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ABSTRACT

Conditional Semantic Textual Similarity (C-STS) measures the semantic prox-
imity between text segments under a specific condition, thereby overcoming the
ambiguity inherent in traditional STS. However, existing methods are largely con-
fined to discriminative models, failing to fully integrate recent breakthroughs in
the NLP community concerning Large Language Models (LLMs) and Reinforce-
ment Learning (RL). RL is a particularly well-suited paradigm for this task, as it
can directly optimize the non-differentiable Spearman ranking metric and guide
the reasoning process required by C-STS. However, we find that naively apply-
ing listwise RL leads to unstable training and convergence failure, as the model
is overwhelmed by a complex, sparse reward signal. To address this challenge,
we introduce PoLi-RL, a novel Point-to-List Reinforcement Learning framework.
PoLi-RL employs a two-stage curriculum: it first trains the model with simple
pointwise rewards to establish fundamental scoring capabilities, then transitions
to a hybrid reward that combines pointwise, pairwise, and listwise objectives to re-
fine the model’s ability to discern subtle semantic distinctions. Crucially, we pro-
pose an innovative Parallel Slice Ranking Reward (PSRR) mechanism that com-
putes ranking rewards in parallel slices, where each slice comprises same-indexed
completions from different samples. This provides precise, differentiated learning
signals that ensure training stability. On the official C-STS benchmark, PoLi-RL
achieves a Spearman correlation coefficient of 48.18, establishing a new SOTA
for the cross-encoder architecture. As the first work to successfully apply RL to
C-STS, our study introduces a powerful and stable paradigm for training LLMs
on complex, ranking-based conditional judgment tasks. Our code and checkpoints
are available at https://anonymous. 4open.science/r/PoLi—-RIL.

1 INTRODUCTION

As a core research area in Computational Linguistics, Semantic Textual Similarity (STS) (Agirre
et al.,|2013) finds extensive applications across diverse scenarios, including topic modeling, dialogue
systems, text summarization, and agent memory (Tang et al.,2025). However, traditional STS tasks
exhibit inherent ambiguity because similarity definitions are often susceptible to observer bias. To
address this limitation, the Conditional Semantic Textual Similarity (C-STS) task was developed
(Deshpande et al., [2023). By incorporating an explicit natural language condition, C-STS enables
more precise and objective similarity judgments, yet simultaneously imposes higher demands on a
model’s reasoning capabilities. For instance, consider the following two text fragments: “A player
is shooting from beyond the three-point line” and “A player is taking a free throw”. Under the
condition “The activity of the player”, their similarity is high. However, under the condition “The
player’s distance from the basket”, their similarity is low.

Research on this nascent task has yielded three primary paradigms: Bi-encoder (Liu et al [2025),
Tri-encoder (Lin et al., 2024}, and Cross-encoder (L1 et al., 2024)). The Cross-encoder architecture,
which processes the text pair and the guiding condition simultaneously, is the most compatible
with modern generative pre-trained models. Despite this, the integration of C-STS with LLMs
remains in its early stages. Current LLM applications are limited to two main approaches: direct
inference via few-shot prompting, where even state-of-the-art models struggle to achieve satisfactory
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results (Deshpande et al.| [2023)); and their use as feature extractors for generating text embeddings
(Yamada & Zhang] 2025), which is an extension of the discriminative paradigm. To the best of our
knowledge, no prior work has applied an end-to-end LLM-based cross-encoder to the C-STS task,
nor has any integrated it with advanced training techniques like reinforcement learning (RL), leaving
a significant research gap.

This paper aims to fill this gap. We posit that incorporating RL into an LL.M-based cross-encoder
paradigm is a natural fit. This is reflected in two aspects: First, C-STS requires sophisticated,
scenario-based reasoning. For example, in the basketball scenario described earlier, to correctly as-
sess similarity under the “distance” condition, the model must move beyond surface-level semantics
to identify the underlying spatial relationship between ‘beyond the three-point line” and ‘at the free
throw line’, a process demanding strong abstraction and inference. RL, through its explicit reward
signals, can more effectively guide the reasoning process of LLMs (Guo et al., 2025)). Second, from
an optimization standpoint, RL aligns closely with the task’s evaluation criteria. The Spearman cor-
relation coefficient (Zar, 2005)), a core evaluation metric of C-STS, is a non-differentiable measure
of ranking quality. Traditional SFT methods can only indirectly and approximately optimize this ob-
jective through loss functions like Mean Squared Error (MSE) (Zhang & Li,|2024)). In contrast, RL
allows for the optimization of ranking-based objectives that serve as direct proxies for this metric,
maintaining a higher degree of consistency with the final evaluation.

However, a naive application of RL to this task presents significant challenges. As illustrated in
Figure |1 our preliminary experiments indicate that directly applying a single listwise ranking re-
ward (e.g., Spearman’s correlation coefficient) across an entire batch of completions does not show
any advantages compared to the few-shot method. This approach suffers from two fundamental
problems. First, the ranking objective is too complex for a model that has not yet learned the task’s
fundamental scoring rules, often causing the training to collapse. Second, a single reward computed
across the entire batch is too coarse to provide precise credit assignment, as a few poor completions
can unfairly penalize other good ones.
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Figure 1: Performance comparison of different strategies on the C-STS task. Directly applying
listwise ranking rewards for RL does not significantly outperform the few-shot baseline. In contrast,
both stages of our method (PoLi-RL) achieve substantial improvements, validating its effectiveness.

To address these challenges, we propose PoLi-RL, a two-stage Point-to-List Reinforcement
Learning framework. PoLi-RL features a two-stage curriculum to manage the complexity of the
learning task. In the first stage, we use simple pointwise rewards to ground the model in the basic
scoring rules of the task. Building on this foundation, the second stage introduces a richer, hybrid
reward signal that combines a stable pointwise anchor with more nuanced pairwise and listwise
ranking rewards. This progressive approach refines the model’s ability to discern subtle semantic
differences while ensuring stable and effective training.

Furthermore, to resolve the problem of a coarse-grained reward signal that arises from ranking all
completions in a batch together, we innovatively introduce a Parallel Slice Ranking Reward (PSRR)
mechanism, which utilizes a two-level decomposition. First, for a batch of input samples, the model
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generates G completions for each. We then form G “parallel slices”, where the i-th slice is com-
posed of the i-th completion from every sample. Second, and more importantly, within each slice,
rather than assigning a single reward, we compute the rank difference for each individual completion
against its ideal rank. This two-level decomposition allows each of the N x G completions to receive
a unique and precise reward that reflects its quality, thereby enabling granular credit assignment and
stable training.

The primary contributions of this paper are outlined as follows:

* To the best of our knowledge, this is the first work to propose an end-to-end, LLM-based
cross-encoder for the C-STS task and the first to employ reinforcement learning for training
in this domain.

* We design and implement PoLi-RL, a novel two-stage training curriculum that mitigates
the instability of direct rank-based optimization by progressing from a simple pointwise
reward to a more complex hybrid reward.

* We propose the Parallel Slice Ranking Reward (PSRR) mechanism, which delivers precise
and differentiated learning signals by computing ranking rewards within independent ‘par-
allel slices.” This mechanism offers a generalizable strategy for other ranking and retrieval
tasks involving multiple generation candidates.

* On the official C-STS benchmark, PoLi-RL achieves a Spearman’s correlation coefficient
of 48.18, establishing a new SOTA for the cross-encoder architecture and surpassing strong
closed-source models, including GPT-4 (43.6) (Achiam et al.| 2023). Our qualitative anal-
ysis further reveals our method’s advantages in understanding complex conditions.

2 METHODOLOGY

This section details our proposed strategy. We begin by formulating the C-STS task within an end-
to-end, LLM-based cross-encoder paradigm in subsection Then, in subsection we map
this task onto the mathematical framework of Reinforcement Learning and specifiy its optimiza-
tion objective. Finally, in subsection we provide a comprehensive description of our PoLi-RL
framework, including its two-stage design and the innovative PSRR mechanism.

2.1 PROBLEM FORMULATION

The core objective of C-STS is to learn a scoring function that accurately reflects the semantic sim-
ilarity between two text segments under a specific condition. Formally, each C-STS data sample is
defined as a tuple = (t1,12,¢,y), where t1, 1o are two text segments, c is the natural language
condition, and y € [1,5] is the human-annotated similarity judgement on the Likert scale (Likert,
1932). Notably, the label y corresponds to a fine-grained set of semantic criteria. According to the
C-STS annotation guidelines, the meanings of the scores are as follows: (1) Completely dissimilar;
(2) Thematically related but dissimilar; (3) Roughly equivalent, but with some important informa-
tion differences; (4) Mostly equivalent, with some unimportant details differing; (5) Completely
equivalent. This level of granularity demands that the model perform fine-grained reasoning beyond
surface-level semantics, posing a significant challenge to its capabilities.

A unique characteristic of the C-STS dataset is its paired structure: samples are organized in adja-
cent pairs that share the same text segments (¢1,¢2) but feature different conditions and maintain a
deterministic ordinal relationship between their labels, i.e., Ynigh > ¥iow- This structure provides a
solid foundation for our pairwise reward design, as detailed in subsection 2.3]

Our task is to train a scoring model 7y, parameterized by 6. For each sample z, the model takes a
unified prompt p = INS(z) as input, which is constructed from the text segments, condition, and
task-specific instructions, to generate an output sequence o = mg(p). From this sequence, we parse
the final predicted score, § = Parse(o). The overall training objective is to maximize the ranking
consistency between the set of predicted scores {f;}2, and the ground-truth scores {y;}, by
optimizing the policy 7y, a process primarily measured by Spearman’s correlation coefficient. Since
this metric is rank-based and non-differentiable, RL emerges as a more promising optimization
paradigm than traditional supervised fine-tuning.
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2.2 REINFORCEMENT LEARNING FOR C-STS

We formulate the C-STS task as a Markov Decision Process (MDP), defined by a tuple M =
(S, A, T,R,~), where the agent is the LLM policy mg. The generation process is modeled as a
sequence of decisions, where each step involves generating a single token. A state s; € S at timestep
t is the sequence of tokens generated so far, conditioned on the initial prompt, i.e., s = (p, 0<¢).
An action a; € A is the selection of the next token o; from the model’s vocabulary, governed by the
policy 7 (a¢|s:), which provides a probability distribution over all possible tokens. The transition
function 7 is stochastic, as the next state s, depends on the token sampled from g (a¢|st), which
is influenced by sampling parameters like temperature and top-p. We employ a sparse reward setting
for R; the reward is zero for all intermediate steps, and a terminal reward Ry = R(x, o) is given
only after the entire sequence o has been generated. Finally, the discount factor + is set to 1 to ensure
that the terminal reward is backpropagated without decay to all actions that contributed to the final
output. Based on this framework, the objective is to find the optimal parameters §* that maximize
the expected reward:

0" = arg ;na’XEQCND,ONTrg (p) [R(il’, O)] (1

To optimize this objective, we employ Decoupled Clip and Dynamic Sampling Policy Optimization
(DAPO) (Yu et al., |2025), an extension of GRPO (Shao et al.l 2024)) that introduces several key
techniques for effective RL. For each sample z, the policy generates a set of G completions {o; }$ ;.

A scalar reward r; = R(x, 0;) is computed for each completion. The advantage A; for each comple-
tion is then calculated by normalizing its reward against the statistics of the entire group’s rewards
via Z-score normalization:
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These advantages are used to define the objective function for updating the model parameters 0:
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2.3 POLI-RL: A TWO-STAGE REINFORCEMENT LEARNING FRAMEWORK

As previously established, our optimization goal is to maximize the expected reward, making the
design of the reward function R central to our method. To ensure stable and effective optimization,
we propose PoLi-RL, a framework built upon a two-stage progressive reward curriculum. This
section details our pipeline and its reward mechanisms, as illustrated in Figure

Stage I: Foundational Skill Acquisition. The goal of Stage I is to ground the model in the funda-
mental scoring rules of the C-STS task. For each input sample, the policy generates G completions,
from which we parse a set of predicted scores {f;}5_,. The total reward for Stage I, Ry, is a
weighted sum of three components:

RSl = )\1 Rpoimwise + )\2 Rbinary + >\3Rformat (4)

The Pointwise Accuracy Reward (Rpointwise) 1S the primary component in Stage I. It measures the
normalized distance between the predicted score g; and the ground-truth score y.

9 — vl
Rooinise = 1 — _ 5
pointwise max(Y) — min(Y") ©)

where max(Y’) = 5 and min(Y") = 1 are the bounds of the label space.

To counter reward hacking, where the model tends to output safe intermediate scores, we introduce

a Binary Judgement Reward (Fpinary). According to the C-STS guideline that scores > 3 indicate

similarity while scores < 2 indicate dissimilarity, this reward encourages the model to first master
this basic binary classification:

1 if(g;, >3Ay>3)V (g, <3Ay<3

Rijnary — { (@ =3 Ay >3)V(F y <3) ©)

0 otherwise
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Figure 2: An overview of the PoLi-RL framework. The framework employs a two-stage curriculum,
progressing from Stage I, where the model learns foundational scoring rules, to Stage II, which
refines the model’s ability to discern fine-grained semantic differences. The core of our method is the
PSRR mechanism in Stage II, where pairwise and listwise ranking rewards are computed vertically
within slices of same-indexed completions to provide precise, differentiated learning signals.

Finally, a simple Format Reward (Rgormat) ensures the output adheres to the required structure, which
consists of a binary judgment (‘yes’ or ‘no’) followed by the numerical score in parentheses.

Stage II: Fine-Grained Semantic Refinement. After the model has acquired basic scoring abil-
ities in Stage I, Stage II refines its capacity to discern subtle semantic differences by introducing a
richer, hybrid reward signal that incorporates both pairwise and listwise ranking objectives.

PSRR: A FINE-GRAINED REWARD MECHANISM. A primary challenge in directly optimizing
ranking metrics is that a single, batch-wide reward signal is too coarse to assign credit precisely.
To address this, we propose the Parallel Slice Ranking Reward (PSRR) mechanism. The core idea
of PSRR is to restructure the generated outputs to enable more granular reward computation. For a
batch of N samples, we begin by having the policy generate G completions {o; 1, ..., 0; ¢} for each
sample x;. From each completion o; ;, we then parse the predicted score y; ;. Instead of treating
the completions as a single flat list, we organize these N x G predicted scores into G “parallel
slices”. Each slice, denoted as P}, is defined as the collection of the j-th predicted score from all N
samples in the batch: P; = {1 ;,92,,...,9n,;}, where j € {1,..., G}. This slicing architecture
is the foundation upon which our advanced ranking rewards are built, ensuring that each completion
receives a precise and differentiated learning signal based on its relative performance within its slice.

A sufficiently large slice size IV is crucial for a stable and meaningful ranking signal. To make
this computationally feasible with limited GPU memory, we leverage gradient accumulation. This
technique allows us to perform forward passes on smaller sub-batches sequentially, aggregate the
full set of N x G completions to compute rewards and advantages, and then accumulate gradients
over several backward passes before executing a single optimizer step. This strategy makes our
reward design practically feasible, enabling the model to learn from a rich, large-scale ranking signal
without requiring prohibitive memory.

PAIRWISE RANKING REWARD. Computed within each parallel slice P;, this reward leverages the
paired structure of the C-STS dataset to provide a local ranking signal. It is applied only to adjacent
input samples (z;, ;+1) that form a valid pair. For such a pair, we define the predicted difference
as Apred = Ui,j — Ji+1,; and the true difference as Agye = ¥; — yi+1. The reward Rff}rmse is then a
piecewise function:

pairwise __ 0 if Sgn(Apred) 7é Sgn(AU’ue)

bat = _ . 7
d Rpase + (1 - RbaSE) : (1 - M) if Sgn(Apred) = Sgn(Am,e) 2

max_error
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This function first checks if the basic ranking preference is correct using the sign function sgn(-).
If the order is wrong, the reward is zero. If correct, a base reward Ry, is given, plus an additional
reward that measures the normalized distance between the predicted and true score differences.
Here, max_error is the maximum possible score difference, which is 3 for paired samples.

LISTWISE RANKING REWARD. While the pairwise reward focuses on local comparisons, the list-
wise reward provides a more global ranking perspective within each slice. It is calculated as the
normalized difference between a completion’s predicted rank within its slice and the ideal rank of
its ground-truth label, formulated as:

_ |Rank(gi,ja P_/) - Rank(y’i7 }/true)|

listwise __
RiI;lese =1 1

®)

where Yine = {y1,...,yn} is the set of true labels for the current batch, the function Rank(v, S)
returns the rank of element v within the set S (from 1 to N), and the division by N — 1 normalizes
the rank error to the range [0, 1].

The final reward for Stage II, Rg2, combines the robust Pointwise Reward from Stage I as a stabi-
lizing anchor with the new ranking-based rewards enabled by PSRR. The total reward is a weighted
combination of these three components:

RS2 =M Rpointwise + H2 Rpairwise + 251 Rlislwise (9)

3 EXPERIMENTS

To empirically validate the effectiveness of our proposed PoLi-RL framework, we conduct a compre-
hensive set of experiments. We begin by detailing our experimental setup in Section including
the dataset, evaluation metrics, baselines, and implementation details. Following this, in Section@
we present the main results, comparing PoLi-RL against a suite of strong baselines. Finally, in Sec-
tion[3.3] we conduct a series of ablation studies to analyze the contributions of our framework’s key
components.

3.1 EXPERIMENTAL SETUP

We build PoLi-RL upon the Qwen3-8B (Yang et al.|, [2025) model using the ms-swift framework
(Zhao et al.l 2024)) for RL training. All experiments are conducted on the official C-STS dataset
(Deshpande et al.l |2023)). Following prior work, we use Spearman correlation as the primary metric
and Pearson as the secondary. We compare our method against three baseline categories: First,
the discriminative models in the cross-encoder setting. Second, powerful generative LLMs, such
as Flan-UL (Tay et al.l 2022), Flan-T5 (Chung et al., 2024) and Tk-Instruct (Wang et al., |2022).
Finally, our own SFT and few-shot implementations on Qwen3-8B for direct comparison.

3.2 MAIN RESULTS

Table E] summarizes the performance of our framework, PoLi-RL, which establishes a new state-
of-the-art (SOTA) for the cross-encoder architecture with a Spearman correlation of 48.18. The
significance of this achievement is best understood through a series of key comparisons. First,
PoLi-RL surpasses the previous cross-encoder SOTA, SEAVER, by a significant margin of 4.35
points. Second, the advantage of our method is particularly stark on the Qwen3-8B model, where
it yields massive absolute improvements of 10.28 points over few-shot inference and 7.76 points
over standard SFT, showcasing the substantial benefits of our progressive, multi-component reward
optimization.

More remarkably, the efficacy of our framework is further highlighted when benchmarked against
vastly larger models. Our 8B parameter model not only substantially outperforms powerful pro-
prietary models like GPT-4 but also demonstrates a commanding lead over other large open-source
models like Flan-T5. This result illustrates that our RL-based method can cultivate nuanced rea-
soning capabilities in moderately-sized models, making them highly capable and competitive for
complex conditional judgment tasks without relying on scale alone.
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Table 1: Main results on the official C-STS benchmark. All scores are reported as Spearman/Pearson
correlation coefficients multiplied by 100. Results marked with { are obtained from (Deshpande
et al., 2023)), while { denotes results from (Li et al., 2024).

Methods Training Paradigm Parameters Spearman T Pearson {
Discriminative Model Baselines (Cross-Encoder Architecture)
RoBERTay prge’ SFT 355M 40.7 40.8
SimCSE; arge’ SFT 355M 43.2 43.2
SEAVER SimCSE; arce? SFT 355M 43.83 43.81
Generative Large Language Model Baselines
Flan-T5xx. " Few-shot 11B 30.6 -
Flan-UL2f Few-shot 20B 23.5 -
Tk-Instruct Few-shot 11B 17.8 -
GPT-3.5% Few-shot 175B 15.3 -
GPT-41 Few-shot - 43.6 -
Our Implementation on Qwen3-8B

Qwen3-8B Few-shot 8B 37.9 38.54
Qwen3-8B SFT 8B 40.42 40.83
PoLi-RL (Ours) RL 8B 48.18 48.27

3.3 ABLATION STUDIES

Effectiveness of the Two-Stage Curriculum and Reward Components. Table 2| dissects the
effectiveness of our progressive training schedule. We first observe that a Naive RL approach (Row
2), which uses only a single, batch-wise listwise reward from scratch, yields negligible improvement
over the few-shot baseline (Row 1), demonstrating the need for a more structured curriculum. Our
PoLi-RL Stage I (Row 3) addresses this by building a robust foundation, substantially outperforming
the few-shot baseline by 6.87 points. Within this stage, ablating the binary reward (Row 4) leads to
a discernible dip in performance, validating its role in grounding the model in the task’s basic binary
judgment.

Building upon this, the full PoLi-RL model (Row 5) further boosts performance by another 3.41
points (Row 5). Deconstructing the success of this final stage reveals that both ranking signals are
vital: removing the listwise reward (Row 6) incurs the most significant penalty, while removing the
pairwise reward (Row 7) also hinders performance. These findings confirm that both the two-stage
curriculum and each of its constituent reward signals are essential for achieving optimal results, with
the listwise signal being the most critical component in the final refinement stage.

Table 2: Ablation study on PoLi-RL’s two-stage training design and its reward components. The A
column shows the absolute improvement in Spearman correlation over the indicated baseline.

Method Reward Compo- Spearman 1 Pearson{ A (Spearman)
nent(s)

(1) Few-shot Inference - 379 38.54 -

(2) Naive RL Listwise 38.19 38.34 +0.29 vs. (1)

(3) PoLi-RL (Stage I)  Pointwise + Binary 44.77 44.45 +6.87 vs. (1)

(4) - w/o Binary Pointwise 44.19 43.54 -0.58 vs. (3)

(5) PoLi-RL (Full) Pointwise + Pairwise 48.18 48.27 +3.41 vs. (3)
+ Listwise

(6) - w/o Listwise Pointwise + Pairwise 46.71 46.37 -1.47 vs. (5)

(7) - w/o Pairwise Pointwise + Listwise 47.6 47.59 -0.58 vs. (5)

Sensitivity to Reward Weights in PoLi-RL Stage II. Table 3| details our analysis of the frame-
work’s sensitivity to reward weights in Stage II. The results reveal a delicate balance, with peak
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performance achieved by moderately increasing the pairwise weight to 1.5. The model also shows
considerable tolerance to pairwise signal, as halving its weight to 0.5 results in only a marginal per-
formance drop to 47.77. This suggests that the stable, local ranking signal from the pairwise reward
is instrumental in refining the model’s performance to its optimal state. In contrast, the framework
is more sensitive to the pointwise and listwise weights, where deviations from their baseline of 1.0
tend to hinder performance. Crucially, despite these variations, the framework remains stable across
all configurations, exhibiting no training collapse. This robustness validates that our hybrid reward
successfully overcomes the instability of naive ranking-based optimization.

Table 3: Ablation study on the reward weights (11, t2, pt3) in PoLi-RL’s Stage II.

Method w1 (Pointwise) o (Pairwise) us3 (Listwise) Spearman{ Pearson 1

1.0 1.0 1.0 47.83 47.83
1.0 1.5 1.0 48.18 48.27
PoLi-RL 1.5 1.0 1.0 47.3 47.23
(Stage II) 1.0 1.0 1.5 47.46 47.48
1.0 0.5 1.0 47.77 47.31
0.5 1.0 1.0 47.36 47.18
1.0 1.0 0.5 47.39 47.27

Sensitivity to Parallel-Slice Size. To determine the optimal configuration for our PSRR mecha-
nism, we study the impact of the slice size IV, with results presented in Table[d] The empirical results
reveal a clear trend: performance peaks at an intermediate slice size of N = 24 and degrades as the
size deviates in either direction. This suggests that an optimal balance is required for the ranking
signal. A slice that is too small may provide a less stable ranking signal, while one that is too large
makes the ranking task overly complex for the model to learn effectively. This finding validates the
design principle behind our PSRR mechanism: a carefully-sized, localized ranking signal is more
effective than a purely global or an overly-restricted one.

Table 4: Analysis on the impact of the parallel slice size (/V) in Stage II. N represents the number
of samples used for listwise ranking reward computation in each slice.

Method N (Slice Size) Spearman T Pearson 1
16 47.16 46.96
24 48.18 48.27

PoLi-RL(Stage II) 32 47.44 47.19
40 47.18 47.32
48 46.78 46.84

4 ANALYSIS

4.1 ANALYSIS OF PREDICTION ERROR DISTRIBUTION

Figure |3| visualizes the distribution of absolute prediction errors on the C-STS validation set. The
plot reveals several key insights into the models’ behaviors. While an error of 1 is the most frequent
outcome for all models, likely reflecting the inherent nuances of the C-STS scale, a clear progression
of improvement is evident. Compared to the raw and SFT model, PoLi-RL demonstrates a more
favorable error distribution. Firstly, it achieves the highest density of perfect predictions (error=0).
More importantly, the density of the PoLi-RL curve in the high-error regions is consistently the
lowest. This shows that our method significantly reduces the frequency of large, unreliable errors,
yielding a more stable and reliable model.

4.2 QUALITATIVE ANALYSIS: A CASE STUDY ON NUANCED REASONING

To qualitatively analyze our framework’s nuanced reasoning ability, we present a case study in Fig-
ure [ on the challenging condition “The person’s connection with the ground”. The baseline models
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Figure 3: Distribution of absolute prediction errors for the raw model, SFT model, and PoLi-RL. The
x-axis represents the absolute error (|Predicted — True|), and the y-axis is the probability density.

show clear deficiencies: the Few-shot model exhibits a brittle, literal interpretation, fixating on the
preposition ‘on’ while ignoring the real-world context, leading to an incorrect prediction. The SFT
Baseline, while achieving a closer score, shows uncertainty and fails to make the necessary fine-
grained distinction. In contrast, PoLi-RL applies world knowledge to infer that both “jumping” and
“doing a flip” result in the same “not connected” state, arriving at the accurate score of 4 by identi-
fying the differing actions leading to the state as unimportant details. This case study demonstrates
that PoLi-RL cultivates the contextual inference ability required for complex conditional judgments.

Case Study: Model Comparison on a Reasoning Sample

Sentence 1: A person riding a snowboard jumps high over the snowy hill.
Sentence 2: A man in a blue snowsuit does a flip on a huge snowy mountain.
Condition: The person’s connection with the ground.

Gold Label: 4 (Mostly equivalent)

Few-shot Inference Prediction: no(1)

Reasoning: In Sentence 1... , the key action is jumping, which implies the person is airborne and not
in contact with the ground. In Sentence 2... , the preposition ‘on’ suggest that he’s on the mountain’s
surface. So, he’s connected to the ground. Therefore, the two sentences have different connections
with the ground. Hence, the answer is ‘no(1)’.

PoLi-RL Prediction: yes(4)

Reasoning: Sentence 1 describes... . So he’s airborne during the jump, meaning he’s not connected
to the ground. Sentence 2 talks about ... I infer that this action, similar to a jump or a trick in a snow-
sports context, also means he is in the air. Therefore, they are similar because both have the person not
connected to the ground. But the final score should be 4 because the action (jumping/flipping) leading
to this state represent minor, differing details.

J

Figure 4: A detailed case study comparing the reasoning processes and final outputs of the Few-shot,
SFT baselines, and PoLi-RL on a C-STS sample that requires nuanced reasoning.

5 CONCLUSION

We introduce PoLi-RL, a two-stage reinforcement learning framework that resolves the training in-
stability of listwise objectives in C-STS through a progressive curriculum and an innovative Parallel-
Slice Ranking Reward (PSRR) mechanism. Our method establishes a new state-of-the-art for the
cross-encoder architecture, significantly outperforming SFT baselines and even large models like
GPT-4. As the first successful application of reinforcement learning to this task, our study validates
a powerful paradigm for aligning LLMs with complex ranking objectives, paving the way for future
applications in retrieval and other ranking-based tasks.
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A APPENDIX

A.1 RELATED WORK

Conditional Semantic Textual Similarity C-STS is a recent advancement over traditional STS
that introduces a natural language condition to disambiguate the measurement of similarity between
two texts. Research in this area has primarily established three mainstream paradigms: Bi-encoder,
Tri-encoder, and Cross-encoder. Given two texts and a condition, the bi-encoder architecture typi-
cally uses a Siamese network to encode two text-condition pairs, while the tri-encoder architecture
encodes each text and the condition separately before an aggregation step. A prevalent optimiza-
tion strategy for these paradigms is contrastive learning. For instance, (Liu et al.| [2025) propose
a conditional contrastive learning framework that pulls representations of the same text pair under
a high-similarity condition closer, while pushing them apart under a low-similarity one. Extend-
ing this, Hyper-CL (Yoo et al.| [2024) utilizes a tri-encoder setup where a hypernetwork generates
condition-specific projectors to dynamically adapt sentence representations within a contrastive ob-
jective. More recently, CSR introduced a parameter-free router for the tri-encoder, using the condi-
tion to re-weight sentence tokens to amplify relevant information without increasing model size.

In contrast, the cross-encoder architecture processes the concatenated texts and condition as a sin-
gle input, enabling deep, token-level interaction. However, this theoretical advantage did not con-
sistently translate to superior performance in earlier discriminative models. The state-of-the-art
method in this setting, SEAVER, addressed this discrepancy by identifying that such models can be
distracted by condition-irrelevant tokens. To resolve this, SEAVER (Li et al [2024) introduces an
attention reallocation mechanism that optimizes the model by re-weighting internal attention scores
during fine-tuning, forcing a focus on the most salient information.

The advent of LLMs has introduced new approaches, mainly few-shot inference and using LLMs
as feature extractors (Yamada & Zhang, 2025) (L1 & Li, 2023). However, all these prior works,
regardless of architecture, are confined to supervised paradigms like SFT or contrastive learning.
Our work is the first to apply reinforcement learning to this task.

Reinforcement Learning for Large Language Models Reinforcement Learning (RL) is pivotal
for aligning and enhancing Large Language Models (LLMs), with algorithms like Proximal Policy
Optimization (PPO) (Schulman et al.l [2017) widely used to optimize non-differentiable objectives
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in tasks such as reasoning and code generation. To address PPO’s limitations, such as high variance
in long-sequence tasks, advanced variants have emerged.

Group Relative Policy Optimization (GRPO) addresses these limitations by intro-
ducing a group-relative advantage estimation, which eliminates the need for a separate value function
through Z-score normalization of rewards within sample groups. This approach simplifies training
and enhances sample efficiency, as demonstrated in models like DeepSeek-R1. Building on this,
Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO) 2025) provides an
open-source, scalable RL system tailored for LLMs. DAPO incorporates key improvements, includ-
ing dynamic sampling to adaptively adjust the number of generated completions based on reward
variance, making it particularly effective for long-horizon reasoning tasks.

Leveraging DAPO’s powerful optimization engine, our work, PoLi-RL, marks a significant depar-
ture by being the first to introduce a reinforcement learning framework to the C-STS task, thereby
establishing a new optimization paradigm.

A.2 PROMPT TEMPLATE FOR POLI-RL

Below is the detailed few-shot prompt used for both the few-shot inference baseline and the training,
evaluation process of PoLi-RL.

Prompt for C-STS Task

Judge the semantic similarity between Sentence 1 and Sentence 2 based completely on the given
Condition. The final output must be exactly in this format: the similarity judgment (‘yes’ or
‘no’) followed by the score in parentheses, wrapped in <answer></answer> tags. Examples:
<answer>yes (4) </answer>, <answer>no (1) </answer>. Include no other text, tags, or
explanations.

To arrive at this output, follow these two steps:

Step 1: Binary Judgment. Determine if the sentences are ‘similar’ (‘yes’) or ‘not similar’ (‘no’).

— ‘similar’: The sentences are roughly, mostly, or completely equivalent under the con-
dition.
— ‘not similar’: The sentences are dissimilar under the condition.
Step 2: Fine-grained Score. Assign an integer score based on Step 1:
— For a ‘yes’ judgment:

= 5: The two sentences are completely equivalent as they mean the same thing with
respect to the condition.

* 4: The two sentences are mostly equivalent, but some unimportant details differ
with respect to the condition.

+ 3: The two sentences are roughly equivalent, but some important information dif-
fers or is missing with respect to the condition.

— For a ‘no’ judgment:

% 2: The two sentences are dissimilar, but are on a similar topic with respect to the
condition or shares a close semantic relationship. This applies when items are
clearly different, but not direct opposites.

% 1: The two sentences are dissimilar with respect to the condition, representing a
direct opposition or a clear, unrelated difference. (e.g., ‘man’ vs. ‘woman’).

Here are some examples:

Example 1:

<Sentencel>: A girl is cooking in a kitchen and a man is standing next to her.

<Sentence2>: A man sitting with a pizza in his hand in front of pizza on the table.
<Condition>: The number of people.

<answer>no (1) </answer>

Explanation: The first sentence mentions two people, while the second sentence mentions only one
person.
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Example 2:

<Sentencel>: A wood table sitting by a wood framed bed with a lamp on it.

<Sentence2>: A microwave, refrigerator, television, and wooden drawers sit in the corner of a
bedroom.

<Condition>: The room type.

<answer>yes (5) </answer>

Explanation: We can infer from the two sentences that the room type are both bedroom.

Example 3:

<Sentencel>: A small crowd gathered around the injured person.

<Sentence2>: A crowd jumps up and down to the tunes played by an artist.

<Condition>: The number of people

<answer>yes (3) </answer>

Explanation: While both sentences mention crowds, it is important and unclear how many people there
are.

Now, apply these steps to the following sentences:

<Sentencel>: {sentencel}
<Sentence2>: {sentence2}
<Condition>: {condition}

- J

A.3 LLM USAGE STATEMENT

The large language model (LLM) was utilized during the preparation of this manuscript. The use
of this technology was strictly confined to the role of a writing assistant for the sole purpose of
improving the linguistic quality of the text. Specifically, the LLM was employed for tasks related to
grammar, syntax, phrasing, and overall readability. Its function was exclusively to perform surface-
level linguistic refinements on text already written by the human authors. Crucially, the LLM did
not contribute to any substantive or intellectual aspects of the research. The conceptualization of the
study, the design of the methodology, the execution of experiments, the interpretation of results, and
the formulation of conclusions were all executed by the human authors.
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