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FEDSUV: VALIDITY AND UTILITY-GUIDED CLIENT
SELECTION FOR FEDERATED LEARNING

ABSTRACT

Federated Learning faces significant challenges arising from two critical uncer-
tainties: the validity of a client’s participation, which can be compromised by
network and system heterogeneity, and the utility of the data contributed by each
client, which varies due to heterogeneous statistical data. Traditional client se-
lection methods often treat these uncertainties as a whole, leading to suboptimal
performance. To address this issue, we propose FedSUV, an innovative client
selection framework that decouples validity and utility uncertainties. FedSUV
approaches client selection from a multi-objective optimization perspective, em-
ploying advanced bandit algorithms: a confidence bound-based linear contextual
bandit for assessing validity and a Gaussian Process bandit for evaluating utility.
We validate the effectiveness of FedSUV through both theoretical analysis and
large-scale experiments conducted within our physical cluster.

1 INTRODUCTION

Federated learning (FL) is a distributed machine learning paradigm that trains models locally on
multiple clients and only sends model updates to a central server for aggregation, thereby protect-
ing data privacy Konečnỳ et al. (2015); McMahan et al. (2017). Fig. 2 shows the workflow of
FL and highlights several challenges in its practical deployment. One challenge is communication
limitations. The frequent exchange of model parameters between clients and the central server is
constrained by limited bandwidth and channel capacity Li et al. (2020b); Shi et al. (2023). To ad-
dress this issue, client selection—choosing a subset of clients to participate in the FL training—has
been widely considered an effective method for optimizing FL.

Common barriers in client selection include network heterogeneity, system heterogeneity, and het-
erogeneous statistical data Ying et al. (2020); Tian et al. (2024). On one hand, local training on
certain clients is likely to fail due to system heterogeneity, such as hardware constraints and runtime
variance. Even if local training is successful, the model may fail to be transmitted during the ag-
gregation process due to network heterogeneity, such as poor channel conditions and high latency.
Consequently, a selected client may become an invalid participant, requiring additional communica-
tion rounds Abdelmoniem et al. (2023). We refer to the ability of a client to successfully participate
within one round as validity. On the other hand, the contribution of each client to the overall FL
system varies due to heterogeneous statistical data Yang et al. (2024), which we refer to as utility.
Naturally, we aim to select clients with high utility in each round of FL. However, a client with
high utility but low validity is not beneficial. The fundamental challenge is finding the right balance
between validity and utility. Adding to the complexity, both these factors are inherently uncertain,
highlighting the crucial need to adeptly address these uncertainties for optimal client selection.

Client poor

Participants subset

CU-CS Validity + Utility

Oort Utitliy     Validity

FedSUV

Decouple

Combine

Pareto frontier

Amplify
uncertainty

Validity
Utility

Reduce
uncertainty

Figure 1: Motivation of FedSUV.

This paper focuses on simultane-
ously managing these two types
of uncertainty—validity and util-
ity—in client selection. Existing
works on client selection in FL
often address the uncertainties by
treating them as a single entity, as
illustrated Fig. 1. For instance, Oort
directly multiplies the two types of
uncertainties and then employs a
single Multi-Armed Bandit (MAB)
method for selection Lai et al. (2021). Similarly, CU-CS combines these uncertainties by addition
and also uses a single MAB approach for client selection Shi et al. (2023). However, such methods
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may amplify uncertainties rather than mitigate them Iqbal et al. (2023). Treating uncertainties as
a combined metric, whether by addition or multiplication, overlooks the complex dynamics intro-
duced by their interaction. This approach also fails to account for the unique contribution of each
uncertainty factor to the overall metric. For instance, a high aggregated score might occur when
low validity is compensated by high utility, thereby masking the deficiencies of individual uncer-
tainty factors. Consequently, such coupling can reduce system robustness and lead to suboptimal
performance, adversely affecting both convergence speed and accuracy in the FL system.

In this paper, we propose FedSUV, a new and efficient framework for client selection in FL. As
illustrated in Fig. 1, FedSUV decouples the two uncertainties of validity and utility in FL, aiming
to explicitly explore their interaction. Selecting participants from numerous clients can be modeled
as a multi-armed bandit problem Lai et al. (2021). Consequently, FedSUV employs the confidence
bound-based linear contextual bandit algorithm Li et al. (2010); Shi et al. (2023) to predict the
expected validity of clients and applies the confidence bound-based Gaussian Process(GP) bandit
algorithm Krause & Ong (2011); Liu et al. (2019); Li et al. (2010) to estimate the expected utility
of clients. Leveraging these two estimates, FedSUV identifies the optimal subset of clients in each
round. Specifically, it strives to select Pareto-optimal clients or clients near the Pareto-optimal front,
drawing inspiration from the Pareto Learning Algorithm Zuluaga et al. (2013).

In summary, this paper makes the following contributions. First, we decouple the uncertainty fac-
tors in FL and address them from multi-objective MAB perspectives. Second, we introduce a novel
method that effectively balances validity and utility by employing a dual-model approach—training
both a linear model and a GP model to tackle the distinct uncertainties in FL. Furthermore, we es-
tablish an analytical framework that demonstrates FedSUV’s performance, showing it effectively
captures and reduces uncertainty and achieves a sublinear regret bound with high probability, ensur-
ing rapid convergence from a theoretical standpoint. Meanwhile, FedSUV speeds up convergence
by up to 3.54× and improves final accuracy by up to 30.54% in extensive cluster experiments.

2 RELATED WORK

Fig. 2 illustrates a typical FL framework and highlights the challenges encountered in real-world
implementations. Effective client selection is crucial to addressing these challenges. Client selection
methods can be broadly categorized into three approaches: heuristic-based selection, reinforcement
learning-based selection, and bandit-based selection.

Traditional client selection methods predominantly rely on heuristics, evaluating factors such as
data resources (e.g., FedCS Nishio & Yonetani (2019), MCFL Li et al. (2020a), Harmony Tian et al.
(2022)) and distinct training processes (e.g., SAFA Wu et al. (2020), REFL Abdelmoniem et al.
(2023)). However, heuristic-based approaches may lack robustness in new or unseen scenarios,
often requiring extensive domain expertise and tuning.

Reinforcement learning-based solutions, such as FAVOR Wang et al. (2020), FedMarl Zhang et al.
(2022), and FedL Su et al. (2022), utilize reinforcement learning techniques for client selection.
However, these methods can incur additional training time overhead due to the complexity of deep
reinforcement learning and lack theoretical guarantees.

Bandit-based solutions present a promising alternative. For instance, Xia et al.2020 demonstrated
that MAB-based methods can achieve significantly lower training loss compared to various bench-
marks. Lai et al.2021 introduced a framework that prioritizes client participation based on the utility
of existing data to enhance model accuracy and training speed, treating client selection as a standard
MAB problem without incorporating contextual features. Huang et al.2022a proposed a contextual
MAB-based client selection algorithm for mobile edge computing systems, considering computa-
tion and communication times as context. Shi et al.2023 designed a client selection scheme based
on MAB for volatile FL, optimizing convergence rates. MAB-based methods offer theoretical guar-
antees and can be adapted for exploration, making them a valuable approach for reference. Collec-
tively, these approaches address FL uncertainties from a holistic perspective, yet they often overlook
the benefits of decoupling. In this paper, we leverage multi-objective MAB principles to enhance
client selection in FL. Our approach aims to decouple and balance two critical factors—validity
and utility—through a refined selection process, thereby improving the overall performance and
efficiency of client selection.
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Figure 2: Workflow and challenges of Federated Learning.

3 PROBLEM FORMULATION

In this section, we present the fundamental problem formulation for client selection in FL. By ob-
serving the workflow in FL, as depicted in Fig. 2, we identify two types of uncertainty—validity
and utility—to formulate the optimization problem.

Formally, consider a client pool with N clients denoted by N = {1, 2, · · · , N}. To indicate whether
a candidate client i ∈ N is selected as a participant by the FL server at the beginning of each round
t ∈ T = {1, 2, · · · , T}, we define the following binary variable:

ξi,t =

{
1, if the FL server selects client i at round t,
0, otherwise.

(1)

Due to communication limitations, the FL sever can select a maximum of K participants from the
client pool N , i.e.,

∑N
i=1 ξi,t ≤ K. We define vi,t to indicate whether client i is a valid participant:

vi,t =

{
1, τi,t ≤ Td,

0, τi,t > Td,
(2)

where τi,t represents the total time spent by client i in round t, and Td is the maximum allowable
duration for each round to prevent indefinite delays caused by potential stragglers. Suppose that for
each i and t, vi,t follows an unknown fixed underlying distribution, with uncertainty primarily arises
from fluctuations in running times across rounds Lai et al. (2021). More precisely, there is some
fixed but unknown vi such that vi = E[vi,t].

Similarly, let ui,t denote the utility of client i at round t for the overall FL system. There is some
fixed but unknown ui such that ui = E[ui,t], where uncertainty in utility mainly arises from the
computation of stochastic gradient descent on different minibatches during client training McCan-
dlish et al. (2018); Chen et al. (2023). Given that client utility is heavily influenced by participant
validity, our global optimization goal is to maximize the cumulative client utility while considering
validity over T rounds, which can be formulated as:

max

T∑
t=1

N∑
i=1

ξi,t · vi,t · ui,t, s.t.
N∑
i=1

ξi,t ≤ K, t ∈ T . (OPT)

The problem we aim to tackle involves selecting the optimal set of clients amidst two forms of
uncertainties, highlighting the need for efficient capture and mitigation of these uncertainties.

4 FEDSUV: FRAMEWORK DESIGN

In this section, we describe the design details of FedSUV. We start by explaining how FedSUV
quantifies client utility (§4.1), then transform the client selection objective using multi-objective
optimization principles (§4.2). Next, we describe how FedSUV estimates the uncertainty associated
with client’s validity and utility (§4.3). Finally, we illustrate the online learning process (§4.4).

4.1 DESIGNING CLIENT UTILITY

Accurately quantifying client utility is crucial, as it reflects the extent to which the client’s training
contributes to improving the global model’s accuracy. Therefore, an ideal design of client utility
should effectively capture the client’s statistical data to enhance model performance for various
training tasks. Drawing inspiration from the principles of importance sampling Katharopoulos &
Fleuret (2018); Zhao & Zhang (2015), we consider two key factors in this quantification:

3
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• Accumulate training loss: Li,t. This factor is defined as Li,t = |Bi|
√

1
|Bi|

∑
k∈Bi

Loss(k)2,

where Bi represents the batch of data from client i and Loss(k) is the loss for sample k. Clients
with higher accumulated loss are considered more important for future rounds because their data
can provide significant learning opportunities for the model Lai et al. (2021), thus enhancing data
exposure and improving generalization.

• Incremental improvement in training accuracy: ∆i,t. In addition to the commonly used accu-
mulated training loss factor, we introduce this factor to provide a more comprehensive quantifi-
cation of a client’s incremental contribution. This factor measures the model’s accuracy increase
in the current training round. Incremental accuracy improvements indicate the marginal benefits
of a client in the joint training. Therefore, a small incremental improvement suggests either the
model has already effectively learned from the client’s data or the quality of the local data is
unsatisfactory, and thus may not provide substantial additional value.

These two factors ensure prioritization of clients that contribute most to improving global model
performance. Specifically, the incremental improvement in training accuracy ensures clients offering
immediate benefits are selected, while the accumulated training loss highlights those whose data
remains underutilized and valuable for future training. Furthermore, we design the utility as follows:

ui,t = Li,t ·∆i,t. (3)

By multiplying these two factors, the utility metric accounts for both immediate impact on accuracy
and potential for future learning. This product-based utility metric prevents the selection of clients
that have a high loss but negligible incremental improvement, or vice versa, thus optimizing the
selection process to maximize the overall model performance.

4.2 TRANSFORMING OBJECTIVE

When optimizing client selection, we aim to select clients with high expected validity and utility,
necessitating a delicate balance between these two goals. Inspired by Zuluaga et al. (2016); Garivier
et al. (2024), we address this balancing issue using the principles of multi-objective optimization.

Formally, each client i is associated with a d-dimensional feature vector xi, which includes attributes
such as CPU FLOPS, CPU cores, Memory, GPU FLOPS, GPU count, and Data size. The set of all
client feature vectors is denoted as X =

{
xi|i ∈ N

}
. The expected validity and utility of each

client are modeled as the functions of their feature vector, specifically vi = v(xi) and ui = u(xi).
For convenience, we define the combined objective function as: h(x) =

(
v(x)
u(x)

)
, where x ∈ X .

Utility

Va
lid

ity

Figure 3: Pareto-optimality example.

While there is no best evaluation standard from a multi-
objective optimization perspective, we are interested in iden-
tifying Pareto-optimal solutions Zuluaga et al. (2013). For-
mally, we define Pareto-optimality using the canonical par-
tial order:
Definition 1. For any two clients i and j, h(xj) ⪯ h(xi) if
and only if v(xj) ≤ v(xi) and u(xj) ≤ u(xi).
Definition 2. A client i is dominated by client j if and only
if h(xi) ⪯ h(xj).
Definition 3. A client i is called Pareto-optimal if no client
j exists that dominates it.

Fig. 3 shows an example of Pareto-optimality, where each point represents a client based on expected
validity and utility. The optimal clients are on the frontier and our objective is to identify and select
clients that are either Pareto-optimal or close to the Pareto-optimal frontier.

4.3 ESTIMATING THE UNCERTAINTY

The primary obstacle in the client selection problem (OPT) lies in the integration of the highly vari-
able uncertainty into the unknown expectations of client validity and utility. Therefore, estimating
the two types of uncertainty is crucial. In fact, the process of client selection in FL can be viewed as
a MAB problem Huang et al. (2020; 2022b); Xia et al. (2021); Wei et al. (2021); Xia et al. (2020);

4
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Lai et al. (2021), which is a type of sequential decision problem Auer (2002). Thus, we propose
using bandit methods to estimate these uncertainties.

Estimating the validity. Linear model are effective for capturing the relationship between client
features and performance, making them suitable for client selection tasks Shi et al. (2023). Inspired
by LinUCB Li et al. (2010); Abbasi-Yadkori et al. (2011); Shi et al. (2023), we assume the expected
validity vi of a client i is a linear function with an unknown parameter vector θ, i.e., vi = v(xi) =
θ · xi + ηi, where ηi represents random noise.

Based the ridge regression, we can obtain an interval estimate of vi with probability at least 1 − δ,
given by

v(xi) ∈
[
θt · xi − α∥xi∥H -1

t
, θt · xi + α∥xi∥H -1

t

]
, (4)

where δ ∈ (0, 1), α = 1+
√
log(4/δ)/2, Ht is the feature covariance matrix, and θt is the estimate

of θ obtained from LinUCB at round t.

Estimating the utility. FedSUV employs a GP model to estimate utility, leveraging its strong ability
to address exploration-exploitation tradeoffs in online learning of complex systems Liu et al. (2019;
2022), as well as its robustness in handling noise Krause & Ong (2011); Rasmussen (2003). Given
this GP model, which is characterized by a mean function µt−1(xi) and a covariance function
σt−1(xi), we can obtain an interval estimate of ui with probability at least 1− δ, provided by

u(xi) ∈
[
µt−1(xi)− β

1/2
t σt−1(xi), µt−1(xi) + β

1/2
t σt−1(xi)

]
, (5)

where δ ∈ (0, 1) and βt = 2 log
( |X |π2t2

3δ

)
.

4.4 ONLINE LEARNING PROCESS

In this part, we detail how FedSUV selects clients in each round. FedSUV utilizes a dual-model
approach, training both a linear model and a GP model to address uncertainties in FL. The combined
approach is represented using the following rectangle, derived from Eq. (4) and Eq. (5):

Qt(x) =

{(
v
u

) ∣∣∣∣∣
(

θt · x− α∥x∥H -1
t

µt−1(x)− β
1/2
t σt−1(x)

)
⪯
(
v
u

)
⪯
(

θt · x+ α∥x∥H -1
t

µt−1(x) + β
1/2
t σt−1(x)

)}
. (6)

This rectangle provides an interval estimate for both validity and utility, guiding the client selection
process.

The pseudocode of FedSUV is outlined in Appendix A. Each round of the algorithm consists of
three main stages: Eliminating, Classifying, and Selecting. These stages are described as follows.

Eliminating. Including low-validity clients in the joint training can introduce negative bias to the
global model and hurt final model accuracy. Despite their potential utility, such clients do not con-
tribute effectively to the overall system. Therefore, to ensure effective client selection, it is necessary
to avoid clients with low validity. Inspired by Shi & Shen 2021, FedSUV identifies an elimination
set Et each round using the confidence bound:

Et =
{
xi ∈ Xt−1

∣∣∣ θt · xi + α∥xi∥H -1
t
≤ max

xi∈Xt−1

θt · xi − α∥xi∥H -1
t

}
. (7)

This set Et consists of clients likely to have low validity. FedSUV then eliminates these clients from
the candidate pool, updating it to Xt = Xt−1 \ Et, where Xt represents the set of candidate clients
in round t. To control the proportion of eliminated clients, FedSUV sets a maximum deletion ratio
ρ. If |Xt−1| ≥ (1 − ρ)|X1|, the elimination process proceeds. In our experiments, this ratio ρ is
typically set to 0.4.

Classifying. FedSUV infers whether a client is Pareto-optimal based on Eq. (6). For ensuring that
all uncertainty regions are non-increasing with t, FedSUV refine this uncertainty region:

Rt(x) = Rt−1(x) ∩Qt(x), (8)
where R0(x) = R2. Within Rt(x), each client has an optimistic outcome maxRt(x) and a pes-
simistic outcome minRt(x), both of which are determined in the partial order ⪯ and are unique.
We denote the elements of minRt(x) and maxRt(x) as follows:( ∧

vt(x)
∧
ut(x)

)
:= minRt(x),

( ∨
vt(x)
∨
ut(x)

)
:= maxRt(x). (9)
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If there exists x′ ̸= x such that maxRt(x) ⪯ minRt(x
′), then the client corresponding to x

is classified as a non-Pareto optimal client. FedSUV also removes these clients from the candidate
client set Xt, ensuring they will not be selected in the following rounds. Fig. 4 illustrates an example
of eliminating and classifying at round t.

Utility

Va
lid

ity

The client is classified 
as not Pareto optimal

Eliminating

Figure 4: Online learning process.

Selecting. After classification, FedSUV selects clients based
on their uncertainty regions Rt(x). The first step is to com-
pute the length of the diagonal of the uncertainty region for
each client:

wt(x) = max
∀y,y′∈Rt(x)

||y − y′||. (10)

FedSUV then selects the client with the largest wt(x), which
is determined by:

xt = argmax
x∈Xt

wt(x). (11)

We refer wt(xt) as wt for simplicity. Intuitively, this rule biases the sampling toward exploring
points most likely to be Pareto-optimal, thereby improving the overall performance.

For the remaining K − 1 selections, FedSUV draws inspiration from the UCB algorithm Srinivas
et al. (2010). It selects the top K − 1 clients with the highest utility within their uncertainty regions,
specifically those with the highest

∨
ut(x) from the set Xt \ {xt}. This process yields the selection

strategy At for round t.

5 THEORETICAL RESULTS

In this section, we provide a detailed analysis of FedSUV’s theoretical performance. We start by
examining the elimination process, which ensures that clients with lower validity are systematically
excluded, thereby improving the resource efficiency of the client selection. Additionally, we show
that clients classified as non-Pareto-optimal can be excluded from future rounds. Next, we discuss
how FedSUV reduces uncertainty in client selection over time, leading to more accurate and reliable
choices. Finally, we assess the regret performance of FedSUV, demonstrating that the algorithm
quickly converges to an optimal solution. Collectively, these theoretical insights underscore the
robustness and efficiency of FedSUV. Detailed proofs are provided in the Appendix B .

5.1 ELIMINATION ANALYSIS

Using Eq. (7) to eliminate clients means that the upper confidence bound of a deleted client’s validity
is lower than the lower confidence bound of the best client’s validity. Let xmt

be defined as:

xmt
= max

xi∈Xt−1

θt · xi − α∥xi∥H -1
t
. (12)

And the expected validity of corresponding client is denoted as vmt
. Theorem 5.1 demonstrates that

a client with low validity will be eliminated with high probability.
Theorem 5.1. For any δ ∈ (0, 1), if a client i with a low expected validity value satisfies

vi ≤ vmt − 2α
(
∥xmt∥H−1

t
+ ∥xi∥H−1

t

)
, (13)

then client i will be eliminated with probability at least 1− δ
2 .

Furthermore, Theorem 5.2 shows that non-Pareto-optimal clients can be excluded from the selection
in subsequent rounds.
Theorem 5.2. If a client is classified as non-Pareto-optimal, it is unnecessary to include it in the
optimal selection process for the subsequent round.

5.2 UNCERTAINTY REDUCTION

In this subsection, we first demonstrate that with probability at least 1− δ,
(
v(x)
u(x)

)
falls within the

uncertainty region Rt(x) for all x ∈ X , as stated in Theorem 5.3 .

6
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Theorem 5.3. Given δ ∈ (0, 1), the following holds with probability at least 1− δ:(
v(x)
u(x)

)
∈ Rt(x), ∀x ∈ X , t ≥ 1. (14)

Theorem 5.3 guarantees that the uncertainty region we build can capture the true expected validity
and utility of clients. Moreover, since the selection rules used by FedSUV guarantee that the range
of uncertainty decreases over time, meaning that wt decreases with t, we derive a bound for wt, as
detailed in Theorem 5.4 .
Theorem 5.4. Given δ ∈ (0, 1), α = 1 +

√
log(4/δ)/2, and βt = 2 log

( |X |π2t2

3δ

)
, the following

inequality holds:
P
{
wT ≤

√
dα2CT /T + βT γTC/T

}
≥ 1− δ, (15)

where CT = 2 log
(
1 + T/d

)
, C = 2/ log(1 + σ−2), and γT = O

(
(log T )d+1

)
.

5.3 REGRET PERFORMANCE

A fundamental difference between single- and multi-objective MAB is that, for the latter, it is not
immediately clear which metric to use for evaluating regret. Similar to Zuluaga et al. 2013, we
employ the following metric: RegretT =

∑T
t=1 V (A∗) − V (At), where V (A) denotes the area in

the objective space covered by the set A, defined as:
⋃

a∈A{y ∈ R2 | 0 ⪯ y ⪯ a}. Here, A∗

denotes the set of optimal actions. The regret is measured by the difference in the area between the
Pareto-optimal solution and the solution achieved by FedSUV over time.

Therefore, Theorem 5.5 demonstrates that FedSUV rapidly converges to an optimal solution.
Theorem 5.5. Given δ ∈ (0, 1), ϵ = min

∀v(x)<v(x′)
u(x)<u(x′)

min{v(x′) − v(x), u(x′) − u(x)}, α =

1+
√
log(4/δ)/2, and βt = 2 log

(
|X |π2t2

3δ

)
, the following inequality holds with probability 1− δ:

RegretT ≤ 4K(α2dCT + βT γTC)

ϵ2
, (16)

where CT = 2 log
(
1 + T/d

)
, C = 2

log(1+σ−2) , and γT = O
(
(log T )d+1

)
.

6 EVALUATIONS

In this section, we comprehensively evaluate the performance of FedSUV across various popular
datasets, comparing it against state-of-the-art methods to highlight its effectiveness in FL.To pro-
vide deeper insights into FedSUV’s capabilities, we also conduct an in-depth analysis of its client
selection process through simulation-based evaluations.

6.1 EXPERIMENTAL SETUP

Infrastructure. We utilize FedScale Lai et al. (2022) as the foundation for deploying and evaluating
FL systems. FedSUV has been encapsulated into a module that integrates seamlessly with the global
aggregation and client selection processes. Training and testing are conducted using a GPU cluster
equipped with four NVIDIA A100 GPUs and Pytorch v1.13.1.

Baselines. FedSUV is compared with the following baselines to achieve a comprehensive perfor-
mance evaluation:
• FedAvg McMahan et al. (2017): This method involves the central server randomly selecting

a subset of available clients for participation in each training round, without considering other
factors. Due to its simplicity, random selection is applicable to any FL scenario.

• SAFA Wu et al. (2020): This approach employs a compensatory selection strategy that favors
clients with less frequent involvement to improve convergence rates under extreme conditions.

• REFL Abdelmoniem et al. (2023): REFL prioritizes clients with the least availability. Each client
trains a local prediction model to estimate the probability of its future availability.

• Oort Lai et al. (2021): Oort utilizes a MAB-based strategy to assess client utility and prioritizes
those clients that can offer the highest utility for global model training. This method takes into
account both the importance of the training samples and the training time.
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Table 1: Training tasks and their corre-
sponding settings.

Model Dataset LR LE BS Clients Samples
ResNet18

CIFAR10 0.01 1 10 3,500 60,000
MobileNet
ShuffleNet CIFAR100 0.04 1 20 3,500 60,000
ResNet18 FEMNIST 0.05 5 20 3,500 805,263
ResNet34 GoogleSpeech 0.04 1 16 2,618 105,829

LR: Learning Rate. LE: Local Epochs. BS: Batch Size.

Models and Datasets. FedSUV and the baseline methods
are evaluated across five types of training tasks: 1) train-
ing ResNet18 He et al. (2016) on CIFAR10 Krizhevsky
(2009); 2) training MobileNet Sandler et al. (2018) on
CIFAR10; 3) training ShuffleNet Zhang et al. (2018) on
CIFAR100 Krizhevsky (2009); 4) training ResNet18 on
FEMNIST Caldas et al. (2018); 5) training ResNet34 He
et al. (2016) on GoogleSpeech Warden (2018). Detailed
information about these tasks is provided in Table 1.

Parameter settings. The regular configuration parameters for FL were set to their default values as
provided by the FedScale framework, with no additional tuning applied. The parameter settings for
the baseline methods align with those specified in the original studies McMahan et al. (2017); Wu
et al. (2020); Lai et al. (2021); Abdelmoniem et al. (2023). Additionally, to ensure comparability,
all other common hyperparameters across the FL methods were kept consistent. Unless otherwise
specified, the round duration is set to 100 seconds, and 20 participants are selected in each round.

Hardware Performance of Clients. Consistent with Abdelmoniem et al. (2023), the feature vector
for each client are extracted from AI Benchmark AIb (2021) and MobiPerf Mob (2021). Addition-
ally, AI Benchmark provides training time data, while MobiPerf offers communication time details.
This information enables us to generate the duration of each round for each client.

6.2 OVERALL PERFORMANCE

In this section, we assess the performance of FedSUV in model training and compare it with the
aforementioned baselines. Besides the traditional Averaging methods employed for model aggrega-
tion McMahan et al. (2017), we also consider YoGi aggregation Reddi et al. (2021), which enhances
model efficiency for the given participants. The main findings reveal that FedSUV significantly
improves both the round-to-accuracy performance and the final model accuracy:
• With averaging aggregation, FedSUV accelerates model convergence by up to 3.54× and en-

hances final model accuracy by up to 30.54%.
• With YoGi aggregation, FedSUV speeds up model convergence by up to 2.92× and improves

final model accuracy by up to 22.90%.
The following parts provide detailed insights into these improvement.
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Figure 5: Test accuracy on FEMNIST with
ResNet18 across various methods.

Round-to-accuracy performance. FedSUV
significantly enhances round-to-accuracy per-
formance compared to other methods, as shown
in Table 2. For instance, with averaging aggre-
gation, FedSUV achieves the target accuracy of
15% on the CIFAR100 dataset with ShuffleNet
in just 130 rounds, which is 90 rounds faster
than the next best method. Similarly, with YoGi
aggregation, FedSUV reaches the target accu-
racy of 70% on FEMNIST with ResNet18 in
570 rounds, surpassing the second-best method by 20 rounds. Fig. 5 shows the convergence process
on FEMNIST with ResNet18. Additional convergence figures are available in Appendix C.

Table 2: The required number of training rounds to achieve the same target accuracy.
Dataset—Model CIFAR10—ResNet18 CIFAR10—MobileNet CIFAR100—ShuffleNet FEMNIST—ResNet18 GoogleSpeech—ResNet34
Target accuracy 45% 28% 15% 70% 50%

# of Rounds Speedup # of Rounds Speedup # of Rounds Speedup # of Rounds Speedup # of Rounds Speedup

Averaging
aggregation

FedAvg 500 - 880 - 460 - 200 - 570 -
SAFA 580 0.86× 500 1.76× 220 2.09× 210 0.95× 500 1.14×
Oort 660 0.75× 440 2× 510 0.90× 270 0.74× 320 1.78×

REFL 550 0.90× 410 2.15× 320 1.44× 240 0.83× 310 1.84×
FedSUV 430 1.16× 390 2.26× 130 3.54× 200 1× 270 2.11×

YoGi
aggregation

FedAvg 380 - 310 - 240 - 1000 - 600 -
SAFA 290 1.31× 430 0.72× 320 0.75× 600 1.67× 530 1.13×
Oort 160 2.38× 300 1.03× 330 0.73× 720 1.39× 720 0.83×

REFL 290 1.31× 270 1.15× 220 1.09× 590 1.69× 570 1.05×
FedSUV 130 2.92× 170 1.82× 170 1.41× 570 1.75× 450 1.33×

These results highlight FedSUV’s effectiveness in improving global aggregation by better client se-
lection. FedSUV achieves this by decoupling the validity and utility uncertainties that affect selec-
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tion. By capturing and reducing these uncertainties separately, FedSUV more efficiently identifies
ideal clients, avoids short-sighted selections, and reaches target accuracy faster. In contrast, methods
like Oort rely on a single, aggregated metric for evaluating clients, which overlooks the distinct types
of variability and unpredictability in client contributions. This nuanced handling of uncertainties is
what gives FedSUV its performance edge over other methods.

Table 3: The test accuracy (%) after convergence.
Dataset CIFAR10 CIFAR10 CIFAR100 FEMNIST GoogleSpeech
Model ResNet18 MobileNet ShuffleNet ResNet18 ResNet34

Averaging
aggregation

FedAvg 47.82 28.50 18.99 77.23 56.88
SAFA 48.69 30.90 24.75 76.06 60.19
Oort 46.69 31.01 19.32 76.70 60.12

REFL 48.05 31.12 22.00 77.66 58.88
FedSUV 49.22 33.94 24.79 78.04 60.28

YoGi
aggregation

FedAvg 54.96 36.73 22.42 68.87 55.71
SAFA 55.19 35.25 19.13 72.87 53.64
Oort 59.51 35.75 22.49 71.27 54.14

REFL 54.80 36.06 22.08 73.60 54.90
FedSUV 60.82 39.43 23.51 73.01 56.00

Final model accuracy. Table 3 shows that
FedSUV consistently enhances final model
accuracy across various datasets and mod-
els. For example, with averaging aggrega-
tion, FedSUV achieves the highest accuracy
of 78.04% on the FEMNIST dataset with
ResNet18, surpassing the worst-performing
method, SAFA, by 2.60%. Similarly, with
YoGi aggregation, FedSUV excels on the
CIFAR10 dataset with ResNet18, reaching
60.82%, the highest accuracy among all
methods. Notably, FedSUV achieves improvements of up to 28.31% across various datasets and
models compared to Oort, which neglects the decoupling of uncertainties.

These improvements can be attributed to the design of the FedSUV framework. With more client
selection rounds, FedSUV employs a dual-model approach-training both a linear model and a GP
model to progressively refine the estimation of clients’ validity and utility. This refinement leads to
increasingly accurate estimations, enabling FedSUV to consistently select the most optimal clients
and ensure sustained improvements in model accuracy.

6.3 SELECTION PROCESS ANALYSIS

To gain deeper insights into the client selection behavior of FedSUV, we conducted a simulated
evaluation with 2500 clients. In this simulation, the validity and utility expectations of each client are
uniformly distributed within the [0, 1]× [0, 1] interval. Our analysis focuses on the first 100 rounds
of selection, with Fig. 6 illustrating the selection dynamics. Each block in the figure represents a
client, with its position indicating the client’s validity and utility expectations.
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Figure 6: Statistics of client selection behavior.

Fig. 6(a) illustrates the number of rounds each
client was considered as a potential candidate
clients Xt. Notably, clients with validity expec-
tations below 40% participated only in approx-
imately 30 rounds, indicating that FedSUV ef-
fectively removed these clients through its elim-
ination process. This outcome suggests that
clients with lower validity expectations are pro-
gressively excluded, leading to a more refined
selection of clients. The remaining clients, who
were frequently considered as candidates, tend to be situated in the upper right corner of the plot,
where both validity and utility expectations are high. This concentration indicates that FedSUV
prioritizes clients that are Pareto-optimal or near Pareto-optimal.

Furthermore, Fig. 6(b) shows the cumulative number of times each client was selected. The pat-
tern observed here mirrors that of the participation rounds: clients in the upper right corner, with
high validity and utility expectations, were selected more frequently. This confirms that FedSUV
effectively identifies and selects clients with superior performance metrics.

7 CONCLUSIONS

FedSUV represents a significant advancement in FL by introducing a dual-model approach from
multi-objective MAB perspectives for client selection. By decoupling the uncertainties of validity
and utility, FedSUV effectively mitigates the impact of uncertainty. Meanwhile, it utilizes both linear
and GP models to intelligently capture and reduce these uncertainties, continuously identifying the
optimal client group. Theoretical guarantees and empirical validation of FedSUV demonstrate its
superiority and potential to revolutionize client selection strategies in FL.
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A THE PSEUDOCODE OF FEDSUV

Algorithm 1 FedSUV: Validity and Utility-guided Client Selection

1: Input: Maximum selection number K, deadline Td, and deletion ratio ρ.
2: Output: Selection strategy {At}t∈T .
3: Initialization;
4: for t = 1 to T do

Eliminating
5: if |Xt−1| ≥ (1− ρ)|X1| then
6: Determine the elimination set E according to Eq. (7);
7: Xt = Xt−1 \ Et;
8: end if

Classifying
9: Compute Rt(x) = Rt−1(x) ∩Qt(x) for all x ∈ Xt;

10: for all x ∈ Xt do
11: if |Xt| = K then
12: break;
13: end if
14: if there exists x′ ̸= x such that
15: maxRt(x) ⪯ minRt(x

′) then
16: Xt = Xt \ {x};
17: end if
18: end for

Selecting
19: Choose a client based on Eq. (11);
20: Choose the top K − 1 clients with the highest

∨
ut(x);

21: Train the Linear model and GP model;
22: end for

B PROOFS OF THEORETICAL RESULTS

In this appendix, we provide proofs for the theorems that were omitted from the main paper.

The proof of Theorem 5.1 . Let A denote the event
{∣∣θt · xi − vi

∣∣ ≤ α∥xi∥H -1
t
, ∀t ∈ T , i ∈ N

}
.

Then we have
P(A) ≥ 1− δ/2, (17)

where δ ∈ (0, 1) and α = 1+
√

log(4/δ)/2 Li et al. (2010); Walsh et al. (2009). If event A occurs,
it implies ∣∣θt · xi − vi

∣∣ ≤ α∥xi∥H -1
t
, and

∣∣θt · xmt − vmt

∣∣ ≤ α∥xmt∥H -1
t
. (18)

Therefore, we can further derive that

θt · xi + α∥xi∥H -1
t
≤ θ · xi + 2α∥xi∥H -1

t

≤ θ · xi + 2α∥xi∥H -1
t
+ θt · xmt

− vmt
+ α∥xmt

∥H -1
t

= −
(
θ · xmt

− θ · xi − 2α∥xi∥H -1
t
− 2α∥xmt

∥H -1
t

)
+ θt · xmt − α∥xmt∥H -1

t

≤ θt · xmt
− α∥xmt

∥H -1
t
,

(19)

which implies that client i is eliminated.

The proof of Theorem 5.2 . If a client with x is classified as non-Pareto-optimal, there exist at least

one client with x′′ such that
(
v(x)
u(x)

)
⪯
(
v(x′′)
u(x′′)

)
. Thus, the client with x can be ignored because

if
(
v(x′)
u(x′)

)
⪯
(
v(x)
u(x)

)
then

(
v(x′)
u(x′)

)
⪯
(
v(x′′)
u(x′′)

)
. This implies that x does not contribute
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any advantage in the selection process compared to x′′, and therefore can be excluded in future
rounds.

The proof of Theorem 5.3 . According the proof of Theorem 5.1, we have

P
{∣∣θt · xi − vi

∣∣ ≥ α∥xi∥H -1
t
,∀t ≥ 1, i ∈ X

}
≤ δ

2
. (20)

In addition, we obtain:

P
{∣∣f(xi)− µt−1(xi)

∣∣ ≥ β
1/2
t σt−1(xi)

}
≤ e−

βt
2 . (21)

This follows from the properties of the normal distribution: if x ∼ N(0, 1) is drawn from a Gaussian
distribution, then the upper bound of Pr{x ≥ c} is given by: P{x ≥ c} ≤ 1

2e
−c2/2.

We conclude that the following holds with probability at most |X |e−
βt
2 :∣∣f(xi)− µt−1(xi)

∣∣ ≤ β
1/2
t σt−1(xi),

∀xi ∈ X .
(22)

By applying the union bound for xi ∈ X , t ≥ 1 and choosing |X |e−
βt
2 = 3δ

π2t2 , we obtain the result
of this theorem, noting that

∑
1
t2 = π2

6 .

The proof of Theorem 5.4 . Since wt is the maximum diagonal length of Rt(x), we have

w2
t ≤ α2∥xt∥2H -1

t
+ βtσ

2
t−1(xt), (23)

which implies
T∑

t=1

w2
t ≤ α2

T∑
t=1

∥xt∥2H -1
t
+

T∑
t=1

βtσ
2
t−1(xt), (24)

Next, we will provide separate bounds for the two terms on the right-hand side of this inequality.
We have

T∑
t=1

∥xt∥2H -1
t
≤ 2 log

(det(HT )

det(H)

)
≤ 2
(
log(HT )− log det(H)

)
≤ 2(d log(1 + T/d)− d log 1)

≤ 2d log
(
1 + T/d

)
.

(25)

The first inequality above is due to Lemma 11 in Abbasi-Yadkori et al. (2011), and the second-to-last
inequality is due to the determinant-trace inequality in Abbasi-Yadkori et al. (2011).

Since βt is increasing, we have that
T∑

t=1

βtσ
2
t−1(xt) = βT

T∑
t=1

σ2(σ−2σ2
t−1(xt))

≤ βT

T∑
t=1

σ2 σ−2

log(1 + σ−2)
log
(
1 + σ−2σ2

t−1(xt)
)

(26)

≤ 1

log(1 + σ−2)
βT

T∑
t=1

log
(
1 + σ−2σ2

t−1(xt)
)
≤ 2

log(1 + σ−2)
βT γT .

The third-to-last inequality results from s
log(1+s) ≤ σ−2

log(1+σ−2) for s ∈ [0, σ−2]. The second-to-last
inequality is due to Lemma 5.3 in Srinivas et al. (2010), and the maximum information gain can be
bounded by γT = O

(
(log T )d+1

)
Dani et al. (2008).

Combining Eqs. equation 25 and equation 26, we have
T∑

t=1

w2
t ≤ 2α2d log

(
1 + T/d

)
+ βT γT

2

log(1 + σ−2)
. (27)
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Using the Cauchy-Schwarz inequality, we obtain
(∑T

t=1 wt

)2 ≤ T
∑T

t=1 w
2
t , which leads to

P

{
T∑

t=1

wt ≤
√

α2dCTT + βT γTCT

}
≥ 1− δ. (28)

Then, we have

P

{
T∑

t=1

wt/T ≤
√

α2dCT /T + βT γTC/T

}
≥ 1− δ. (29)

Furthermore, due to the selection rule of FedSUV,
wt = maxx∈Xt max∀y,y′∈Rt(x) ||y − y′||, we have wt = wt(xt) ≤ wt(xt) ≤ wt−1(xt) ≤ wt−1,
implying that wt decreases with t. Therefore,

∑T
t=1 wt/T ≥ wT , completing the proof.

The proof of Theorem 5.5 . When T ≥ 4(α2dCT+βT γTC)
ϵ2 , we have 2

√
α2dCT+βT γTC

T ≤ ϵ. Due to

Theorem 5.4, we know that 2wT ≤ ϵ. If
(
v(x)
u(x)

)
⪯
(
v(x′)
u(x′)

)
, then

maxRT (x) =

(
∨
vT (x)
∨
uT (x)

)
⪯
(
v(x) + wT

u(x) + wT

)
⪯

(
v(x) + wT +

∧
vT (x

′)− v(x′) + wT

u(x) + wT +
∧
uT (x

′)− u(x′) + wT

)

⪯

(
v(x)− v(x′) + 2wT +

∧
vT (x

′)

u(x)− u(x′) + 2wT +
∧
uT (x

′)

)
⪯

(
∧
vT (x

′)
∧
uT (x

′)

)
= minRT (x

′),

(30)

Thus, all clients that are not Pareto-optimal can be distinguished.

Consequently, after
⌈
4(α2dCT+βT γTC)

ϵ2

⌉
rounds, the remaining clients are Pareto optimal with prob-

ability 1 − δ. Additionally, assuming the valid value and utility both lie in the interval [0, 1], and
since K clients are selected in each round, we have

RegretT ≤ 4K(α2dCT + βT γTC)

ϵ2
, (31)

which holds with probability 1− δ.
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C MORE CONVERGENCE FIGURES

Except the Fig. 5 in the main paper, we provide more convergence results as Figures 4, 5, 6 and
7. These results show that our method can accelerate FL training and obtain higher generalization
performance.
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Figure 7: Test accuracy on CIFAR10 with
ResNet-18 across various methods.
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Figure 8: Test accuracy on CIFAR10 with Mo-
bileNet across various methods.
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Figure 9: Test accuracy on CIFAR100 with Shuf-
fleNet across various methods.
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Figure 10: Test accuracy on GoogleSpeech with
ResNet34 across various methods.

D SOFTWARE AVAILABILITY

FedSUV has been integrated as a module within FedScale Lai et al. (2022), a framework designed
for the emulation and evaluation of FL systems. The corresponding code can be found in the Sup-
plementary Materials.
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