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Abstract

Counterfactual explanations (CEs) are a powerful method for interpreting machine1

learning models, but CEs might be not valid when the model is updated due2

to distribution shifts in the underlying data. Existing approaches to robust CEs3

often impose explicit bounds on model parameters to ensure stability, but such4

bounds can be difficult to estimate and overly restrictive in practice. In this work,5

we propose a data shift-driven probabilistic framework for robust counterfactual6

explanations with plausible data shift modeling via a Wasserstein ball. We formalize7

a linearized Wasserstein perturbation scheme that captures realistic distributional8

changes which enables Monte Carlo estimation of CE robustness probabilities9

with domain-specific data shift tolerances. Theoretical analysis reveals that our10

framework is equivalent in spirit to model parameter bounding approaches but11

offers greater flexibility, avoids the need to estimate maximal model parameter12

shifts. Experiments on real-world datasets demonstrate that the proposed method13

maintains high robustness of CEs under plausible distribution shifts, outperforming14

conventional parameter-bounding techniques in both validity and proximity costs.15

1 Introduction16

Counterfactual explanations (CEs) have emerged as a crucial tool for interpreting machine learning17

(ML) models by offering insights into examples of changed input features leading to a different18

prediction [Wachter et al., 2017]. In applications such as finance, healthcare, and hiring, these19

explanations provide actionable feedback, enabling users to understand and potentially influence20

automated decisions [Karimi et al., 2020, Ustun et al., 2019]. However, a critical challenge limiting the21

practicality of CEs is their lack of robustness to data shifts. As real-world data distributions evolve over22

time due to factors such as demographic changes, policy updates, or external perturbations [Blodgett23

et al., 2016, Beery et al., 2021], CEs that were once valid may become obsolete or misleading. This24

fragility undermines the trustworthiness and utility of CEs in dynamic environments.25

Consider a loan application scenario: if a model is retrained while an applicant is actively improving26

their credit profile, a non-robust CE may still indicate approval, despite the updated features warranting27

rejection. Such inconsistencies could expose institutions to liability, as prior guidance may conflict28

with the revised outcome. Ensuring that a CE remains valid after model updates is thus critical for29

maintaining actionable and reliable explanations.30

Existing approaches to CEs primarily focus on optimizing criteria such as sparsity, proximity, and31

feasibility [Wachter et al., 2017, Verma et al., 2020, Karimi et al., 2021]. While some recent works32

attempt to incorporate robustness, they often fail to accurately model realistic data shifts that occur in33

practice, even though some assume only minor perturbations to the data. Consequently, these methods34

struggle to provide meaningful guarantees on the reliability of CEs in real-world deployments.35

In this work, we propose a novel framework that explicitly models possible future data shifts to36

ensure the robustness of CEs. Rather than relying on generic worst-case perturbations or static37

assumptions about distributional changes, we adopt a structured and flexible approach based on38

Wasserstein-bounded data shifts. By linking plausible data perturbations to bounded model parameter39
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changes under fine-tuning, our method allows for probabilistic guarantees on the validity of CEs.40

This approach not only maintains robustness but also preserves lower proximity, providing a practical41

and principled solution for reliable CEs.42

Related Works Robustness in CEs has been explored from multiple angles, including robustness43

against noisy execution, input variations, model multiplicity, and, what we focus on, model changes.44

For a comprehensive overview, we refer to a recent survey [Jiang et al., 2024].45

Model parameter updates typically occur when, the model is retrained on updated data [Rawal46

et al., 2020]. Recent works explore different types of boundaries when assessing model changes,47

encompassing explicit bounds, data shifts, and parameter shifts. Some approaches are based on48

creating CEs that achieve high certainty, i.e., high class scores, to ensure robustness [Dutta et al.,49

2022, Hamman et al., 2023, Jiang et al., 2023], while others include counterfactual data augmentation50

in training [Ferrario and Loi, 2022], or perturbing the covariance matrix of data sampled close to the51

decision boundary to train a linear surrogate [Bui et al., 2022]. Upadhyay et al. [2021] introduce52

the concept of plausible model shifts, constraining parameter updates to perturbations within a53

predefined magnitude. Their proposed method ROAR, minimizes the loss over the worst plausible54

model shift to generate CEs. Thereby the possibly nonlinear model is approximated with a linear55

surrogate. Similar to ROAR, AP∆S [Marzari et al., 2024] samples plausible model shifts, unlike our56

approach where we sample data distributions. MILP [Mohammadi et al., 2021] is based on linearly57

approximating ReLu activated neural networks to compute bounds on the hidden units employing58

Mixed-Integer-Programming. A key limitation to these approaches is their assumption that model59

changes stem from minor data shifts, without assessing data shifts explicitly. Nguyen et al. [2022]60

assess model shifts by adversarially perturbing the data using a Gaussian mixture ambiguity set and61

Wasserstein distance. The data distribution is hereby modeled with kernel density estimation, which62

is prone to suffer from the curse of dimensionality. Our method proactively models the probable63

data shifts. Furthermore, while many works model-specific, e.g., neural networks, ours is a post-hoc64

approach that can be employed to enhance robustness in existing CE generation methods.65

Wasserstein distributionally robust optimization (WDRO) allows decision making in uncertain cases,66

thereby not only accounting for an initial distribution but also for distributions within its neighborhood,67

measured with a Wasserstein ball [Kuhn et al., 2019]. Wasserstein distance, rooted in optimal68

transport theory, provides a meaningful metric for comparing probability distributions by considering69

the geometry of the underlying space. Intuitively, it measures the cost necessary to transport one70

distribution to another. WDRO has gained popularity in different ML disciplines, including adversarial71

training [Liu et al., 2025], causality and fairness [Ehyaei et al., 2024].72

2 Method73

Problem Setup Let P̂old denote the empirical distribution of historical data, and let fθold be a74

pre-trained classifier. For a given input x ∈ X with fθold(x) ̸= ytarget and a desired target class ytarget, a75

counterfactual x′ is an alternative input such that fθold(x
′) = ytarget. We aim to ensure that x′ remains76

valid even under plausible future data shifts. To formalize this, we define a Wasserstein ball around77

P̂old: Bεx(P̂old) = {Pnew : Wp(Pnew, P̂old) ≤ εx}, where Wp is the Wasserstein distance with cost78

c(·, ·), and εx is a radius determined from historical data or domain knowledge. For p = 2, Wp is the79

2-Wasserstein distance. For each plausible data distribution Pnew ∈ Bεx(P̂old), fine-tuning the model80

yields updated parameters: θnew = argminθ Ex∼Pnew [ℓ(x; θ)], where ℓ(x; θ) is the classification81

loss (cross-entropy in our experiments) of a model f . This defines a corresponding parameter set:82

Θε = {θnew : Pnew ∈ Bεx(P̂old)}.83

2.1 Robust Counterfactuals under Wasserstein Perturbations84

Linearized Wasserstein Perturbation. For small shifts, we approximate Pnew via a linearized perturba-85

tion of each data point: xnew
j = xj + δj , j = 1, . . . , n, subject to the linearized Wasserstein constraint:86

1
n

∑n
j=1 c(xj , xj + δj) ≤ εx. This first-order approximation allows efficient sampling of plausible87

future data shifts while remaining within the Wasserstein ball.88

Monte Carlo Sampling and Fine-Tuning. To evaluate robustness, we generate N Monte Carlo samples
of perturbations {δ(i)j }nj=1, with i = 1, . . . , N . For each perturbed dataset, we fine-tune the model
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parameters θold by performing one or a few gradient steps:

θ(i)new = θold − η∇θ

 1

n

n∑
j=1

ℓ
(
fθ(xj + δ

(i)
j ), yj

) ,

where ℓ is the model loss function and η is the learning rate. This procedure yields N perturbed89

models {θ(i)new}Ni=1, representing plausible shifts in the decision boundary.90

Counterfactual Robustness Estimation. We formalize robustness under sampled model shifts using91

the following lemma [Marzari et al., 2024]:92

Lemma 2.1. Fix an integer N > 0 and a robustness threshold R ∈ (0, 1). Suppose a candidate93

counterfactual x′ is evaluated under N independently sampled perturbed models {θ(i)new}Ni=1. Then,94

with probability α = 1−RN , the candidate x′ remains valid under at least a fraction R of future95

model realizations, in the sense that96

min
i

f
θ
(i)
new
(x′) ≥ min

i
fθold(x

′)(
respectively max

i
f
θ
(i)
new
(x′) ≤ max

i
fθold(x

′)
)
. (1)

Informally, Lemma 2.1 enables determination of the minimum number of Monte Carlo samples N97

required to guarantee that x′ is robust for at least a fraction R of distributional shifts with probability98

α. For example, setting α = 0.999 and R = 0.995 yields N = logR(1 − α) ≈ 1378. If the lower99

bound of the reachable set, computed as mini fθ(i)
new
(x′), exceeds a decision threshold (e.g., 0.5), we100

can assert with confidence α = 0.999 that x′ remains valid for at least R = 0.995 of plausible data101

shifts.102

Summary This framework leverages linearized Wasserstein perturbations to generate plausible103

future data shifts, fine-tunes the model efficiently, and uses Monte Carlo estimation to quantify104

counterfactual robustness. The method balances computational tractability with realistic assessment105

of counterfactual validity under potential distributional changes. In summary, Lemma 2.1 shows that106

with probability α = 1−RN , a candidate counterfactual x′ remains valid under at least a fraction R107

of plausible model realizations, thus providing a probabilistic robustness guarantee.108

2.1.1 Bounding Model Parameter Shifts under Wasserstein Perturbations109

We can formally show that the model parameter shift induced by a data perturbation within a110

Wasserstein ball is bounded. Let the original parameters be θold = argminθ
1
n

∑n
j=1 ℓ(xj , yj ; θ) +111

γ
2 ∥θ∥

2
2 (γ > 0 is the weight decay parameter), and let the perturbed data be xnew

j = xj + δj ,112

subject to the linearized Wasserstein constraint 1
n

∑n
j=1 c(xj , xj + δj) =

1
n

∑n
j=1 ∥δj∥22 ≤ εx. The113

updated parameters are θnew = argminθ
1
n

∑n
j=1 ℓ(xj + δj , yj ; θ) +

γ
2 ∥θ∥

2
2. Since the loss (cross-114

entropy in our experiments) is γ-strongly convex (weight decay) in θ, we have the standard stability115

bound: ∥θnew − θold∥2 ≤ 1
γ

∥∥∇θEx∼Pnew [ℓ(x, y; θold)] − ∇θEx∼P̂old
[ℓ(x, y; θold)]

∥∥
2
. If the gradient116

∇θℓ(x, y; θ) is Lx-Lipschitz in x, then
∥∥∇θEx∼Pnew [ℓ(x, y; θold)] − ∇θEx∼P̂old

[ℓ(x, y; θold)]
∥∥
2
≤117

Lx
√
εx. Combining these inequalities yields the desired bound on parameter shifts: ∥θnew − θold∥2 ≤118

Lx

γ

√
εx (see Appendix). This shows that plausible data shifts within a Wasserstein ball induce119

bounded changes in model parameters , justifying the Monte Carlo sampling of perturbed models120

θ
(i)
new in our counterfactual robustness estimation.121

Our method improves upon direct model parameter-bounding approaches in several ways. By122

formulating robustness in terms of Wasserstein-bounded shifts Pnew ∈ Bεx(P̂old), domain experts123

can explore probable perturbations with data constraints. Unlike traditional methods that require124

estimating the maximal parameter shift, our framework derives bounds naturally from the Wasserstein125

radius εx and fine-tuning dynamics, making guarantees more flexible. Empirically, counterfactuals126

generated in this way exhibit lower ℓ1 proximity costs, and our probabilistic formulation (Lemma 2.1)127

further enables risk calibration through thresholds (R,α). In summary, the framework can be viewed128

as a data-driven generalization of model parameter bounding, ensuring robust CEs while providing129

additional flexibility and control over plausible shifts.130

3



3 Experiments131

Eyperiment Setup We evaluate the quality of our generated counterfactuals regarding validity, prox-132

imity and plausibility. For validity we measure the validity of the base model (v1) and the shifted133

model (v2), also known as Validity after Retraining[Jiang et al., 2024]. Proximity is evaluated with134

the ℓ1-distance and plausibility is assessed with Local Outlier Factor (LOF) [Breunig et al., 2000],135

that quantifies the outlierness of a data point, thereby assessing its closeness to the data manifold. We136

consider four datasets: Credit [Dua and Graff, 2019], Small Business Administration (SBA) [Li et al.,137

2018], Diabetes [Smith et al., 1988], and Adult [Dua and Graff, 2019]. The first two datasets exhibit138

known distribution shifts [Upadhyay et al., 2021]. We primarily compare our method with Jiang139

et al. [2023] (referred to as RF), which provides a worst-case guarantee for robust CEs against model140

changes. Additionally, we compare it with AP∆S [Marzari et al., 2024], a probabilistic framework141

designed to ensure robustness across probable model changes. We set α = 0.999 and R = 0.995,142

yielding 1,378 realizations for robustness testing. To search for CEs within the robustness frameworks143

of RF, AP∆S, and our method, we evaluate the following state-of-the-art (SOTA) algorithms: Proto144

[Van Looveren and Klaise, 2021], which generates interpretable CEs by guiding the search via145

gradient descent with class prototypes, and MILP, proposed by Mohammadi et al. [2021], which146

employs Mixed-Integer Linear Programming. Additionally, we compare our method with ROAR147

[Upadhyay et al., 2021], which enhances algorithmic recourse robustness against model changes148

using an adversarial training-inspired approach. The networks in our experiments are built with149

Pytorch [Paszke et al., 2019]. For further experimental details, please refer to Appendix.150

Our method demonstrates comparable validity (v2) to RF and AP∆S while achieving the best151

performance in terms of proximity (ℓ1). Both RF and AP∆S guarantee the maximal model change,152

δmax. However, the use of Interval Neural Networks (INNs) in RF and AP∆S can lead to both153

overestimation and underestimation of robustness, depending on how δmax is defined. This, in turn,154

may result in misleading robustness guarantees. Rather than constraining the model parameters,155

we focus on modeling potential data shifts. In particular, we set εx based on historical data (see156

Appendix), which eliminates the need to constrain model parameter changes or perform a complex157

δmax search, while still providing an effective and flexible guidance mechanism for CE searches.158

As a result, our method achieves improved proximity, leading to better (lower) ℓ1 scores. Code is159

available at https://anonymous.4open.science/r/robustness_ce-673F.160

Diabetes Adult SBA Credit

v1 v2 ℓ1 lof v1 v2 ℓ1 lof v1 v2 ℓ1 lof v1 v2 ℓ1 lof

Proto-AP∆S 100% 95% 0.063 1.00 100% 95% 0.036 1.00 90% 85% 0.008 0.60 100% 96% 0.112 -1.00
Proto-RF 100% 96% 0.104 1.00 100% 100% 0.069 1.00 90% 88% 0.011 -0.02 82% 80% 0.300 -1.00
Proto-Ours 100% 96% 0.024 1.00 100% 100% 0.019 1.00 90% 88% 0.007 0.53 92% 90% 0.019 -1.00

MILP-AP∆S 100% 94% 0.049 0.96 100% 91% 0.032 1.00 92% 81% 0.007 0.56 91% 85% 0.024 1.00
MILP-RF 100% 100% 0.212 -0.48 100% 97% 0.059 1.00 90% 91% 0.018 -0.57 91% 90% 0.031 1.00
MILP-Ours 100% 100% 0.021 0.80 100% 100% 0.023 1.00 100% 97% 0.006 -0.88 100% 93% 0.017 1.00

ROAR 82% 40% 0.076 0.95 78% 79% 0.071 1.00 82% 79% 0.035 -0.80 62% 55% 0.027 1.00

Table 1: Performance comparison of different methods across datasets.

4 Conclusion and Future Work161

We introduced a data-driven framework for counterfactual robustness under distributional uncertainty,162

leveraging linearized Wasserstein perturbations to provide probabilistic robustness guarantees for163

counterfactual explanations. Our results show that this approach generalizes classical parameter-164

bounding techniques while offering greater flexibility. By directly modeling plausible data shifts165

instead of constraining model parameters, we eliminate the complex δmax search process, provide166

more faithful robustness guarantees, and achieve improved proximity in counterfactual explanations.167

Future works can target incorporating richer models of distributional change, such as adversarial168

perturbations, demographic or subpopulation shifts, and temporally evolving datasets, would enable169

finer-grained and more realistic robustness guarantees.170

4

https://anonymous.4open.science/r/robustness_ce-673F


References171

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening172

the black box: Automated decisions and the gdpr. Harvard Journal of Law & Technology, 31(2):173

841–887, 2017.174

Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and Isabel Valera. Model-agnostic counterfactual175

explanations for consequential decisions. In AISTATS, volume 108 of Proceedings of Machine176

Learning Research, pages 895–905. PMLR, 2020.177

Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In FAT,178

pages 10–19. ACM, 2019.179

Su Lin Blodgett, Lisa Green, and Brendan O’Connor. Demographic dialectal variation in social180

media: A case study of african-american english. In Proceedings of the 2016 Conference on181

Empirical Methods in Natural Language Processing (EMNLP), pages 1119–1130, 2016.182

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of the183

European Conference on Computer Vision (ECCV), pages 456–473, 2021.184

Sahil Verma, John P. Dickerson, and Keenan Hines. Counterfactual explanations for machine learning:185

A review. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES), pages186

86–92, 2020.187

Amir-Hossein Karimi, Jan von Kügelgen, Bernhard Schölkopf, and Isabel Valera. Algorithmic188

recourse: From counterfactual explanations to interventions. In Proceedings of the ACM Conference189

on Fairness, Accountability, and Transparency (FAccT), pages 353–362, 2021.190

Junqi Jiang, Francesco Leofante, Antonio Rago, and Francesca Toni. Robust counterfactual expla-191

nations in machine learning: A survey. In Kate Larson, editor, Proceedings of the Thirty-Third192

International Joint Conference on Artificial Intelligence, IJCAI-24, pages 8086–8094. International193

Joint Conferences on Artificial Intelligence Organization, 8 2024. doi: 10.24963/ijcai.2024/894.194

URL https://doi.org/10.24963/ijcai.2024/894. Survey Track.195

Kaivalya Rawal, Ece Kamar, and Himabindu Lakkaraju. Algorithmic recourse in the wild: Under-196

standing the impact of data and model shifts. arXiv preprint arXiv:2012.11788, 2020.197

Sanghamitra Dutta, Jason Long, Saumitra Mishra, Cecilia Tilli, and Daniele Magazzeni. Robust198

counterfactual explanations for tree-based ensembles. In International conference on machine199

learning, pages 5742–5756. PMLR, 2022.200

Faisal Hamman, Erfaun Noorani, Saumitra Mishra, Daniele Magazzeni, and Sanghamitra Dutta. Ro-201

bust counterfactual explanations for neural networks with probabilistic guarantees. In Proceedings202

of the 40th International Conference on Machine Learning (ICML), pages 12351–12367, 2023.203

Junqi Jiang, Francesco Leofante, Antonio Rago, and Francesca Toni. Formalising the robustness of204

counterfactual explanations for neural networks. In AAAI, pages 14901–14909. AAAI Press, 2023.205

Andrea Ferrario and Michele Loi. The robustness of counterfactual explanations over time. IEEE206

access, 10:82736–82750, 2022.207

Ngoc Bui, Duy Nguyen, and Viet Anh Nguyen. Counterfactual plans under distributional ambiguity.208

In International Conference on Learning Representations, 2022. URL https://openreview.209

net/forum?id=noaG7SrPVK0.210

Sohini Upadhyay, Shalmali Joshi, and Himabindu Lakkaraju. Towards robust and reliable algorithmic211

recourse. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jen-212

nifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,213

pages 16926–16937, 2021.214

Luca Marzari, Francesco Leofante, Ferdinando Cicalese, and Alessandro Farinelli. Rigorous proba-215

bilistic guarantees for robust counterfactual explanations. In Proceedings of the 26th European216

Conference on Artificial Intelligence (ECAI), pages 1059–1066, 2024.217

5

https://doi.org/10.24963/ijcai.2024/894
https://openreview.net/forum?id=noaG7SrPVK0
https://openreview.net/forum?id=noaG7SrPVK0
https://openreview.net/forum?id=noaG7SrPVK0


Kiarash Mohammadi, Amir-Hossein Karimi, Gilles Barthe, and Isabel Valera. Scaling guarantees218

for nearest counterfactual explanations. In Proceedings of the 2021 ACM Conference on Fairness,219

Accountability, and Transparency (ACM FAccT 2021), pages 1234–1244, 2021. doi: 10.1145/220

3461702.3462514. URL https://doi.org/10.1145/3461702.3462514.221

Tuan-Duy Hien Nguyen, Ngoc Bui, Duy Nguyen, Man-Chung Yue, and Viet Anh Nguyen. Robust222

bayesian recourse. In The 38th Conference on Uncertainty in Artificial Intelligence, 2022. URL223

https://openreview.net/forum?id=BqIM6SIoqgq.224

Daniel Kuhn, Peyman Mohajerin Esfahani, Viet Anh Nguyen, and Soroosh Shafieezadeh-Abadeh.225

Wasserstein distributionally robust optimization: Theory and applications in machine learning. In226

Operations research & management science in the age of analytics, pages 130–166. Informs, 2019.227

Shuang Liu, Yihan Wang, Yifan Zhu, Yibo Miao, and Xiao-Shan Gao. Provable robust overfitting228

mitigation in wasserstein distributionally robust optimization. In The Thirteenth International229

Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=230

sq5LLWk5SN.231

Ahmad Reza Ehyaei, Golnoosh Farnadi, and Samira Samadi. Wasserstein distributionally robust232

optimization through the lens of structural causal models and individual fairness. In The Thirty-233

eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://234

openreview.net/forum?id=piOzFx9whU.235

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: Identifying density-236

based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on237

Management of Data, pages 93–104. ACM, 2000.238

Dheeru Dua and Casey Graff. Uci machine learning repository, 2019. URL http://archive.ics.239

uci.edu/ml.240

Min Li, Amy Mickel, and Stanley Taylor. Should this loan be approved or denied?: A large241

dataset with class assignment guidelines. Journal of Statistics Education, 26(1):55–66, 2018.242

doi: 10.1080/10691898.2018.1434342. URL https://www.tandfonline.com/doi/full/10.243

1080/10691898.2018.1434342.244

Jack W. Smith, James E. Everhart, William C. Dickson, William C. Knowler, and Richard S. Johannes.245

Using the adap learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the246

Annual Symposium on Computer Application in Medical Care, pages 261–265. American Medical247

Informatics Association, 1988.248

Arnaud Van Looveren and Janis Klaise. Interpretable counterfactual explanations guided by proto-249

types. arXiv preprint arXiv:1907.02584, 2021. URL https://arxiv.org/abs/1907.02584.250

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,251

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas252

Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,253

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-254

performance deep learning library. In NeurIPS, pages 8024–8035, 2019.255

A Appendix256

A.1 Proof257

Let the original (empirical) regularized objective be Rold(θ) :=
1
n

∑n
j=1 ℓ(xj , yj ; θ) +

γ
2 ∥θ∥

2
2, and258

denote its minimizer by θold := argminθ Rold(θ). Let the perturbed inputs be xnew
j = xj + δj259

and define the perturbed empirical objective Rnew(θ) :=
1
n

∑n
j=1 ℓ(xj + δj , yj ; θ) +

γ
2 ∥θ∥

2
2, with260

minimizer θnew := argminθ Rnew(θ).261

We work under the linearized Wasserstein (squared) constraint262

1

n

n∑
j=1

c(xj , xj + δj) =
1

n

n∑
j=1

∥δj∥22 ≤ εx,

i.e. the ground cost is c(x, x′) = ∥x− x′∥22 and εx bounds the mean squared displacement.263
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Assumptions.264

1. The per-sample loss ℓ(x, y; θ) is differentiable in θ.265

2. The regularization parameter satisfies γ > 0, so Rnew and Rold are γ-strongly convex in θ.266

3. The parameter gradient is Lipschitz in the input: there exists Lx > 0 such that for all267

x, x′, y, θ,268

∥∇θℓ(x
′, y; θ)−∇θℓ(x, y; θ)∥2 ≤ Lx∥x′ − x∥2.

Theorem 1. Under the above assumptions, ∥θnew − θold∥2 ≤ Lx

γ

√
εx.269

Proof. By first-order optimality of the minimizers we have270

∇Rold(θold) = 0, ∇Rnew(θnew) = 0.

Consider the function Rnew. Strong convexity of Rnew implies the monotonicity inequality271

⟨∇Rnew(θnew)−∇Rnew(θold), θnew − θold⟩ ≥ γ ∥θnew − θold∥22.

Using ∇Rnew(θnew) = 0 this becomes272

−
〈
∇Rnew(θold), θnew − θold

〉
≥ γ ∥θnew − θold∥22.

Applying Cauchy–Schwarz yields273

∥∇Rnew(θold)∥2 · ∥θnew − θold∥2 ≥ γ ∥θnew − θold∥22.

If θnew ̸= θold we can divide both sides by ∥θnew − θold∥2 to obtain the basic stability inequality274

∥θnew − θold∥2 ≤ 1

γ
∥∇Rnew(θold)∥2.

Using ∇Rold(θold) = 0 we rewrite the right-hand side as275

∥∇Rnew(θold)∥2 =
∥∥∇Rnew(θold)−∇Rold(θold)

∥∥
2
.

Expanding the gradients of the empirical risks gives276 ∥∥∇Rnew(θold)−∇Rold(θold)
∥∥
2

=
∥∥∥ 1
n

n∑
j=1

(
∇θℓ(xj + δj , yj ; θold)−∇θℓ(xj , yj ; θold)

)∥∥∥
2
.

Applying the triangle inequality followed by the Lipschitz assumption yields277 ∥∥∇Rnew(θold)−∇Rold(θold)
∥∥
2
≤ 1

n

n∑
j=1

∥∥∇θℓ(xj + δj , yj ; θold)−∇θℓ(xj , yj ; θold)
∥∥
2

≤ 1

n

n∑
j=1

Lx∥δj∥2 = Lx · 1
n

n∑
j=1

∥δj∥2.

Finally, by Cauchy–Schwarz (or RMS–AM inequality),278

1

n

n∑
j=1

∥δj∥2 ≤

√√√√ 1

n

n∑
j=1

∥δj∥22 ≤
√
εx,

where we used the linearized Wasserstein constraint 1
n

∑
j ∥δj∥22 ≤ εx. Combining the last three279

displays gives the desired bound280

∥θnew − θold∥2 ≤ Lx

γ

√
εx.

281
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Diabetes Adult SBA Credit

AP∆S 12.45 23.67 35.89 47.12
Ours 1.23 2.56 3.78 4.90

Table 2: Average time (s) required to generate one CE using both MILP-AP∆S and MILP-Ours

A.2 Experimental Details282

Our networks are trained on an Intel(r) Core(TM) i7-8700 CPU.The iterative procedure of Algorithm283

2 generates CEs of increasing distance until the target robustness is satisfied. For Proto, the distance284

of CEs is increased by iteratively amplifying the influence of the loss term related to CE validity. For285

MILP, the probability of the classifier’s output for subsequent CEs is required to increase at each286

iteration (all test instances are classified as class 0, with the desired class being class 1).287

To ensure fair comparability, weight decay is applied in all training processes. Table 2 compares the288

efficiency of CE generation time (in seconds) for two methods. While AP∆S estimates δmax more289

accurately than RF [Marzari et al., 2024], it requires searching for a distinct δmax for each CE x′,290

which substantially reduces efficiency. In contrast, our method improves computational efficiency.291

To introduce data shifts, we randomly shuffle the dataset and split it into two equal halves, denoted as292

D1 and D2. The base model (Feed Forward Neural Network) is trained on D1, while model updates293

are simulated through incremental retraining on D2, mimicking future model updates due to data294

shifts. In Jiang et al. [2023], fine-tuning is performed once a certain proportion (10%) of D2 is295

available via random sampling. In contrast, we use the newly arrived portion of D2 to estimate the296

value of εx by calculating the Wasserstein distance between datasets. To evaluate the robustness of297

CEs, we consider two validity metrics: v1 – the percentage of CEs that remain valid on the original298

base model; v2 – the percentage of CEs that remain valid after the model is retrained on both D1 and299

D2. For each dataset, we generate 100 CEs and assess their quality based on: Proximity – measured300

using the ℓ1 distance and Plausibility – measured using the local outlier factor (lof), which evaluates301

whether an instance lies within the data manifold by analyzing local density [Breunig et al., 2000]302

(+1 for inliers, -1 otherwise). The ℓ1 distance and lof scores are averaged over the generated CEs,303

and the experimental results are summarized in Table 1.304

8


	Introduction
	Method
	Robust Counterfactuals under Wasserstein Perturbations
	Bounding Model Parameter Shifts under Wasserstein Perturbations


	Experiments
	Conclusion and Future Work
	Appendix
	Proof
	Experimental Details


