
Published as a workshop paper at ICLR 2023

SEMI-SUPERVISED LIDAR SEMANTIC SEGMENTA-
TION WITH SPATIAL CONSISTENCY TRAINING

Lingdong Kong¶, Jiawei Ren¶, Liang Pan & Ziwei LiuB
S-Lab, Nanyang Technological University, Singapore
{lingdong001,jiawei011}@e.ntu.edu.sg {liang.pan,ziwei.liu}@ntu.edu.sg

ABSTRACT

We study the underexplored semi-supervised learning (SSL) in LiDAR semantic
segmentation, as annotating LiDAR point clouds is expensive and hinders the scal-
ability of fully-supervised methods. Our core idea is to leverage the strong spatial
cues of LiDAR point clouds to better exploit unlabeled data. We propose Laser-
Mix to mix laser beams from different LiDAR scans and encourage the model to
make consistent and confident predictions before and after mixing. Our frame-
work has three appealing properties. 1) Generic: LaserMix is agnostic to LiDAR
representations hence our SSL framework can be universally applied. 2) Statisti-
cally grounded: We provide a detailed analysis to theoretically explain the appli-
cability of the proposed framework. 3) Effective: Comprehensive experiments on
popular LiDAR segmentation datasets demonstrate our effectiveness and superi-
ority. Notably, we achieve competitive results over fully-supervised counterparts
with 2× to 5× fewer labels and improve the supervised-only baseline significantly
by relatively 10.8%. We hope this concise yet high-performing framework could
facilitate future research in semi-supervised LiDAR segmentation.

1 INTRODUCTION

LiDAR segmentation, crucial for autonomous vehicle perception, enables semantic perception of
the 3D environment Roriz et al. (2021). However, densely annotating LiDAR point clouds is costly
and hinders the scalability of fully-supervised methods Unal et al. (2022); Hu et al. (2021); Kong
et al. (2021). Semi-supervised learning (SSL) that leverages unlabeled data is a promising solution
for scalable LiDAR segmentation Gao et al. (2021); Triess et al. (2021).

Semi-supervised LiDAR segmentation is underexplored, with modern SSL frameworks designed for
2D image recognition Berthelot et al. (2019); Sohn et al. (2020) and semantic segmentation Ouali
et al. (2020); Ke et al. (2020) tasks only delivering sub-par performance on 3D data. A recent
study Jiang et al. (2021) proposed a point contrastive learning framework, but it overlooks important
properties specific to LiDAR point clouds by not differentiating indoor and outdoor scenes.

This work investigates using spatial prior for semi-supervised LiDAR segmentation, where the sig-
nificance of spatial cues is especially pronounced. LiDAR point clouds accurately reflect real-world
distributions, heavily reliant on spatial areas in LiDAR-centered 3D coordinates. As illustrated in
Fig. 1 (left), top laser beams cover long distances and primarily detect vegetation, while middle and
bottom beams detect cars and roads at medium and close distances, respectively.

To effectively leverage this strong spatial prior, we propose LaserMix to mix laser beams from
different LiDAR scans, and then encourage the LiDAR segmentation model to make consistent and
confident predictions before and after mixing. Our SSL framework is statistically grounded, which
consists of the following components:

1) Partitioning the LiDAR scan into low-variation areas. We observe a strong distribution pattern on
laser beams as shown in Fig. 1 (left) and thus propose the laser partition.

2) Efficiently mixing every area in the scan with foreign data and obtaining model predictions. We
propose LaserMix to manipulate the laser-grouped areas from two LiDAR scans in an intertwining
way as depicted in Fig. 1 (middle) and serves as an efficient LiDAR mixing strategy for SSL.
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Figure 1: Left: The LiDAR point cloud contains strong spatial prior. Objects and backgrounds
around the ego-vehicle have a patterned distribution on different (lower, middle, upper) laser beams.
Middle: Following the scene structure, the proposed LaserMix blends beams from different LiDAR
scans, which is compatible with various popular LiDAR representations. Right: We achieve supe-
rior results over SoTA methods in both low-data (10%, 20%, and 50% labels) and high-data (full
labels) regimes on nuScenes Fong et al. (2022).

3) Encouraging models to make confident and consistent predictions on the same area in different
mixing. We hence propose a mixing-based teacher-student training pipeline.

Despite the simplicity of our overall pipeline, it achieves competitive results over the fully super-
vised counterpart using 2× to 5× fewer labels as shown in Fig. 1 (right) and significantly outper-
forms all prevailing semi-supervised segmentation methods on nuScenes Fong et al. (2022) (up to
+5.7% mIoU) and SemanticKITTI Behley et al. (2019) (up to +3.5% mIoU). Moreover, Laser-
Mix directly operates on point clouds so as to be agnostic to different LiDAR representations, e.g.,
range view Milioto et al. (2019) and voxel Zhu et al. (2021). Therefore, our pipeline is highly
compatible with existing state-of-the-art (SoTA) LiDAR segmentation methods under various rep-
resentations Zhang et al. (2020); Thomas et al. (2019); Zhao et al. (2021). Spatial prior is proven to
play a pivotal role in the success of our framework through comprehensive empirical analysis.

2 APPROACH

This section presents our SSL framework that leverages priors in LiDAR data by encouraging spatial
consistency in predictions. Due to space limits, we place the statistical derivation in Appendix.

2.1 LASERMIX

Partition. LiDAR sensors have a fixed number of laser beams which are emitted isotropically
around the ego-vehicle with predefined inclination angles as shown in Fig. 2. To obtain a proper set
of spatial areas A, we propose to partition the LiDAR point cloud based on laser beams. Specifically,
points captured by the same laser beam have a unified inclination angle to the sensor plane. For
point i, its inclination is defined as: ϕi = arctan(

pz
i√

(px
i )

2+(py
i )

2
), where (px, py, pz) is the Cartesian

coordinates of the LiDAR points. Given two LiDAR scans x1 and x2, we first group all points
from each scan by their inclination angles. Concretely, to form m non-overlapping areas, a set of
m + 1 inclination angles Φ = {ϕ0, ϕ1, ϕ2, ..., ϕm} will be evenly sampled within the range of the
minimum and maximum inclination angles in the dataset (defined by sensor configurations), and the
area set A = {a1, a2, ..., am} can be formed by bounding area ai in the inclination range [ϕi−1, ϕi).

Role in our framework: Laser partition effectively “excites” a strong spatial prior in the LiDAR point
cloud. As shown in Fig. 1 (left), we find an overt pattern in semantic classes detected by each laser
beam. More concrete evidence on this aspect has been included in the Appendix. Despite being an
empirical choice, we will show in later sections that laser partition significantly outperforms other
partition choices, including random points (MixUp-like partition Zhang et al. (2018)), random areas
(CutMix-like partition Yun et al. (2019)), and other heuristics like azimuth α (sensor horizontal
direction) or radius r (sensor range direction) partitions.
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Mixing. LaserMix mixes the aforementioned laser partitioned areas A from two scans in an inter-
twining way, i.e., one takes from odd-indexed areas A1 = {a1, a3, ...} and the other takes from
even-indexed areas A2 = {a2, a4, ...}, so that each area’s neighbor will be from the other scan:

x̃1, x̃2 = LaserMix(x1, x2) , x̃1 = xa1
1 ∪ xa2

2 ∪ xa3
1 ∪ · · · , x̃2 = xa1

2 ∪ xa2
1 ∪ xa3

2 ∪ · · · , (1)

where x
aj

i is the data crop of xi in the area aj . The semantic labels are mixed in the same way.
LaserMix is directly applied to the point clouds and is thus agnostic to the various LiDAR repre-
sentations Hu et al. (2020); Milioto et al. (2019); Zhang et al. (2020); Zhu et al. (2021). We show
LaserMix’s instantiations with the range view and voxel representations as in Fig. 1 (middle), since
they are currently the most efficient and the best-performing options, respectively.
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Figure 2: Laser partition example. We group
LiDAR points (pxi , p

y
i , p

z
i ) whose inclinations

ϕi are within the same inclination range into the
same area, as depicted in the color regions.

Role in our framework: The cost for directly
computing the marginal probability in Eq. 5
in Appendix on real-world LiDAR data is pro-
hibitive; we need to iterate through all areas in
A and all outside data in Xout, which requires
|A| · |Xout| predictions in total. To reduce the
training overhead, we take advantage of the fact
that a prediction in an area will be largely affected
by its neighboring areas and let Xout fill only the
neighbors instead of all the remaining areas. By
mixing two scans through ”intertwining” the ar-
eas, the neighbors of each area are filled with data
from the other scan, reducing the cost from |A| to
1 on average. The scan before and after mixing
counts as two data fillings, therefore |Xout| = 2.
Overall, the training overhead is reduced from
|A| · |Xout| to 2: only one prediction on origi-
nal data and one additional prediction on mixed
data are required for each LiDAR scan.

2.2 OVERALL PIPELINE

There are two branches in our pipeline, one Student net Gs
θ and one Teacher net Gt

θ. During train-
ing, a batch is composed of half labeled data and half unlabeled data. We collect the predictions
from both Gs

θ and Gt
θ, and produce pseudo-labels from Teacher net’s prediction with a predefined

confidence threshold T . For labeled data, we compute the cross-entropy loss between the Stu-
dent net’s prediction and the ground-truth as Lsup. For unlabeled data, LaserMix blends every
scan with a random labeled scan, together with their pseudo-label or ground-truth. Then, we let
Gs
θ predict on the mixed data and compute the cross-entropy loss Lmix (w/ mixed labels). More-

over, we adopt the mean teacher idea in Tarvainen & Valpola (2017) and use Exponential Moving
Average (EMA) to update the weights of Gt

θ from Gs
θ , and compute the L2 loss between their pre-

dictions as: Lmt = ||Gs
θ(x) − Gt

θ(x)||22, where || · ||22 is the L2 norm. The overall loss function is:
L = Lsup +λmixLmix +λmtLmt, where λmix and λmt are loss weights. We use the Teacher net during
inference as it empirically gives more stable results. There will be no extra inference overhead.

Role in our framework: Our overall pipeline minimizes the marginal entropy. Since the objective
for minimizing the entropy has a hard optimization landscape, pseudo-labeling is a common resort
in practice Lee (2013). Unlike conventional pseudo-label optimization in SSL which only aims to
encourage the predictions to be confident, minimizing the marginal entropy requires all predictions
to be both confident and consistent. Hence, we use the ground-truth and pseudo-label as an anchor
and encourage the model’s predictions to be confident and consistent with these supervision signals.

3 EXPERIMENTS

Data. We build three SSL benchmarks upon nuScenes Fong et al. (2022), SemanticKITTI Behley
et al. (2019), and ScribbleKITTI Unal et al. (2022). For all three sets, we uniformly sample 1%,
10%, 20%, and 50% labeled training scans and assume the remaining ones as unlabeled. This is in
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Figure 3: Ablation studies on: Left: Different mixing-based techniques used in point partition &
mixing; Middle: Different EMA decay rates between the Teacher net and the Student net; Right:
Different confidence thresholds T used in the pseudo-label generation.

line with the conventional settings from the semi-supervised image segmentation community Ouali
et al. (2020); Ke et al. (2020); Chen et al. (2021).

Table 1: Benchmarking results among different SSL methods with
the LiDAR range view (top) and voxel (bottom) representations.

Repr. Method nuScenes SemanticKITTI ScribbleKITTI
1% 10% 20% 50% 1% 10% 20% 50% 1% 10% 20% 50%

R
an

ge
V

ie
w

Sup.-only 38.3 57.5 62.7 67.6 36.2 52.2 55.9 57.2 33.1 47.7 49.9 52.5

MeanTeacher 42.1 60.4 65.4 69.4 37.5 53.1 56.1 57.4 34.2 49.8 51.6 53.3
CBST 40.9 60.5 64.3 69.3 39.9 53.4 56.1 56.9 35.7 50.7 52.7 54.6

CutMix-Seg 43.8 63.9 64.8 69.8 37.4 54.3 56.6 57.6 36.7 50.7 52.9 54.3
CPS 40.7 60.8 64.9 68.0 36.5 52.3 56.3 57.4 33.7 50.0 52.8 54.6

LaserMix 49.5 68.2 70.6 73.0 43.4 58.8 59.4 61.4 38.3 54.4 55.6 58.7

Vo
xe

l

Sup.-only 50.9 65.9 66.6 71.2 45.4 56.1 57.8 58.7 39.2 48.0 52.1 53.8

MeanTeacher 51.6 66.0 67.1 71.7 45.4 57.1 59.2 60.0 41.0 50.1 52.8 53.9
CBST 53.0 66.5 69.6 71.6 48.8 58.3 59.4 59.7 41.5 50.6 53.3 54.5
CPS 52.9 66.3 70.0 72.5 46.7 58.7 59.6 60.5 41.4 51.8 53.9 54.8

LaserMix 55.3 69.9 71.8 73.2 50.6 60.0 61.9 62.3 44.2 53.7 55.1 56.8

Implementation Details. We
adopt FIDNet Zhao et al.
(2021) and Cylinder3D Zhu
et al. (2021) as the segmenta-
tion backbones for the range
view and the voxel options, re-
spectively. The input resolution
of range images is set as 64 ×
2048 for SemanticKITTI and
ScribbleKITTI, and 32 × 1920
for nuScenes. The voxel reso-
lution is fixed as [240, 180, 20]
for all three sets. The number
of spatial areas m in LaserMix is uniformly sampled from 2 to 6 areas. We denote the supervised-
only baseline as sup.-only. Due to the lack of LiDAR SSL works, we also compare SoTA consistency
regularization Tarvainen & Valpola (2017); Chen et al. (2021); French et al. (2020) and entropy min-
imization Zou et al. (2018) methods from semi-supervised image segmentation.

Comparative Studies. Tab. 1 benchmarks results for various SSL methods. For all three sets
under different data splits, we observe significant improvements in our approach over the sup.-only
baseline. Such gains are especially evident in range view, which reach up to 11.2% mIoU. We also
observe constant improvements for the voxel option, which provide on average 4.1% mIoU gains
over all splits across all sets. The results verify the effectiveness of our framework and further
highlight the importance of leveraging unlabeled data in LiDAR semantic segmentation.

Ablation Studies. Fig. 3 (left) compares LaserMix with other mixing methods. MixUp and CutMix
can be considered as setting A to random points and random areas, respectively. We observe that
MixUp has no improvements over the baseline on average since there is no distribution pattern in
random points. CutMix has a considerable improvement over the baseline, as there is always a
structure prior in scene segmentation, i.e., the same semantic class points tend to cluster, which
reduces the entropy in any continuous area. This prior is often used in image semantic segmentation
SSL French et al. (2020). However, our spatial prior is much stronger, where not only the area
structure but also the area’s spatial position has been considered.

4 CONCLUSION

We propose a novel SSL approach that utilizes the unique spatial prior in LiDAR point clouds.
Our statistically-grounded SSL pipeline includes a novel LiDAR mixing technique, LaserMix, that
intertwines laser beams from different LiDAR scans. Our approach is demonstrated to be effective
and superior through empirical analysis on three popular LiDAR semantic segmentation datasets,
and its simplicity sheds light on the scalable deployment of the LiDAR semantic mapping system.
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A APPENDIX

A.1 LEVERAGING THE SPATIAL PRIOR FOR SSL

Spatial Prior Formulation. The distribution of real-world objects/backgrounds has a strong corre-
lation to their spatial positions in the LiDAR scan. Objects/backgrounds inside a specified spatial
area of a LiDAR point cloud follow similar patterns, e.g., the close-range area is most likely road
while the long-range area consists of building, vegetation, etc. In another word, there exists a spa-
tial area a ∈ A where LiDAR points and semantic labels inside the area (denoted as Xin and Yin,
respectively) will have relatively low variations. Formally, the conditional entropy H(Xin, Yin|A)
is smaller. Therefore, when estimating the parameter θ of the segmentation network Gθ, we would
expect:

Eθ[H(Xin, Yin|A)] = c , (2)

where c is a small constant. Similar to the classic entropy minimization Grandvalet & Bengio (2004),
the constraint in Eq. 2 can be converted to a prior on the model parameter θ using the principle of
entropy maximization:

P (θ) ∝ exp(−λH(Xin, Yin|A)) ∝ exp(−λH(Yin|Xin, A)) , (3)

where λ > 0 is the Lagrange multiplier corresponding to constant c; H(Xin|A) has been ignored
for being independent of the model parameter θ. We consider Eq. 3 as the formal formulation of the
spatial prior and discuss how to empirically compute it in the following sections.

Marginalization. To utilize the spatial prior defined in Eq. 3, we empirically compute the entropy
H(Yin|Xin, A) of the LiDAR points inside area A as follows:

Ĥ(Yin|Xin, A) = ÊXin,Yin,A[P (Yin|Xin, A) logP (Yin|Xin, A)] , (4)

where .̂ denotes the empirical estimation. The end-to-end LiDAR segmentation model Gθ usually
takes full-sized data as inputs during inference. Therefore, to compute P (Yin|Xin, A) in Eq. 4, we
first pad the data outside the area to obtain the full-sized data. Here we denote the data outside the
area as Xout; we then let the model infer P (Yin|Xin, Xout, A), and finally marginalize Xout as:

P (Yin|Xin, A) = ÊXout
[P (Yin|Xin, Xout, A)] . (5)

The generative distribution of the padding P (Xout) can be directly obtained from the dataset.

Training. Finally, we train the segmentation model Gθ using the standard maximum-a-posteriori
(MAP) estimation. We maximize the posterior that can be computed by Eq. 3, Eq. 4 and Eq. 5,
which is formulated as follows:

C(θ) = L(θ)− λĤ(Yin|Xin, A) = L(θ)

− λÊXin,Yin,A[P (Yin|Xin, A) logP (Yin|Xin, A)].
(6)

Here, L(θ) is the likelihood function computed using labeled data, i.e., the conventional supervised
learning. Minimizing Ĥ(Yin|Xin, A) requires the marginal probability P (Yin|Xin, A) to be confi-
dent, which further requires P (Yin|Xin, Xout, A) to be both confident and consistent with respect to
different outside data Xout.

In summary, our proposed SSL framework in Eq. 6 encourages the segmentation model to make
confident and consistent predictions at a predefined area, regardless of the data outside the area.
The predefined area set A determines the “strength” of the prior. When setting A to the full area
(i.e., the whole point cloud), our framework degrades to the classic entropy minimization framework
Grandvalet & Bengio (2004).

Implementation. There are three key steps for implementing our framework:

• Step 1): Select a proper partition set A which maintains strong spatial prior;
• Step 2): Efficiently compute the marginal probability, i.e., P (Yin|Xin, A);

• Step 3): Efficiently minimize the marginal entropy, i.e., Ĥ(Yin|Xin, A).

We propose a simple yet effective implementation following these steps in Sec. 2 of the main paper.
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A.2 CASE STUDY: SPATIAL PRIOR IN LIDAR DATA

A.2.1 LASER PARTITION

As mentioned in the main body of this paper, the LiDAR point clouds collected by the LiDAR sensor
on top of the autonomous vehicle contain inherent spatial cues, which lead to strong patterns in laser
beam partition. In this section, we conduct a case study on SemanticKITTI Behley et al. (2019) to
verify our findings. The LiDAR scans in SemanticKITTI are collected by the Velodyne-HDLE64
sensor, which contains 64 laser beams emitted isotropically around the ego-vehicle with predefined
inclination angles. In this study, we split each LiDAR point cloud into eight non-overlapping areas,
i.e., A = {a1, a2, ..., a8}. Each area ai contains points captured from the consecutive 8 laser beams.

A.2.2 SPATIAL PRIOR

As can be seen from the fourth column in Tab. 2, different semantic classes have their own behaviors
in these predefined areas. Specifically, the road class occupies mostly the first four areas (close to the
ego-vehicle) while hardly appearing in the last two areas (far from the ego-vehicle). The vegetation
class and the building class behavior conversely to road and appear at the long-distance areas (e.g.,
a6, a7, a8). The dynamic classes, including car, bicyclist, motorcyclist, and person, tend to appear in
the middle-distance areas (e.g., a4, a5, a6). Similarly, from the heatmaps shown in the fifth column
in Tab. 2, we can see that these semantic classes tend to appear (lighter colors) in only certain areas.
For example, the traffic-sign class has a high likelihood to appear in the long-distance regions from
the ego-vehicle (upper areas in the corresponding heatmap).

These unique distributions reflect the spatial layout of street scenes in the real world. In this work,
we propose to leverage these strong spatial cues to construct our SSL framework. The experimen-
tal results verify that the spatial prior can better encourage consistency regularization in LiDAR
segmentation under annotation scarcity.

A.3 PUBLIC RESOURCES USED

We acknowledge the use of the following public resources, during the course of this work:

• nuScenes1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

• nuScenes-devkit2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

• SemanticKITTI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

• SemanticKITTI-API4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License

• ScribbleKITTI5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown

• FIDNet6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown

• Cylinder3D7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

• TorchSemiSeg8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

• Mix3D9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown

• MixUp10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Attribution-NonCommercial 4.0

• CutMix11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License
1https://www.nuscenes.org/nuscenes.
2https://github.com/nutonomy/nuscenes-devkit.
3http://semantic-kitti.org.
4https://github.com/PRBonn/semantic-kitti-api.
5https://github.com/ouenal/scribblekitti.
6https://github.com/placeforyiming/IROS21-FIDNet-SemanticKITTI.
7https://github.com/xinge008/Cylinder3D.
8https://github.com/charlesCXK/TorchSemiSeg.
9https://github.com/kumuji/mix3d.

10https://github.com/facebookresearch/mixup-cifar10.
11https://github.com/clovaai/CutMix-PyTorch.
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Table 2: A case study on the strong spatial prior in the LiDAR data (statistics calculated from the
SemanticKITTI Behley et al. (2019) dataset in this example). For each semantic class, we show
its type (static or dynamic), occupation (valid # of points in percentage), distribution among eight
areas (A = {a1, a2, ..., a8}, i.e., eight laser beam groups), and the heatmap in range view (lighter
colors correspond to areas that have a higher likelihood to appear and vice versa).

Class Type Proportion Distribution Heatmap
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1 2 3 4 5 6 7 8• CutMix-Seg12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• CBST13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Attribution-NonCommercial 4.0
• MeanTeacher14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Attribution-NonCommercial 4.0

12https://github.com/Britefury/cutmix-semisup-seg.
13https://github.com/yzou2/CBST.
14https://github.com/CuriousAI/mean-teacher.
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