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Abstract
The application of remote sensing in computer vi-
sion struggles with domain shifts among datasets,
where models trained on one satellite dataset may
not generalize well to others due to diverse ge-
ographic and environmental conditions. These
differences hinder the self-supervised represen-
tation learning, hence this paper introduces an
innovative strategy that employs the ImageNet-
pretrained foundation model as a guide to enhance
the semantic feature extraction process. We also
incorporate radar sensor to complement optical
sensor inputs, without additional training. Our
approach significantly improves performances in
segmentation, detection, and classification tasks,
offering a robust and efficient method for self-
supervised learning in remote sensing.

1. Introduction
With recent advancements in deep learning, its application
to various fields including remote sensing has become in-
creasingly prevalent (Mendieta et al., 2023; Muhtar et al.,
2023; Cong et al., 2022; Mañas et al., 2021). However,
various challenges persist in remote sensing that hurdle
the application of computer vision models. Labeling data
remains labor-intensive and demands many resources, espe-
cially with satellite images, making self-supervised learning
increasingly relevant in this field.

Remote sensing datasets often exhibit unique characteristics,
differing in many geographical features (e.g., vegetation
or color of forests due to weather) due to specific urban
planning and design across different locations and time
frames. Due to such differences, a deep learning model
trained with one particular remote sensing dataset degrades
in their performances when finetuned on another dataset,
suffering from domain shift. Our approach utilize ImageNet
pretrained foundation model (FM) constantly throughout the
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entire process, inspired by a domain generalized approach
with oracle model suggested by MIRO (Cha et al., 2022) and
geospatial foundation model (GFM) (Mendieta et al., 2023).
This helps to mitigate domain shifts between pretraining
and downstream datasets, ensuring more robust pretraining
method across diverse remote sensing tasks.

Additionally, satellites also use other sensors such as radar,
which operates with radio waves outside the visible spec-
trum. Radar can capture unique characteristics not detected
by optical sensors (i.e. penetrating through obstacles like
clouds). Numerous datasets and methods integrate paired
optical and radar sensor data, utilizing the combination to en-
rich representation during the training process (Wang et al.,
2022a; 2023; Fuller et al., 2024; Scheibenreif et al., 2022;
Schmitt et al., 2019; Xu et al., 2023; Chen et al., 2022).
By integrating paired optical and radar data with ImageNet
pretrained FM, we enhance representation learning with
information more nuanced and specialized to satellite im-
agery tasks. We offer an effective solution, combining FM
and multi-sensor data, to enrich the representation learning
process and overcome domain shifts in remote sensing.

We present FoMu-SSL, Foundation Model-Guided Multi-
Sensor Self-Supervised Learning for Remote Sensing. Our
contributions are as follows:

• We expand contrastive learning based self-supervised
learning method by adding simple loss terms to pull the
output representations towards the distribution of oracle
(i.e. ImageNet pretrained FM), reducing the domain gap
between different datasets in remote sensing.

• To enrich input semantics, we employ paired radar and
optical inputs, bringing enhanced performances on mul-
tiple downstream tasks.

• We evaluate our proposed method on various remote sens-
ing tasks–semantic segmentation, rotated object detec-
tion, and classification–and demonstrate the effectiveness
of each FM application usage step.

2. Method
In this section, we discuss our proposed method to effec-
tively apply ImageNet pretrained foundation model (FM)
for satellite imagery pretraining. While adopting self-
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Figure 1: Based on existing MoCo-v2 architecture, we propose a powerful method utilizing ImageNet pretrained foundation
model. Since directly finetuning the ImageNet FM performs well on remote sensing downstream tasks, we opt to take
advantage of ImageNet, using FM as an oracle model. We minimize the cosine distance between (i) RGB input embedding
from updating encoder and RGB input embedding from ImageNet pretrained encoder, and (ii) RGB input embedding from
updating encoder and SAR input embedding from ImageNet pretrained encoder.

supervised learning (SSL) based approach to leverage large
amounts of unannotated remote sensing data, we also in-
corporate the FM as a teacher oracle model to tackle the
discrepancies (i.e. domain gaps) between datasets. We uti-
lize the FM in three ways:

• We initialize the weight of encoder updated during self-
supervised pretraining with ImageNet pretrained weight.

• We measure similarity between RGB feature extracted
from the updating target model and RGB feature ex-
tracted from FM.

• We incorporate an additional sensor, SAR, by extracting
its features with FM.

2.1. Self-supervised Pretraining
MoCo-v2 (Chen et al., 2020b) is a powerful SSL method, in-
tegrating MoCo (He et al., 2020) and SimCLR (Chen et al.,
2020a), and it can effectively extract meaningful represen-
tations from remote sensing data. We adopt the training
mechanism of MoCo-v2 for the baseline self-supervised
contrastive learning. It consists of two encoders, where one
is the target encoder fs(·) updated during training and the
other is a momentum encoder fm(·) updated using exponen-
tial moving average of the target encoder’s parameters. Each
query image is passed through fs(·), and from the queue
in fm(·), each query finds one positive pair (i.e. augmented
version of the query), and the rest of the keys in the queue
are negative pairs, which is progressively updated with new

batch of images during training. More details on the train-
ing mechanism can be found in (He et al., 2020) and (Chen
et al., 2020b). As in MoCo-v2, we utilize a well-known
objective function for contrastive learning, InfoNCE loss
(van den Oord et al., 2018), which is formulated as:

LSSL = − log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

, (1)

where q is the feature of query image extracted by fs (i.e.
q = zs), and k+ is the positive pair from the queue of keys,
and ki is the entire queue of keys including both positive
and negative pairs.

Though target encoder fs can be trained from scratch, we
initialize the encoder with ImageNet pretrained weights
to utilize the FM. FM is trained with many RGB images,
hence it is already a good image feature extractor, serving
as a good starting point for encoder training.

2.2. ImageNet FM on Satellite Images
2.2.1. WEIGHT INITIALIZATION WITH FM
ImageNet (Deng et al., 2009) is a large-scale dataset contain-
ing many common objects from the real world. On the other
hand, remote sensing images capture geographical charac-
teristics that vary by location on Earth. The unique aerial
perspective of satellite images makes it difficult to identify
objects from an unfamiliar view. For instance, buildings
under construction or natural disasters may complicate earth
observation. Despite the differences in object classes and
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distinctive features between ImageNet and remote sensing
datasets, using ImageNet pretrained FMs as backbones in
tasks like semantic segmentation and rotated object detec-
tion on remote sensing datasets has shown promising re-
sults. Hence, initializing models with ImageNet pretrained
weights provides a better starting point for remote sensing
representation learning. By continually pretraining the Ima-
geNet pretrained FM with remote sensing datasets, we can
integrate the rich image features from ImageNet with the
domain-specific features from remote sensing data.

2.2.2. IMAGENET FM AS TEACHER MODEL

The ImageNet pretrained model can serve as a teacher
model, guiding a general distribution of input images in
the feature space. This allows resolving domain gaps be-
tween multiple remote sensing dataset during pretraining
and finetuning processes. To leverage the teacher FM for
guidance, we measure the cosine similarity between the
features extracted from the encoders.

Cosine distance is a metric used to measure the cosine sim-
ilarity between two vectors in feature space, based on the
cosine of the angle between them. It is defined as:

Dcos(a, b) = 1− a · b
∥a∥ · ∥b∥

, (2)

where a and b are vectors. The value of the cosine distance
ranges from 0 to 2, where 2 indicates that the vectors point
in opposite directions, 1 means they are perpendicular, and
0 means the vectors are pointing at the same direction. The
loss term that enables the teacher model fRGB to guide the
target image encoder fs is defined using cosine distance as:

LRGB = Dcos(zRGB, zs) (3)

The latent feature vector zRGB is the output of input query
image passed through the ImageNet pretrained FM, and zs
is the output of same image passed through the the student
target encoder fs. The cosine distance between the vectors
are minimized to make the target feature vector to have
similar representations as that of the teacher encoder.

2.3. FM with Additional Sensor in Remote Sensing
While most image data, including ImageNet, consist of RGB
images with three channels, satellite data often include addi-
tional channels collected by specialized sensors. Other than
optical sensor that collects information including RGB val-
ues, synthetic aperture radar (SAR) is a widely-used sensor
on satellites orbiting around Earth. Unlike optical sensor
which often suffer from limited views due to instances like
bad weather, radar uses longer wavelength compared to
optical, hence it can penetrate through obstacles like clouds.

We utilize both RGB image and SAR input to obtain rep-
resentations from the FM. While RGB images are directly
compatible with ImageNet pretrained models, SAR input

consists of 2 channels (pre-processed to 1 channel), requir-
ing the original model to be adjusted. To extract SAR fea-
tures, we employ the same network architecture (i.e. ResNet-
50) and the ImageNet pretrained foundation model weights,
but use only a subset of filters of the first layer, enabling
the model fSAR(·) to process inputs with less channels. Al-
though ImageNet consists only of RGB images, FM can
still be a powerful feature extractor for other modalities like
SAR input. The loss function to pull together SAR features
zSAR with the target encoder’s features zs is:

LSAR = Dcos(zSAR, zs). (4)

2.4. Loss Function
Ultimately, we minimize the following loss L for training:

L = LSSL + λRGBLRGB + λSARLSAR, (5)

where λRGB and λSAR control the strength of each term.

3. Experiments
To validate our proposed self-supervised pretraining ap-
proach, we experiment with three downstream tasks: se-
mantic segmentation, rotated object detection, and scene
classification. See appendix for details on implementations.

3.1. Self-supervised Pretraining
We employ existing self-supervised learning method, MoCo-
v2 (Chen et al., 2020b) as a base method, and add additional
loss terms to utilize the ImageNet foundation model (FM).
We implement MoCo-v2 (Chen et al., 2020b) pretraining
with ResNet-50 (He et al., 2016) backbone from MMSelf-
Sup toolbox (Contributors, 2021) and apply our losses into
the pipeline. We initialize the model weights with FM
weights, then we further conduct pretraining for 200 epochs
on fMoW dataset (Christie et al., 2018), and continually
train on SEN1-2 dataset (Schmitt, 2018) for 50 epochs.

For the first 200 epochs of pretraining, we use Functional
Map of the World (fMoW) (Christie et al., 2018) dataset
during pretraining. For the last 50 epochs, we use Sentinel
1-2 Pair (SEN1-2) dataset (Schmitt, 2018) along with SAR
loss LSAR to further train the model with an additional
sensor with copious features unavailable with RGB dataset.
We set the value of λRGB and λSAR as 0.25.

3.2. Semantic Segmentation
We use UperNet (Xiao et al., 2018) for ISPRS Potsdam (for
Photogrammetry & , ISPRS) and ISPRS Vaihingen (for
Photogrammetry & , ISPRS) segmentation datasets, for
evaluation on this task, experimenting with different self-
supervised pretraining models.

Table 1 demonstrates semantic segmentation results of our
proposed method, adding each usage of FM. Based on the
fact that directly finetuning with the supervised ImageNet
model shows better segmentation performance, we initial-
ize target encoder with ImageNet pretrained weights. To

3



FoMu-SSL: Foundation Model-Guided Multi-Sensor Self-Supervised Learning for Remote Sensing

Pretrained Method Seg. (mIoU)↑ Det. (mAP)↑ Cls. (Acc.)↑
Dataset Backbone SSL Method Potsdam Vaihingen DOTA UCM EuroSAT

ImageNet ResNet50 (Supervised) 85.72 73.39 75.47 90.06 99.87

GeoPile (Mendieta et al., 2023) Swin-B GFM (Mendieta et al., 2023) 80.56 65.32 63.52 96.55 98.26

fMoW ResNet50 SeCo-1M (Mañas et al., 2021) 79.50 70.02 68.11 96.31 99.57

fMoW ResNet50 CMID (Muhtar et al., 2023) 83.89 69.86 70.54 94.17 99.75

Million-AID (Long et al., 2021) ResNet50 CMID (Muhtar et al., 2023) 84.66 69.91 74.59 95.83 99.81

SSL4EO (Wang et al., 2022b) ViT-B CROMA (Fuller et al., 2024) 74.38 59.68 – 96.19 91.32

SEN1-2 ResNet50 SSLTransformerRS (Scheibenreif et al., 2022) 81.96 70.18 61.62 96.07 99.79

fMoW ResNet50 MoCo-v2 IN init. 86.82 71.83 73.29 95.42 99.94

fMoW ResNet50 Ours (RGB Only) 87.04 72.40 74.11 96.43 98.09

fMoW+SEN1-2 ResNet50 Ours (RGB+SAR) 87.36 73.55 74.33 96.96 99.99

Table 1: Performance comparison with existing state-of-the-art SSL approaches in remote sensing. We report scores in three
downstream tasks: semantic segmentation, rotated object detection, and scene classification. For each task, we measure
mean intersection over union (mIoU) among all classes, mean average precision (mAP) among all classes, and accuracy
(Acc.) of class prediction, respectively.

further maximize the usage of FM, adding LRGB and LSAR
enhances mIoU score by following the ImageNet feature
distribution in the feature space. Especially, exploiting SAR
sensor outperforms the outstanding ImageNet FM, since
SAR inputs contain features cannot be detected with opti-
cal sensor. On both Potsdam and Vaihingen dataset, our
proposed method outperforms other self-supervised remote
sensing pretraining methods trained with only optical sensor
inputs (Mendieta et al., 2023; Mañas et al., 2021; Muhtar
et al., 2023). In addition, ours also outperforms multi-sensor
(i.e. SAR-optical data pairs) remote sensing SSL methods
(Fuller et al., 2024; Scheibenreif et al., 2022).

3.3. Rotated Object Detection
Implemented from MMRotate (Zhou et al., 2022b), we
utilize Oriented R-CNN (Xie et al., 2021) for detection, on
DOTA (Xia et al., 2018) dataset, which contains 15 classes.

Table 1 depicts the effectiveness of incorporating ImageNet
pretrained model within self-supervised learning. Typically,
difference in backbone architecture greatly affects the detec-
tion performance, e.g. Swin-B better than ResNet50. How-
ever, comparing the SSL methods specialized for satellite
images, there is no significant correlation between perfor-
mance and backbone architecture. Though finetuning with
ImageNet model for detection yield better results, adding
LRGB and LSAR to baseline MoCo-v2 pipeline improves
mAP score. Our method suggest a powerful approach to
improve detection performance with satellite images.

3.4. Scene Classification
For classification on UC Merced Land Use (UCM) (Yang &
Newsam, 2010) and EuroSAT (Helber et al., 2019) datasets,
we validate the feature extracting ability of each pretrained
method by using the frozen pretrained model and simply
training an additional linear layer.

Table 1 depicts the class accuracy of different pretrained

models. The results based on our proposed methodologies,
with and without cosine distance losses, demonstrate ex-
ceeding performances in both UCM and EuroSAT datasets.
Our multi-sensor approach outperforms other SSL meth-
ods for remote sensing in both datasets. With compari-
son to other remote sensing-specific methods, our approach
demonstrates outstanding performances on both UCM and
EuroSAT datasets. Because this task does not distort pre-
trained backbone, i.e. only training an extra projection layer,
the results illustrates the exceptional feature extracting ca-
pability of our pretraining approach, benefitting from FM.

4. Conclusion
This study explores novel self-supervised pretraining for
remote sensing, mitigating the domain gaps among different
datasets using ImageNet pretrained model (i.e. foundation
model). We observe that the ImageNet pretrained backbone
performs well when finetuned on downstream tasks, so we
propose to use representations from the foundation model
(FM) as a guidance in the feature space, and also incorporat-
ing paired multi-sensor datasets with FM. We demonstrate
substantial improvements in downstream tasks, approving
the capability of utilizing FM for remote sensing. Our study
paves the way to enhance the performance of segmenta-
tion, detection, and classification in application of computer
vision with satellite images.
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Appendix

A. Impact Statement
We believe there is no potential of critical harm or misuse of our work that will cause negative societal issues. Foundation
model used in this paper is widely used ImageNet pretrained model. It can be employed for various purposes, but are not
limited to misuses only. Remote sensing dataset may have ethical or privacy issues, especially with high resolution images
that may contain private sensitive information. However, this research uses publicly opened dataset that are, to the extent of
our understanding, collected with legal and institutional protocols.

B. Limitations
While we demonstrate the advantage of utilizing ImageNet-pretrained foundation model as an oracle model for remote
sensing tasks in terms of domain generalization, there remains several limitations we might need to explore further. It is
important to try applying our proposed losses, to other SSL frameworks, testing the compatibility of our method. While the
losses are compatible with the methods incorporated in this work, it may not be as effective with other baselines. Moreover,
it is worth running in-depth experiments to search for the optimal weight of each additional loss term, either scheduling
to adjust its strength over each time step or simply fixing it to a different numerical value. Lastly, despite the fact that we
evaluate on 5 datasets of 3 essential downstream tasks, exploration on other tasks such as super-resolution and change
detection will be useful to further expand the application of our pretraining method.

C. Domain Gap in Remote Sensing

(b) Million-AID (d) fMoW(a) ISPRS Potsdam (c) SEN12MS

Figure A1: Typical examples of four public remote sensing datasets (ISPRS Potsdam (for Photogrammetry & , ISPRS),
Million-AID (Long et al., 2021), SEN12MS (Schmitt et al., 2019), and fMoW (Christie et al., 2018)), each of which was
collected under different conditions, such as locations.

Dataset Sensor Patch Size Cropped Size GSD Time Location # Categories # Images

fMoW (Christie et al., 2018) Optical 700-9000 256 - 2002-2017 Worldwide 62 523,842

SEN1-2 (Schmitt, 2018) SAR-Optical (256, 256) 256 - 2016-2017 Worldwide - 282,384

Potsdam (for Photogrammetry & , ISPRS) Optical (6000, 6000) 512 0.5 m - Potsdam, Germany 6 5,472

Vaihingen (for Photogrammetry & , ISPRS) Optical (2494, 2064) 512 0.9 m - Vaihingen, Germany 6 742

DOTA (Xia et al., 2018) Optical (1024, 1024) 1024 - - Worldwide 15 2,806

UCMerced (Yang & Newsam, 2010) Optical (256, 256) 256 0.3 m - USA 21 2,100

EuroSAT (Helber et al., 2019) Optical (64, 64) 64 ∼ 0.1m - 34 countries in Europe 10 27,000

Table A1: Metadata comparison of various public remote sensing datasets, which were collected under different sensing
configurations, such as sensors, time, locations, etc. Abbr. Ground Sample Distance (GSD).

Different datasets in the remote sensing field each have specific characteristics varying from each other, demonstrated
in Figure A1. As summarized in Table A1, satellite images are collected at different times, and many geographical
characteristics (e.g., vegetation or color of forests due to weather) differ significantly in a short time frame. Additionally,
distinct locations each have their unique urban planning and design, resulting in substantial variances between datasets. Due
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to these differences, a deep learning model trained with one particular remote sensing dataset degrades in their performances
when finetuned on another dataset, suffering from domain shift.

D. Experimental Details
In this section, we discuss the detailed hyperparameter settings and datasets of our experiments, including self-supervised
pretraining, segmentation finetuning, detection finetuning, and classification linear probing.

D.1. Self-supervised Pretraining

Pretrain Dataset. For the first 200 epochs of pretraining, we use Functional Map of the World (fMoW) (Christie et al.,
2018) dataset during pretraining. The fMoW dataset contains bounding box annotations for 63 categories, where one is a
‘false detection’ class. This dataset covers local and temporal features of satellite images, also with other features such as
physical sizes or position of the Sun. We use 363,568 images for training, following the pre-defined train split.

For the last 50 epochs, we use Sentinel 1-2 Pair (SEN1-2) dataset (Schmitt, 2018) along with SAR loss LSAR to further
train the model with an additional sensor with copious features unavailable with RGB dataset. SEN1-2 consists of 282,384
pairs of synthetic aperture radar (SAR) and multispectral (including RGB) image patches obtained from Sentinel-1 and
Sentinel-2 satellites, respectively. Out of the 14 channels of Sentinel-2 optical sensor, the dataset extracts 3 channels (RGB)
only; out of the 2 channels (VV and VH) of Sentinel-1 SAR sensor, the dataset only considers 1 channel, with only vertically
polarized (VV) data for simplicity.

Implementation Details. Pretraining experiments are based off the MoCo-v2 implementation from MMSelfSup (Contribu-
tors, 2021) with fMoW (Christie et al., 2018) and SEN1-2 (Schmitt, 2018) datasets. We adopt the provided configuration file
for the hyperparameter settings. We pretrain the model with batch size of 256 on 2 NVIDIA A100 80GB GPUs. The applied
data augmentations for multi-view contrastive learning includes Random Resized Crop, Color Jitter, Random Grayscale,
Random Gaussian Blur, and Random Flip. All images are cropped into size (224, 224). The queue size of the momentum
encoder is 65,536, and the momentum is 0.9999. We employ the Cosine Annealing learning rate scheduler. SGD optimizer
is used with learning rate 0.03, momentum 0.9, and weight decay 0.0001. The contrastive learning head is updated by cross
entropy loss with temperature of 0.2.

D.2. Semantic Segmentation

Dataset. ISPRS Potsdam (for Photogrammetry & , ISPRS) contains high-resolution images collection from Potsdam,
Germany, which composed of 6 classes: impervious surface, building, low vegetation, tree, car, and clutter. We implement
the provided code from (Muhtar et al., 2023), which ignores the ‘clutter’ class, and only consider the other 5 classes.
Moreover, ISPRS Vaihingen (for Photogrammetry & , ISPRS) is another dataset for 2D semantic segmentation collected over
Vaihingen, Germany. Similar to Potsdam (for Photogrammetry & , ISPRS), Vaihingen also contains 6 classes: impervious
surface, building, low vegetation, tree, car, and clutter. We use the default dataset setup from MMSegmentation (Contributors,
2020) for both datasets.

Implementation Details. For finetuning the pretrained model for segmentation tasks, we utilize UperNet(Xiao et al., 2018)
architecture with the code provided by MMSegmentation(Contributors, 2020) on both Potsdam(for Photogrammetry & ,
ISPRS) and Vaihingen(for Photogrammetry & , ISPRS) datasets. The Potsdam experiments are based on the configuration
files provided by (Muhtar et al., 2023), and Vaihingen experiments are based on default settings in (Contributors, 2020).
To finetune on Potsdam dataset, we only load 5 classes, disregarding the clutter class. The input images are resized into
(512, 512), and Random Crop and Random Flip is applied for augmentation. The UperNet model takes batch size of 8 and
trains for 50 epochs. Cosine annealing learning rate scheduler is implemented with linear warmup for 100 iterations and
minimum learning rate of 0.000001. For optimizer, SGD with learning rate 0.01, momentum 0.9, and weight decay 0.0005
is applied. For Vaihingen dataset, we load all 6 classes, resize into (512, 512), and apply Random Crop and Random Flip
for augmentation. The batch size is 4, and the total training step is 40,000 iterations. For all 40,000 iterations, Polynomial
learning rate scheduler is employed with power 0.9, and the minimum learning rate at the end is set to 0.0001. We implement
the SGD optimizer, with the same parameters as Potsdam experiments.
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D.3. Rotated Object Detection

Dataset. DOTA (Xia et al., 2018) contains 15 classes: plane, baseball diamond, bridge, ground track field, small vehicle,
large vehicle, ship tennis court, baseball court, storage tank, soccer ball field, roundabout, harbor, swimming pool, and
helicopter. It is a large-scale dataset for detecting oriented bounding boxes. Each original image is cropped into patches with
size (1024, 1024) with an overlap of 200 pixels, provided in MMRotate (Zhou et al., 2022b).

Implementation Details. We employ Oriented R-CNN(Xie et al., 2021) model from MMRotate(Zhou et al., 2022b) with
DOTA(Xia et al., 2018) dataset, following the configuration setting from (Muhtar et al., 2023). The detection model is
finetuned for 12 epochs, with batch size of 2. Random resize is applied with size (1024, 1024), and followed by Random Flip
for data augmentation stage. For scheduling the learning rate, we implement the step learning rate scheduler incremented at
epochs 8 and 11 , with linear warmup for 500 iterations and warmup ratio of 1

3 . We use SGD optimizer with learning rate
0.03, momentum 0.9, and weight decay 0.0001.

D.4. Classification (Linear Probing)

Dataset. UC Merced Land Use (UCM) (Yang & Newsam, 2010) dataset consists of 21 classes with 100 images for each
class. 2,100 images are randomly split (not class-balanced) into train and test set with ratio of 8:2. EuroSAT (Helber et al.,
2019) dataset for land use and land cover classification consists of 27,000 images total with 10 classes of land usage in 34
European countries. We follow the data split from (Neumann et al., 2020) and train on the train set, then evaluate on both
5,400 validation and 5,400 test sets.

Implementation Details. To evaluate the feature representation ability of pretrained models, we implement linear probing
with a single linear layer that classifies the input data. The linear probing layer is same for both UC Merced Land Use
(UCM) (Yang & Newsam, 2010) and EuroSAT (Helber et al., 2019) datasets. For UCM dataset, we update the linear layer
for 200 epochs, with crop size of (224, 224) and batch size of 32. For EuroSAT, the epoch, crop size, and batch size is 50,
(224, 224), and 256 respectively.

E. Related Work
E.1. Self-supervised Learning (SSL)

In the era of recent deep learning, where an abundant amount of data is available, the cost of annotating data is a big obstacle
for practical use of the data. Self-supervised learning (SSL) has gained attention within this context, enabling training the
model without the need for extensive data annotation. In SSL, the model learns representations of training data through
techniques such as pretext tasks, contrastive learning (He et al., 2020; Chen et al., 2020a;b) or masked image modeling (Bao
et al., 2021; Xie et al., 2022; Zhou et al., 2022a; Gao et al., 2022).

Initial approaches of SSL exploit pretext tasks that enable the model understand inputs by learning through pseudo-labels.
Examples of pretext tasks include patch position prediction (Doersch et al., 2015), solving jigsaw puzzle (Noroozi & Favaro,
2016), reconstructing part of the image (Pathak et al., 2016), colorization (Larsson et al., 2016; Zhang et al., 2016), and
channel prediction (Zhang et al., 2017).

Contrastive learning based methods try to pull together the positive pairs while pushing away the negative pairs in the latent
space, enabling the model to create a robust representation space. One of the pioneering works in SSL, MoCo (He et al.,
2020), suggests utilizing a large number of negative samples with momentum update of the encoder. On the other hand,
SimCLR (Chen et al., 2020a) employs various image augmentation methods to construct well-functioning positive pairs, and
projects the feature vectors into a high-dimensional space to compute their contrastive loss. MoCo-v2 (Chen et al., 2020b)
integrates the two methodologies to maximize the performance and efficiency, and demonstrates its outstanding performance.
Another popular approach is utilizing masked image modeling techniques to learn to reconstruct the image (He et al., 2022;
Bao et al., 2021; Zhou et al., 2022a; Gao et al., 2022). Inspired by the learning mechanism of language models, i.e., masked
language modeling, this enables the model to learn proper latent representations by taking the surrounded context into
account.
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E.2. SSL in Remote Sensing

The field of remote sensing is particularly suitable for self-supervised learning. While there is a vast amount of data available
from various types of satellites, it is impractical to annotate all accessible data since it requires detailed geographical
information of the region. To this end, self-supervised learning techniques are increasingly adopted to the field of remote
sensing tasks in order to leverage large amount of data (Ayush et al., 2021; Mañas et al., 2021; Muhtar et al., 2023; Cong
et al., 2022; Akiva et al., 2022; Sun et al., 2022). Self-supervised learning for remote sensing share the two main approaches
with general SSL. Methods that utilize contrastive learning include (Ayush et al., 2021; Mañas et al., 2021; Akiva et al.,
2022). These methods take advantage of the characteristics of remote sensing data to assign positive and negative pairs.
For example, in (Mañas et al., 2021), they use temporal information of the images and assign the images from the same
region with different season as positive pairs. On the other hand, (Cong et al., 2022; Sun et al., 2022) adopt generative
approach, i.e., masked image modeling, to learn representations. (Muhtar et al., 2023) brought the two approaches together
to maximize the advantage of self-supervised learning. With the proposed framework, they achieve competitive or better
performance in remote sensing downstream tasks compared to supervised or other SSL methods.

Data collected from satellites are not limited to the visible spectrum. It encompasses information gathered from multiple
sensors, e.g. Synthetic Aperture Radar (SAR) using radio waves, and Light Detection and Ranging (LiDAR) employing
laser beams to detect the distance to objects. These sensors have the capability to penetrate through atmospheric obstacles
(e.g. cloud), enabling us to comprehensively observe the top-view information. There are methods (Sebastianelli et al., 2021;
Chen et al., 2022; Meraner et al., 2020) that embody sensor fusion, aggregating multiple sensors, to execute cloud removal
tasks. Several studies integrate additional sensor to enrich the self-supervised representation learning. For instance, (Wang
et al., 2022a) introduces a DINO-based network that utilizes concatenated SAR-optical image as input, randomly masking
out one or none of the modalities. Besides, other works (Wang et al., 2023; Fuller et al., 2024; Scheibenreif et al., 2022) also
jointly train paired multi-sensor data using self-supervised techniques, leveraging sensor fusion to learn representations
from multiple modalities.

E.3. Domain Generalization with Pretrained Models

Domain gap between training and test data is a well-known problem that deep learning models suffer from. Although the
model is optimized enough to sufficiently express the training dataset, the model fails to deal with out-of-distribution data.
Being aware of this limitation in the model’s generalizability, there has been various works that tackles this problem (Yue
et al., 2019; Prakash et al., 2019; Blanchard et al., 2021; Ghifary et al., 2015; Li et al., 2018; Ganin et al., 2016; Arjovsky
et al., 2019; Huang et al., 2020; Krueger et al., 2021; Kim et al., 2021).

While these algorithms do handle domain gap, it still suffers from bias of source domain and distribution shift for out-of-
distribution data as (Cha et al., 2022) pointed out. As the generalizability of pretrained models are known to be powerful,
recent works try to tackle domain generalization problem with large pretrained models (Li et al., 2022a; Lee et al., 2023; Li
et al., 2022b; Cha et al., 2022).

On the other hand, (Risojević & Stojnić, 2021) demonstrates the effectiveness of domain-adaptive pretraining. While the
self-supervised ImageNet-pretrained model has its power to generalize over various visual inputs, additional pretraining
on in-domain datasets that are different from the target dataset, helps the model to perform even better with the target
dataset. Due to the unique characteristics of remote sensing datasets, adaptive pretraining yields better results, mitigating
the domain gap that happens within the domain. To effectively incorporate remote sensing generalizability with ImageNet
pretrained model, (Risojević & Stojnić, 2021) train the model with remote sensing data with its weights initialized with
ImageNet-pretrained weights. In this work, we also utilize ImageNet-pretrained model to leverage general knowledge of
visual data. Rather than merely initializing the model with pretrained weights, we treat ImageNet-pretrained model as an
oracle model that guides the newly training model, preventing the model from overfitting on the specific domain it is newly
trained on and effectively enhances generalizability.

F. Ablations
Here, we perform ablations studies on various factors of our work.
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Pretraining Seg. (mIoU) Det. (mAP)
Dataset Method LRGB LSAR Potsdam Vaihingen DOTA

fMoW MoCo-v2 - - 83.47 70.92 68.65

fMoW MoCo-v2 MIRO - 83.60 (+0.13) 71.34 (+0.42) 64.98 (-3.67)

fMoW+SEN1-2 MoCo-v2 MIRO MIRO 83.18 (-0.29) 71.14 (+0.22) 63.63 (-5.02)

fMoW MoCo-v2 MSE - 85.16 (+1.69) 71.21 (+0.33) 70.88 (+2.23)

fMoW+SEN1-2 MoCo-v2 MSE MSE 82.98 (-0.49) 70.32 (-0.60) 64.03 (-4.62)

fMoW MoCo-v2 CosD - 87.04 (+3.57) 72.40 (+1.48) 74.11 (+5.46)

fMoW+SEN1-2 MoCo-v2 CosD CosD 87.36 (+3.89) 73.55 (+2.63) 74.33 (+5.68)

Table A2: Comparison of different loss functions for pretraining. FMoW (Christie et al., 2018) is used for RGB inputs, and
SEN1-2 (Schmitt, 2018) for SAR inputs. While adopting training mechanism of MoCo-v2 (Chen et al., 2020b), we employ
additional loss terms to leverage the oracle model(i.e. ImageNet-pretrained model). For each loss design, we evaluate the
impact of the loss by the performance of downstream tasks; semantic segmentation on ISPRS Potsdam/Vaihingen (for
Photogrammetry & , ISPRS;I) and object detection on DOTA (Xia et al., 2018).

F.1. Comparative Analysis of Loss Functions.
The empirical evidence demonstrated in Table A2 underscores the efficacy of distilling the network with ImageNet pretrained
model. For all experiments with additional branches, the loss weight λRGB and λSAR are set to 0.25 to ensure a fair and
uniform comparison of the loss functions. The baseline model is trained on fMoW dataset with MoCo-v2 SSL method.

The rows highlighted in green represent the integration of solely the RGB branch into the original SSL framework. Applying
any of the three losses enhances segmentation mIoU performances across both Potsdam and Vaihingen datasets. In particular,
CosD loss shows the largest progress of 3.57 mIoU in Potsdam and 1.48 in Vaihingen. Observing the detection downstream
task, MIRO and CosD shows improvement of 2.23 and 5.46 point increase in mAP respectively. Contrastively, selecting
MIRO loss to minimize the difference between feature distributions results in decrease of 3.67 on detection task.

The rows highlighted in orange represent additional implementation of SAR branch, leveraging both RGB and SAR features.
To further advance the model’s ability to analyze remote sensing images, SAR features are extracted from the ImageNet
pretrained encoder and are compared with features from updating encoder. Unlike applying losses with fMoW RGB data
only, introducing SAR-RGB pair data with ImageNet encoder is only effective with CosD function. Exploiting MIRO and
MSE with SAR branch rather worsen segmentation and detection performances, while CosD improves by 3.89, 2.63, and
5.68 on Potsdam, Vaihingen, and DOTA respectively.

The results suggest to use an additional loss term to follow the general ImageNet feature distribution while further training
with satellite images. Though implementing RGB image features enhance performance with any of the three suggested losses,
Cosine Distance (CosD) is the most effective one, and even applicable with SAR features as well. Hence, implementing
CosD loss function is the best way to utilize the ImageNet pretrained model as a teacher, and further adapt to remote sensing
datasets specifically during training.

F.2. Application on Other SSL Frameworks. Pretraining Seg. (mIoU) Det. (mAP)
Dataset Method LRGB Potsdam DOTA
fMoW CMID - 83.99 70.54
fMoW CMID MIRO 85.88 70.58
fMoW CMID MSE 84.09 69.28
fMoW CMID CosD 86.15 71.55

Figure A2: Performances report on CMID (Muhtar et al.,
2023), a pretraining method specialized in remote sensing
domain. We attach the proposed RGB branch to the existing
framework to examine the applicability of our proposed tech-
nique to methods other than (Chen et al., 2020b).

We verify the necessity of following the ImageNet distri-
bution in feature space. The study involves Contrastive
Mask Image Distillation (CMID) (Muhtar et al., 2023), a
SSL framework dedicated to remote sensing, combining
both masked image modeling and contrastive objective.
To further improve CMID, we adhere our RGB branch to
the provided CMID code. Figure A2 illustrates incorpo-
rating additional guidance from the pretrained model is
effective across other remote sensing SSL frameworks as
well, thereby supporting our proposed method.
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F.3. Finetuning with Fewer Data.

mIoU with Reduced Train Set
Method 1% 10% 20% 50% 100%

MoCo-v2 47.08 72.97 75.67 79.49 83.47
MoCo-v2+RGB 54.71 77.02 79.46 82.26 87.04

MoCo-v2+RGB+SAR 59.48 80.91 83.39 85.64 87.36

mAP with Reduced Train Set
Method 10% 20% 50% 100%

MoCo-v2 44.10 51.47 61.25 68.65
MoCo-v2+RGB 49.85 59.47 68.60 74.11

MoCo-v2+RGB+SAR 48.85 60.14 69.07 74.33

Table A3: Segmentation (left) and detection (right) results with downsampled train set. Finetuning our method with a smaller
sampled training set achieves high performances similar to the baseline. Looking at the highlighted cells, our approach
maintains high performances even with a smaller training set. When training sample size is decreased, our methods exhibits
minimal performance decline compared to baseline SSL model.

To test the robustness of our method, we explore experiments training with a smaller samples for segmentation and detection.
We train with randomly sampled sectors of the Potsdam (for Photogrammetry & , ISPRS) and DOTA (Xia et al., 2018) train
set, and test with the same test set. The training data of Potsdam is sampled into 34, 345, 691, and 1728 images (1%, 10%,
20%, and 50% of original train split). DOTA train set is split into 2104, 4209, and 10523 images (10%, 20%, and 50%).
Table A3 depicts comparative results of 3 settings, fMoW dataset pretrained with (i) MoCo-v2 (Chen et al., 2020b) only, (ii)
with MoCo-v2 and RGB branch, and (iii) MoCo-v2 with both RGB and SAR branches. We report the segmentation and
detection downstream tasks while progressively add our proposed branches.

As shown in Table A3, training with a smaller portion of the train set with our proposed method (i.e. SSL+RGB+SAR)
outperforms baseline SSL model (i.e. MoCo-v2) trained with 100% train set of the downstream task. This observation
signifies effectiveness of our methodologies, showcasing the ability to obtain competitive performances in downstream tasks
with half the amount of training data. The results are promising even with a reduced number of images in the training subset,
validating the capabilities of our methods.

F.4. Further Analysis on Multi-Sensor Approach

Pretraining Seg. (mIoU)↑ Det. (mAP)↑
Dataset Init. Method λRGB λSAR Potsdam Vaihingen DOTA

fMoW ✓ MoCo-v2 0.25 - 87.04 72.40 74.11

fMoW+SEN2 ✓ MoCo-v2 0.25 - 86.92 73.25 73.35

fMoW+SEN1-2 ✓ MoCo-v2 0.25 0.25 87.36 73.55 74.33

Table A4: Performance comparison of our proposed methods and Sentinel 2 RGB only on segmentation and detection
downstream tasks.

To validate our proposed SAR branch that continually pretraining for additional 50 epochs, we conduct another experiment.
Our suggested approach implements both RGB and SAR branch for 50 more epochs with Sentinel 1-2 Pair (SEN1-
2) (Schmitt, 2018) dataset. To confirm the effectiveness multi-sensor approach, we pretrain with only the RGB Sentinel
2 images from the paired SEN1-2 dataset. Solely training for a longer time with the new RGB dataset hinders finetuning
performance on Potsdam and DOTA. Implementing both sensors, RGB and SAR outperforms single-sensor pretraining on
all finetuning tasks.

G. Qualitative Results of Segmentation Finetuning
In Figure A3, we visualize the segmentation inference results on the test set of Vaihingen dataset. Our proposed methods
result in better segmentation maps similar to ground truth labels, compared to other existing approaches.
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Figure A3: Visualization of different pretraining methods finetuned on Vaihingen dataset. The differences are emphasized
with orange boxes. (Blue: Building, Cyan: Low Vegetation, Green: Tree, Yellow: Car, White: Impervious Surface).
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