable fair comparison. In this experiment, we endeavor to measure how well transformers can learn the connectivity task when we increase the graph size by increasing the number of nodes in a graph. From the test loss and test accuracy curve in Figure 4, we observe that as we scale the graph size, the test loss slightly decreases and the test accuracy approaches 100%. Transformers' performance remains consistent as we increase the total number of nodes in grid graphs. As the number of nodes in grid graphs increases, the number of training pairs also increases, which provides more training data for transformers to learn the connectivity task by learning the difference between the vector representations of node pairs on grid graphs. On the other hand, for the case of the disconnected chain graphs, we can observe from Figure 5 that for graphs with a small number of nodes ($n = 50$ or 100), test accuracy stays close to 60% and 80%, respectively. However, when we increase the number of nodes to $n = 200, 400, 800$, the test accuracy reaches close to 100%. For smaller graphs (e.g. 50 or 100 nodes) with a fixed number of chains $C = 10$, there are fewer nodes in each chain. This doesn't provide enough training data for transformers to learn graph connectivity for disconnected chain graphs. However, when we increase the number of nodes for large disconnected chain graphs by fixing the number of chains, it increases the number of nodes in each chain. As a result, transformers have more examples of connected node pairs, which helps to generalize better for the graph connectivity task.

4.5 THE EFFECT OF GRID DIMENSIONALITY

To evaluate how transformers learn connectivity for higher-dimensional grid graphs, we present the training dynamics for $k = 1, 2, 3, 4$ and 5-dimensional grid graphs in Figures 6, 7 and 8. First, we show results with number of nodes $n = 100$ and $d_{emb} = 256$ in Figure 6. Next, we increase the



Figure 6: Accuracy and loss vs. training compute on the connectivity task for a grid graph with grid dimension, $k = 1, 2, 3, 4$, and 5 and number of nodes $n = 100$ with $d_{emb} = 256$.

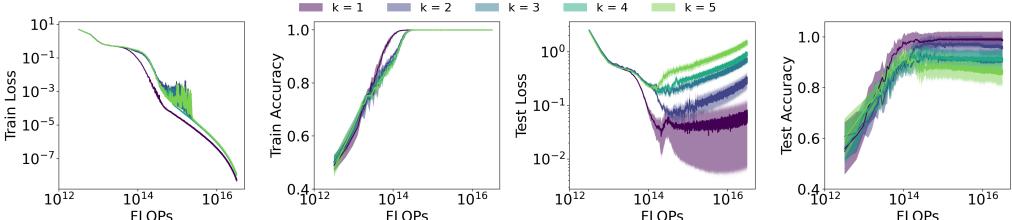


Figure 7: Accuracy and loss vs. training compute on the connectivity task for a grid graph with grid dimension, $k = 1, 2, 3, 4$, and 5 and number of nodes $n = 100$ with $d_{emb} = 1024$.

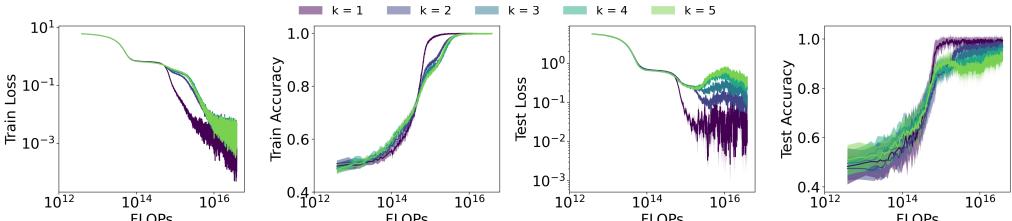


Figure 8: Accuracy and loss vs. training compute on the connectivity task for a grid graph with grid dimension, $k = 1, 2, 3, 4$, and 5 and number of nodes $n = 400$ with $d_{emb} = 256$.

model size to $d_{emb} = 1024$, keeping the graph size unchanged, and show the result in Figure 7. Afterwards, in Figure 8 we increase n to 400, keeping the model size unchanged from Figure 6. From Figure 6, we observe that the test loss is lower for 1-dimensional grid graphs as compared to 2, 3, 4 and 5-dimensional grid graphs. As a result, the test accuracy for 1-dimensional grid graphs in Figure 6 is slightly higher as compared to higher-dimensional grid graphs, and much higher than 5-dimensional grids. Next, when we scale the model size by increasing $d_{emb} = 1024$ and with the number of nodes constant at $n = 100$ in Figure 7, we can observe that transformers’ performance for higher grid dimensionality in terms of test accuracy doesn’t improve much. However, when we increase the number of nodes in the grid graph to $n = 400$ keeping the model size at $d_{emb} = 256$ in Figure 8, we observe that the test loss seems to decrease and test accuracy approaches closer to 100% accuracy for higher grid dimensionalities, as compared to the case where $n = 100$ in Figures 6 and 7. This suggests that increasing the number of nodes in grid graphs is more effective than increasing the model size to better learn connectivity for higher-dimensional grids. When we increase the number of nodes in a grid graph, it provides more training data for transformers to better learn the low-dimensional embedding heuristic, whereas increasing the model scale does not provide as much improvement.

4.6 THE EFFECT OF THE NUMBER OF DISCONNECTED COMPONENTS

In Figure 9, we present the training dynamics for chain graphs with the number of nodes $n = 100$ for the number of chains $C = 1, 5, 10, 15, 20$ with $d_{emb} = 256$. We can observe that the test loss is comparatively lower when the number of chains is small (e.g., $C = 1$ or 5) and although the test accuracy stays close to 100% when the number of chains is small (e.g., $C = 1$ or 5), it drops gradually as the number of chains increases (e.g., $C = 10, 15, 20$), akin to phase transition. For a fixed-size graph with fewer chains, the number of nodes within each chain is large, which facilitates the learning of connectivity via learning an embedding of the nodes within the chain. As we increase the number of chains while keeping the number of nodes fixed, the length of each chain becomes smaller. Therefore, transformers struggle to learn a vertex-embedding heuristic to learn connectivity for disconnected chain graphs. In Figure 10, when we increase the model size to $d_{emb} = 1024$,

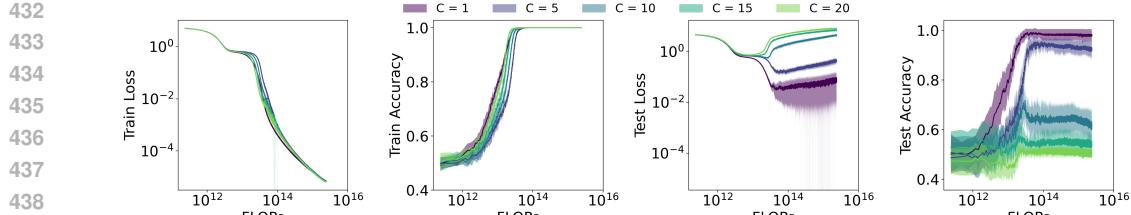


Figure 9: Accuracy and loss vs. training compute on the connectivity task for a disconnected chain graph with various chain sizes with number of chains $C = 1, 5, 10, 15, 20$ and number of nodes $n = 100$ with $d_{emb} = 256$.

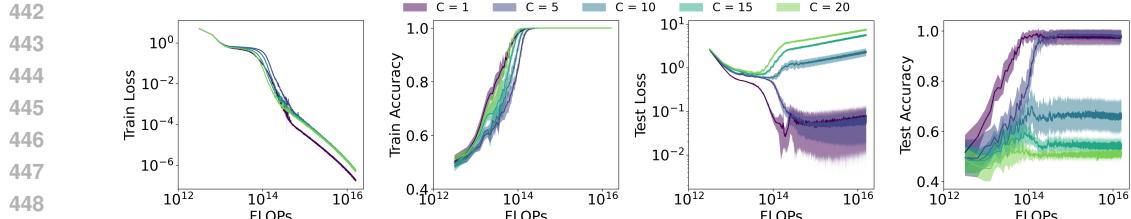


Figure 10: Accuracy and loss vs. training compute on the connectivity task for a disconnected chain graph with various chain sizes with number of chains $C = 1, 5, 10, 15, 20$ and number of nodes $n = 100$ with $d_{emb} = 1024$.

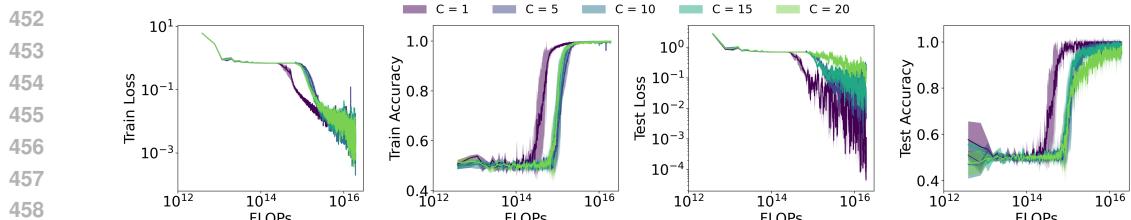


Figure 11: Accuracy and loss vs. training compute on the connectivity task for a disconnected chain graph with various chain sizes with number of chains $C = 1, 5, 10, 15, 20$ and number of nodes $n = 400$ with $d_{emb} = 256$.

while keeping the graph size the same as in Figure 9, we observe that model scaling does not assist transformers to learn the graph connectivity task for the number of chains $C = 10, 15$ and 20 . However, when we increase the graph size to $n = 400$ in Figure 11, we can observe a sharp increase in test accuracy for the number of chains $C = 10, 15, 20$. Increasing the number of nodes in the graph increases the average chain length and provides transformers with enough data to learn the connectivity task even for a larger number of chains, which improves their performance.

5 CONCLUSION

In this study, we investigate the reasoning capabilities of transformers by inspecting whether they can reason about transitive relations, and equivalently, whether they can learn the graph connectivity task from the connectivity information between node pairs which are provided as individual training examples. We scale the model dimension and the graph size to observe how it impacts transformers' performance in learning graph connectivity. We observe that model scaling improves the performance of transformers for grid graphs more than the disconnected chain graphs. Moreover, scaling the graph size, transformers' performance remains consistent for grid graphs of different graph sizes and improves their performance for disconnected chain graphs as the graph size increases. In addition, experimental analysis suggests that data scaling benefits transformer performance more than model scaling in learning graph connectivity for higher-dimensional grid graphs or disconnected chain graphs with a larger number of chains.

As our investigation focused on transformers trained on synthetic graphs, one promising direction for future work is to assess the capabilities of transformers to learn connectivity of graphs that arise in real-world data, e.g., knowledge graphs, causal graphs, etc. Further research is needed to determine whether pretrained LLMs have acquired a generalizable node embedding of such real-world graphs.

486 REFERENCES
487

488 Ira Ceka, Saurabh Pujar, Irene Manotas, Gail Kaiser, Baishakhi Ray, and Shyam Ramji. How does
489 llm reasoning work for code? a survey and a call to action. *arXiv preprint arXiv:2506.13932*,
490 2025.

491 Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
492 language models. *ICLR*, 2024.

493 Bahare Fatemi, Mehran Kazemi, Anton Tsitsulin, Karishma Malkan, Jinyeong Yim, John Palowitch,
494 Sungyong Seo, Jonathan Halcrow, and Bryan Perozzi. Test of time: A benchmark for evaluating
495 llms on temporal reasoning. *ICLR*, 2025.

496 Marc Finzi, Sanyam Kapoor, Diego Granziol, Anming Gu, Christopher De Sa, J Zico Kolter, and
497 Andrew Gordon Wilson. Compute-optimal llms provably generalize better with scale. *ICML*,
498 2025.

499 Vedant Gaur and Nikunj Saunshi. Reasoning in large language models through symbolic math word
500 problems. *ACL*, 2024.

501 Fabian Hoppe, Filip Ilievski, and Jan-Christoph Kalo. Investigating the robustness of deductive
502 reasoning with large language models. *arXiv preprint arXiv:2502.04352*, 2025.

503 Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fer-
504 nando Gonzalez Adaucto, Max Kleiman-Weiner, Mrinmaya Sachan, et al. Cladder: Assessing
505 causal reasoning in language models. *NeurIPS*, 2023.

506 Zhijing Jin, Jiarui Liu, Zhiheng Lyu, Spencer Poff, Mrinmaya Sachan, Rada Mihalcea, Mona Diab,
507 and Bernhard Schölkopf. Can large language models infer causation from correlation? *ICLR*,
508 2024.

509 Chaitanya K Joshi. Transformers are graph neural networks. *arXiv preprint arXiv:2506.22084*,
510 2025.

511 Nitish Joshi, Abulhair Saparov, Yixin Wang, and He He. Llms are prone to fallacies in causal
512 inference. *EMNLP*, 2024.

513 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
514 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
515 models. *ICLR*, 2022.

516 Alexander Murphy, Mohd Sanad Zaki Rizvi, Aden Haussmann, Ping Nie, Guifu Liu, Aryo Pradipta
517 Gema, and Pasquale Minervini. An analysis of decoding methods for llm-based agents for faithful
518 multi-hop question answering. *arXiv preprint arXiv:2503.23415*, 2025.

519 Rohan Pandey. gzip predicts data-dependent scaling laws. *arXiv preprint arXiv:2405.16684*, 2024.

520 Zeyu Qin, Qingxiu Dong, Xingxing Zhang, Li Dong, Xiaolong Huang, Ziyi Yang, Mahmoud
521 Khademi, Dongdong Zhang, Hany Hassan Awadalla, Yi R Fung, et al. Scaling laws of synthetic
522 data for language models. *COLM*, 2025.

523 Nicholas Roberts, Niladri Chatterji, Sharan Narang, Mike Lewis, and Dieuwke Hupkes. Compute
524 optimal scaling of skills: Knowledge vs reasoning. *arXiv preprint arXiv:2503.10061*, 2025.

525 Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
526 Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
527 algorithms. *NeurIPS*, 2024.

528 Abulhair Saparov, Srushti Pawar, Shreyas Pimpalgaonkar, Nitish Joshi, Richard Yuanzhe Pang,
529 Vishakh Padmakumar, Seyed Mehran Kazemi, Najoung Kim, and He He. Transformers strug-
530 gle to learn to search. *ICLR*, 2025.

531 Ivaxi Sheth, Bahare Fatemi, and Mario Fritz. Causalgraph2llm: Evaluating llms for causal queries.
532 *NAACL*, 2025.

540 Rob Sullivan and Nelly Elsayed. Can large language models act as symbolic reasoners? *arXiv*
 541 *preprint arXiv:2410.21490*, 2024.
 542

543 Trieu Trinh and Thang Luong. Alphageometry: An olympiad-level ai system for geometry. *Google*
 544 *DeepMind*, 17, 2024.

545 Aniket Vashishtha, Abhinav Kumar, Atharva Pandey, Abbavaram Gowtham Reddy, Kabir Ahuja,
 546 Vineeth N Balasubramanian, and Amit Sharma. Teaching transformers causal reasoning through
 547 axiomatic training. *ICML*, 2025.

548 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 549 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *NeurIPS*, 2017.

550 Xinyi Wang, Shawn Tan, Mingyu Jin, William Yang Wang, Rameswar Panda, and Yikang Shen. Do
 551 larger language models imply better reasoning? a pretraining scaling law for reasoning. *arXiv*
 552 *preprint arXiv:2504.03635*, 2025.

553 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
 554 An empirical analysis of compute-optimal inference for problem-solving with language models.
 555 *ICLR*, 2025.

556 Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
 557 Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
 558 In *ICML*, 2020.

559 Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei Guo, Yasheng Wang, Yong Liu, Ruiming
 560 Tang, Defu Lian, and Enhong Chen. Entropy law: The story behind data compression and llm
 561 performance. *arXiv preprint arXiv:2407.06645*, 2024.

562 Matej Zečević, Moritz Willig, Devendra Singh Dhami, and Kristian Kersting. Causal parrots: Large
 563 language models may talk causality but are not causal. *TMLR*, 2023.

564 Yizhuo Zhang, Heng Wang, Shangbin Feng, Zhaoxuan Tan, Xiaochuang Han, Tianxing He, and
 565 Yulia Tsvetkov. Can llm graph reasoning generalize beyond pattern memorization? *EMNLP*
 566 *Findings*, 2024.

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

6 APPENDIX

6.1 GRID GRAPH GENERATION

In this subsection, we present the pseudocode to generate a grid graph from the number of nodes n and grid dimension k in Algorithm 1.

Initially, we compute base b as the ceiling of the k -th root of n . We represent each node as a k -dimensional vector, which is a number of base b with k digits. First, we add n nodes with index 0 to $n - 1$ to *grid_graph*. We convert each node index *node_id* in range $[0, n - 1]$ into a number of base b with k digits. We maintain two different dictionaries *node2vector* and *vector2node*, for each node and their corresponding vector representation.

Next, for each node u in $grid_graph$ we obtain the vector representation from the $node2vector$ dictionary. Next, we obtain a new vector representation new_vector by incrementing each of the k different indexes of node u 's vector representation. Next, we check the dictionary $vector2node$ whether there exists a node v with the new vector representation, new_vector . If such a node v exists in the dictionary $vector2node$, then we add an edge (u, v) to the $grid_graph$.

We return $grid_graph$ at the end of Algorithm 1.

Algorithm 1: Procedure to generate a k -dimensional grid graph with n nodes.

```

1  function generate_grid_graph( $n, k$ )
2     $b \leftarrow \lceil n^{1/k} \rceil$ 
3     $grid\_graph \leftarrow \emptyset$ 
4    /* Add nodes to the graph */
5    for  $node\_id \leftarrow 0$  to  $n - 1$  do
6       $grid\_graph \leftarrow grid\_graph \cup \{node\_id\}$ 
7
8    /* Map nodes to  $k$ -dimensional vectors */
9     $node2vector \leftarrow \{\}$ 
10    $vector2node \leftarrow \{\}$ 
11   for  $node\_id \leftarrow 0$  to  $n - 1$  do
12      $vector \leftarrow []$ 
13      $base \leftarrow b$ 
14      $num \leftarrow node\_id$ 
15     for  $j \leftarrow 1$  to  $k$  do
16        $vector.append(num \bmod b)$                                 /* modulo by base */
17        $num \leftarrow \lfloor num/b \rfloor$ 
18
19      $node2vector[node\_id] \leftarrow vector$ 
20      $vector2node[vector] \leftarrow node\_id$ 
21
22   /* Add edges between nodes in grid graph */
23   for  $u \in grid\_graph$  do
24      $vector \leftarrow node2vector[u]$ 
25     for  $j \leftarrow 0$  to  $k - 1$  do
26        $new\_vector \leftarrow vector$ 
27        $new\_vector[j] \leftarrow new\_vector[j] + 1$ 
28       if  $new\_vector \in vector2node.keys()$ 
29          $v \leftarrow vector2node[new\_vector]$ 
30          $add\_edge(grid\_graph, u, v)$ 
31
32   return  $grid\_graph$ 

```

648 6.2 CHAIN GRAPH GENERATION
649650 Next, we provide the pseudocode to generate a chain graph with parameters *total_nodes* and
651 *number_of_chains* Algorithm 2. For a given number of *total_nodes* and *number_of_chains*,
652 we first compute the average chain length, L for each chain. Next, we add nodes with *node_id* in
653 range $[1, \text{total_nodes}]$ in the *chain_graph*.654 We add all nodes to a list *available_nodes*. Next, we sample L nodes from the list *available_nodes*
655 without replacement and form a chain by connecting the nodes in the chain nodes. We repeat this
656 process as many times as the parameter *number_of_chains*.657 After creating chains, if more than one node is remaining in the *available_nodes*, we connect them
658 to produce another chain.
659660 At the end of the Algorithm 2, we return the *chain_graph*.
661662 **Algorithm 2:** Pseudocode for chain graph generation with parameters *total_nodes* and *number_of_chains*.
663

```

1 function generate_chain_graph(total_nodes, number_of_chains)
2    $L \leftarrow \left\lfloor \frac{\text{total\_nodes}}{\text{number\_of\_chains}} \right\rfloor$            /* average chain length per chain */
3   /* Initialize node set and empty graph */
4   chain_graph  $\leftarrow \emptyset$ 
5   for node_id  $\leftarrow 1$  to total_nodes do
6     chain_graph  $\leftarrow \text{chain\_graph} \cup \{\text{node\_id}\}$ 
7   available_nodes  $\leftarrow [1, 2, \dots, \text{total\_nodes}]$ 
8   /* Create number_of_chains disjoint chains of length  $L$  */
9   for c  $\leftarrow 1$  to number_of_chains do
10    sampled_nodes  $\leftarrow \text{sample\_without\_replacement}(\text{available\_nodes}, L)$ 
11    remove chain_nodes from available_nodes
12    for i  $\leftarrow 1$  to  $L - 1$  do
13      u  $\leftarrow \text{sampled\_nodes}[i]$ ; v  $\leftarrow \text{sampled\_nodes}[i + 1]$ 
14      add_edge(chain_graph, u, v)
15
16  /* Wire any leftover nodes into one additional chain */
17  if  $|\text{available\_nodes}| > 1$ 
18  for i  $\leftarrow 1$  to  $|\text{available\_nodes}| - 1$  do
19    u  $\leftarrow \text{available\_nodes}[i]$ ; v  $\leftarrow \text{available\_nodes}[i + 1]$ 
20    add_edge(chain_graph, u, v)
21
22 return chain_graph

```

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 6.3 TRAIN AND TEST SET GENERATION
703

704 In algorithm 3, we present the pseudocode to generate a train and test set from a given directed graph.
 705 First, based on reachability, we add all positive and negative pairs to *train_positive_pairs* and
 706 *train_negative_pairs*, and we exclude node pairs with identical node index e.g., (u, u) . Next, we
 707 sample $M_{test} = 40$ pairs (u, v) such that $dis_{graph}[u][v] > 1$ and add (u, v) to *test_positive_pairs*
 708 and the reverse negative pair (v, u) to *test_negative_pairs*. Also, we remove (u, v) from
 709 *train_positive_pairs* and remove (v, u) to *train_negative_pairs*. After that, we compute all possi-
 710 ble disconnected negative pairs (u, v) such that u is not reachable from v and v is not reachable
 711 from u . Lastly, we sample M_{test} pairs (u, v) from disconnected negative pairs and add
 712 $\{(u, v), (v, u)\}$ to *test_negative_pairs* removing from *train_negative_pairs*.
 713

714 **Algorithm 3:** Generate training and test set from directed graph.
715

```

1 function generate_train_test_pairs(graph,  $M_{test}$ )
2   dis_graph  $\leftarrow$  distances from each node using edges in graph
3   train_positive_pairs  $\leftarrow$  [ ]; train_negative_pairs  $\leftarrow$  []
4   test_positive_pairs  $\leftarrow$  [ ]; test_negative_pairs  $\leftarrow$  []
  /* Populate train sets by reachability */
5   for  $u \in \text{graph}$  do
6     for  $v \in \text{graph}$  do
7       if  $u = v$ 
8         continue
9       if  $v \in \text{dis}_{\text{graph}}[u]$ 
10      train_positive_pairs.append( $(u, v)$ )
11    else
12      train_negative_pairs.append( $(u, v)$ )
13
  /* Move  $M_{test}$  multi-hop positive and reverse negative pairs to test set */
14   for  $i \leftarrow 1$  to  $M_{test}/2$  do
15      $(u, v) \leftarrow$  Randomly sample from train_positive_pairs s.t.  $\text{dis}_{\text{graph}}[u][v] > 1$ 
16     test_positive_pairs  $\leftarrow$  test_positive_pairs  $\cup$   $(u, v)$ 
17     train_positive_pairs  $\leftarrow$  train_positive_pairs  $\setminus$   $(u, v)$ 
18     test_negative_pairs  $\leftarrow$  test_negative_pairs  $\cup$   $(v, u)$ 
19     train_negative_pairs  $\leftarrow$  train_negative_pairs  $\setminus$   $(v, u)$ 
  /* Build disconnected negative candidates (no path either direction) */
20   non_reverse_pairs  $\leftarrow$  []
21   node_list  $\leftarrow$  []
22   for  $\text{node} \in \text{graph}$  do
23     node_list.append( $\text{node}$ )
24    $l \leftarrow |\text{node_list}|$ 
25   for  $i \leftarrow 1$  to  $l$  do
26     for  $j \leftarrow i + 1$  to  $l$  do
27        $u \leftarrow \text{node_list}[i]$ ;  $v \leftarrow \text{node_list}[j]$ 
28       if  $(v \notin \text{dis}_{\text{graph}}[u]) \wedge (u \notin \text{dis}_{\text{graph}}[v])$ 
29       non_reverse_pairs  $\leftarrow$  non_reverse_pairs  $\cup$   $(u, v)$ 
  /* Sample disconnected negatives into test and remove from train negatives */
30   sampled_non_reverse_pairs  $\leftarrow$  sample_without_replacement(non_reverse_pairs,  $M_{test}$ )
31   for  $\text{edge} \in \text{sampled_non_reverse_pairs}$  do
32      $u \leftarrow \text{edge}[0]$ ;  $v \leftarrow \text{edge}[1]$ 
33     test_negative_pairs  $\leftarrow$  test_negative_pairs  $\cup$   $\{(u, v), (v, u)\}$ 
34     train_negative_pairs  $\leftarrow$  train_negative_pairs  $\setminus$   $\{(u, v), (v, u)\}$ 
35
  return train_positive_pairs, train_negative_pairs, test_positive_pairs, test_negative_pairs

```

746
747
748
749
750
751
752
753
754
755

756
757

6.4 TRANSITIVITY AND GRID GRAPH CO-ORDINATES RELATIONSHIP

758
759
760

We provide an example of a 2-dimensional grid graph with 4 nodes and present the relationship between the transitivity function between a start and end node with the difference of their vector representation in Figure 12 and Table 13.

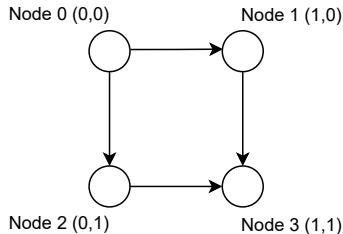
761
762
763
764
765
766
767
768
769
770
771772
773
774
775
776

Figure 12: A two-dimensional grid graph with four nodes.

777
778

6.5 HARDWARE:
All the experiments are performed on a Linux server with a 2GHz AMD EPYC 7662 64-Core Processor and 1 NVIDIA A100-PCIe GPU with 40GB memory.

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

$start, end$	$\Psi(end) - \Psi(start)$	$\mathcal{T}(start, end)$
0, 1	(1, 0)	1
0, 2	(0, 1)	1
0, 3	(1, 1)	1
1, 0	(-1, 0)	0
1, 2	(-1, 1)	0
1, 3	(0, 1)	1
2, 0	(0, -1)	0
2, 1	(1, -1)	0
2, 3	(1, 0)	1
3, 0	(-1, -1)	0
3, 1	(0, -1)	0
3, 2	(-1, 0)	0

Figure 13: Relation between difference of vectors, $\Psi(end) - \Psi(start)$ and connectivity function $\mathcal{T}(start, end)$ for a two-dimensional grid graph with four nodes.