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Abstract

Counterfactual explanations (CEs) are a powerful method for interpreting machine
learning models, but CEs might be not valid when the model is updated due
to distribution shifts in the underlying data. Existing approaches to robust CEs
often impose explicit bounds on model parameters to ensure stability, but such
bounds can be difficult to estimate and overly restrictive in practice. In this work,
we propose a data shift-driven probabilistic framework for robust counterfactual
explanations with plausible data shift modeling via a Wasserstein ball. We formalize
a linearized Wasserstein perturbation scheme that captures realistic distributional
changes which enables Monte Carlo estimation of CE robustness probabilities
with domain-specific data shift tolerances. Theoretical analysis reveals that our
framework is equivalent in spirit to model parameter bounding approaches but
offers greater flexibility, avoids the need to estimate maximal model parameter
shifts. Experiments on real-world datasets demonstrate that the proposed method
maintains high robustness of CEs under plausible distribution shifts, outperforming
conventional parameter-bounding techniques in both validity and proximity costs.

1 Introduction

Counterfactual explanations (CEs) have emerged as a crucial tool for interpreting machine learning
(ML) models by offering insights into examples of changed input features leading to a different
prediction [Wachter et al., 2017]. In applications such as finance, healthcare, and hiring, these
explanations provide actionable feedback, enabling users to understand and potentially influence
automated decisions [Karimi et al., 2020, |Ustun et al.,[2019]. However, a critical challenge limiting the
practicality of CEs is their lack of robustness to data shifts. As real-world data distributions evolve over
time due to factors such as demographic changes, policy updates, or external perturbations [Blodgett:
et al.,. 2016l Beery et al.,|2021]], CEs that were once valid may become obsolete or misleading. This
fragility undermines the trustworthiness and utility of CEs in dynamic environments.

Consider a loan application scenario: if a model is retrained while an applicant is actively improving
their credit profile, a non-robust CE may still indicate approval, despite the updated features warranting
rejection. Such inconsistencies could expose institutions to liability, as prior guidance may conflict
with the revised outcome. Ensuring that a CE remains valid after model updates is thus critical for
maintaining actionable and reliable explanations.

Existing approaches to CEs primarily focus on optimizing criteria such as sparsity, proximity, and
feasibility [Wachter et al., 2017} Verma et al., 2020, Karimi et al.,[2021]. While some recent works
attempt to incorporate robustness, they often fail to accurately model realistic data shifts that occur in
practice, even though some assume only minor perturbations to the data. Consequently, these methods
struggle to provide meaningful guarantees on the reliability of CEs in real-world deployments.

In this work, we propose a novel framework that explicitly models possible future data shifts to
ensure the robustness of CEs. Rather than relying on generic worst-case perturbations or static
assumptions about distributional changes, we adopt a structured and flexible approach based on
Wasserstein-bounded data shifts. By linking plausible data perturbations to bounded model parameter
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changes under fine-tuning, our method allows for probabilistic guarantees on the validity of CEs.
This approach not only maintains robustness but also preserves lower proximity, providing a practical
and principled solution for reliable CEs.

Related Works Robustness in CEs has been explored from multiple angles, including robustness
against noisy execution, input variations, model multiplicity, and, what we focus on, model changes.
For a comprehensive overview, we refer to a recent survey [Jiang et al., 2024].

Model parameter updates typically occur when, the model is retrained on updated data [Rawal
et al., 2020]. Recent works explore different types of boundaries when assessing model changes,
encompassing explicit bounds, data shifts, and parameter shifts. Some approaches are based on
creating CEs that achieve high certainty, i.e., high class scores, to ensure robustness [Dutta et al.,
2022, [Hamman et al.,2023| Jiang et al.} 2023]], while others include counterfactual data augmentation
in training [Ferrario and Loi, [2022], or perturbing the covariance matrix of data sampled close to the
decision boundary to train a linear surrogate [Bui et al., 2022]]. [Upadhyay et al.|[2021] introduce
the concept of plausible model shifts, constraining parameter updates to perturbations within a
predefined magnitude. Their proposed method ROAR, minimizes the loss over the worst plausible
model shift to generate CEs. Thereby the possibly nonlinear model is approximated with a linear
surrogate. Similar to ROAR, APAS [Marzari et al [2024]] samples plausible model shifts, unlike our
approach where we sample data distributions. MILP [Mohammadi et al.||2021]] is based on linearly
approximating ReLu activated neural networks to compute bounds on the hidden units employing
Mixed-Integer-Programming. A key limitation to these approaches is their assumption that model
changes stem from minor data shifts, without assessing data shifts explicitly. Nguyen et al.| [2022]
assess model shifts by adversarially perturbing the data using a Gaussian mixture ambiguity set and
Wasserstein distance. The data distribution is hereby modeled with kernel density estimation, which
is prone to suffer from the curse of dimensionality. Our method proactively models the probable
data shifts. Furthermore, while many works model-specific, e.g., neural networks, ours is a post-hoc
approach that can be employed to enhance robustness in existing CE generation methods.

Wasserstein distributionally robust optimization (WDRO) allows decision making in uncertain cases,
thereby not only accounting for an initial distribution but also for distributions within its neighborhood,
measured with a Wasserstein ball [Kuhn et al., 2019]. Wasserstein distance, rooted in optimal
transport theory, provides a meaningful metric for comparing probability distributions by considering
the geometry of the underlying space. Intuitively, it measures the cost necessary to transport one
distribution to another. WDRO has gained popularity in different ML disciplines, including adversarial
training [Liu et al.,|2025]], causality and fairness [Ehyaei et al.| 2024]).

2 Method

Problem Setup Let P4 denote the empirical distribution of historical data, and let fo,. be a
pre-trained classifier. For a given input x € X with fy_,(x) # Yrarger and a desired target class Yiarger, @
counterfactual ' is an alternative input such that fy_,(2') = Yrarget- WE aim to ensure that 2’ remains
valid even under plausible future data shifts. To formalize this, we define a Wasserstein ball around
P B, (Pold) = {Paew : Wp(Paew, Pold) < &4}, where W), is the Wasserstein distance with cost
c(+,-), and €, is a radius determined from historical data or domain knowledge. For p = 2, W, is the

2-Wasserstein distance. For each plausible data distribution Pyey € B., (Pow), fine-tuning the model
yields updated parameters: 6n.,, = argming E,.p _ [¢(x;0)], where {(x;0) is the classification

loss (cross-entropy in our experiments) of a model f. This defines a corresponding parameter set:

@s = {enew : Piew € Bsm (Pold)}~

2.1 Robust Counterfactuals under Wasserstein Perturbations

Linearized Wasserstein Perturbation. For small shifts, we approximate P via a linearized perturba-
tion of each data point: 27 = z; + 05,7 =1,...,n, subject to the linearized Wasserstein constraint:

1 Z?=1 c(xj,zj + d;) < e5. This first-order approximation allows efficient sampling of plausible
future data shifts while remaining within the Wasserstein ball.

Monte Carlo Sampling and Fine-Tuning. To evaluate robustness, we generate N Monte Carlo samples

of perturbations {5§i)}?:1, withi = 1,..., N. For each perturbed dataset, we fine-tune the model



89

90

91
92

93

94
95
96

97
98
99
100

101
102

103
104
105
106
107
108

109

110
111
112
113
114
115
116
117
118
119
120
121

122

123
124
125
126
127
128
129
130

parameters 0,4 by performing one or a few gradient steps:
(i) 1y ()
enewzeold_nv9 Ez;g(f9<xj+5j )’yj) ;
]i

where { is the model loss function and 7 is the learning rate. This procedure yields N perturbed
models {GSQN}f\Ll, representing plausible shifts in the decision boundary.

Counterfactual Robustness Estimation. We formalize robustness under sampled model shifts using
the following lemma [Marzari et al., [2024]:

Lemma 2.1. Fix an integer N > 0 and a robustness threshold R € (0,1). Suppose a candidate

counterfactual x' is evaluated under N independently sampled perturbed models {Gf,izv}fil Then,
with probability o = 1 — RY, the candidate ' remains valid under at least a fraction R of future
model realizations, in the sense that

min fyo (') > min fp,,(z)
7 new K3

(respectively max fy (') < max fg,,(z')). (1)
i new i

Informally, Lemma 2.T|enables determination of the minimum number of Monte Carlo samples N
required to guarantee that =’ is robust for at least a fraction R of distributional shifts with probability
.. For example, setting & = 0.999 and R = 0.995 yields N = log(1 — o) =~ 1378. If the lower
bound of the reachable set, computed as min; faﬁ;}i (z'), exceeds a decision threshold (e.g., 0.5), we

can assert with confidence o = 0.999 that 2’ remains valid for at least R = 0.995 of plausible data
shifts.

Summary This framework leverages linearized Wasserstein perturbations to generate plausible
future data shifts, fine-tunes the model efficiently, and uses Monte Carlo estimation to quantify
counterfactual robustness. The method balances computational tractability with realistic assessment
of counterfactual validity under potential distributional changes. In summary, Lemma [2.1] shows that
with probability = 1 — R™, a candidate counterfactual =’ remains valid under at least a fraction R
of plausible model realizations, thus providing a probabilistic robustness guarantee.

2.1.1 Bounding Model Parameter Shifts under Wasserstein Perturbations

We can formally show that the model parameter shift induced by a data perturbation within a
Wasserstein ball is bounded. Let the original parameters be foq = arg ming = Z?:1 Uz, y;;0) +
2116115 (v > 0 is the weight decay parameter), and let the perturbed data be i = x5 + dj,
subject to the linearized Wasserstein constraint - 37, ¢(2j, 25 + 6;) = & 37 [[6;]|5 < e, The
updated parameters are fhey, = arg ming = Do Uy + 65,55 0) + 2110]|3- Since the loss (cross-
entropy in our experiments) is y-strongly convex (weight decay) in 6, we have the standard stability

bound: [|fhew — botall2 < 1 ||VoEonr, (2, 5 001a)] — VoE, 5 [z, y; 901d)”|2- If the gradient

old
Vol(z,y;0) is L,-Lipschitz in z, then HV@IEJCNPW [0(x,y;0010)] — VgIEwNPMd[@(a?,y;Hold)}HQ <
L, \/¢,. Combining these inequalities yields the desired bound on parameter shifts: ||fnew — oiall2 <
% \/€z (see Appendix). This shows that plausible data shifts within a Wasserstein ball induce
bounded changes in model parameters , justifying the Monte Carlo sampling of perturbed models
oﬁfe)w in our counterfactual robustness estimation.

Our method improves upon direct model parameter-bounding approaches in several ways. By

formulating robustness in terms of Wasserstein-bounded shifts Pyey € B, (Pold), domain experts
can explore probable perturbations with data constraints. Unlike traditional methods that require
estimating the maximal parameter shift, our framework derives bounds naturally from the Wasserstein
radius €, and fine-tuning dynamics, making guarantees more flexible. Empirically, counterfactuals
generated in this way exhibit lower ¢; proximity costs, and our probabilistic formulation (Lemma[2.T))
further enables risk calibration through thresholds (R, «). In summary, the framework can be viewed
as a data-driven generalization of model parameter bounding, ensuring robust CEs while providing
additional flexibility and control over plausible shifts.
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3 Experiments

Eyperiment Setup We evaluate the quality of our generated counterfactuals regarding validity, prox-
imity and plausibility. For validity we measure the validity of the base model (v1) and the shifted
model (v2), also known as Validity after Retraining|Jiang et al.,|2024]]. Proximity is evaluated with
the ¢;-distance and plausibility is assessed with Local Outlier Factor (LOF) [Breunig et al., | 2000],
that quantifies the outlierness of a data point, thereby assessing its closeness to the data manifold. We
consider four datasets: Credit [Dua and Graff, [2019], Small Business Administration (SBA) [Li et al.,
2018|], Diabetes [[Smith et al., [1988]], and Adult [Dua and Graff, 2019]]. The first two datasets exhibit
known distribution shifts [Upadhyay et al. [2021]]. We primarily compare our method with Jiang
et al.[[2023] (referred to as RF), which provides a worst-case guarantee for robust CEs against model
changes. Additionally, we compare it with APAS [Marzari et al.,[2024], a probabilistic framework
designed to ensure robustness across probable model changes. We set a = 0.999 and R = 0.995,
yielding 1,378 realizations for robustness testing. To search for CEs within the robustness frameworks
of RF, APAS, and our method, we evaluate the following state-of-the-art (SOTA) algorithms: Proto
[Van Looveren and Klaise), |2021]], which generates interpretable CEs by guiding the search via
gradient descent with class prototypes, and MILP, proposed by Mohammadi et al.|[2021]], which
employs Mixed-Integer Linear Programming. Additionally, we compare our method with ROAR
[Upadhyay et al [2021]], which enhances algorithmic recourse robustness against model changes
using an adversarial training-inspired approach. The networks in our experiments are built with
Pytorch [Paszke et al.,2019]]. For further experimental details, please refer to Appendix.

Our method demonstrates comparable validity (v2) to RF and APAS while achieving the best
performance in terms of proximity (¢1). Both RF and APAS guarantee the maximal model change,
Omaz- However, the use of Interval Neural Networks (INNs) in RF and APAS can lead to both
overestimation and underestimation of robustness, depending on how 9,,,,, is defined. This, in turn,
may result in misleading robustness guarantees. Rather than constraining the model parameters,
we focus on modeling potential data shifts. In particular, we set €, based on historical data (see
Appendix), which eliminates the need to constrain model parameter changes or perform a complex
dmax search, while still providing an effective and flexible guidance mechanism for CE searches.
As a result, our method achieves improved proximity, leading to better (lower) ¢; scores. Code is
available at https://anonymous.4open.science/r/robustness_ce-673F.

Diabetes Adult SBA Credit
vl v2 l; lof vl v2 l; lof vl v2 l; lof vl v2 l; lof

Proto-APAS 100% 95% 0.063 1.00 100% 95% 0.036 1.00 90% 85% 0.008 0.60 100% 96% 0.112 -1.00
Proto-RF 100% 96% 0.104 1.00 100% 100% 0.069 1.00 90% 88% 0.011 -0.02 82% 80% 0.300 -1.00
Proto-Ours 100% 96% 0.024 1.00 100% 100% 0.019 1.00 90% 88% 0.007 0.53 92% 90% 0.019 -1.00

MILP-APAS 100% 94% 0.049 0.96 100% 91% 0.032 1.00 92% 81% 0.007 0.56 91% 85% 0.024 1.00
MILP-RF 100% 100% 0.212 -0.48 100% 97% 0.059 1.00 90% 91% 0.018 -0.57 91% 90% 0.031 1.00
MILP-Ours 100% 100% 0.021 0.80 100% 100% 0.023 1.00 100% 97% 0.006 -0.88 100% 93% 0.017 1.00

ROAR 82% 40% 0.076 095 78% 719% 0.071 1.00 82% 79% 0.035 -0.80 62% 55% 0.027 1.00
Table 1: Performance comparison of different methods across datasets.

4 Conclusion and Future Work

We introduced a data-driven framework for counterfactual robustness under distributional uncertainty,
leveraging linearized Wasserstein perturbations to provide probabilistic robustness guarantees for
counterfactual explanations. Our results show that this approach generalizes classical parameter-
bounding techniques while offering greater flexibility. By directly modeling plausible data shifts
instead of constraining model parameters, we eliminate the complex ., search process, provide
more faithful robustness guarantees, and achieve improved proximity in counterfactual explanations.

Future works can target incorporating richer models of distributional change, such as adversarial
perturbations, demographic or subpopulation shifts, and temporally evolving datasets, would enable
finer-grained and more realistic robustness guarantees.
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A Appendix

A.1 Proof

Let the original (empirical) regularized objective be Ro1q(f) := = 3" i1 Uz, y50) + 3110 |2, and
denote its minimizer by 0,q := arg ming Ro14(6). Let the perturbed inputs be 23" = x; + 0
and define the perturbed empirical objective Ryew (6) := + > Uy + 85, y53 9) + 2116]13, with
minimizer 6oy := arg ming Ryew (6).

We work under the linearized Wasservtein (squared) con straint

fZ c(xj,x; + 6;) Zné I3 < ea,

i.e. the ground cost is ¢(z, z') = H:c — 2|3 and &, bounds the mean squared displacement.
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Assumptions.

1. The per-sample loss ¢(x, y; 0) is differentiable in 6.
2. The regularization parameter satisfies v > 0, S0 Ry and Ry1q are ~y-strongly convex in 6.

3. The parameter gradient is Lipschitz in the input: there exists L, > 0 such that for all
‘7"7 x/’ y7 9’
IVol(a',y;0) — Vol(w,y;0)|2 < Lallz" — z]l2.

. Ly,

Theorem 1. Under the above assumptions, ||6new — Oold |2 < == \/Es

Proof. By first-order optimality of the minimizers we have
v}zold(eold) = Oa VRnew(enew) =0.

Consider the function R,e. Strong convexity of R, implies the monotonicity inequality

<VRnew(9new) - v‘Rnew(gold)y enew - 901d> Z Y ||9new - 901d||§-
Using V Ryew (Onew) = 0 this becomes

—(V Ruew(0old), Onew — Oota) = 7 [|fnew — Oorall3-
Applying Cauchy—Schwarz yields
[V Ruew (Bo1a) ]2 * [|0new — Ootallz = [[fnew — botall3-
If Opew # Oo1a We can divide both sides by ||fnew — Bo1d||2 to obtain the basic stability inequality

1
||9new - 901d||2 S ; HVRnew(eold)”Z

Using V Ro1d(6o1a) = 0 we rewrite the right-hand side as
|| v-Rnew (aold) H2 = ||VRnew(901d) - VRold (gold) ||2

Expanding the gradients of the empirical risks gives

|V Ruew (Bora) — V Rota (fo1a) |
1 n
= Hﬁ Z (Vol(x; + 65,953 001a) — Vol(z;,y;5001a)) H2
j=1
Applying the triangle inequality followed by the Lipschitz assumption yields

1 n
|V Ruew (Bora) — VRota (fo1a)||, < - Z |Vol(x; + 65,55 001a) — Vol(xj, Y55 0o1a) ||,

Jj=1

I 1o
<=3 Laldille = Lo - D Il
j=1 j=1
Finally, by Cauchy—Schwarz (or RMS—AM inequality),
1 n
— Ay <
LS Il <
j=1

where we used the linearized Wasserstein constraint % > y 16]13 < e,. Combining the last three
displays gives the desired bound

1 n
n Z ”(SJH% < Vea,
Jj=1

L,
||9new - eold||2 S 7 VEx-



282

283
284
285

287

288

290
291

292
293
294
295
296
297

299
300
301
302
303
304

Diabetes Adult SBA  Credit

APAS 12.45 23.67 35.89 47.12
Ours 1.23 256 378 4.90

Table 2: Average time (s) required to generate one CE using both MILP-APAS and MILP-Ours

A.2 Experimental Details

Our networks are trained on an Intel(r) Core(TM) i7-8700 CPU.The iterative procedure of Algorithm
2 generates CEs of increasing distance until the target robustness is satisfied. For Proto, the distance
of CEs is increased by iteratively amplifying the influence of the loss term related to CE validity. For
MILP, the probability of the classifier’s output for subsequent CEs is required to increase at each
iteration (all test instances are classified as class 0, with the desired class being class 1).

To ensure fair comparability, weight decay is applied in all training processes. Table 2 compares the
efficiency of CE generation time (in seconds) for two methods. While APAS estimates ,,,4, more
accurately than RF [Marzari et al., 2024]], it requires searching for a distinct 8, for each CE z/,
which substantially reduces efficiency. In contrast, our method improves computational efficiency.

To introduce data shifts, we randomly shuffle the dataset and split it into two equal halves, denoted as
D; and Ds. The base model (Feed Forward Neural Network) is trained on D;, while model updates
are simulated through incremental retraining on Dy, mimicking future model updates due to data
shifts. In/Jiang et al.| [2023|], fine-tuning is performed once a certain proportion (10%) of D5 is
available via random sampling. In contrast, we use the newly arrived portion of Dy to estimate the
value of €, by calculating the Wasserstein distance between datasets. To evaluate the robustness of
CEs, we consider two validity metrics: v1 — the percentage of CEs that remain valid on the original
base model; v2 — the percentage of CEs that remain valid after the model is retrained on both D; and
Ds. For each dataset, we generate 100 CEs and assess their quality based on: Proximity — measured
using the ¢; distance and Plausibility — measured using the local outlier factor (lof), which evaluates
whether an instance lies within the data manifold by analyzing local density [Breunig et al., 2000]
(+1 for inliers, -1 otherwise). The ¢; distance and lof scores are averaged over the generated CEs,
and the experimental results are summarized in Table|T]
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