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ABSTRACT

Federated learning is an emerging technology for training machine learning mod-
els across decentralized data sources without sharing data. Vertical federated
learning, also known as feature-based federated learning, applies to scenarios
where data sources have the same sample IDs but different feature sets. To en-
sure fairness among data owners, it is critical to objectively assess the contribu-
tions from different data sources and compensate the corresponding data owners
accordingly. The Shapley value is a provably fair contribution valuation metric
originating from cooperative game theory. However, its straight-forward compu-
tation requires extensively retraining a model on each potential combination of
data sources, leading to prohibitively high communication and computation over-
heads due to multiple rounds of federated learning. To tackle this challenge, we
propose a contribution valuation metric called vertical federated Shapley value
(VerFedSV) based on the classic Shapley value. We show that VerFedSV not only
satisfies many desirable properties of fairness but is also efficient to compute.
Moreover, VerFedSV can be adapted to both synchronous and asynchronous ver-
tical federated learning algorithms. Both theoretical analysis and extensive exper-
imental results demonstrate the fairness, efficiency, adaptability, and effectiveness
of VerFedSV.

1 INTRODUCTION

Creating powerful and robust machine learning models requires collecting enormous amounts of
training data. However, in many industrial scenarios, training data is siloed across multiple com-
panies, and data sharing is often impossible due to regulatory limits on data protection (Li et al.,
2020). Federated learning (FL for short) is an emerging machine learning framework where a cen-
tral server and multiple data owners, i.e., clients, collaboratively train a machine learning model
without sharing their data (McMahan et al., 2017; Yang et al., 2019; Kairouz et al., 2019).

FL can further be classified into two main categories: horizontal federated learning (HFL) and
vertical federated learning (VFL) (Yang et al., 2019). In HFL, various clients’ data share the same
feature space but have separate sample IDs. On the other hand, VFL assumes that the data owned
by different clients share identical sample IDs but have distinctive features.

The success of FL depends on the active participation of motivated clients. Therefore it is vital to
fairly evaluate the contributions from different clients as fair cooperation and reward can motivate
active participation from players.

The Shapley value (Shapley, 1952) is a classical metric derived from cooperative game theory that
is used to appropriately assess players’ contributions. The Shapley value of a player is defined as the
expected marginal contribution of the player over all possible subsets of the other players. The Shap-
ley value is the only metric that satisfies all four requirements of Shapley’s fairness criteria: balance,
symmetry, zero element, and additivity (Dubey, 1975) (see Section B.1). Although the Shapley value
has many desirable characteristics, its evaluation in the FL context requires repeatedly training and
evaluating models learned on all possible subsets of clients. The corresponding communication and
computation costs are exponential and often prohibitive in practice (Song et al., 2019; Wang et al.,
2019; Fan et al., 2022).

Variants of the Shapley value make equitable data owner contribution assessment feasible in FL.
Take its application in HFL as an example, Wang et al. (2020) proposed a contribution valuation
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metric called the federated Shapley value (FedSV). The key idea is to calculate Shapley value for
a client in each iteration of training and then aggregate these values over all iterations to determine
the final contribution of the client. Its computation does not require model retraining and retains
some, but not all, of Shapley’s fairness criteria. Fan et al. (2022) enhanced the fairness of this
method by considering all data owners, including those not selected in certain training iterations.
This improvement is accomplished through low-rank matrix factorization techniques. While Fan
et al. (2022) focus on HFL, this paper will serve as an extension towards VFL and complete the
picture of contribution valuation in FL.

Compared to HFL, adapting the Shapley value to VFL faces another challenge because of the
stronger model dependency in the vertical context. More precisely, the Shapley value computa-
tion requires us to form the model produced by all different subsets of clients. This requirement is
easy to satisfy in HFL because the global model is defined as the additive aggregation of the local
models, and thus we only need to aggregate local models from different subsets of clients (Wang
et al., 2020). In VFL, however, the global model is the concatenation of local models that are not
shared with the server. Thus, simply concatenating local models from different subsets of clients is
not applicable.

In this paper, we concentrate on developing efficient and equitable methods for evaluating clients’
contributions in VFL. We propose a contribution valuation metric called the vertical federated Shap-
ley value (VerFedSV), where the clients’ contributions are computed at multiple time stamps during
the training process. We resolve the model concatenation problem by carefully utilizing clients’ em-
beddings at different time stamps. We demonstrate that our design retains many desirable fairness
properties and can be efficiently implemented without model retraining.

VFL algorithms can be divided into two categories: synchronous methods (Gong et al., 2016; Zhang
et al., 2018; Liu et al., 2019), where periodic synchronizations among clients are required, and asyn-
chronous ones (Hu et al., 2019; Gu et al., 2020; Chen et al., 2020), where clients are allowed to
conduct local computation asynchronously. We show that VerFedSV applies to both synchronous
and asynchronous VFL settings. Under the synchronous setting, we show that VerFedSV can be
computed by leveraging some matrix-completion techniques. Although there are many similarities
between synchronous and asynchronous VFL, contribution valuation in an asynchronous VFL set-
ting is more complicated because the contribution of a client depends on not only the relevance of
the client’s data to the training task but also the client’s local computational resource. We show that
the design of VerFedSV can reflect the strength of clients’ local computational resources under the
asynchronous setting. To the best of our knowledge, we are the first to consider contributions w.r.t
local computational resources.

Our contributions can be summarized as follows.

• We propose vertical federated Shapley value (VerFedSV) for VFL (Equation 1 and Definition 2),
and show that VerFedSV satisfies many desirable properties of fairness (Theorem 1).

• Under the synchronous VFL setting, we show that VerFedSV can be computed by solving low-
rank matrix completion problems for embedding matrices, which are proven to be approximately
low-rank (Proposition 1). We also give an approximation guarantee of VerFedSV given the toler-
ance for matrix completion (Proposition 2).

• Under the asynchronous VFL setting, we show that VerFedSV can be directly computed and can
reflect the strength of clients’ local computational resources (Proposition 3).

• VerFedSV does not incur extra communication cost. Meanwhile, its computational cost can be
further reduced by applying the Monte-Carlo sampling methods (Section D.1).

2 RELATED WORK

The Shapley value (Shapley, 1952) has broad applications (Gul, 1989). Dubey (1975) showed that
Shapley value is the unique measure that satisfies the four fundamental requirements of fairness
proposed by Shapley (1952). With a rich history and broad applications, it has been extended to
contribution valuation in machine learning (ML) contexts (Ghorbani & Zou, 2019; Jia et al., 2019;
Kwon et al., 2021; Sim et al., 2022). For example, Beta Shapley (Kwon & Zou, 2022) is a data valu-
ation method tailored for ML applications, where the efficiency axiom can be relaxed and marginal
contribution is affected by noisy data. Banzhaf value (Wang & Jia, 2023) is another data valua-
tion method that, similarly, relaxes the efficiency axiom. It innovatively introduces the concept of a
safety margin and addresses the randomness introduced by stochastic gradient descent. As privacy
is an important aspect in ML, Wang et al. (2023) identify privacy leaks through the KNN-Shapley
value score and propose DP-TKNN-Shapley, which offers a superior privacy-utility tradeoff. In the
following, our discussion focuses on its application in FL.
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The concept of the Shapley value was introduced into HFL to evaluate the contribution of feder-
ated participants (Song et al., 2019). The straight-forward computation of the Shapley value needs
retraining the model an exponential number of times. To address this challenge, various methods
have been proposed. Song et al. (2019) presented two gradient-based techniques to approximate the
Shapley value. Wang et al. (2020) introduced the federated Shapley value, which can be determined
from local model updates in each training iteration. The federated Shapley value does not need
model retraining and preserves some but not all of the favorable qualities of the traditional Shap-
ley value. Fan et al. (2022) enhanced the fairness of this method by considering all data owners,
including those not selected in certain training iterations. This is achieved by leveraging low-rank
matrix factorization techniques. Liu et al. (2022) proposed the Guided Truncation Gradient Shapley
(GTG-Shapley) approach, which reconstructs FL models using gradient updates for Shapley value
calculations, rather than retraining with varying combinations of FL participants, thereby enhancing
both computational efficiency and approximation accuracy. Cosine Gradient Shapley Value (CGSV)
(Xu et al., 2021) also avoids the need for model retraining and validation processes by exploiting
information available during training, that is, the alignment between the model updates uploaded by
an individual agent and the aggregated model derived from all participating agents. Meanwhile, Xu
et al. (2021) propose an incentive mechanism that rewards agents with higher contributions through
a higher-quality model. However, this realization of incentives may lead to non-convergent behavior
in the model. To address this, Lin et al. (2023) further explore the trade-off between asymptotic
performance and fairness. Our method shares a similar idea in the sense of leveraging training-time
information, but the difference is that we cater to synchronous and asynchronous VFL scenarios.
Beyond the computational challenge, Yang et al. (2022) find that the Shapley value only considers
the marginal contribution on model performance and propose to enhance the Shapley value with
other influencing factors, such as data quality, level of cooperation, and risk factor, to assess con-
tributions. Apart from its use in contribution valuation, the Shapley value has inspired an adaptive
weighting mechanism (Sun et al., 2023) to enhance the robustness of FL.

Wang et al. (2019) and more recently Han et al. (2021) extended the notion of data Shapley value
to VFL. As discussed before, the need for retraining the model for different subsets of clients is
a bottleneck of Shapley value computation in federated learning. Wang et al. (2019); Han et al.
(2021) solved this problem by introducing model-independent utility functions, where the contribu-
tion of a client does not depend on the performance of the final model, and thus does not require
retraining of the model. In particular, Wang et al. (2019) suggested using the situational importance
(SI) (Achen, 1982), which computes the difference between the embeddings with true features and
expected features. However, computing SI requires knowing the expectation of each feature and can
be impractical under VFL. Han et al. (2021) suggested to use the conditional mutual information
(CMI) (Brown et al., 2012), which computes the tightness between the label and features. However,
computing CMI requires every client to access the labels, which may also be impractical under VFL
and leak privacy. Besides the above shortcomings, the model-independent utility function itself may
cause some fairness issues when the VFL is conducted asynchronously. Specifically, under the asyn-
chronous setting, the contribution of a client not only is related to the quality of the local dataset but
also depends on the power of local computational resources. Model-independent utility functions
cannot fully reflect a client’s contribution in this scenario. (See Proposition 3 and Section 7.2 for
details.) In this work, we instead use a model-dependent utility function and resolve the require-
ment of retraining the model by periodically evaluating the contribution metric during the training
process.

3 VERTICAL FEDERATED LEARNING

In this section, we review the standard VFL framework. In this framework, M clients and one server
collaborate to train a machine learning model on N data samples {(xi ∈ Rd, yi ∈ {±1})}Ni=1, where
xi is the i-th feature vector and yi is its associated label. We assume that the index i is globally shared
between the server and the M clients. This assumption is reasonable, as data alignment methods in
VFL protocols (Cheng et al., 2019) are routinely employed to ensure synchronization across clients.
This method ensures that only samples shared by all clients are retained for VFL, each identified by
a unique sample ID. For simplicity, we posit that these sample IDs are the same as the global sample
indices [N ] = {1, · · · , N}. Here, the notation [·] means the set of consecutive integers.

Under the VFL framework, every feature vector xi is distributed across M clients. Represent the
portion of the feature vector held by client m as x

(m)
i ∈ Rd(m)

, where d(m) specifies the feature
dimension associated with client m. In other words, if we collect the feature vectors from all clients
and concatenate them, the xi will be reconstructed, i.e., xi = [x1

i , . . . , x
M
i ] and d =

∑M
m=1 d

(m).
Here, [·, . . . , ·] is the concatenation operation.
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The local data set for client m is D(m) =
{
x
(m)
i : i ∈ [N ]

}
. The server maintains all the

labels Ds = {yi : i ∈ [N ]}. The collaborative training problem can be formulated as
minθ1,...,θM

1
N

∑N
i=1 ℓ (θ1, . . . , θM ; {xi, yi}) , where θm ∈ Rd(m)

denotes the training param-
eters of the m-th client and ℓ(·) denotes the loss function. For a wide range of models, such
as linear and logistic regression, and support vector machines, the loss function has the form
ℓ (θ1, . . . , θM ; {xi, yi}) := f (hi; yi), where hi =

∑M
m=1 h

(m)
i , h

(m)
i =

〈
θm, x

(m)
i

〉
, and f(·; y)

is a differentiable function for any y. For each client m, the term h
(m)
i can be viewed as the client’s

embedding of the local data point x(m)
i and the local model θm. To preserve privacy, clients are not

allowed to share their local data set D(m) or local model θ(m) with other clients or with the server.
Instead, clients can share only their local embeddings

{
h
(m)
i : i ∈ [N ]

}
to the server for training.

For simplicity, here we consider a binary classification problem. All of our theoretical results can
be easily extended to a multi-class classification problem with l > 2 classes, where θm ∈ Rd(m)×l

and h
(m)
i = θ⊺mx

(m)
i ∈ Rl. Moreover, in practice, our method also works for more general local

embedding functions, i.e., h(m)
i = g

(
θm;x

(m)
i

)
, where g can be a neural network with weights θm.

We empirically verify this in Section 7.

Asynchronous VFL is favorable when the strength of computational resources varies greatly across
clients. This strength concerns two aspects: 1). The batch size of embeddings that a client can
process influenced by its hardware (e.g., CPU/GPU) capability. 2). The upload speed influenced
by its transmission power. It is reasonable to assume that (Dinh et al., 2020) download times are
negligible compared to upload times, given that downlinks tend to have higher bandwidths, and the
server’s transmission power far exceeds that of the client.

Formally, we define the strength of clients’ local computational resources that reflect the above-
mentioned two factors as follows.

Definition 1. Let ∆t > 0 be the unit time for one iteration including the time for communication.
The strength of client m’s local computational resource is represented by a positive integer τm ∈
[1, N ], such that client m can compute and upload at most τm local embeddings during each time
interval ∆t.

4 VERTICAL FEDERATED SHAPLEY VALUE

In the following, we briefly introduce why Shapley value is a fair valuation metric. The Shap-
ley value is built upon a black-box utility function. Under the FL setting, this utility function
outputs the performance of the collaboratively trained model. Since each evaluation of utility in-
volves retraining a model, we denote this utility function as U retrain : 2[M ] → R. It provides a
utility score for the model trained by any client subset S ⊆ [M ]. Given utility function U retrain,
the Shapley value is said to be fair because it satisfies four fundamental requirements: Symme-
try, zero element, additivity, and balance (See Section B.1 for details). It has been shown that the
only valuation metric satisfying four requirements is the Shapley value (Dubey, 1975; Ghorbani
& Zou, 2019). Formally, the Shapley value assigned to client m, denoted by sm, is computed by
sm = 1

M

∑
S⊆[M ]\{m}

1

(M−1
|S| )

[
U retrain(S ∪ {m})− U retrain(S)

]
.

However, computing sm is impractical in the FL context because the evaluation of the utility func-
tion U retrain requires extensive model retraining (Ghorbani & Zou, 2019; Wang et al., 2020). To it
computationally practical in FL context, as discussed before, Wang et al. (2020) recently proposed
the federated Shapley value (FedSV) for HFL, which computes the Shapley values for clients peri-
odically during the training and then reports the summation over all the periods as the final results.
We extend this idea to the VFL context and define a new utility function. Suppose we pre-determine
T time stamps for contribution valuation. Denote by [T ] = {1, . . . , T} the set of all time stamps. At
each time t ∈ [T ], we define the utility function Ut : 2

[M ] → R such that for any subset of clients
S ⊆ [M ], the utility Ut(S) denotes the decrease in loss made by the clients in S during the time
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period [t− 1, t], i.e.,

Ut(S) =
1

N

N∑
i=1

f

(
M∑

m=1

(
h
(m)
i

)(t−1)

; yi

)
− 1

N

N∑
i=1

f

(∑
m∈S

(
h
(m)
i

)(t)
+
∑
m/∈S

(
h
(m)
i

)(t−1)

; yi

)
,

(1)

where
(
h
(m)
i

)(t)
is the local embedding of data point x(m)

i by client m at time t. The idea behind
this definition is that if client m participates in the training during the period [t − 1, t], then we use

the client’s latest embedding
(
h
(m)
i

)(t)
for evaluation; otherwise, we use the previous embedding(

h
(m)
i

)(t−1)

. Then, we formally define the vertical federated Shapley value (VerFedSV).

Definition 2. Given T predetermined contribution valuation time stamps, the VerFedSV for any
client m ∈ [M ] is sm = 1

MT

∑T
t=1

∑
S⊆[M ]\{m}

1

(M−1
|S| )

[Ut(S ∪ {m})− Ut(S)].

Note that computing VerFedSV does not require retraining the model due to Equation 1. Next,
theorem 1 justifies the fairness of VerFedSV. Please refer to Section B.1 for proof.

Theorem 1 (Fairness Guarantee). Define U : 2[M ] → R as the averaged utility function spanning
the entire training process, formulated as U(S) = 1

T

∑T
t=1 Ut(S). The VerFedSV (Definition 2)

satisfies four requirements on fairness (See Section B.1 for details).

5 COMPUTATION OF VERFEDSV UNDER SYNCHRONOUS SETTING

Almost all the synchronous VFL algorithms (Gong et al., 2016; Zhang et al., 2018; Liu et al., 2019)
share the same framework: in each iteration, every client uploads local embeddings for the same
batch of data points to the server, downloads gradient information from the server, and then con-
ducts local updates. The main difference among those algorithms is the scheme of local updates.
For clarity, we consider the vanilla stochastic gradient descent algorithm for VFL, i.e., FedSGD (Liu
et al., 2019). It is worth mentioning that VerFedSV computation solely relies on the clients’ embed-
dings and is independent of the local update rule of the underlying VFL algorithm. Consequently,
VerFedSV can be easily extended to other synchronous VFL algorithms.

Refer to Section A.1 for details on one training iteration in FeDSGD. Here, we describe how batch
size is determined. The time interval between training iterations is first negotiated and determined.
Then, Definition 1 gives the maximum number of local embeddings τm that can be processed by
client m within a single iteration. The server collects information from clients and calculates τ :=
min{τm | m ∈ [M ]}. The batch size is set to be no larger than τ . In the following, we denote the

mini-batch of t-th iteration as B(t), and the embedding of i-th sample for m-th clients as
(
h
(m)
i

)(t)
.

Now we show how to compute VerFedSV with the FedSGD algorithm. Under the synchronous
setting, we set the time stamps for contribution valuation to be the ends of training iterations. The
key challenge in computing VerFedSV is that, in each iteration, we only have access to the lo-

cal embeddings for the current mini-batch B(t), i.e., H(t) =

{(
h
(m)
i

)(t)
: m ∈ [M ], i ∈ B(t)

}
.

However, computing VerFedSV (Definition 2) requires all the local embeddings in each iteration,

i.e., Ĥ(t) =

{(
h
(m)
i

)(t)
: m ∈ [M ], i ∈ [N ]

}
. Therefore, we want to obtain reasonable approxi-

mations for the missing local embeddings.

Embedding matrix For each client m, we define the embedding matrixH(m) ∈ RT×N where each

element (t, i) is defined asH(m)
t,i =

(
h
(m)
i

)(t)
. Due to the mini-batch setting, we can only make par-

tial observations {H(m)
t,i : t ∈ [T ], i ∈ B(t)}. We notice that the embedding matrices can be decom-

posed asH(m) = ΘmXm where Θm =
[
θ
(1)
m · · · θ

(T )
m

]⊺
and Xm =

[
x
(m)
1 . . . x

(m)
N

]
. Note

that when d(m) < min{T,N}, the embedding matrix H(m) is low-rank because rank(H(m)) ≤
min{rank(Θm), rank(Xm)} ≤ d(m). When d(m) ≥ min{T,N}, we observe that the model matrix
Θm is approximately low-rank due to the similarity of local models between successive training
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iterations. The data matrix Xm can also be approximately low-rank due to the similarity between
local data points. Our following proposition theoretically formalizes this observation. Before stat-
ing the result, we first give a formal definition of approximately low-rankness, proposed by Udell &
Townsend (2019).
Definition 3 (ϵ-rank, (Udell & Townsend, 2019, Def. 2.1)). Let X ∈ Rm×n be a matrix and ϵ > 0 a
tolerance. The ϵ-rank of X is defined as rankϵ(X) := min{rank(Z) : Z ∈ Rm×n, ∥Z −X∥max≤
ϵ}, where ∥·∥max is the absolute maximum matrix entry. Consequently, k = rankϵ(X) signifies the
minimal integer such that X can be approximated by a rank-k matrix within an ϵ-tolerance.

The following proposition characterizes the approximate rank of the embedding matricesH(m).
Proposition 1 (ϵ-rank of the embedding matrix). Assume that the function f(·; y) is L-smooth for
any label y, the local data sets are normalized, i.e., ∥x(m)

i ∥= 1 for all m ∈ [M ] and i ∈ [N ], and
the learning rate is defined as η(t) := 1/t. Then for any ϵ > 0 and any m ∈ [M ], rankϵ(H(m)) ≤
min

{
d(m),

⌈
L log(T )

ϵ

⌉
, N

(
D(m), ϵ

γ(m)

)}
, where N (·, ·) is the covering number, and T is the

number of total iterations.

Low-rank matrix completion Proposition 1 shows that the embedding matrix is approximately
low-rank. For any client m ∈ [M ], we formulate the following factorization-based low-rank matrix
completion problem to complete the embedding matrixH(m):

minimize
W (m)∈RT×r

H(m)∈RN×r

T∑
t=1

∑
i∈B(t)

(
H(m)

t,i −
(
w

(m)
t

)⊺
h
(m)
i

)2
+ λ(∥W (m)∥2F+∥H(m)∥2F ), (2)

where r is a user-specified rank parameter, λ is a positive regularization parameter, ∥·∥F is the
Frobenius norm, and w

(m)
t and h

(m)
i , respectively, are the t-th and the i-th row vectors of the matrices

W (m) and H(m). The rank parameter r can be determined via Proposition 1.

The low-rank matrix completion model (Equation 2) was first used in completing the information
for recommender systems (Koren et al., 2009). Its effectiveness has been extensively studied both
theoretically and empirically (Keshavan, 2012; Sun & Luo, 2016). We can therefore adopt well-
established matrix-completion methods (Yu et al., 2014; Chin et al., 2016) for solving the problem
in Equation 2.

Note that the matrix completion problem (Equation 2) can be done on the client side in parallel, i.e.,
clients will independently complete their embedding matrices. It is known that if we solve the matrix
completion problem in Equation 2 using the proximal gradient method, then the computational
complexity for each iteration is Ω(r(T + N + τTN)) (Udell et al., 2016). Here, the number of
steps τ required by the proximal gradient method is typically considered to be a small constant.
We numerically show the time required for solving the matrix completion problem in Equation 2 in
Section D.1.

Approximation guarantee The following proposition shows that if we can obtain a factorization
with a small error, i.e., H(m) ≈ W (m)(H(m))⊺ via solving Equation 2, then we can also guarantee
a good approximation to the true VerFedSV.
Proposition 2 (Approximation guarantee). Define the factorization error as ϵ :=
1
M

∑M
m=1∥H(m) − W (m)(H(m))⊺∥max. For any client m ∈ [M ], let ŝm denote the VerFedSV

computed with {W (m), H(m) : m ∈ [M ]}, i.e., ŝm = 1
MT

∑T
t=1

∑
S⊆[M ]\{m}

1

(M−1
|S| )

[Ût(S ∪

{m})− Ût(S)], where

Ût(S) =
1

N

N∑
i=1

f

(
M∑

m=1

(w
(m)
t−1)

⊺h
(m)
i ; yi

)
− 1

N

N∑
i=1

f

(∑
m∈S

(w
(m)
t )⊺h

(m)
i +

∑
m/∈S

(w
(m)
t−1)

⊺h
(m)
i ; yi

)
.

If the function f(·; y) is G-Lipschitz for any label y, then |ŝm − sm|≤ 2Gϵ for all client m ∈ [M ].

6 COMPUTATION OF VERFEDSV UNDER ASYNCHRONOUS SETTING

Algorithms using synchronous computation are inefficient when applied to real-world VFL tasks,
especially when clients’ computational resources are unbalanced. In this section, we show how to
equip VerFedSV with asynchronous VFL algorithms as follows.
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(a) Adult dataset. (b) Web dataset. (c) Covtype dataset. (d) RCV1 dataset.

Figure 1: Approximated ϵ-rank of embedding matrices.

We briefly introduce the vertical asynchronous federated learning (VAFL) algorithm (Chen et al.,
2020). This algorithm allows each client to run stochastic gradient algorithms without coordination
with other clients. The server maintains the latest embeddings for each sample. At any time, the
clients can update an embedding or query gradient from the server. Please refer to Section A.2 for
the detailed training process of the VAFL algorithm.

Next, we show how to compute VerFedSV with the VAFL algorithm. Under the asynchronous
setting, there is no definition of training iterations from the perspective of the server. According to
Definition 2, we can pre-determine T time stamps for contribution valuation. At any contribution
valuation time t ∈ [T ], the server keeps the set of embeddings H(t−1) from t − 1 and H(t) from t.

Here, H(t) = {
(
h
(m)
i

)(t)
| m ∈ [M ], i ∈ [N ]}. At t = 0, we initialize the server’s embeddings

with all zero, i.e.,
(
h
(m)
i

)(0)
= 0, ∀m ∈ [M ], ∀i ∈ [N ]. With these embeddings, VerFedSV is

computed according to Equation 1 and Definition 2.

A careful reader may ask why there is no need to use matrix completion under the asynchronous set-
ting. A short answer is that, under this setting, the contribution of a client is related to both the quality
of the local dataset and the power of local computational resources, which is reflected by the parame-
ter τm (Definition 1). More precisely, at any contribution valuation time point t ∈ [T ], for any client
m ∈ [M ], there exists B ⊂ [N ] such that only the embeddings corresponding to B are updated,

i.e.,
(
h
(m)
i

)(t)
̸=
(
h
(m)
i

)(t−1)

,∀i ∈ B, and
(
h
(m)
i

)(t)
=
(
h
(m)
i

)(t−1)

,∀i /∈ B, where the size of
B is proportional to τm. Then according to Equation 1, for any S ⊂ [M ] \ {m}, we have Ut(S ∪

m)−Ut(S) =
1
N

∑
i∈B

[
f

((
h
(m)
i

)(t−1)

+ (h
(−m)
i )(t); yi

)
−f

((
h
(m)
i

)(t)
+ (h

(−m)
i )(t); yi

)]
,

where (h
(−m)
i )(t) :=

∑
k∈S(h

k
i )

(t) +
∑

k/∈S∪{m}(h
k
i )

(t−1).

Therefore, we can see that the contribution of client m is proportional to τm, which is indeed an
important feature of asynchronous VFL algorithms. Thus, if we conduct the embedding matrix
completion under the synchronous setting, then we will lose this important feature, which is unfair
to the clients with more powerful local computational resources.

The above discussion also suggests that VerFedSV can motivate clients to communicate more with
the server in the asynchronous setting, i.e., dedicating more of their local computational resources.
The following proposition demonstrates that two clients with the same local datasets but different
communication frequencies receive different valuations. More specifically, the one who communi-
cates more with the server receives a higher valuation.

Proposition 3 (More work leads to more rewards). Consider a simple case: we have clients 1 and
2 with identical local datasets where x1

i = x2
i = xi for all i ∈ [N ]. However, their communication

frequencies differ: while client 1 consistently sends local embeddings to the server, client 2 only
does so with a probability of ρ ∈ [0, 1] each time client 1 communicates.

Suppose that the loss function g(θ) = 1
N

∑N
i=1 f(⟨θ, xi⟩, yi) is µ-strongly convex for some µ > 0

and θ∗ is the global minimum point, θ1 and θ2 are initialized at 0, and we stop training when we
reach the optimum point. Then it follows that E[θ∗1 ] = 1

1+ρθ
∗ and E[θ∗2 ] =

ρ
1+ρθ

∗.

Furthermore, if we only do one time of contribution valuation when the training ends, E[s1] ≥
E[s2] + µ

(
1−ρ
1+ρ

)2
∥θ∗∥2, where s1 and s2 are the VerFedSV for clients 1 and 2, respectively.
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(a) Adult dataset. (b) Web dataset. (c) Covtype dataset. (d) RCV1 dataset.

Figure 2: Relative VerFedSV difference v.s. feature heterogeneity.

7 EXPERIMENTS

We conduct extensive experiments on real-world datasets, including Adult (Zeng et al., 2008),
Web (Platt, 1998), Covtype (Blackard & Dean, 1999), and RCV1 (Lewis et al., 2004). The detailed
setup is elaborated in Section C. Our code is submitted in the supplementary material.

7.1 SYNCHRONOUS VERTICAL FEDERATED LEARNING

In this section, we first empirically verify that the embedding matrices are indeed approximately
low-rank (Proposition 1). Next, we demonstrate that VerFedSV satisfies the fairness property under
synchronous setting (Theorem 1). More precisely, we verify that clients with similar features should
get similar valuations and clients with randomly generated features should get low valuations.

Rank of the embedding matrix It is required to access the full embedding matrix in order to verify
its low-rankness. Thus, we set the batch size equal to the number of data points for all clients.
Considering the experiment doesn’t focus on scalability w.r.t the total numbers of clients M , we
set M to a moderate value. For the Adult, Web, Covtype and RCV1 datasets, respectively, M =
3, 15, 9, 14. Since computing the ϵ-rank (Definition 3) is NP-hard (Udell & Townsend, 2019), we
instead compute the rank of its truncated singular value decomposition as an approximation. More
precisely, given an embedding matrix H(m) ∈ RT×N for client m, let σ1 ≥ σ2 ≥ . . . ≥ σp be its
ordered singular values, where p = min{T,N}. Then given ϵ ∈ (0, 1), we define its approximated
ϵ-rank as r̂ankϵ(H(m)) = max{r ∈ [1, p] | σr ≥ ϵ · σ1}.
There will be M rank values for M clients’ embedding matrices. The histogram of these approxi-
mated ϵ-rank values is shown in Figure 1, where ϵ = 10−3, the x-axis represents the approximated
ϵ-rank and the y-axis represents the number of clients with associating x-axis value of approximated
ϵ-rank. The plot shows that the embedding matrices are low-rank on all the datasets.

VerFedSV for similar features Besides the original clients, for each data set, we add 5 more clients
whose features are identical to client 1 but with different levels of perturbations. More precisely, for
new client i ∈ {1, . . . , 5}, we add white Gaussian noise to (i− 1)10% percent of the local features,
which we denote as the feature heterogeneity. Then we measure the relative difference between the
original client 1 and the new clients, i.e., for any new client i ∈ {1, . . . , 5}, let diffi := |s−si|

s ,
where s is the VerFedSV for the original client 1 and si is the VerFedSV for the new client i. We
show a plot of relative VerFedSV difference v.s. feature heterogeneity in Figure 2, where the num-
bers of clients for the Adult, Web, Covtype and RCV1 datasets are, respectively, M = 8, 20, 14, 19.
We can see that the relative VerFedSV difference is proportional to the feature heterogeneity. Be-
sides, when the feature heterogeneity is equal to 0, i.e., two clients have identical features, the
relative VerFedSV difference is exactly 0 for Adult dataset, and is nearly 0 for the Web, Covtype and
RCV1 datasets, where the inexactness is due to the Monte-Carlo sampling.

VerFedSV for random features Besides the original clients, for each data set, we add 5 more
clients whose features are randomly generated according to different distributions. Specifically, for
the new client i ∈ {1, . . . , 5}, the features are generated from Gaussian distribution with a mean
equal to i and variance equal to i2. Table 1 shows the percentage of each client’s VerFedSVs relative
to the sum of all VerFedSVs, where the numbers of clients for the Adult, Web, Covtype and RCV1
datasets are, respectively, M = 8, 20, 14, 19. As shown in table, regardless of the distributions,
clients with randomly generated features receive much lower valuations than the regular clients for
all the datasets.
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Table 1: Percentage of clients’ VerFedSVs in the total sum of VerFedSVs.

Synchronous setting Asynchronous setting
Adult Web Covtype RCV1 Adult Web Covtype RCV1

all regular clients 99.88 99.73 97.77 93.84 97.91 98.39 98.57 91.90
artificial client 1 0.01 0.02 0.39 1.86 0.93 0.26 0.35 1.66
artificial client 2 0.05 0.06 0.57 0.43 0.06 0.31 0.21 1.75
artificial client 3 0.03 0.06 0.91 2.37 0.33 0.36 0.22 1.64
artificial client 4 0.01 0.07 0.36 0.31 0.43 0.40 0.25 1.50
artificial client 5 0.02 0.06 0.01 1.18 0.35 0.28 0.39 1.54

(a) Adult dataset. (b) Web dataset. (c) Covtype dataset. (d) RCV1 dataset.

Figure 3: VerFedSVs for clients with different communication frequencies.

7.2 ASYNCHRONOUS VERTICAL FEDERATED LEARNING

In this section, we show that VerFedSV not only satisfies the fairness property under asynchronous
setting (Theorem 1), but can also reflect how frequently clients report (Proposition 3). Specifically,
during the training, we let clients communicate with the server at different frequencies. For all the
datasets, we asynchronously train the model for 20 seconds and do the valuation every 0.04 second,
i.e., there are T = 500 contribution valuation time points (Definition 2).

Impact of communication frequency Besides the original clients, for each data set, we add 5
more clients whose features are identical to client 1 but with different levels of communication
frequencies. More precisely, the new client i ∈ {1, . . . , 5} communicates with the server every
0.01i second, i.e., the new client 1 has the highest communication frequency, and the new client 5
has the lowest. We show a plot in Figure 3 of the percentage of the new clients’ VerFedSVs in the
total sum of VerFedSVs, where the numbers of clients for the Adult, Web, Covtype and RCV1 datasets
are, respectively, M = 8, 20, 14, 19. We can see that the percentage of VerFedSV is proportional to
the communication frequency.

VerFedSV for random features Besides the regular clients, for each data set, we add 5 more clients
whose features are randomly generated according to standard Gaussian distribution. They have
communication frequencies such that the new client i ∈ {1, . . . , 5} communicates with the server
every 0.01i seconds. We show in Table 1 the percentage of the clients’ VerFedSVs in the total
sum of VerFedSVs, where the numbers of clients for the Adult, Web, Covtype and RCV1 datasets
are, respectively, M = 8, 20, 14, 19. Regardless of the communication frequencies, the clients
with randomly generated features receive much lower valuations than the regular clients for all the
datasets.

8 CONCLUSION AND INSIGHTS

In this paper, we propose a contribution valuation metric, i.e., vertical federated Shapley value
(VerFedSV). We demonstrate theoretically and empirically that VerFedSV satisfies desirable prop-
erties for fairness and is adaptable to both synchronous and asynchronous VFL settings. There are a
few interesting future directions. We notice that when we keep adding clients with identical features,
the total of the VerFedSV increases. This suggests that some clients may “cheat” by constructing
new clients with identical features to receive unjustifiable rewards in the end. One potential solution
is to implement secure statistical testing before FL training and exclude clients with extremely sim-
ilar datasets. It is also interesting to explore whether VerFedSV can be integrated into differentially
private VFL algorithms.
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A DETAILS ON ADOPTED FEDERATED LEARNING ALGORITHM

A.1 SYNCHRONOUS SETTING

We adopt the FedSGD algorithm (Liu et al., 2019) for synchronous federated learning. In the fol-
lowing, we show the sketch of one training iteration of the FedSGD. In each iteration t, the FedSGD
algorithm executes the following steps:

1. The server selects a mini-batch B(t) ⊂ [N ] containing the global indices of samples;

2. Each client m ∈ [M ] computes local embeddings {
(
h
(m)
i

)(t)
= ⟨x(m)

i , θ
(t)
m ⟩ | i ∈ B(t)}, where

θ
(t)
m is the client’s current model and sends them to the server;

3. The server computes gradient information
{
g
(t)
i :=

∂f(h
(t)
i ;yi)

∂h
(t)
i

∣∣∣∣ i ∈ B(t), h
(t)
i =

∑M
m=1

(
h
(m)
i

)(t)}
and sends it to every client m ∈ [M ];

4. Each client m ∈ [M ] updates the local model via θ(t+1)
m ← θ

(t)
m − η(t)

|B(t)|
∑

i∈B(t) g
(t)
i x

(m)
i , where

η(t) is the learning rate at the t-th iteration.

A.2 ASYNCHRONOUS SETTING

We follow the vertical asynchronous federated learning (VAFL) algorithm proposed by Chen et al.
(2020), where the algorithm allows each client to run stochastic gradient algorithms without coordi-
nation with other clients. We sketch the training process of the VAFL algorithm.

• The server maintains the latest embeddings {h(m)
i | i ∈ [N ],m ∈ [M ]} and waits for a message

from an active client m. The message contains either an embedding update or a gradient query.
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1. Update: Client m sends the embeddings {ĥ(m)
i | i ∈ Bm} to the server. The server then

updates its latest embeddings by h
(m)
i = ĥ

(m)
i for all i ∈ Bm.

2. Query: Client m requests the partial gradient with respect to batch Bm. The server then sends
back to the client m the partial gradient as{

gi :=
∂f(hi; yi)

∂hi

∣∣∣∣ i ∈ Bm, hi =

M∑
m=1

h
(m)
i

}
. (3)

• A client m keeps executing the following steps:
1. Randomly select a batch Bm ⊂ [N ] s.t. |Bm|= τm (Definition 1) and compute local embed-

dings {ĥ(m)
i := ⟨θ(m), x

(m)
i ⟩ | i ∈ Bm}.

2. Upload embeddings {ĥ(m)
i | i ∈ Bm} to the server.

3. Query gradient from the server and update the local model as θm ← θm− ηm

|Bm|
∑

i∈Bm
gix

(m)
i ,

where ηm is the local learning rate and gi is defined in Equation 3.

B PROOFS OF THEORETICAL RESULTS

We first introduce some notions being used. The following special classes of functions (Nagaraj
et al., 2019) are considered.
Definition 4. Consider a differentiable function f : Rn → R and any points x, y ∈ Rn. We have
the following definitions.

• f is convex if f satisfies
f(y) ≥ f(x) + ⟨∇f(x), y − x⟩;

• f is µ-strongly convex for some µ > 0 if f satisfies

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥x− y∥22;

• f is G-Lipschitz for some G > 0 if f satisfies

|f(x)− f(y)|≤ G∥x− y∥2;
• f is L-smooth for some L > 0 if f satisfies

∥∇f(x)−∇f(y)∥2≤ L∥x− y∥2.

Meanwhile, we uses the notions of ϵ-net and covering number (Udell & Townsend, 2019), which
are widely used tools in high-dimensional probability.
Definition 5. Let K be a compact subset of Rn. A subset N⊆ K is called an ϵ-net for K if, for
every x ∈ K, there exists y ∈ N such that ∥x− y∥2≤ ϵ.

The minimum cardinality of an ϵ-net for K is called the covering number of K and is represented
by N (K, ϵ).

B.1 PROOF OF THEOREM 1: FAIRNESS GUARANTEE

Formally, given a utility function U , the corresponding Shapley value should satisfy four fundamen-
tal requirements.

• Symmetry. For any two clients i, j ∈ [M ], if for any subset of clients S ⊆ [M ] \ {i, j}, U(S ∪
{i}) = U(S ∪ {j}), then si = sj .

• Zero element. For any client i ∈ [M ], if for any subset of clients S ⊆ [M ] \ {i}, U(S ∪ {i}) =
U(S), then si = 0.

• Additivity. If the utility function U can be decomposed into the sum of separate utility functions,
i.e., U = U1 + U2 for some U1, U2 : 2[M ] → R, then for any client i ∈ [M ], si = s1i + s2i , where
s1 and s2 are the evaluation metrics associated with the utility functions U1 and U2, respectively.

• Balance. U([M ]) =
∑

i∈[M ] si.

It has been showed that the Shapley value, computed by

sm =
1

M

∑
S⊆[M ]\{m}

1(
M−1
|S|
) [U(S ∪ {m})− U(S)] , (4)
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is the only metric that satisfies the above requirements (Dubey, 1975; Ghorbani & Zou, 2019).

To prove Theorem 1, we only need to show that the VerFedSV (Definition 2) matches the ex-
pression of the classical Shapley value, given the utility function specified by Equation 1 and
U(S) = 1

T

∑T
t=1 Ut(S).

Proof. We notice that the VerFedSV can be expressed as
sm

=
1

MT

T∑
t=1

∑
S⊆[M ]\{m}

1(
M−1
|S|
) [Ut(S ∪ {m})− Ut(S)]

=
1

M

∑
S⊆[M ]\{m}

1(
M−1
|S|
) [ 1

T

T∑
t=1

Ut(S ∪ {m})−
1

T

T∑
t=1

Ut(S)

]

=
1

M

∑
S⊆[M ]\{m}

1(
M−1
|S|
) [U(S ∪ {m})− U(S)] ,

which matches the expression of the classical Shapley value. The result then follows.

Another interesting property of VerFedSV is Periodic additivity. Formally, If in each iteration, the
utility function Ut can be expressed as the sum of separate utility functions, i.e., Ut = U1

t + U2
t for

some U1
t , U

2
t : 2[M ] → R, then for any client m ∈ [M ], sm = s1m + s2m, where s1m and s2m denotes

respectively the VerFedSV computed w.r.t the utility functions U1
t and U2

t .

B.2 PROOF OF PROPOSITION 1: BOUNDS OF THE EMBEDDING MATRIX’S ϵ-RANK

Proof. It is evident that rankϵ(H(m)) ≤ rank(H(m)) ≤ d(m) for all m ∈ [M ]. So we only need to
prove the remaining two upper bounds. First, we consider the difference between successive rows
of the embedding matrixH(m). For any t ∈ [T − 1] and i ∈ [N ],

|H(m)
t,i −H

(m)
t+1,i| = |

(
h
(m)
i

)(t)
−
(
h
(m)
i

)(t+1)

|

= |⟨θ(t)m , x
(m)
i ⟩ − ⟨θ(t+1)

m , x
(m)
i ⟩|

= |⟨θ(t)m − θ(t+1)
m , x

(m)
i ⟩|

=

∣∣∣∣∣∣
〈

η(t)

|B(t)|
∑

j∈B(t)

g
(t)
j x

(m)
j , x

(m)
i

〉∣∣∣∣∣∣
≤ η(t)L.

Thus, we obtain an upper bound on rankϵ(H(m)) by

rankϵ(H(m)) ≤

⌈
1

ϵ

T−1∑
t=1

∥H(m)[t, :]−H(m)[t+ 1, :]∥max

⌉

≤

⌈
L

ϵ

T−1∑
t=1

η(t)

⌉

≤
⌈
L log(T )

ϵ

⌉
.

Next, we consider the difference between any two columns of the embedding matrixH(m). For any
t ∈ [T ] and i, j ∈ [N ], we have

|H(m)
t,i −H

(m)
t,j | = |

(
h
(m)
i

)(t)
− (h

(m)
j )(t)|

= |⟨θ(t)m , x
(m)
i ⟩ − ⟨θ(t)m , x

(m)
j ⟩|

≤ ∥θ(t)m ∥·∥x
(m)
i − x

(m)
j ∥.
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It follows that
∥H(m)[:, i]−H(m)

t,j ∥max ≤ max
t∈[T ]
∥θ(t)m ∥·∥x

(m)
i − x

(m)
j ∥.

Let γ(m) = maxt∈[T ]∥θ
(t)
m ∥ and N be an ϵ

γ(m) -net for {x(m)
i : i ∈ [N ]}. We can thus conclude that

rankϵ(H(m)) ≤ |N |. By definition of the covering number, it follows that

rankϵ(H(m)) ≤ N
(
{x(m)

i : i ∈ [N ]}, ϵ

γ(m)

)
.

B.3 PROOF OF PROPOSITION 2: APPROXIMATION GUARANTEE

Proof. Define U, Û : 2[M ] → R by U(S) := 1
T

∑T
t=1 Ut(S) and Û(S) := 1

T

∑T
t=1 Ût(S). For any

S ⊂ [M ], we know that

|U(S)− Û(S)|

≤ 1

NT

T∑
t=1

N∑
i=1

∣∣∣∣∣f
(

M∑
m=1

H(m)
t−1,i; yi

)
− f

(
M∑

m=1

(w
(m)
t−1)

⊺h
(m)
i ; yi

)∣∣∣∣∣
+

1

NT

T∑
t=1

N∑
i=1

∣∣∣∣f
(∑

m∈S

H(m)
t,i +

∑
m/∈S

H(m)
t−1,i; yi

)

− f

(∑
m∈S

(w
(m)
t )⊺h

(m)
i +

∑
m/∈S

(w
(m)
t−1)

⊺h
(m)
i ; yi

)∣∣∣∣
≤ G

NT

T∑
t=1

N∑
i=1

∣∣∣∣∣
M∑

m=1

H(m)
t−1,i −

M∑
m=1

(w
(m)
t−1)

⊺h
(m)
i

∣∣∣∣∣
+

G

NT

T∑
t=1

N∑
i=1

∣∣∣∣
(∑

m∈S

H(m)
t,i +

∑
m/∈S

H(m)
t−1,i

)

−

(∑
m∈S

(w
(m)
t )⊺h

(m)
i +

∑
m/∈S

(w
(m)
t−1)

⊺h
(m)
i

)∣∣∣∣ ≤ GMϵ.

Then we can obtain a bound on |sm − ŝm| by

|sm − ŝm|

≤ 1

M

∑
S⊆[M ]\{m}

1(
M−1
|S|
) ∣∣∣U(S ∪ {m})− Û(S ∪ {m})

∣∣∣
+
∣∣∣U(S)− Û(S)

∣∣∣
≤ 2Gϵ.

B.4 PROOF OF PROPOSITION 3: MORE WORK LEADS TO MORE REWARDS

Proof. We know that θ∗1 and θ∗2 are the optimal variables for the following convex optimization
problem minθ1,θ2

1
N

∑N
i=1 f(⟨θ1, xi⟩+ ⟨θ2, xi⟩; yi) = g(θ1 + θ2).

Since θ∗ is the unique minimizer for g(θ), it follows that θ∗1 and θ∗2 must satisfy θ∗1 + θ∗2 = θ∗.
Denote d

(t)
1 as the update for θ1 at the t-th iteration and d

(t)
2 as the update for θ2 at the tth iteration.

By the construction, we know that

E

[ ∞∑
t=1

(d
(t)
1 + d

(t)
2 )

]
= θ∗ and E

[ ∞∑
t=1

d
(t)
2

]
= ρE

[ ∞∑
t=1

d
(t)
1

]
.
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Table 2: Metadata of all data sets.

Adult Web Covtype RCV1

number of training data N 48842 119742 581012 15564
number of features d 123 300 54 47236
number of classes l 2 2 7 53

number of clients M 8 20 14 19

Table 3: Hyperparameter setting under synchronous setting.

Adult Web Covtype RCV1

learning rate η 0.2 0.2 0.8 1.0
batch size τ 2837 6173 2000 500

rank parameter r 3 3 5 10
regularization parameter λ 0.1 0.1 0.1 0.1

Therefore, it follows that

E[θ∗1 ] = E

[ ∞∑
t=1

d
(t)
1

]
=

1

1 + ρ
θ∗ and

E[θ∗2 ] = E

[ ∞∑
t=1

d
(t)
2

]
=

ρ

1 + ρ
θ∗.

Now we consider VerFedSV. By definition, we have

E[s1 − s2] = 2

[
g

(
ρ

1 + ρ
θ∗
)
− g

(
1

1 + ρ
θ∗
)]

.

Define h : [0, 1] → R as h(λ) = g(λθ∗). Since g is µ-strongly convex and θ∗ is the unique
minimizer, it follows that h is µ∥θ∗∥2-strongly convex and is monotonically non-increasing on [0, 1].
Thus, by property of strongly convex (Rockafellar, 1997), we conclude that

E[s1] ≥ E[s2] + 2

[
h

(
ρ

1 + ρ

)
− h

(
1

1 + ρ

)]
≥ E[s2] + µ

(
1− ρ

1 + ρ

)2

∥θ∗∥2.

C DETAILS OF EXPERIMENTAL SETUP

Data sets We use four real-world data sets, Adult (Zeng et al., 2008), Web (Platt, 1998), Cov-
type (Blackard & Dean, 1999), and RCV1 (Lewis et al., 2004) 1. On each data set, by default, we
separate the features across the largest number of clients reported in the literature (Achen, 1982;
Wang et al., 2019; Han et al., 2021; Brown et al., 2012). That is, we compare with the baselines
under the most challenging settings. These data sets cover both binary and multiclass classification
problems. We summarize the metadata as well as the number of clients for all the datasets in Table 2.

Models For the Adult, Web, and Covtype data sets, we train multinomial logistic regression mod-
els, and the local embeddings are computed via a linear model. For the RCV1 data set, we still
use the negative log-likelihood loss, but every client locally has a 2-layer perceptron model with 32
hidden neurons and a ReLU activation function for embedding. Under both the synchronous and
asynchronous settings, we can achieve the test accuracy of 85% on the Adult dataset, 94% on the
Web dataset, 72% on the Covtype dataset, and 83% on the RCV1 dataset.

1From the website of LIBSVM (Chang & Lin, 2011) https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/
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Table 4: Hyperparameter setting under asynchronous setting.

Adult Web Covtype RCV1

learning rate η 0.2 0.2 0.8 1.0
batch size τ 2837 6137 2000 500

communication frequency ∆t 0.01 0.01 0.01 0.01

Monte-Carlo sampling In Section D.1, we will describe the adopted sampling method. The
VerFedSV is computed exactly when the number of clients M ≤ 10, and approximately using
sampling when the number of clients M > 10. The number of randomly sampled permutations K
is set as ⌈100M log(M)⌉, where M is the number of clients.

Implementation We implement the VFL algorithms and the corresponding VerFedSV compu-
tation schemes described in Sections 5 and 6 in the Julia language (Bezanson et al., 2017). The
implementations of both synchronous and asynchronous VFL algorithms, as well as the VerFedSV
computation schemes, are attached in the supplementary material. The matrix completion problem
in Equation 2 is solved by the Julia package LowRankModels.jl (Udell et al., 2016). All the
experiments are conducted on a Linux server with 32 CPUs and 64 GB memory.

Hyperparameter setting (synchronous) We summarize the hyperparameters under the syn-
chronous setting in Table 3, where η and τ are the learning rate and the batch size used in the
FedSGD algorithm, and r and λ are the rank parameter and regularization parameter used in the
matrix completion problem 2.

Hyperparameter setting (asynchronous) We summarize the hyperparameters under the asyn-
chronous setting in Table 4, where η and τ are the learning rate and the batch size used in the VAFL
algorithm, and ∆t is the communication frequency for clients.

D ADDITIONAL EXPERIMENTS AND RESULTS

D.1 COMPUTATIONAL EFFICIENCY OF VERFEDSV

We first introduce the method to efficiently estimate the VerFedSV. From Definition 2, we can see
that the computational complexity for VerFedSV is exponential in the number of clients M . The
same situation appears in the computation of the classical Shapley value. How to efficiently estimate
the Shapley value has been studied extensively (Ghorbani & Zou, 2019; Jia et al., 2019). Many
existing methods can be adopted for the computation of VerFedSV. Here we describe the well-
known Monte-Carlo sampling method (Metropolis & Ulam, 1949; Ghorbani & Zou, 2019). We can
rewrite the definition of VerFedSV into an equivalent formulation using expectation,

sm = E
π∼Π([M ])

[
1

T

T∑
t=1

(
Ut(π(m) ∪ {m})− Ut(π(m))

)]
, (5)

where Π([M ]) is the uniform distribution over all M ! permutations of the set of clients [M ] and
π(m) is the set of clients preceding client m in permutation π. With this formulation, we can use
the Monte Carlo method to obtain an approximation of VerFedSV. More precisely, we can randomly
sample K permutations π1, . . . , πK and approximate VerFedSV sm by

ŝm =
1

KT

K∑
k=1

T∑
t=1

[Ut(πk(m) ∪ {m})− Ut(πk(m))]. (6)

By applying Hoeffding’s inequality, it can be shown (Jia et al., 2019) that if K ≥ 2R2M
ϵ log

(
2M
δ

)
for some ϵ > 0 and δ ∈ (0, 1), where

R := max
S⊆[M ]

[
1

T

T∑
t=1

Ut(S)

]
− min

S⊆[M ]

[
1

T

T∑
t=1

Ut(S)

]
,

then we have P(|ŝm − sm|≤ ϵ) ≥ 1− δ.
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Figure 4: The efficiency of matrix completion and VerFedSV estimation. The left, middle, and right
figures show the run time with varying numbers of clients, time-stamps, and data points respectively.

Table 5: Kendall’s rank correlation between the results of SHAP and VerFedSV’s.

Adult Web Covtype RCV1

corr(SHAP,VerFedSVs) 1.0 0.73 0.94 0.65
corr(SHAP,VerFedSVa) 1.0 0.69 0.89 0.63

corr(VerFedSVs,VerFedSVa) 1.0 0.80 0.94 0.80

In summary, the computation for estimated VerFedSV ŝm requires O(TM log(M)) calls of the
utility function Ut for both synchronous and asynchronous federated learning algorithms, and the
computational complexity for evaluating Ut is O(MN). Moreover, according to Equation 6, the
computation for estimated VerFedSVs can be parallelized. We numerically demonstrate this com-
putational complexity bound in the following.

In this experiment, we test the efficiency of computing VerFedSV. As we can see from Section D.1,
the time complexity of estimating VerFedSV is the same for both synchronous and asynchronous
VFL algorithms (they only differ in the training time). So we experiment under the synchronous
VFL setting. We test the impact of the number of clients M , the number of time-stamps T and the
number of training data N on time needed for computing VerFedSV. More precisely, we measure
the time, respectively, for solving the matrix completion problem and for estimating VerFedSVs.
For consistency, the VerFedSV is computed approximately using Monte Carlo regardless of the
number of clients in this experiment. Since the time-varying trends are similar for all datasets, we
only present the results on the Adult dataset. The result is shown in Figure 4. First, we focus on
the time needed for solving the matrix completion problem in Equation 2. As we can see from
Figure 4, the runtime keeps stable as the number of clients M changes and scales approximately
linearly with the number of time-stamps T and the number of training data N , which agrees with
our discussion in Section 5. Next, we focus on the time needed for approximating VerFedSV. As
illustrated in Figure 4, the runtime exhibits an almost quadratic-logarithmic relationship with the
number of clients M , and nearly linear relationships with the number of time-stamps T and the
volume of training data N . This observation aligns with our earlier discussion.

D.2 EFFECTIVENESS OF VERFEDSV

We evaluate the effectiveness of VerFedSV in both the synchronous and asynchronous VFL settings.
In other words, we test whether VerFedSV can reflect the importance of clients’ local features. We
set all clients to have the same communication frequency to eliminate the impact of unbalanced
local computational resources. We choose SHAP (Lundberg & Lee, 2017) as the baseline, which is
a widely used metric for measuring feature importance in machine learning. More specifically, we
first use SHAP to compute the importance scores of all the features, and then for each client, we
ensemble the scores for all the local features. Note that SHAP cannot be directly used in the VFL
task, as it requires access to all the local datasets and models and violates the VFL settings. So here
we just use it as a reference. We use Kendall’s rank correlation (KRC) (Kendall, 1938) to measure
the similarity between the orderings of the scores of SHAP and VerFedSV. As a by-product, we also
show the similarity between the scores of VerFedSV in the synchronous and asynchronous settings.
We show in Table 5 the KRCs between the results of SHAP and VerFedSV, where corr denotes the
KRC, SHAP denotes the results from SHAP, VerFedSVs and VerFedSVa, respectively, denote the
results from VerFedSV in the synchronous and asynchronous settings, and the numbers of clients
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for the Adult, Web, Covtype and RCV1 datasets are, respectively, set to M = 3, 15, 9, 14. Note that
KRC returns a value in [−1, 1], where “1” means two input score lists have the identical ranking
and “−1” means the rankings are exactly reverted. The KRC between SHAP and VerFedSV are
all greater than 0.6. The results indicate that VerFedSV can indeed capture the feature importance
well. Moreover, the KRC between VerFedSVs and VerFedSVa are all greater than 0.8. The results
indicate that VerFedSV is consistent under both synchronous and asynchronous settings.

D.3 ABLATION STUDY ON HYPER-PARAMETERS

Figure 5: Ablation study on hyper-parameters rank r and regularization λ

In this section, we examine the sensitivity of VerFedSV with respect to the hyper-parameters r and
λ used in the matrix completion algorithm, and offer practical guidance for setting these hyper-
parameters.

We first recap notations and motivation of matrix completion. As mentioned in Section 5, the key
challenge in computing VerFedSV is that, in each iteration, for client m, we only have access to a
mini-batch embedding for the current mini-batch B, i.e.,

{
h
(m)
i | i ∈ B

}
. However, computing

VerFedSV requires full embeddings for all training points in each iteration, i.e.,
{
h
(m)
i | i ∈ [N ]

}
,

where N is the number of training points. Therefore, matrix completion is employed to recover the
missing embeddings.

Then, we define a deviation metric for the upcoming experiment. For client i, denote its percentage
of VerFedSV relative to the total VerFedSV from all clients as si. The computation process for
VerFedSVs involves utilizing matrix completion to estimate full embeddings. Meanwhile, we com-
pute a ground-truth Shapley value, wherein full embeddings are computed in each training round.
The percentage of this ground-truth Shapley value for client i relative to the sum is denoted as sgti .
With M representing the number of clients, the deviation metric is defined as 1

M

∑M
m=1

|sm−sgtm |
sgtm

.
This metric necessitates that sgtm be positive to ensure it is meaningful.
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Table 6: The ground-truth percentage of Shapley value relative to the total sum, denoted by sgti

Adult Web Covtype RCV1

Client 1 46.95 57.36 55.41 81.14
Client 2 17.43 23.21 34.54 5.10
Client 3 35.62 19.43 10.55 13.86

For the experiment setup here, the number of clients M is set to 3. Meanwhile, since the clients
equally partition the features of a dataset, each client has some contribution to the FL model. Con-
sequently, we observe that the ground-truth Shapley values sgtm for all clients are positive (See Table
6). The other considerations for setting M = 3 include: 1) This experiment does not focus on
scalability w.r.t the numbers of clients M ; 2) We want to avoid Monte Carlo sampling that could
potentially interfere with the results. VerFedSV is computed exactly when M ≤ 10 by our default
setup. The other setups remain consistent with those detailed in Table 2 and Table 3. For each pair of
hyper-parameters, the ground-truth Shapley value is computed once, while VerFedSV is computed
5 times. In each independent run, each client has the same set of features, but a different random
seed, so the matrix completion algorithm may give different estimations of full embeddings.

The left part of Figure 5 illustrates the deviation w.r.t the rank r. The median deviation of different
runs is depicted by the solid line, while the shaded area represents the interquartile range (25%
to 75% quantiles) of deviations. Take the Adult dataset as an example for analysis. The figure
demonstrates that deviations are large for r < 5, since inadequate rank cannot accurately recover
full embeddings. However, deviation decreases rapidly as r increases and stabilizes at a low value
when r ≥ 5.

The default ranks (See Table 3) in the previous experiments were set based on approximated ϵ-
rank (See Figure 1). However, in practice obtaining full embeddings is resource-intensive due to
communication costs or limited resources on the client side. Thus, approximating ϵ rank may be
difficult. However, the server (with sufficient computational resources), after collecting the mini-
batch embeddings, can test with several increasing values of r. The Shapley value will converge to
the ground-truth value as revealed by our ablation study.

The right part of Figure 5 illustrates the deviation w.r.t the hyper-parameter λ. It demonstrates that
the performance of VerFedSV remains relatively insensitive across a wide range of λ and we can
safely set λ = 0.1 for various datasets.
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