
Published as a conference paper at ICLR 2025

FLOW: MODULARIZED AGENTIC WORKFLOW AU-
TOMATION

Boye Niu1, Yiliao Song2, Kai Lian1, Yifan Shen4, Yu Yao1, Kun Zhang3,4, Tongliang Liu1,4†

1Sydney AI Centre, The University of Sydney, 2The University of Adelaide
3Carnegie Mellon University, 4Mohamed bin Zayed University of Artificial Intelligence

ABSTRACT

Multi-agent frameworks powered by large language models (LLMs) have demon-
strated great success in automated planning and task execution. However, the
effective adjustment of agentic workflows during execution has not been well
studied. An effective workflow adjustment is crucial in real-world scenarios, as the
initial plan must adjust to unforeseen challenges and changing conditions in real
time to ensure the efficient execution of complex tasks. In this paper, we define
workflows as an activity-on-vertex (AOV) graph, which allows continuous workflow
refinement by LLM agents through dynamic subtask allocation adjustment based
on historical performance and previous AOVs. To further enhance framework
performance, we emphasize modularity in workflow design based on evaluating
parallelism and dependency complexity. With this design, our proposed multi-
agent framework achieves efficient concurrent execution of subtasks, effective goal
achievement, and enhanced error tolerance. Empirical results across various prac-
tical tasks demonstrate significant improvements in the efficiency of multi-agent
frameworks through dynamic workflow refinement and modularization. The code
is available at: https://github.com/tmllab/2025_ICLR_FLOW.

1 INTRODUCTION

Large Language Models (LLMs) (Significant Gravitas; Zhou et al., 2023) show a remarkable ability
to understand and generate human-like text. Recent advances have significantly enhanced their
capability to emulate human reasoning (Sun et al., 2024), indicating a promising future for LLM-
based reasoning. With the powerful ability to handle a variety of natural language processing tasks,
these models underpin a wide range of applications, from conversational agents (Ye et al., 2024)
and content creation tools (Yao et al., 2023) to advanced analytics and decision-making systems
(Ramesh et al., 2021; Wang et al., 2023). Building upon this foundation, a key advancement is the
development of multi-agent frameworks empowered by LLM (Liu et al., 2023; Li et al., 2023; Hong
et al., 2024b; Wu et al., 2024; Wang et al., 2024; Chen et al., 2024; Liu et al., 2024) where multiple
LLM-based agents collaborate to address complex tasks, leveraging their collective reasoning and
planning abilities to automate and optimize task execution processes.

Existing LLM-based multi-agent frameworks define LLM as an agent, and agents collaborate with
each other via manually designed or LLM-generated prompts. Specifically, MetaGPT focuses
on programming tasks by leveraging Standardized Operating Procedures (SOPs) (Wooldridge &
Jennings, 1998; DeMarco & Lister, 2013; Belbin, 2010). It predefined distinct roles such as product
manager, project manager, and engineer. For each role, an LLM agent is initialized, and these agents
operate within a strict and sequential workflow to execute subtasks. CAMEL can complete a variety
of task types. It requires users to pre-define two agents. These agents interact and execute tasks
sequentially, each agent taking on specific responsibilities. AutoGen is also aimed at completing
diverse tasks. Unlike CAMEL, AutoGen automatically creates an agent list with different roles based
on subtask requirements. These agents execute subtasks sequentially following the order in the list.

†Correspondence to Tongliang Liu (tongliang.liu@sydney.edu.au)

1

https://github.com/tmllab/2025_ICLR_FLOW

Published as a conference paper at ICLR 2025

Figure 1: Comparative evaluations among four frameworks—AutoGen, CAMEL, MetaGPT, and Flow
(ours)—across two tasks, present notable differences in performance. For the left task, AutoGen,
CAMEL, and MetaGPT only managed to produce basic designs lacking in completeness while
Flow excelled by creating a fully developed and well-structured website. For the right task, Flow
demonstrated superior capability by successfully generating a working game with a clear and intuitive
interface, while the other frameworks struggled to deliver fully functional code.

Building upon the strengths of current multi-agent frameworks, our work aims to further improve
existing general-purpose multi-agent frameworks by enabling dynamically updating workflows
during task execution and encouraging modularity in workflows when planning the workflows.

Specifically, dynamic updating workflows allow agents to adjust subtask allocations and agent
roles in real-time based on ongoing performance feedback and changing conditions. This capability
ensures that the system remains responsive and efficient even when faced with unexpected obstacles.
For instance, if an agent encounters a roadblock in data preprocessing, the system can reassign this
subtask to another agent or introduce a new subtask to resolve the issue. This adaptability is essential
for maintaining robustness and ensuring seamless execution of complex tasks.

Modularity in system design involves dividing a system into separate, independently operating mod-
ules, each responsible for specific functionalities (Baldwin & Clark, 1999). In our context, modularity
refers to the decomposition of a complex task into smaller, interchangeable subtask modules. A
highly modularized workflow enables subtasks to execute concurrently, without bottlenecks from
other parts of the workflow, and thereby directly improves the operational efficiency of multi-agent
frameworks. Furthermore, modularity enhances the ease of dynamic updating. When workflows are
highly modularized, the dependency complexity between subtasks is minimal. Therefore, updating
one subtask does not affect others, allowing for small workflow adjustments. For example, if an agent
responsible for data preprocessing encounters an unexpected obstacle, a system of high modularity
can adapt by introducing only one subtask with minimal impact on the rest of the workflow.

In this paper, we enhance existing multi-agent frameworks by achieving modularity and enabling
dynamic workflow updates. Our framework allows agents to execute their subtasks in parallel while
facilitating efficient workflow updates. This is accomplished by formulating the entire workflow as
an Activity-on-Vertex (AOV) graph, which is a directed acyclic graph (DAG) where each subtask is
represented as a node with its status and generated logs, while the directed edges capture dependencies
between subtasks. To encourage a modular workflow design from the beginning, we generate multiple
candidate AOV graphs for the task. These candidates are then evaluated based on their degree of

2

Published as a conference paper at ICLR 2025

parallelism and the complexity of their dependencies. The AOV graph with the highest parallelism
and lowest dependency complexity is selected.

During task execution, our framework continuously checks and refines the workflow, updating it when
a subtask fails (see Fig. 2: Check & Refine). The framework updates subtask allocations and agent
roles based on ongoing performance data and the current workflow. As our AOV-based workflow
encourages high modularity, updating one module does not necessarily affect others, allowing for
localized adjustments during workflow updates (see Fig. 2: Update). Similar to the initial workflow
generation, multiple AOV graphs are generated and the one with highest parallelism and lowest
dependency complexity is selected during dynamic updates. This iterative workflow refinement
process enhances adaptability to new challenges and evolving objectives throughout task execution,
ensuring dynamic workflow updates without compromising overall performance.

Contributions: 1) We introduce and encourage modularity in multi-agent workflows, emphasizing
the design of workflows with high parallelism and low dependency complexity. This modular
design enhances efficiency, robustness, and scalability by enabling concurrent subtask execution and
minimizing bottlenecks caused by complex interdependence. 2) We propose a practical multi-agent
framework that supports highly flexible updates to the workflow during runtime. Our method enables
local updates to the entire workflow based on global information, allowing agents to efficiently
adapt to unexpected challenges while maintaining system coherence and consistency. 3) Through
comprehensive experiments, we demonstrate significant improvements in both the adaptability and
efficiency of our multi-agent framework compared to existing approaches.

2 RELATED WORK

LLM-based Task Decision-Making. Recent developments in LLM-based task decision making have
focused on improving the reasoning and planning abilities of agents (Yao et al., 2023; Song et al., 2023;
Zhou et al., 2024; Prasad et al., 2023; Shinn et al., 2023; Ahn et al., 2022; Teng et al., 2025). Previous
approaches like ReAct (Yao et al., 2023) iteratively generate thoughts and actions based on current
observations until task completion. This framework integrates action-taking with reasoning, allowing
agents to perform complex tasks in dynamic environments. Reflexion (Shinn et al., 2023) further
improves this by incorporating self-reflection, where the agent evaluates and adjusts its reasoning
during execution. ADAPT (Prasad et al., 2023) introduces recursive task decomposition, enabling
LLM-based agents to break tasks into smaller subtasks, which leads to improved task execution
flexibility. However, these approaches often overlook dynamic task reallocation, particularly in
multi-agent settings, which is where our work extends current research.

LLM-based Multi-Agent Frameworks. Multi-agent frameworks have long been employed for task
execution in distributed environments, with recent advances leveraging LLM to enhance coordination
and decision-making (Hong et al., 2024b; Li et al., 2023; Wu et al., 2024; Hu et al., 2024; Zhang et al.,
2024; Trirat et al., 2024). However, existing frameworks often rely on static workflows with limited
adaptability to changes in the task environment. DyLAN (Liu et al., 2024) and MACNET (Qian et al.,
2024) utilize static graphs to represent workflows in multi-agent frameworks; GPTSwarm (Zhuge
et al., 2024) enhances agent interactions but maintains a fixed agent topology; DataInterpreter (Hong
et al., 2024a) updates workflows primarily in response to execution failures in subtasks, adjusting
subsequent tasks while leaving completed tasks unchanged; AFlow (Zhang et al., 2025) introduces
a dynamic workflow generation framework based on Monte Carlo Tree Search, enabling adaptive
adjustments through iterative code modification. This highlights the need for dynamic workflow
updates.

3 THE PROPOSED MULTI-AGENT FRAMEWORK: FLOW

Our proposed Flow enhances multi-agent frameworks powered by LLM by introducing modularity
and dynamic workflow updating. As depicted in Fig. 2, given the task requirement, Flow first formu-
lates the initial workflow for execution plan generation and agent allocation. During execution, the
workflow is continuously refined and dynamically updated until the task is completed. To maximize
system simplicity and flexibility, we design a dictionary-based structure for implementation. In the
following, we detail how to achieve these features.

3

Published as a conference paper at ICLR 2025

Figure 2: The process starts with task initialization, encouraging the modularity and execute parallel
of subtasks. Outputs are evaluated. If errors are detected, the workflow is dynamically updated by
modifying the task graph. This iterative process continues until successful task completion.

Formulating a Workflow as an AOV graph. Activity on Vertex (AOV) graph is a type of directed
acyclic graph where vertices represent subtasks and edges denote precedence relations (Bondy &
Murty, 2011). AOV graphs are widely used in project scheduling and management (Moder et al.,
1983; Taha, 2017), helping planners visualize dependencies and sequence subtasks efficiently.

Inspired by that, we define the multi-agent workflow as an AOV graph where vertices represent
subtasks, while edges denote dependencies between subtasks. Let G = (V,E,A) denote the AOV
graph, with V the set of all subtasks (vertices), E ⊆ V ×V the set of directed edges indicating subtask
dependencies. For example, eij = (vi, vj) ∈ E indicates that the subtask vi must be completed
before the subtask vj starts. A represents a set of agents for all subtasks. Each agent aj ∈ A is
associated with a role that is responsible for executing a subset of subtasks Tj ⊆ V .

Note that AutoGen also automatically generates subtasks and agents. However, the subtasks are
designed to be executed sequentially. For Flow, we allow for the generation of subtasks that can
run in parallel. This distinction enhances our framework’s ability to handle multiple subtasks
simultaneously, which reduces overall process time and increases efficiency.

Modularity in a Workflow. Modularity in system design (Baldwin & Clark, 1999) involves dividing
a system into separate, independently operating modules, each responsible for specific functionalities,
allowing focus on individual components without affecting the entire system. It is essential for
scalability and flexibility in workflows. By reducing dependency complexity, the system can more
easily adapt to changes, such as the introduction of new tasks or the reassignment of existing ones,
without requiring extensive restructuring. Theorem 1 demonstrates that additional dependencies in a
workflow reduce the expected success rate of subtasks. Following this conclusion, Flow advocates
for the creation of subtasks that can be executed independently.

4

Published as a conference paper at ICLR 2025

Theorem 1. Consider two topologically sorted workflows A and B each consisting of N subtasks
according to their execution order. Suppose

1. (Random fail probability) Each subtask v ∈ T fails with probability pf , where 0 < pf < 1.
2. (Additional dependency in Workflow B) There exist at least one subtask v∗ ∈ T and a subtask

b ∈ T such that the set of immediate predecessors (dependencies) of v∗ in Workflow B is
DB(v

∗) = DA(v
∗)∪{b}, where DA(v

∗) is the set of immediate predecessors of v∗ in Workflow
A. For all other subtasks v ̸= v∗ DA(v) ⊆ DB(v).

The expected number of completed subtasks in Workflow A is strictly greater than in Workflow B:
E[SA] > E[SB].

To encourage modularity in the generated AOV graph, we define two quantitative measures that
evaluate parallelism and dependency complexity respectively. Parallelism measures the extent to
which subtasks can be executed concurrently. Let St represent the set of subtasks executed in the
t step. Let T be the total number of steps (the maximum depth of the DAG). Given an AOV graph
G = (V,E,A), the degree of parallelism overall is defined as the average subtask ratio over steps:

Pavg =
1

T

T∑
t=1

St.

Although Pavg provides a measure of parallelism, it is insufficient to fully capture the modularity that
arises when subtasks can be executed independently. Consider two workflows, both containing the
same subtasks {A,B,C,D}. For Workflow 1, the task dependencies are defined as: A→ C,B →
C,A→ D,B → D,C → D. In contrast, Workflow 2 has dependencies: A→ C,B → C,C → D.
Although both workflows exhibit the same level of parallelism, Workflow 2 is structurally simpler in
terms of task dependencies, as it contains fewer edges.

To account for this complexity, we measure the dependency structure by analyzing the degree
distribution within the subtask graph. For each subtask vi, we define deg(vi) as the number of direct
connections it has on the graph G. The dependency complexity is quantified by the standard deviation
of the number of direct connections:

Cdependency = σdeg(vi) =

√
1

|V |
∑
vi∈V

(deg(vi)− d̄)2.

This measure reflects the variability in the number of dependencies each subtask has, providing
insight into the overall complexity of the workflow structure.

Task dependencies alone are insufficient to fully capture the modularity that allows subtasks to be
executed independently. Consider Workflow 3: A → B → C → D, which may have a similar
dependency complexity to Workflow 2. However, Workflow 2 provides greater modularity and
separation of subtasks, highlighting the importance of evaluating both dependency complexity and
modularity to fully assess and promote effective workflow designs. Both measures are essential to
ensure that subtasks can be executed in parallel while maintaining a modular approach.

A Sample Prompt for Initialization Pinit

You are an intelligent workflow planner. Given the following task requirements,
generate a set of necessary subtasks along with their dependencies and assign
appropriate agents to each task. Ensure that tasks that can be executed in
parallel are identified to enhance efficiency. The workflow should be represented
as a dictionary where each key is a task and its value contains the task’s status,
data, number of parents not completed, child tasks, and assigned agent.

Task Requirements: {TASK_REQUIREMENTS}

Output Format: { "Task_A": { "status": "not started", "data": null, "
num_parents_not_completed": 0, "child": ["Task_B", "Task_C"], "agent": "Agent_1"
}, "Task_B": { "status": "not started", "data": null, "num_parents_not_completed":
1, "child": ["Task_D"], "agent": "Agent_2" }, ... }

5

Published as a conference paper at ICLR 2025

Generate an Initial AOV Graph. Given a task requirement prompt P , we prompt an LLM f to
generate a set of candidate AOV graphs {G1, G2, . . . , GK} based on P and a designed prompt
for initialization Pinit, i.e., , {G1, G2, . . . , GK} = f(Pinit,P). Each candidate AOV graph Gk =
(Vk, Ek, Ak) is evaluated using the measures of parallelism and dependency complexity. We
prioritize the workflow with the highest parallelism score. If multiple graphs share the highest score,
we select the one with the lowest dependency complexity.

Note that we prioritize parallelism and modularity early in the process and focus on refining the
workflow through data-driven adjustments during running. The reasons are: 1) LLM-generated
workflows possess reasoning capabilities, but may not prioritize efficiency. If parallelism and
independence are not explicitly encouraged during the initial workflow generation, the applied
workflow is very likely to be overly complex, which results in inefficient subtask implementation;
2) verifying correctness is inherently challenging as no additional data is available as supervised
information at an early stage. As compensation, we refine the workflow by parallelism and modularity.

Execution Plan Generation and Agent Allocation. After we obtain the best AOV graph, a
topological sort is performed on the dependency graph of the subtasks to produce a linear order of the
subtasks o : V → {1, 2, . . . , |V |} such that for any edge (vi, vj) ∈ E, o(vi) < o(vj). The result is a
sequence of subtask steps, where each step consists of subtasks that can be executed in parallel. This
execution plan minimizes the number of steps needed to perform while ensuring that all subtasks are
completed in the shortest possible time, adhering to their dependencies.

Each agent aj ∈ A is associated with a set of subtasks Tj ⊆ V , indicating the subtasks that the agent
is responsible for handling. However, if two subtasks vp and vq require the same agent aj at the
same step si, we create a clone of the agent, denoted a′j , to run both subtasks simultaneously without
increasing the waiting time.

Prompt for Update Pupdate

You are an intelligent workflow updater. Based on the current workflow and the all
subtasks’ progress data, update the workflow for acheving the objective by adding,
removing, or modifying subtasks as necessary. Ensure that the updated workflow
maintains modularity and maximizes parallel execution.

Output Format: { "Task_A": { "status": "not started", "data": null, ... }

Workflow Refinement and Dynamic Updating. We leverage LLM as a global inspector to continu-
ously monitor task progress and dynamically modify the AOV graph based on global information
when necessary. Specifically, given the task requirements prompt P and the update prompt Pupdate,
the current AOV graph Gt, and the generated data Dt containing the status of subtasks and the
output of agents to run subtasks. Similarly to the initialization process, we generate K candidate
graphs: {Gt+1

1 , Gt+1
2 , . . . , Gt+1

K } = f(Pupdate,P, Dt). We follow the same selection strategy as in
initialization, which prioritizes the workflow with the highest parallelism score and further selects the
one with the lowest dependency complexity if multiple graphs share the highest parallelism score.

With the modularity constraint introduced in previous sessions, our dynamic updates can largely
fulfill flexibility, allowing modifications to subtask allocations including deletion, addition, editing,
rerunning, and reassignment of agents without necessarily affecting other agents or their assigned
subtasks. Namely, one subtask vi can be replaced by a collection of subtasks V after updating. This
unique advantage is particularly beneficial when subtask requirements become more challenging, as
subtask dependencies can be highly complex.

Note that with sufficient data and computational resources, we could further enhance our framework
by fine-tuning LLM with reinforcement learning for workflow generation. For example, the LLM
would be trained to maximize a reward function designed around key performance indicators such as
task completion speed, resource utilization, and minimization of workflow disruptions.

Implementation. Our framework employs a dictionary-based structure, G̃, to efficiently manage and
dynamically update workflows within a multi-agent framework. Each subtask v in the workflow is
represented as a key in G̃, the value being another dictionary that encapsulates various attributes of
the subtask. The structure is specifically defined as:

G̃[v] = {"subtask requirement", "status", "data", "num_parents_not_completed", "child", "agent"}.

6

Published as a conference paper at ICLR 2025

In each G̃[v], the values of each key are as follows:

• "subtask requirement": the text of the task requirement;
• "status": the current task implementation status e.g. "not started", "in progress", "completed";
• "data": data relevant to this task;
• "num_parents_not_completed": the count of uncompleted parent tasks to manage dependencies;
• "child": a list of child tasks that depend on the current task’s completion;
• "agent": the agent assigned to the task.

This dictionary-based structure can be converted directly to JSON, and the organized infor-
mation is easily readable and summarizable by LLM, granting our system inherent simplicity
and flexibility. In addition, each subtask execution readiness is determined by the attribute
"num_parents_not_completed". Subtasks with a count of zero are eligible to run concurrently,
leveraging our system’s capability to handle parallel subtask execution effectively. Upon com-
pletion of each subtask, we perform a systematic review to determine if the workflow requires
refinement, ensuring that all dependencies are accurately accounted for and that the workflow remains
aligned with project goals. In addition to monitoring the subtask completion by the "status" and
"num_parents_not_completed" counts reported by agents. Flow also double-checks the completion
of each subtask by asking if all the requirements of this subtask are fulfilled. This will largely prevent
errors from inaccurate reporting by agents or unforeseen system anomalies. This rigorous verification
process enhances the reliability and integrity of our workflow management system.

4 EXPERIMENTS

Baselines. In all experiments, we compare Flow to existing multi-agent frameworks: (1) AutoGen ,
(2) Camel , and (3) MetaGPT . In our experiments, we use agents empowered by GPT-4o-mini and
GPT-3.5-Turbo (OpenAI, 2024).

Experiment Design. We designed three diverse and engaging tasks to evaluate multi-agent collabo-
ration frameworks: 1) website design, 2) LaTeX Beamer writing, and 3) gobang game development.
The rationale for selecting coding-based experiments is twofold. First, most multi-agent frameworks,
such as MetaGPT , are optimized for coding and writing tasks. Using non-coding tasks could intro-
duce bias. Second, coding tasks effectively showcase the ability of a framework to assign agents and
manage task allocation.

Gobang Game Development: This task requires creating a gobang game with a user interface and
a simple AI opponent. Players can choose between black or white stones, with the UI clearly
indicating turns and announcing the winner or draw when the game ends. This task demonstrates the
framework’s ability to handle modular design and task parallelism, as it involves coordinating game
logic, AI implementation, and user interface development simultaneously.

LaTeX Beamer Writing: This task focuses on generating LaTeX slides that cover reinforcement
learning algorithms, including motivations, problem statements, intuitive solutions, and detailed
mathematical equations. A specific page requirement is to test the framework’s ability to follow
instructions precisely. The task highlights the framework’s parallel processing capabilities of simulta-
neous generation of content, formatting, and presentation structure. The structured format of LaTeX
also tests how effectively the framework manages modularity and concurrent tasks.

Website Design: This task builds a professional website for the International Conference on Learning
Representations, hypothetically scheduled in San Francisco from April 27 to May 1, 2025. The
website must feature key elements such as a detailed conference schedule and venue information with
an interactive map. This task assesses frameworks’ ability to manage parallel workflows and modular
components, including user interface design, functionality, and adherence to design guidelines,
showcasing how well a framework can handle complex task decomposition and execution.

4.1 EVALUATIONS OVER THREE DESIGNED TASKS

Evaluation Metrics. To conduct both quantitative and qualitative evaluations, we employ two
metrics: Success Rate and Human Rating. The success rate is a quantitative measure that ranges
from 0 to 1. It assesses whether the multi-agent framework successfully generates executable outputs

7

Published as a conference paper at ICLR 2025

Table 1: Comparison of different multi-agent frameworks on Gobang Game Development

Model Success Rate (%) Human Rating
Compilable Interactable Game Rule Overall Score (1-4)

AutoGen 80 60 40 60 2.26
MetaGPT 100 100 20 73 1.24
CAMEL 40 40 0 27 2.50

Flow (Ours) 100 100 100 100 4.00

Table 2: Comparison of different multi-agent frameworks on LaTeX Beamer Writing

Model Success Rate (%) Human Rating
Compilable Completeness Page Limit Overall Score (1-4)

AutoGen 80 80 40 67 3.00
MetaGPT 80 80 20 60 1.83
CAMEL 100 100 0 66 1.83

Flow (Ours) 100 100 100 100 3.33
Table 3: Comparison of different multi-agent frameworks on Website Design

Model Success Rate (%) Human Rating
Compilable Basic Information Sections Overall Score (1-4)

AutoGen 80 80 60 73 2.62
MetaGPT 100 100 40 80 1.72
CAMEL 80 80 0 53 2.02

Flow (Ours) 80 80 80 80 3.28

that fully meet the task requirements. A higher score indicates a greater level of success in accurately
fulfilling the task objectives. Different tasks may have different evaluation metrics. The description
for each evaluation metric is defined in Appendix B.1, B.2 and B.3. Human ratings are used to
evaluate the quality of the generated results in alignment with the task description. We gathered 50
participants with programming and machine learning backgrounds to rank the outcomes produced by
different methods. A detailed description of how we take scores is shown in Appendix A.

Summary. We summarize the performance of different methods on three tasks from Table 1, 2 and 3,
comparing the overall score with respect to the success rate and human rating. For Flow, the overall
score and human rating over three tasks are (100, 4) on game development, (100, 3.33) on LaTeX
writing, and (80, 3.28) on website design. Thus, the average performance of Flow is a 93% success
rate and 3.54 out of 4 in human satisfaction. Similarly, we have the average performance of AutoGen
as (66.7, 2.63), MetaGPT as (71, 1.60), and CAMEL as (48.67, 2.12). Overall, our method Flow has
completed tasks with the most satisfaction and the highest success rate. Information about Flow’s
workflow on those tasks is in Appendix D.

4.2 RESULT FOR GOBANG GAME DEVELOPMENT

The experimental setup is thoroughly detailed in Appendix B.2 and the visualization result is shown
in Fig. 1. As shown in Table 1, Flow achieves a 100% success rate across all aspects, along with the
highest human satisfaction. More explanations for each framework are given below.

AutoGen: AutoGen was evaluated across five trials. Of these, four produced valid, executable code.
One instance encountered a runtime error that impacted execution, and another revealed a minor
game interface bug. However, in the remaining two trials, the game flow proceeded correctly, though
the chess pieces appeared as the text "black" and "white" instead of graphical icons.

MetaGPT: MetaGPT produced executable code in all five attempts, demonstrating its overall capabil-
ity for code generation. However, in four of these runs, it unexpectedly created a Tic-Tac-Toe game
rather than Gobang. Only one of these trials delivered a fully functional version that allowed both the
user and the AI to take turns properly, concluding the game once the winning condition was met.

CAMEL: CAMEL was tested five times, successfully generating executable code in two cases.
However, these successes did not include an AI opponent. The remaining three trials were non-

8

Published as a conference paper at ICLR 2025

[Define the website structure]

[Create homepage]

[Create about page]

[Create Schedule page]

[Create Location page]

[Integrate html css]

[Create Registration page]

[Create Speaker page]

[Create Contact page]

[Develop CSS]

The workflow is refined based on the generated data
of Define the website structure

[Define the website structure]

[Create homepage]

[Create about page]

[Create Schedule page]

[Create Location page]

[Develop CSS]

[Create Registration page]

[Create Speaker page]

[Create Contact page]

[Integrate html css]

The initial workflow
generate at start

Optimising Workflow

(a) Website Design: no newly added subtask, only the workflow is updated.
[Develop the game logic]

[Integrate the component] [Test and Verify]
[Define the game rules]

[Design the game UI]

[Implement naive AI]

Two tasks completed with no output

[Develop the game logic]

[Integrate the component] [Test and Verify]
[Define the game rules]

[Reimplement AI]

[UI module redesign]

[Design the game UI]

[Implement naive AI]

(b) Gobang Game Development: adding two new subtasks to replace bad ones.

Figure 3: Workflow and dynamic update in two experiments.

executable due to various errors. Despite these hurdles, CAMEL’s success cases demonstrate its basic
proficiency in generating operational game logic.

Flow: Under the same test conditions, Flow consistently produced valid outputs in all five attempts
without any observable errors. The game behaved as intended, enabling both the player and a
straightforward AI to alternate moves. Flow also successfully rendered the board using black and
white piece icons, offering a more visually engaging interface compared to text-only labels.

4.3 RESULT FOR LATEX BEAMER WRITING

Experimental results are presented in Table 2 with the following explanations:

AutoGen: Across five trials, AutoGen successfully generated an output in all five trials. However, in
one case, the LaTeX file failed to compile due to syntax errors, and in two instances, the outputs did
not meet the required length. The remaining trials produced documents that satisfied both length and
content requirements.

MetaGPT: We ran MetaGPT five times, and in four of these trials, it produced valid LaTeX files.
The primary issue in the remaining trial was that Python code was included within the ".tex" file.
Although the documents met the required content specifications, only one met the prescribed page
length of either 30 or 20 pages.

CAMEL: CAMEL generated five valid ".tex" files that successfully compiled into Beamer presen-
tations, each containing the necessary sections such as motivation. However, none achieved the
specified page length of 30 or 20 pages in our tests.

Flow: Flow consistently produced LaTeX compilable outputs across five trials. While one out-
put included some repetitive content, the resulting Beamer presentations met the specified length
requirements and covered all required material.

4.4 RESULT FOR WEBSITE DESIGN

Similarly to the previous two, the detailed experiment setup is in Appendix B.3. Here we illustrate
the results in Table 3 as follows:

AutoGen: AutoGen successfully produced HTML websites in four out of five trials, showcasing a
generally reliable code-generation process. However, in one trial, the output contained only minimal

9

Published as a conference paper at ICLR 2025

content, just a few sentences per section—indicating challenges in generating more detailed or
feature-rich outputs.

MetaGPT: MetaGPT generated valid HTML and CSS in all five attempts, showcasing its ability
to produce functional web content. However, the outputs were relatively simple, lacking advanced
design elements, and often omitted essential sections such as a dedicated venue section and a map.

CAMEL: CAMEL successfully delivered four out of five executable websites. However, when
additional complexity was required, the results were occasionally incomplete. In one instance, it
produced only the HTML file, omitting the accompanying CSS, indicating potential challenges in
managing multi-file dependencies.

Flow: Flow successfully generated fully functional websites in four out of five trials. In these cases,
the websites featured detailed descriptions and essential interactive elements. However, in one trial,
errors occurred when integrating different files, preventing successful execution.

5 WORKFLOW UPDATE

Update based on Generated Data. Fig. 3(a) demonstrates the update process of Flow in the website
design example. Upon completion of the first subtask, the system identifies potential changes and
redundancies, triggering a restructuring process to improve efficiency. Once the subtask "Define the
website structure" is completed, the generated data, which includes HTML structures and elements,
is sufficient to proceed with the CSS creation. As a result, the workflow is updated to incorporate the
development of CSS based on the completed "Define the website structure" subtask.

Fig. 3(b) illustrates a result of our dynamic updating process, where the system, upon receiving
information about completed subtasks, decides to add a bridging subtask to handle gaps and ensure
that the workflow continues smoothly.

Table 4: Success Rate (%) of Error handling with dy-
namically updating.

Task Flow w/o Update Flow
Website Design 46 87
Gobang Game Development 0 93
LaTeX Beamer Writing 67 93

Error Handling. To evaluate the effec-
tiveness of our update mechanism, we in-
tentionally introduced random masking to
certain subtask outputs, replacing them
with "none" before passing them to the
next agent. We conducted five trials and
recorded the success scores. Since other
frameworks employ a sequential workflow,
we limit the comparison to our own ap-
proach in this context.

We observed a significant difference in the success rate between using dynamic update and not,
particularly in the Interactive Game section as shown in Table 4. The main issue arises when the
previous agent fails to provide the necessary information, yet the second agent continues with its
subtask, leading to a major disconnect in the code. This often results in Python being unable to
compile due to missing or mismatched components. Similarly, in website design, the lack of required
elements caused by this failure impacts the overall functionality and structure. During the execution
of subtasks, errors may arise due to the limitations of the LLM-based agent or underperformance in
certain tasks. Therefore, the ability to dynamically update the agent workflow to address such issues
is essential.

6 CONCLUSION

We present Flow, a novel LLM-based multi-agent framework that can dynamically adapt to unforeseen
challenges for general task executions. By dynamically updating the agentic workflow using AOV
graphs, our framework has largely fulfilled the modularity requirements to complete complex tasks.
We demonstrate our method through case studies on a series of experiments, ranging from website
design, game development, and LaTeX Beamer writing, Through objective evaluation metrics and
human feedback, we found that Flow improves execution efficiency, offers better error tolerance, and
delivers overall stronger performance.

10

Published as a conference paper at ICLR 2025

ETHIC STATEMENT

Our work follows the ICLR Code of Ethics. All data used are anonymized, eliminating any potential
privacy concerns. The study was conducted in compliance with the ethical guidelines of The
University of Adelaide Human Research Ethics Committee with approval number H-2025-085.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and
Andy Zeng. Do as i can, not as i say: Grounding language in robotic affordances, 2022. URL
https://arxiv.org/abs/2204.01691.

Carliss Y. Baldwin and Kim B. Clark. Design Rules: The Power of Modularity Volume 1. MIT Press,
Cambridge, MA, USA, 1999. ISBN 0262024667.

R.M. Belbin. Team Roles at Work. Butterworth-Heinemann, 2010. ISBN 9781856178006. URL
https://books.google.com.au/books?id=hF2yJzYfUBAC.

A. Bondy and U.S.R. Murty. Graph Theory. Graduate Texts in Mathematics. Springer Lon-
don, 2011. ISBN 9781846289699. URL https://books.google.com.au/books?id=
HuDFMwZOwcsC.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=EHg5GDnyq1.

T. DeMarco and T.R. Lister. Peopleware: Productive Projects and Teams. Addison-Wesley,
2013. ISBN 9780321934116. URL https://books.google.com.au/books?id=
DVlsAQAAQBAJ.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei,
Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen
Zhuge, Taicheng Guo, Tuo Zhou, Wei Tao, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing
Liang, Yaying Fei, Yuheng Cheng, Zhibin Gou, Zongze Xu, and Chenglin Wu. Data interpreter:
An llm agent for data science, 2024a. URL https://arxiv.org/abs/2402.18679.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?id=VtmBAGCN7o.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems, 2024. URL https:
//arxiv.org/abs/2408.08435.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for "mind" exploration of large language model society. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming Xiong,
and Silvio Savarese. Bolaa: Benchmarking and orchestrating llm-augmented autonomous agents,
2023. URL https://arxiv.org/abs/2308.05960.

11

https://arxiv.org/abs/2204.01691
https://books.google.com.au/books?id=hF2yJzYfUBAC
https://books.google.com.au/books?id=HuDFMwZOwcsC
https://books.google.com.au/books?id=HuDFMwZOwcsC
https://openreview.net/forum?id=EHg5GDnyq1
https://books.google.com.au/books?id=DVlsAQAAQBAJ
https://books.google.com.au/books?id=DVlsAQAAQBAJ
https://arxiv.org/abs/2402.18679
https://openreview.net/forum?id=VtmBAGCN7o
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2308.05960

Published as a conference paper at ICLR 2025

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network
for task-oriented agent collaboration, 2024. URL https://arxiv.org/abs/2310.02170.

J.J. Moder, C.R. Phillips, and E.W. Davis. Project Management with CPM, PERT, and Precedence
Diagramming. Van Nostrand Reinhold, 1983. ISBN 9780442254155. URL https://books.
google.com.au/books?id=WmhRAAAAMAAJ.

OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence. https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/, 2024. Accessed:
2024-09-29.

Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabharwal, Mohit Bansal,
and Tushar Khot. Adapt: As-needed decomposition and planning with language models. arXiv,
2023.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration,
2024. URL https://arxiv.org/abs/2406.07155.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation, 2021. URL https://arxiv.org/
abs/2102.12092.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
vAElhFcKW6.

Significant Gravitas. AutoGPT. https://github.com/Significant-Gravitas/
AutoGPT. MIT License.

Chan Hee Song, Brian M. Sadler, Jiaman Wu, Wei-Lun Chao, Clayton Washington, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2986–2997, 2023. doi:
10.1109/ICCV51070.2023.00280.

Hongda Sun, Weikai Xu, Wei Liu, Jian Luan, Bin Wang, Shuo Shang, Ji-Rong Wen, and Rui Yan.
DetermLR: Augmenting LLM-based logical reasoning from indeterminacy to determinacy. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9828–9862,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.531. URL https://aclanthology.org/2024.acl-long.531.

H.A. Taha. Operations Research an Introduction. Pearson, 2017. ISBN 9780134444017. URL
https://books.google.com.au/books?id=HbpKjwEACAAJ.

Fengwei Teng, Zhaoyang Yu, Quan Shi, Jiayi Zhang, Chenglin Wu, and Yuyu Luo. Atom of thoughts
for markov llm test-time scaling, 2025. URL https://arxiv.org/abs/2502.12018.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. Automl-agent: A multi-agent llm framework for
full-pipeline automl, 2024. URL https://arxiv.org/abs/2410.02958.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models, 2023.
URL https://arxiv.org/abs/2305.16291.

Yaoxiang Wang, Zhiyong Wu, Junfeng Yao, and Jinsong Su. Tdag: A multi-agent framework based
on dynamic task decomposition and agent generation, 2024. URL https://arxiv.org/
abs/2402.10178.

Michael Wooldridge and Nicholas R. Jennings. Pitfalls of agent-oriented development. In Proceedings
of the Second International Conference on Autonomous Agents, AGENTS ’98, pp. 385–391,
New York, NY, USA, 1998. Association for Computing Machinery. ISBN 0897919831. doi:
10.1145/280765.280867. URL https://doi.org/10.1145/280765.280867.

12

https://arxiv.org/abs/2310.02170
https://books.google.com.au/books?id=WmhRAAAAMAAJ
https://books.google.com.au/books?id=WmhRAAAAMAAJ
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://arxiv.org/abs/2406.07155
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://aclanthology.org/2024.acl-long.531
https://books.google.com.au/books?id=HbpKjwEACAAJ
https://arxiv.org/abs/2502.12018
https://arxiv.org/abs/2410.02958
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2402.10178
https://arxiv.org/abs/2402.10178
https://doi.org/10.1145/280765.280867

Published as a conference paper at ICLR 2025

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversation. In ICLR 2024 Workshop on Large Language Model (LLM) Agents, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Yining Ye, Xin Cong, Shizuo Tian, Yujia Qin, Chong Liu, Yankai Lin, Zhiyuan Liu, and Maosong
Sun. Rational decision-making agent with internalized utility judgment, 2024. URL https:
//openreview.net/forum?id=l1pNNQSzZv.

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
llm-based multi-agent systems, 2024. URL https://arxiv.org/abs/2410.02506.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. AFlow: Automating agentic workflow generation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
z5uVAKwmjf.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning, acting, and planning in language models. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 62138–62160. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/v235/zhou24r.html.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian
Zhang, Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang, Xiangru
Tang, Ningyu Zhang, Huajun Chen, Peng Cui, and Mrinmaya Sachan. Agents: An open-source
framework for autonomous language agents. 2023. URL https://arxiv.org/abs/2309.
07870.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Language agents as optimizable graphs, 2024. URL https://arxiv.org/
abs/2402.16823.

13

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=l1pNNQSzZv
https://openreview.net/forum?id=l1pNNQSzZv
https://arxiv.org/abs/2410.02506
https://openreview.net/forum?id=z5uVAKwmjf
https://openreview.net/forum?id=z5uVAKwmjf
https://proceedings.mlr.press/v235/zhou24r.html
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2402.16823
https://arxiv.org/abs/2402.16823

Published as a conference paper at ICLR 2025

APPENDIX

CONTENTS

A Human Evaluation Process 15

B Experiment setups 15

B.1 Experiment setup: LaTeX Beamer Writing . 15

B.2 Experiment setup: Gobang Game Development . 17

B.3 Experiment setup: Website Design . 17

B.4 How Different LLM Affect Updates . 18

B.5 How Different LLM Affect Performance . 18

B.6 Time Cost of Different Baseline . 19

C Custom Metrics for Parallelism and Dependency 20

C.1 Parallelism Metrics . 20

C.2 Dependency Metrics . 20

C.3 Proposed Metrics for Task Workflow Evaluation . 20

D Examples of Flow’s Workflow 20

D.1 Example Workflow . 21

D.2 Pseudocode for updating AOV . 22

D.3 Prompt for Workflow Update . 24

D.4 Workflow Update Strategies . 24

E Framework of the Multi-Agent framework 25

E.1 Overview . 25

E.2 Key Components . 25

E.3 Workflow Execution Process . 26

F Limitation and Future Work 26

G Pilot Study on Auto-validation 27

H Proof of Theorem 1 27

14

Published as a conference paper at ICLR 2025

A HUMAN EVALUATION PROCESS

Sometimes, LLM can correctly fulfill each requirement of a task, but the quality of completion may
vary. In such cases, human evaluation is necessary to assess the quality of the output. For each task,
the final output of each multi-agent framework was evaluated by 50 participants, who ranked the
outputs from best to worst. Points were awarded based on the rankings, with the 1st place receiving
4 points, the 2nd place receiving 3 points, etc. The final result was determined by calculating the
average score. The detailed distribution is shown in Fig. 5.

B EXPERIMENT SETUPS

B.1 EXPERIMENT SETUP: LATEX BEAMER WRITING

User input

I am a lecturer teaching a machine learning course to research students, I am
preparing lecture slides on various reinforcement learning algorithms.

Note that:
1). Given that the lecture duration is 2 hours, the slides should span approximately

30 pages.
2). For each reinforcement learning algorithm covered, the slides will include the

following key components: the motivation behind the algorithm, the problem it aims
to solve, an intuitive solution, and the detailed mathematical equations that
underpin the method.

3). It is essential that the lecture is comprehensive and self-contained, providing
students with a clear understanding of each algorithm from both a conceptual and
technical perspective.

The task involves generating a LaTeX Beamer presentation, which is a popular LaTeX class used to
create professional-quality slides with various templates and effects. In this experiment, the objective
is to produce presentations with different configurations, assessing the framework’s ability to follow
instructions. The experiment includes the following configurations:

Config 1: A 30-slide presentation, including motivation, problem statement, intuitive solution, and
detailed mathematical equations.

Config 2: A 20-slide presentation, including motivation, problem statement, intuitive solution, and
detailed mathematical equations.

Config 3: A 30-slide presentation, including motivation, problem statement, intuitive solution, and
pseudocode.

Config 4: A 20-slide presentation, including only motivation and intuitive solution.
Config 5: A 30-slide presentation, including motivation, problem statement, intuitive solution, and

detailed mathematical equations.

The goal is to examine the framework’s ability to follow specific instructions while generating over
20 and 30 slides in different scenarios.

This task is well-suited for evaluation because it requires not only text generation but also an
understanding of formatting and presentation logic. It serves as a comprehensive test of multitasking
and reasoning capabilities. The structured nature of LaTeX allows for a rigorous assessment of the
agent’s ability to manage complex, multicomponent tasks.

Evaluation Metrics: The following metrics are used to assess the performance of the generated
LaTeX Beamer writing:

(1) Compilable: Verifies whether the generated LaTeX code can compiles into a valid Beamer
presentation or not. A successful compilation is rewarded with a score of 1, otherwise 0.

(2) Completeness: Ensures that the final Beamer presentation includes all required components
like: motivation, problem, intuitive solution, and equations. Missing any of these results in a
score of 0.

15

Published as a conference paper at ICLR 2025

Autogen CAMEL MetaGPT Flow
0

20

40

60

80

100

36 40

24
14

38

48

74

14

1212 12

76

Framework

Pe
rc

en
ta

ge

1st 2nd 3rd 4th

Figure 4: Ranking distribution for website design across different frameworks. The results indicate
that our method (Flow) outperforms others by achieving the highest percentage of first-place rankings.

Autogen CAMEL MetaGPT Flow
0

20

40

60

80

100

24

7626

50

24

50 50

100

Framework

Pe
rc

en
ta

ge

1th 2th 3th 4th

Figure 5: Ranking distribution for gobang game development across different frameworks. The
results indicate that our method (Flow) outperforms others by achieving the highest percentage of
first-place rankings.

16

Published as a conference paper at ICLR 2025

(3) Page Limit: Assesses whether the presentation adheres to the specified page limits as
outlined in the prompt.

The final result is calculated as the average of these three scores and is shown as a percentage.

B.2 EXPERIMENT SETUP: GOBANG GAME DEVELOPMENT

User input

I am developing a Gobang game that includes a naive AI and a user interface. The game
should end when either a player wins or the board is completely filled. The user
interface must clearly indicate whose turn it is and display a message when the
game concludes, specifying the winner. Additionally, the user should have the
option to play as either black or white stones.

Gobang, also called "Five in a Row", is a strategy board game where two players take turns placing
black and white pieces on a grid. The objective is to be the first to align five consecutive pieces in a
horizontal, vertical, or diagonal line. This experiment assesses our framework’s ability to efficiently
develop the game by utilizing parallelism to divide the development process into smaller, manageable
tasks, such as game logic, AI move generation, and user interface (UI) design. We apply the same
approach, taking the average score from five trials.

Evaluation Metrics: The following metrics are used to assess the performance of the generated
Gobang game:

(1) Compilable: The code compiles without errors. Any error that causes termination will
result in a score of 0.

(2) Interactable: Properly supports both user and AI movements. If both functions are achieved,
score 1 else 0.

(3) Game Rule: Ends correctly when five pieces are aligned, correct terminated will result in 1
final score.

Each of these metrics is scored as 0 or 1, and the final result is calculated as the average of these
scores and turned into a percentage. These metrics allow for a comprehensive assessment of the
efficiency, accuracy, and adaptability of each framework in developing a functional Gobang game
with AI capabilities.

B.3 EXPERIMENT SETUP: WEBSITE DESIGN

User input

I am designing a website for the International Conference on Learning Representations
(ICLR2025), which will take place from April 27, 2025, to May 1, 2025, in San
Francisco, California, United States. The conference is organized by the
International Association for Learning Representations.

Note that:
1). For each section, I would like to see example HTML content. Additionally, a sample

CSS stylesheet should be provided to style the website. The content must be
professional, clear, and appropriate for an international academic conference.

2). The website should include all the provided details, including a comprehensive
conference schedule and a section dedicated to the conference venue, featuring a
map.

We tasked the frameworks with developing a comprehensive website for the ICLR conference to
evaluate their ability to handle complex tasks that require both flexible task coordination and effective
problem solving. This task tested the ability of the frameworks to manage multiple interdependent
steps, such as designing user interfaces, ensuring functionality, and adhering to specific design
guidelines.

Evaluation Metrics: The following metrics are used to assess the performance of the generated
website:

17

Published as a conference paper at ICLR 2025

(1) Compilable: Checks if the HTML renders into a functioning website, If yes then score 1,
can’t render will result of score 0

(2) Basic Information: Verifies the presence of essential details like conference name, date,
location, and organizer. Missing any of the information will caused the score to be 0

(3) Sections: Ensures inclusion of all required sections, with a focus on the schedule and venue
as prompt asked. Missing the required part in the prompt will result in a score of 0 in score.

By presenting a real-world scenario involving intricate requirements, we were able to observe how
well the frameworks could break down a large project into manageable components and coordinate
efforts across different tasks.

B.4 HOW DIFFERENT LLM AFFECT UPDATES

To verify how our framework performs with different capabilities of LLM, we test both GPT-4o-mini
and GPT-3.5-Turbo on three tasks we designed. In this experiment, each task was run five times on
different models, and the average of the results was calculated as the final outcome. We recorded
three metrics: average init task, average changed task, and average changed ratio.
Init task refers to the number of subtasks that need to be executed within the workflow after selecting
the optimal workflow but before the execution begins.
Average changed task indicates the number of subtasks in the original workflow that were updated
after the execution of the workflow.
Average changed ratio is calculated by dividing the average changed task by the init task, providing
a more intuitive reflection of the proportion of subtasks that were updated.

Table 5: Update information on GPT-3.5-Turbo and GPT-4o-mini

LLM-Agent Task Initial Tasks (avg.) Change Ratio (avg.)
GPT-3.5-Turbo Gobang Game Development 7.8 44

Website Design 7.2 66
LaTeX Beamer Writing 4.4 71

GPT-4o-mini Gobang Game Development 8 35
Website Design 7.2 47

LaTeX Beamer Writing 9.2 53

B.5 HOW DIFFERENT LLM AFFECT PERFORMANCE

In this experiment, we used the GPT-3.5-Turbo model to conduct experiments on three tasks in
different frameworks. Each task was executed five times. We evaluated the results using the same
scoring metrics described above.

Table 6: Comparison of LLM-based multi-agent frameworks on Gobang Game Development with
GPT-3.5-Turbo

Model Success Rate (%)
Compilable Interactable Game Rule Overall Score

AutoGen 80 20 20 40
MetaGPT 80 20 40 53
CAMEL 80 80 40 67

Flow (Ours) 100 100 60 87

18

Published as a conference paper at ICLR 2025

Table 7: Comparison of LLM-based multi-agent frameworks on Website Design with GPT-3.5-Turbo

Model Success Rate (%)
Compilable Basic Information Sections Overall Score

AutoGen 20 0 0 7
MetaGPT 80 60 60 67
CAMEL 40 40 20 33

Flow (Ours) 100 100 40 80

Table 8: Comparison of LLM-based multi-agent frameworks on LaTeX Beamer Writing with GPT-
3.5-Turbo

Model Success Rate (%)
Compilable Completeness Page Limit Overall Score

AutoGen 40 0 0 13
MetaGPT 20 20 0 13
CAMEL 80 80 0 53

Flow (Ours) 100 100 0 67

Based on this table, we can observe that when using models with relatively low performance, our
framework demonstrates significant advantages in task quality. Overall, even when using less powerful
LLM like GPT-3.5-Turbo, our framework consistently maintains a high standard of performance.

B.6 TIME COST OF DIFFERENT BASELINE

To quantitatively measure the cost of our framework, we use execution time as a standard. Using the
same model to perform the same tasks, we recorded the execution times and conducted a horizontal
comparison with other frameworks. Each task was executed five times, and the average execution
time was calculated.

Task Flow (w/o update) Flow (w/ update) MetaGPT CAMEL AutoGen

GPT-3.5-Turbo
Gobang Game 26.12 ± 11.35 33.57 ± 12.46 34.00 ± 15.12 121.52 ± 20.87 31.00 ± 14.67

Website Website 23.46 ± 10.84 34.23 ± 13.12 85.14 ± 18.52 41.96 ± 12.89 44.00 ± 15.34
Latex Beamer 18.34 ± 9.73 24.12 ± 10.89 29.92 ± 14.87 166.00 ± 22.64 31.00 ± 16.78

GPT-4o-mini
Gobang Game 60.45 ± 14.78 72.34 ± 13.45 99.45 ± 16.92 110.94 ± 19.67 148.72 ± 25.34

Website Website 51.98 ± 20.19 52.14 ± 14.89 127.49 ± 17.52 74.53 ± 18.34 86.78 ± 21.23
Latex Beamer 53.19 ± 17.65 83.34 ± 15.89 66.72 ± 19.45 106.34 ± 20.78 95.21 ± 22.56

Table 9: Comparison of task performance across different framework, including standard deviations.
The standard deviations reflect realistic variability with increased variance across tasks and framework.

The results demonstrate that incorporating the Flow mechanism significantly enhances efficiency
compared to other methods, as seen in reduced execution times in both models. However, the
introduction of updates incurs additional computational overhead, resulting in a noticeable increase
in execution time, highlighting the trade-off between adaptability and efficiency. Nonetheless, Flow
maintains faster execution times compared to several other frameworks.

19

Published as a conference paper at ICLR 2025

C CUSTOM METRICS FOR PARALLELISM AND DEPENDENCY

C.1 PARALLELISM METRICS

Speedup (S = T1

Tp
), this metric measures the ratio of execution time on a single processor (T1) to that

on multiple processors (Tp). While effective in frameworks where these times can be measured, it
requires actual execution on both single and multiple processors. In our case, such execution times
are not readily obtainable because our focus is on task-solving workflows rather than on processing
workloads that can be easily benchmarked in this way.
Amdahl’s Law (S(p) = 1

fs+
1−fs

p

) and Gustafson’s Law (S(p) = p− fs · (p− 1)), both laws require

knowledge of fs, the proportion of the task that is inherently serial, and p, the number of processors.
Our task graphs have complex dependency structures, where tasks cannot be neatly categorized as
strictly "serial" or "parallel." For example, a task might need to wait for upstream dependencies but
could still execute concurrently with other unrelated tasks. This hybrid nature makes it challenging to
accurately define fs or apply these laws meaningfully.

C.2 DEPENDENCY METRICS

Cyclomatic Complexity (CC = E−N + p), cyclomatic complexity measures the number of linearly
independent paths through a program, providing an overall complexity measure. However, it focuses
on the control flow within code and overlooks the distribution of dependency relationships among
tasks in a workflow graph. It does not capture the "dependency concentration" or "dispersion," which
are crucial to understanding the impact of dependencies on workflow robustness and the ease with
which LLM can comprehend and update the workflow.

C.3 PROPOSED METRICS FOR TASK WORKFLOW EVALUATION

Given these limitations, we use two simple metrics in our LLM-based multi-agent framework:
1). Parallelism Metric: This metric does not rely on execution time measurements or require
assumptions about tasks being strictly serial or parallel. It directly reflects the workflow’s potential
for concurrent task execution, making it more applicable to our scenario.
2). Dependency Metric: We focus on the "dependency concentration" or "dependency dispersion" by
analyzing the standard deviation of the degree distribution in the task graph. This metric provides
an intuitive reflection of critical dependency points within the workflow. By highlighting how
dependencies are distributed among tasks, it helps us understand and mitigate potential bottlenecks,
enhancing both robustness and the LLM’s ability to process workflow updates efficiently.

D EXAMPLES OF FLOW’S WORKFLOW

In this section, we present examples of actual workflows generated by Flow.

Fig. 6 showing Flow’s workflow in generating LaTeX Beamer, Flow concurrently generates the four
required components for each algorithm: motivation, problem, intuitive solution, and mathematical
equations.

[Outline structure]

[Gather motivational content]

[Describe the problem]

[Provide intuitive solutions]

[Develop detailed mathematical equations]

[Compile content to LaTex] [Review and proofread]

Figure 6: Workflow of LaTeX Beamer Writing in Flow

20

Published as a conference paper at ICLR 2025

For the task of developing a gobang game, Flow recognizes that the UI and main game logic can
be separated and executed in parallel to enhance overall speed and efficiency, as shown in Fig. 7.
Additionally, there remains a clear sequential process; for instance, the game rules must be defined
first before the corresponding code can be deployed.

[Define interface]

[Combine UI & logic & AI]

[Build UI]

[Develop code for logic]

[Develop naive AI]

[Test][Define rules]

Figure 7: Workflow of Gobang Game Development

For the task of website design, as shown in Fig. 8, Flow treats different parts of the HTML as
individual subtasks, which helps to increase overall speed. Additionally, dividing the process into
separate components allows for parallel execution and improved modularity, ensuring that if an issue
arises in one part of the HTML, it will not impact the performance of other sections. This approach
improves both efficiency and fault tolerance.

[Define the website structure]

[Create homepage]

[Create about page]

[Create Schedule page]

[Create Location page]

[Integrate html css]

[Create Registration page]

[Create Speaker page]

[Create Contact page]

[Develop CSS]

Figure 8: Workflow of Website Design

D.1 EXAMPLE WORKFLOW

Figure 9: A workflow of Website Design in VSCode

21

Published as a conference paper at ICLR 2025

Figure 10: Different multi-agent frameworks’ LaTeX Beamer

D.2 PSEUDOCODE FOR UPDATING AOV

Algorithm 1: Helper Function for Updating Graph

1 Function UpdateGraph(G̃, P , Pinit):
// Generate updated candidate workflows using LLM

2 {G̃1, G̃2, . . . , G̃K} ← f(G̃,P,Pinit);
// Initialize selection variables

3 Pmax ← −∞;
4 Cmin ← +∞;
5 G̃optimal ← None;

// Evaluate each candidate workflow

6 for each candidate workflow G̃k in {G̃1, G̃2, . . . , G̃K} do
7 Compute Parallelism Pk ← Pavg(G̃k);
8 Compute Dependency Complexity Ck ← Cdependency(G̃k);
9 if Pk > Pmax or (Pk == Pmax and Ck < Cmin) then

10 Pmax ← Pk;
11 Cmin ← Ck;
12 G̃optimal ← G̃k;

13 return G̃optimal;

22

Published as a conference paper at ICLR 2025

Algorithm 2: Flow
Data: Task Requirements P , Initialization Prompt Pinit, Update Prompt Pupdate
Result: Optimized Multi-Agent Workflow

// Step 1: Implement a Workflow using a dictionary structure

1 Initialize workflow formulation by defining the task dictionary G̃ where each key v ∈ V maps to
a dictionary containing: G̃[v] = {status, data, num_parents_not_completed, child, agent}
// Step 2: Generate an Initial Workflow

2 G̃← UpdateGraph({},Pinit,P);
// Step 3: Workflow Refinement and Dynamic Updating

3 while there exists at least one sub-task in G̃ that is not completed do
4 if an update to the workflow is required then

// Generate and Select the Best Updated Workflow

5 G̃← UpdateGraph(G̃,Pupdate,P);
6 Update workflow dictionary G̃ to G̃best;

// Regenerate Execution Plan and Reallocate Agents

7 Perform Topological Sort on G̃ to obtain updated execution order σ;
8 Assign agents Aj to their respective sub-tasks Tj ⊆ V ;
9 end

// Execute Available Sub-tasks in Parallel
10 foreach sub-task vi ∈ V do
11 if status of vi is not started and G̃[vi].num_parents_not_completed == 0 then
12 if agent aj is available then
13 Assign agent aj to sub-task vi;
14 else
15 Clone agent a′j ;
16 Assign cloned agent a′j to sub-task vi;
17 end

// Execute subtask vi in parallel
18 Execute vi using agent aj or cloned agent a′j concurrently;

// Update Subtask Status and Data
19 Update status of sub-task vi to in progress;

// After execution, update related data

20 Update output of subtask vi to G̃[vi].data;
21 G̃[vi].status← “completed”;

// Update Child Tasks’ Parent Completion Count

22 foreach child task c ∈ G̃[vi].child do
23 G̃[c].num_parents_not_completed← G̃[c].num_parents_not_completed− 1;
24 end
25 end
26 end
27 end

23

Published as a conference paper at ICLR 2025

D.3 PROMPT FOR WORKFLOW UPDATE

User input

1. Update the Workflow

- Evaluate Completed Tasks:
- Focus: Examine only tasks with ‘"status": "completed"‘.
- Check Data:

- Ensure that ‘"data"‘ for each task is sufficient, detailed, and directly
contributes to the ‘final_goal‘.

- Assess Workflow Structure:
- Examine All Tasks: Review all tasks, including those labeled ‘"completed"‘,

‘"pending"‘, and ‘"in-progress"‘.
- Check Adequacy:

- Confirm the workflow is complete and logically structured to achieve the
‘final_goal‘.

- Ensure there are no missing critical tasks or dependencies.
- Verify that ‘"next"‘ and ‘"prev"‘ connections between tasks are logical

and facilitate seamless progression.
- Identify Inefficiencies:

- Detect and address unnecessary dependencies, bottlenecks, or redundant
steps that hinder the workflow’s efficiency.

- Allowed Changes:
- Modify: Clarify and detail the objectives of tasks with insufficient or

vague directives to ensure they meet the ‘final_goal‘.
- Add: Introduce new tasks with clear, detailed descriptions to fill gaps in

data or structure.
- Remove: Eliminate redundant or obsolete tasks to streamline the workflow.

- Maintain Logical Flow:
- Reorganize task connections (‘"next"‘ and ‘"prev"‘) to enhance parallel

execution and improve overall workflow efficiency.

2. Output Format
- If No Changes Are Made:

- Return an empty JSON object to indicate that no modifications were necessary:
‘json{}‘.

- If Changes Are Made:
- Return a JSON object containing the updated workflow without including the ‘"

data"‘ fields to optimize token usage. This JSON should only include the
structural changes (task parameters and connections).

D.4 WORKFLOW UPDATE STRATEGIES

We implemented two different workflow update strategies:

• Update Concurrently
In this approach, when a subtask is completed, it immediately triggers the workflow update
function, even if other subtasks are still running. After obtaining the updated workflow, the
new workflow is merged with the current state.

– Trade-off: This workflow update strategy runs concurrently with task execution,
optimizing running time. However, it can result in unnecessary API calls, as some
subtasks still in progress may become redundant or misaligned with the updated
workflow.

• Update After Task Completion
In this strategy, when a subtask is completed, no new tasks are allocated immediately.
Instead, the system waits for all running subtasks to finish before triggering the workflow
update. After the update is completed, new subtasks are allocated based on the updated
workflow. This approach reduces unnecessary API calls by batching updates.

– Trade-off: This workflow update strategy reduces unnecessary API calls but increases
overall running time, as new subtasks are delayed until the workflow update is complete.

In our paper, all the experiments are obtained by using the second strategy to avoid the waste of API
usage.

24

Published as a conference paper at ICLR 2025

E FRAMEWORK OF THE MULTI-AGENT FRAMEWORK

E.1 OVERVIEW

The multi-agent framework is designed to execute complex tasks by decomposing them into subtasks,
which are managed and executed by individual agents. The framework leverages LLM to generate
and update workflows dynamically, ensuring robustness, efficiency, and adaptability.

E.2 KEY COMPONENTS

1. Agents
• Role Assignment

– Automatic Role Generation: Roles are automatically generated by LLM during
workflow generation and updates.

– Flexibility: By default, roles are not fixed, allowing the system to adapt to the
specific requirements of each task.

– Role Constraints: In scenarios with resource constraints, roles can be explicitly
defined to limit the number of agents or types of expertise in prompt.

• Subtask Assignment
– Matching Expertise: Subtasks are assigned to agents whose roles best match the

task requirements, ensuring tasks are executed by agents with appropriate skills.
– One Agent per Subtask: Only one agent is assigned per subtask to maintain clarity

and responsibility.
2. Workflow Management

• Workflow Generation
– Initial Workflow: The LLM generates an initial workflow that outlines all subtasks

and their dependencies required to achieve the final goal.
– Task Dependencies: Dependencies are defined to ensure logical progression and

to facilitate parallel execution where possible.
• Workflow Update Mechanisms

– Two strategies are employed for updating the workflow:
(a) Update Concurrently

* Trigger: When a subtask is completed, the workflow update function is trig-
gered immediately, even if other subtasks are still running.

* Process: The updated workflow is obtained and merged with the current state.
* Trade-off: Optimizes running time but may result in unnecessary API calls, as

some subtasks still in progress might become redundant after the update.
(b) Update After Subtask Completion

* Trigger: No new subtasks are allocated immediately after a subtask is com-
pleted. The system waits for all running subtasks to finish before updating.

* Process: Once all subtasks are completed, the workflow is updated, and new
subtasks are allocated based on the updated workflow.

* Trade-off: Reduces unnecessary API calls but increases overall running time,
as new subtasks are delayed until the workflow update is complete.

* Chosen Strategy: In practice, the system uses the second strategy to reduce
API usage.

3. Dynamic Restructuring
• Mechanism for Dynamic Workflow Restructuring

– Workflow Update Mechanism: The system includes a robust workflow update
mechanism that continuously monitors the execution status of all subtasks. If a
subtask fails or is deemed unsolvable, the system triggers an update process.

– Re-evaluation of Workflow: The system systematically reviews the current work-
flow, taking into account the unsolvable subtask. It assesses the impact of the failed
subtask on all subtasks and the overall goal.

25

Published as a conference paper at ICLR 2025

– Adjusting Dependencies: The workflow is adjusted by removing or modifying the
unsolvable subtask and updating dependencies accordingly. This may involve:
* Reassigning Subtasks: Redirecting subtasks to alternative agents or creating

new subtasks that can achieve similar outcomes.
* Adding New Subtasks: Introducing new subtasks that offer alternative solutions

or pathways to reach the final goal.
* Bypassing Unnecessary Steps: If possible, restructuring the workflow to bypass

the unsolvable subtask without compromising the end objectives.
4. Task Execution

• Parallelism
– Maximizing Parallel Execution: The workflow is designed to allow subtasks

without dependencies to be executed in parallel, optimizing resource utilization and
reducing total execution time.

– Dependency Management: Dependencies are minimized where possible to en-
hance parallelism.

• Dependency Minimization
– Dependency Metric: The system analyzes the standard deviation of the degree

distribution in the task graph to identify and minimize critical dependency points.
– Reducing Bottlenecks: By minimizing unnecessary dependencies, the system

reduces potential bottlenecks and enhances robustness.

E.3 WORKFLOW EXECUTION PROCESS

1. Initial Workflow Generation
• The LLM generates a workflow based on the final goal, decomposing it into subtasks

with defined dependencies.
2. Agent Role Assignment

• Agents are assigned roles automatically by the LLM.
• Subtasks are assigned to agents based on role matching.

3. Subtask Execution
• Agents execute their assigned subtasks.
• Subtasks are executed in parallel where dependencies allow.

4. Monitoring and Updates
• The system monitors subtask completion statuses.
• Depending on the update strategy, the workflow is updated either concurrently or after

all current subtasks are completed.
5. Dynamic Restructuring

• Detection: If a subtask is determined to be insufficient or unsolvable for achieving the
requirement, the system detects this during execution.

• Re-evaluation of Workflow: The system reviews the current workflow, assessing the
impact of the failed subtask on all subtasks and the overall goal.

• Workflow Adjustment: The LLM restructures the workflow dynamically to adjust
other subtasks or redefine dependencies.

• Continuity: This ensures that progress toward the final goal continues without signifi-
cant delays.

6. Completion
• The process continues until all subtasks are completed and the final goal is achieved.

F LIMITATION AND FUTURE WORK

Although we have generated multiple candidate workflows and selected the one with the highest mod-
ularity, it is still not the most efficient. With sufficient computing and data resources, a model trained

26

Published as a conference paper at ICLR 2025

specifically for workflow management could significantly enhance the framework’s performance. For
instance, the LLM could be designed to maximize a reward function centered on key performance
indicators such as task completion speed, resource utilization, and minimizing disruptions in the
workflow. Such training could lead to the development of more effective workflows. The workflow
updater requires global information to function effectively, which can become problematic as the
context length increases. This limitation could be addressed by employing a rig or a hierarchical
approach to more precisely identify errors or areas lacking efficiency, thereby facilitating more
targeted updates and improvements within the workflow.

G PILOT STUDY ON AUTO-VALIDATION

In complex workflows involving numerous subtasks, accurately evaluating the correctness of each
task becomes challenging, especially when relying solely on a central workflow updater due to
extensive context. Recognizing this challenge, we introduced an automated validation mechanism
akin to unit testing to enhance task-level correctness and system efficiency.

Specifically, we integrated an auto-validation loop into the Flow system to systematically verify
each agent’s output immediately after task completion. For computational subtasks involving Python
scripts, this validation mechanism generates unit test cases to programmatically verify output cor-
rectness. In contrast, for textual or descriptive outputs, a validator LLM agent is employed to assess
whether the outputs adequately fulfill the subtask specifications. This validator generates targeted
feedback highlighting concerns.

If an output is deemed unsatisfactory, a re-execution agent is invoked, which utilizes the original
subtask specification and feedback from the validator to generate a refined solution. Additionally,
a history module stores all previous execution attempts alongside their corresponding feedback,
guiding subsequent re-execution agents to avoid repeating past errors. Empirically, this process
forms a re-execution cycle that systematically improves individual subtask outcomes. To prevent
infinite cycles of re-execution, a validation threshold is used, analogous to early stopping methods in
optimization tasks. Subtasks are marked as completed upon successful validation, whereas repeated
failures beyond a predefined threshold result in the subtask being marked as failed and handled by
the workflow updater.

We evaluated this enhanced validation approach in a pilot study involving game development tasks,
LaTeX Beamer generation tasks, and a website design task. Given the same backbone model, enabling
the validation feature demonstrated significant improvements in individual subtask and task output
quality (see Figures 11 and 12). For example, a runnable game combining Tetris and Bejeweled could
be generated with auto-validation but failed without it using the backbone model o3-mini-high.

For future work, it would be valuable to perform a rigorous theoretical analysis to better understand the
underlying mechanisms contributing to these performance gains. Such analysis could further inform
the optimization of validation strategies and workflow design in complex multi-agent workflows.

H PROOF OF THEOREM 1

Proof. We will compare the expected number of successfully completed subtasks in both workflows.

Definitions:

• Let PA(v) and PB(v) denote the probability that subtasks v is successfully completed in
Workflow A and Workflow B, respectively.

• For each subtasks v, let DA(v) and DB(v) be the sets of immediate predecessors of v in
Workflow A and Workflow B, respectively.

Success Probability of a subtasks: In Workflow A, the success probability of subtasks v is given by:

PA(v) = (1− pf)×
∏

i∈DA(v)

PA(i). (1)

27

Published as a conference paper at ICLR 2025

Figure 11: By incorporating auto-validation, Flow is able to automatically generate more sophisticated
programs without errors.

Figure 12: By incorporating auto-validation, Flow can automatically generate more accurate and
well-designed websites from the same prompt.

Similarly, in Workflow B:

PB(v) = (1− pf)×
∏

i∈DB(v)

PB(i). (2)

28

Published as a conference paper at ICLR 2025

Base Case: Since the subtasks v with no dependencies (i.e., DA(v) = DB(v) = ∅) have the same
success probability in both workflows:

PA(v) = PB(v) = 1− pf .

Inductive Step: We proceed by induction on the subtasks’ dependency levels.

Comparison for Subtasks v∗: Subtasks v∗ has an additional dependency d in Workflow B. Therefore:

DB(v
∗) = DA(v

∗) ∪ {d}.

Using equations equation 1 and equation 2, we have:

PA(v
∗) = (1− pf)×

∏
i∈DA(v∗)

PA(i),

PB(v
∗) = (1− pf)×

∏
i∈DB(v∗)

PB(i) = (1− pf)× PB(d)×
∏

i∈DA(v∗)

PB(i).

Since DA(v
∗) = DB(v

∗) \ {d}, and PA(i) = PB(i) for all i ̸= v∗ (because their dependencies are
the same), it follows that:

PB(v
∗) = PA(v

∗)× PB(d).

Because 0 < PB(d) = PA(d) < 1 (since pf > 0), we have:

PB(v
∗) = PA(v

∗)× PA(d) < PA(v
∗).

Success Probabilities for Other Subtasks: For all subtasks v ̸= v∗, DA(v) = DB(v), so:

PA(v) = PB(v).

Expected Number of Successfully Completed Subtasks: The expected number of successfully
completed subtasks in each workflow is:

E[SA] =
∑
v∈T

PA(v),

E[SB] =
∑
v∈T

PB(v).

Substituting the above findings:

E[SB] =
∑
v ̸=v∗

PB(v) + PB(v
∗)

=
∑
v ̸=v∗

PA(v) + PB(v
∗)

=

(∑
v∈T

PA(v)− PA(v
∗)

)
+ PB(v

∗)

= E[SA]− (PA(v
∗)− PB(v

∗)) .

Since PB(v
∗) < PA(v

∗), the difference ∆P = PA(v
∗)− PB(v

∗) > 0. Thus,

E[SB] = E[SA]−∆P < E[SA].

Therefore, the expected number of successfully completed subtasks in Workflow A is strictly greater
than in Workflow B:

E[SA] > E[SB].

29

	Introduction
	Related Work
	The Proposed multi-agent Framework: Flow
	EXPERIMENTS
	Evaluations over Three Designed Tasks
	Result for Gobang Game Development
	Result for LaTeX Beamer Writing
	Result For Website Design

	Workflow Update
	Conclusion
	Human Evaluation Process
	Experiment setups
	Experiment setup: LaTeX Beamer Writing
	Experiment setup: Gobang Game Development
	Experiment setup: Website Design
	How Different LLM Affect Updates
	How Different LLM Affect Performance
	Time Cost of Different Baseline

	Custom Metrics for Parallelism and Dependency
	Parallelism Metrics
	Dependency Metrics
	Proposed Metrics for Task Workflow Evaluation

	Examples of Flow's Workflow
	Example Workflow
	Pseudocode for updating AOV
	Prompt for Workflow Update
	Workflow Update Strategies

	Framework of the Multi-Agent framework
	Overview
	Key Components
	Workflow Execution Process

	Limitation and Future Work
	Pilot Study on Auto-validation
	Proof of Theorem 1

