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ABSTRACT

Spatio-temporal (ST) prediction plays a pivotal role in earth sciences, such as
meteorological prediction, urban computing. Adequate high-quality data, cou-
pled with deep models capable of inference, are both indispensable and prereq-
uisite for achieving meaningful results. However, the sparsity of data and the
high costs associated with deploying sensors lead to significant data imbalances.
Models that are overly tailored and lack causal relationships further compromise
the generalizabilities of inference methods. Towards this end, we first es-
tablish a causal concept for ST predictions, named NuwaDynamics, which tar-
gets to identify causal regions in data and endow model with causal reasoning
ability in a two-stage process. Concretely, we initially leverage upstream self-
supervision to discern causal important patches, imbuing the model with gen-
eralized information and conducting informed interventions on complementary
trivial patches to extrapolate potential test distributions. This phase is referred
to as the discovery step. Advancing beyond the discovery step, we transfer the
data to downstream tasks for targeted ST objectives, aiding the model in recog-
nizing a broader potential distribution and fostering its causal perceptual capa-
bilities (denoted as Update step). Our concept aligns seamlessly with the con-
temporary backdoor adjustment mechanism in causality theory. Extensive experi-
ments on six real-world ST benchmarks showcase that models can gain outcomes
upon the integration of the NuwaDynamics concept. NuwaDynamics also can
significantly benefit a wide range of changeable ST tasks like extreme weather
and long temporal step super-resolution predictions. Our codes are available at
https://github.com/easylearningscores/NuwaDynamics.

1 INTRODUCTION

Modern deep learning (DL) approaches have demonstrated promising outcomes in various dynami-
cal systems in natural and social science fields like weather forecasting (Schultz et al., 2021; Pathak
et al., 2022; Bi et al., 2022), rapid fire progression (Tam et al., 2022), intelligent transportation (Kaf-
fash et al., 2021; Jin et al., 2023). Such astonishing achievements primarily stem from two crucial
factors. (1) With the development of computer science, a vast amount of data from Earth systems
is continuously being acquired (Chen et al., 2022b; Liu et al., 2023a). These ever-growing, massive
datasets, with diverse sources, provide the impetus for data-hungry deep models, making learning
from data possible. (2) Continual breakthroughs in deep learning algorithms and models enable us
to effectively adapt to diverse specific scenarios, resulting in state-of-the-art performances.
In general, deep learning (DL) provides an efficient optimization framework for automatically and
dynamically extracting intrinsic patterns from continuous observable processes. Unlike classical
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Figure 1: (a) The distribution of uneven ocean system in the Atlantic Ocean. The points represent
different types of systems and we mark some red and yellow areas to highlight the imbalance issue
of the sensor system. (b) When constructing an ST system, the lack of interpretability often results
in limited predictive capabilities for specific scenarios.

dynamic systems, which are primarily derived from first principles (Pryor, 2009; Bürkle et al., 2021)
and involve high computational costs, DL approachs often sacrifice an explicit understanding of
physical rules. Instead, it resorts to large-scale observable data and captures implicit patterns that
serve as substitutes for physical laws. Moreover, these patterns can be understood as spatio-temporal
(ST) correlations, and these deep models can be further regarded as ST dynamical systems.
Though promising, in the context of data-driven dynamical systems research, there still exist some
clouds on the horizon. 1) High-quality/resolution observational data is relatively scarce, and the cost
of training with such data is exceptionally high; the distribution of sensors across various regions
on Earth is significantly uneven, with many areas unable to benefit from them effectively due to
data scarcity (see the example in Fig 1(a)). More cases are provided in Appendix A. Although
some efforts have been made to address this problem, such as transfer learning (Wang et al., 2018a)
and active learning (Ren et al., 2021), the data-driven approach still lacks interpretability, resulting
in a lack of generalization ability in the transfer process and poor performance in certain extreme
scenarios, e.g., cyclone tracking, and turbulence sensing. This remains a common challenge for
deep models as shown in Fig 1(b). 2) Customized designs for specific tasks endow the models with
specialized capabilities and high performance, however, the complicated designs make the model
difficult to generalize. Consequently, unlike enormous public model zoos in NLP and CV realms,
each spatio-temporal dynamical system is primarily focused on performing a specific scene task
and lacks the ability to transfer knowledge from a higher perspective. For instance, using infrared
meteorological data from one region for rainfall prediction in another region.

In this paper, we propose a novel research line for the first time, namely, causal spatio-temporal dy-
namics, aiming to provide an interpretable paradigm for future large-scale ST dynamical systems.
Guided by the currently prevailing technique of causal invariant learning (Arjovsky et al., 2019;
Sagawa et al., 2019; Rosenfeld et al., 2020; Chang et al., 2020; Liu et al., 2022), our primary objec-
tive is to reveal the inherent correlations in available high-quality measurement data, thus providing
interpretability for complex ST problems in dynamical systems such as representation learning and
transfer learning. By leveraging the causal patterns inherent in the limited data, our approach bol-
sters the reliability of processes such as representation learning and transfer learning. Additionally,
our method subtly performs data augmentation on sparse and extreme scenarios, thereby enhancing
the model’s ability to perceive and understand such circumstances. This enables the extraction of
causal features to aid in downstream tasks, leading to an improved, streamlined model performance.

Uncovering Causal Correlations. We present the first attempt to introduce the concept of causality
to ST dynamical systems by establishing a novel philosophical framework termed NuwaDynamics.
Briefly put, our objective is to inject the invariant characteristics and the internal causal patterns
within the data from upstream self-supervised tasks, providing a faithful and reliable framework for
downstream learning. Concretely, we decompose our process into two stages – Discovery and Up-
date. The Discovery stage aims to answer the question of identifying the latent causal components
within observed data, where we introduce self-supervised tasks to the upstream ST data reconstruc-
tion. Using the popular Vision Transformer architecture (Khan et al., 2022), we first patchify the
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observations at each time step, and then utilize attention maps to localize crucial regions (Selvaraju
et al., 2017; Wang et al., 2020a; Jiang et al., 2021a). These localizations are combined with existing
pixel-space visualizations to create causal patches.

Going beyond the above process, the Update stage endeavors to evolve the downstream tasks into
our causal ST model. By appropriately augmenting non-causal patches (i.e., environmental patches),
we are in effect generating different randomly deformed copies of the original data. As a result, the
model is exposed to a broader distribution of latent data and extreme scenarios, offering insights with
a causal perspective for downstream tasks. This process can be further understood as backdoor ad-
justment in the causal theory (Pearl, 2009; Pearl & Mackenzie, 2018). We believe that such insights
will open avenues for future research on learning ST systems and their real-world applications.

Our contributions can be summarized in the following four aspects:
• In this paper, we present a causal and resilient philosophy (NuwaDynamics) for modeling spatio-

temporal systems with the first shot. Leveraging the causal theory with good interpretability,
NuwaDynamics allows the model to see a broader potential distribution of data, ensuring the
model’s outstanding performance across a wide range of downstream tasks.

• In its elegant simplicity, NuwaDynamics identifies causal features in its first stage and then refines
the model into a causal form. It aspires to master data invariance through upstream self-supervised
training, offering a more tailored and reliable foundation for specific downstream tasks.

• NuwaDynamics can benefit many existing frameworks on various tasks. For some longstanding
challenging issues like extreme weather perception (e.g., hurricanes, high-resolution precipita-
tion), it effectively aids models in achieving perfection in detail.

• We evaluate our framework using eight state-of-the-art models as backbones on six diverse bench-
marks, including weather, human motion, fire evolution, pollution diffusion, etc. Empirical results
show that our concept helps existing models achieve better results in ST representation learning,
long-range super-resolution forecasting, and transfer learning. Even in extreme events featured by
data scarcity, NuwaDynamics has showcased a remarkable ability to capture intricate details.

2 PRELIMINARIES

Spatio-Temporal Forecasting Models mostly fall into three categories: those grounded in CNNs
(Oh et al., 2015; Mathieu et al., 2015; Tulyakov et al., 2018), those rooted in RNNs (Srivastava et al.,
2015; Villegas et al., 2017; 2018; Kim et al., 2019; Wang et al., 2022b; Tan et al., 2023), and an as-
sortment of other architectures which include hybrid models (Weissenborn et al., 2019; Kumar et al.,
2019) and transformer-centric designs (Dosovitskiy et al., 2020; Gao et al., 2022b; Bai et al., 2022;
Wu et al., 2023b). Notably, there are models that leverage graph neural networks (GNNs) primarily
for graph data management (Sun et al., 2020; Wang et al., 2020b; Jiang et al., 2021b; Wang et al.,
2022a). However, these are outside the scope of our research as we focus on the visualization of ST
observational data (Chen et al., 2022b; Veillette et al., 2020). Within our research, we formulate ST
observations as an ST sequence [Xt]

T
t=1 ,Xt ∈ RH×W×Cin . Based on these observations, we aim to

parallelly predict the K-step-ahead future [YT+t]
K
t=1 ,Xt ∈ RH×W×Cout , where H and W denote

the number of spatial grids with Cin or Cout-dimensional observations.

Causal Inference has garnered considerable attention in the realm of deep learning (Zhang et al.,
2020a; Woo et al., 2022; Zheng et al., 2021; Arjovsky et al., 2019) in recent years. Conceptually,
causal inference (Pearl et al., 2000; Pearl, 2009) focuses on uncovering the causal relationships
between variables, aiming to achieve stable and robust learning and inference. Central to the idea
of discovery is the commitment to identifying spurious correlations (Geirhos et al., 2018; Sagawa
et al., 2019; Koh et al., 2021; Gulrajani & Lopez-Paz, 2020). Discovering spurious correlations
exposes model biases that can adversely affect generalization (Wu et al., 2023c). Recently, many
techniques (Selvaraju et al., 2017; 2016; Luo et al., 2020; Ying et al., 2019) have been employed
for crucial causal features perception. These techniques are sufficiently versatile, exhibiting strong
influence across various scenarios (Wu et al., 2023c; Fu et al., 2020; Sui et al., 2022; Zhang et al.,
2020b). In this paper, we introduce a novel ST causal framework; by leveraging attention techniques,
we can more effectively identify causal regions in observations from the upstream task, providing a
more robust foundation for downstream tasks.

Vision Transformer (ViT) Pruning. Our work closely resembles the popular ViT image token
pruning techniques (Dosovitskiy et al., 2020). However, NuwaDynamics emphasizes identifying
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important tokens rather than performing token pruning. These endeavors (Rao et al., 2021; Pan
et al., 2021; Yuan et al., 2021; Xu et al., 2022) attempt to distinguish how informative a token is
by using classification token [Cls] as the guideline. However, NuwaDynamics upstream focuses
on pre-training to reconstruct patches, aiming to discover causal patches, without involving [Cls]
tokens. Hence, traditional ViT pruning approaches may not be suitable for our framework.

3 METHODOLOGY

In this section, we systematically introduce our NuwaDynamics framework. We begin with an ex-
ample of causality, which serves as the motivation behind our approach in Sec 3.1. Subsequently, we
provide a detailed account of our algorithmic process, encompassing the upstream self-supervised
tasks in Sec 3.2 and the specifics of the downstream spatio-temporal tasks in Sec 3.3.

3.1 MOTIVATION EXAMPLES

Let us first consider an example as shown in the upper part of Fig 2. If we only focus on correlations
between exercise duration and cholesterol levels, we may observe that longer exercise durations
are potentially linked to higher cholesterol levels, which contradicts common sense. Merely using
a framework to model this is very likely to produce incorrect conclusions. However, this issue
arises because we haven’t taken the variable “age” into account. In reality, age affects both exercise
duration and cholesterol levels, resulting in the observed data pattern. We hope to uncover more of
the data’s latent distribution through increased data augmentation, aiming to mitigate such issues.
We also provide a more quantitative example in Appendix B.

3.2 DISCOVERY SPURIOUS CORRELATIONS
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Figure 2: The motivation of our proposal.

Based on the above motivations, we take a causal
look at the ST data-generating process and formal-
ize the principle of identifying causal and non-trivial
regions in input observations, which guides our dis-
covery strategy (left hand in Fig 3). Naturally, we
need a universal mechanism to inspect the causal and
spurious regions in the input image. We resort to cur-
rently popular ViT tools (Dosovitskiy et al., 2020)
which decompose images into patches of equal size
and attempt to locate essential patches. However,
previous ViT pruning techniques (Pan et al., 2021;
Yuan et al., 2021; Xu et al., 2022) have primar-
ily focused on classification tasks and do not trans-
fer well to our spatiotemporal prediction scenarios.
Hence, for the first time, we propose an upstream
self-supervised reconstruction task and aim to iden-
tify potential causal regions during the reconstruc-
tion process. Vision transformer first splits the im-
age X ∈ RH×W×Cin into L = HW/p2 non-
overlapping patch tokens and embedding it into a D dimension feature space. Then all tokens
are added with a learnable position encoding and then fed into a stacked transformer block:

XMHSA = X +MHSA (LN (X )) , XFFN = XMHSA + FFN (LN (X )) , (1)

where MHSA denotes multi-head self-attention (Vaswani et al., 2017); FFN and LN represent a feed-
forward network and layer normalization, respectively. In this circumstance, the input is mapped to
query, key and value matrices, i.e., Q,K, V ∈ RL×D. Then, we can calculate the attention weights
Att ∈ RL×L by using a softmax function, and the attention weight of the i-th patch towards the j-th
patch can be represented as:

αi,j = softmax
(
qik

T
j /

√
DH

)
∈ Att, where qi ∈ Q, kj ∈ K. (2)

The input are sliced into Λ attention heads, and here DH = D/Λ is the feature dimension. Here, we
employ attention weight to describe patch importance without introducing any additional variables
or hyperparameters. However, for each row of the attention map, we have αi,∗ =

∑L
j=1 αi,j = 1,
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Figure 3: The details of NuwaDynamics, in which consists of Discovery and update two stages. For
ease of understanding, we use Swin Transformer as the upstream model.

in which we cannot distinguish the importance of each patch. Hence, we resort to the column score
of the attention map and calculate the summation of column attention weights:

α∗,j =
∑L

i=1
αi,j , αmean

∗,j =
∑H

h=1
αh
∗,j/H. (3)

Clearly, α∗,j exhibits the total attention weights of other tokens to the current token, which can be
sufficient to indicate the importance of the current token. αmean

∗,j represents the average importance
and the weight of j-th patch across Λ heads in multi-head attention. Then we move forward to
calculate the normalized importance Ij of each patch and select the parts set of smallest values
(Note asM) as environmental patches as:

Ij = αmean
∗,j /

∑L

j=1
αmean
∗,j ∈ I, M = indexc̃{Ic̃|Ic̃ = arg min

j∈[1,L]
Ij}. (4)

We employ the saliency map M = {0, 1} ∈ RL by sampling the smallest elements in I . In this
way, we can identify the causal patches zc̃ and the complementary environments zs. In general,
due to the unstable nature of spurious attributes (Wu et al., 2023c), the test distribution Pte is often
different from the training settings, i.e., Pte ̸= Ptr. NuwaDynamics is dedicated to enhancing model
perception of the underlying essence of data. This not only facilitates representation learning and
transfer learning tasks but also addresses the challenges posed by data scarcity.

DistriXplorer. Recall that the causal theory (Pearl, 2009; Bunge, 2017) attributes the model’s weak
generalization capability to the distribution shift of spurious associations, namely, the environmental
part. We resort to causal intervention to forcibly assign values to environmental patches. Towards
this end, we design a DistriXplorer to modify the environmental patches, aiming to enhance sce-
narios with observable environmental patches. However, intervening at the patch level is complex.
Existing interventions primarily focus on the class level (Wu et al., 2023c) and the graph realm (Feng
et al., 2021). Interestingly, the characteristics of a particular patch are often influenced by its spatial
neighboring and temporal historical patches. Guided by this property, we elaborate an ST mixup
DistriXplorer. Concretely, we sample spatial neighboring and temporal historical patches to mix up
and generate different random deformed copies:

ztS =

O∑
i=1

λner i

t∑
j=1

βt+1−j · zjner i, where λner i = Itner i/

O∑
i=1

Itner i (5)

Here ztS denotes the environmental patches at t points. O represents the number of causal patches
among the neighbors. λner i and β are the weight allocated for spatial neighboring patches and
temporal decaying coefficient. Going beyond interventions, we randomly sample the surrounding
patches with a probability of Ω ∼ Uniform(0, 1) to generate multiple ordered sequences for next
training. In this way, the downstream model can learn patterns for adjusting the environment to
improve the generalizability (We summarize generative methods that can be integrated into our
augmentation in Future Work, here we choose Mixup for trade-off of efficiency and performance).

Causal Support of NuwaDynamics. Drawing from the causal theory, we construct a Structural
Causal Model (SCM) (Pearl, 2009) by examining four variables: input observations X , ground-
truth Y , causal patches in X denoted as C̃, and the confounder (i.e., environment) represented by S.
Then we can depict the causal relationships among them by:
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• C̃ ← X → S. The input X consists of two disjoint parts C̃ and S.
• C̃ → Y L99 S. C̃ is the only endogenous parent to determine the ground-truth Y . However, in

practical scenarios, S is simultaneously used for predicting Y , leading to spurious associations.

In general, a model F∅ trained with Empirical Risk Minimization (ERM) often falls short of gen-
eralizing to the test data Dte ∼ Pte. These distribution shifts are triggered by changes in the
environmental patches. Therefore, it is imperative to address the confounding effect exerted by the
environmental confounder. As shown in the right panel of Fig 3, we employ causal intervention to
assist the downstream models in perceiving a broader range of test distributions, i.e., Pte1,Pte2, etc.
Our framework exploits do-calculus (Pearl et al., 2000) on variable C̃ to remove the backdoor patch
S 99K Y by estimating P (Y|do(C̃)) = Pm(Y|C̃):

Pm(Y|C̃) = P
(
Y|do

(
C̃
))

=
∑T

i=1
P (Y|X , Si)P (S = Si) (6)

where T denotes the number of environments. Si denotes the i-th environmental variable. The
environmental enhancement at upstream of Nuwa aligns well with the backdoor adjustment the-
ory, thereby effectively exploring the potential test environment distributions. Detailed proofs are
provided in Appendix H.

3.3 UPGRADING TO CAUSAL INFERENCE: A NEW ERA IN MODELING

Typically, downstream models can be categorized into transformer and non-transformer classes. For
the transformer class, ensuring consistency between the upstream and downstream models allows
for rapid parameter transfer, facilitating quicker optimization of the downstream model. On the other
hand, for non-transformer architectures, we employ transfer-augmented data to optimize and update
the downstream models, advancing their causal perception capabilities. We store the intervention
data described in Sec 3.2 in the spatio-temporal bank ST (t). In downstream tasks, we retrieve the
data from the bank, ensuring the consistency of prediction labels between the intervention data and
the original data for parallel training. However, as each timestamp has its corresponding environ-
mental patches, denoted by ξt for the number of environmental patches at time t, theoretically,
2
∑

t ξ
t

prediction sequences can be constructed. This poses a significant, or even intractable, com-
putational burden on the model. In the ST scenario, we argue that historical data closer to the current
moment potentially have a greater influence. Therefore, we propose a temporal Gaussian decay sam-
pling method to identify more influential data, aiming to enhance the model’s generalization ability
while reducing its computational burden:

G
(
T, σ2) =

1

σ
√
2π

exp

(
− (x− T )2

2σ2

)
X =

[
X(ST(t), G(t,σ2))

]T
t=1

. (7)

We use the current moment T as the mean value, with variance σ2 to control the sampling ratio. In
this way, we construct our training data as X . Details can be found in Appendix I.

4 EXPERIMENTS

In this section, we present empirical results to demonstrate the effectiveness of NuwaDynamics
framework. The experiments aim to investigate the following research questions:

• Does NuwaDynamics enhance performance prediction for existing ST backbones?
• Does NuwaDynamics outperform on specific challenging tasks?
• Can the acquisition of feature invariance enhance model generalization?
• In the context of rare and extreme events, how effective is NuwaDynamics at detection?

4.1 EXPERIMENTAL SETTINGS

We conduct extensive experiments to evaluate the effectiveness of NuwaDynamics. We implement
different backbones using Pytorch and leveraging the A100-PCIE40GB as support. We train all
models with Adam optimizer and learning rate as 0.01. More detail can be found in Appendix C.

Datasets & Backbones We extensively evaluate our proposal on five benchmarks across diverse
research domains, including TaxiBJ+ (Liang et al., 2021), KTH (Schuldt et al., 2004), SEVIR (Veil-
lette et al., 2020), RainNet (Ayzel et al., 2020), PD, and FireSys (Chen et al., 2022a). Specifically,
TaxiBJ+ tackles urban traffic, KTH focuses on human kinetics, SEVIR analyzes extreme weather,
RainNet forecasts precipitation, PD simulates pollutant dispersion, and FireSys monitors wildfires.
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Table 1: Performance comparison on different backbones, where “Ori” refers to the backbones, and “+NuWa”
indicates the performance after incorporating NuwaDynamics. All experimental results are the average of five
runs and the red font indicates the optimal value. Except for PD, which is 6 → 6, all others are 10 → 10.

Backbone
(10 → 10)

Metric TaxiBJ+ KTH SEVIR (CSI-M*) RainNet PD (6 → 6) FireSys

Ori +NuWa Ori +NuWa Ori +NuWa Ori +NuWa Ori +NuWa Ori +NuWa

The upstream architecture is Transformer based and maintain consistency between upstream and downstream structures.

ViT [2020]
MAE 3.48 2.27 59.32 34.56 37.07 46.88 0.78 0.74 83.45 24.70 3.21 3.09
MSE 0.16 0.07 57.88 35.43 4.53 3.16 0.23 0.19 8.99 2.45 8.27 8.19
∆ 0.09 22.45 1.37 0.04 6.51 0.08

SwinT [2021]
MAE 3.22 2.18 55.44 33.45 38.22 45.68 0.67 0.66 79.53 26.38 2.98 2.76
MSE 0.21 0.11 52.38 33.11 4.37 2.84 0.22 0.19 8.47 3.15 7.96 7.65
∆ 0.10 19.27 1.89 0.03 5.32 0.31

Rainformer [2022]
MAE −− −− 80.32 40.77 36.68 46.88 1.21 1.17 81.23 30.54 4.65 4.55
MSE −− −− 77.99 40.75 4.02 3.38 0.30 0.21 8.63 2.51 11.27 10.72
∆ −− −− 37.24 0.64 0.09 6.12 0.55

Earthformer [2022b]
MAE −− −− 52.37 42.91 44.21 46.33 1.98 1.54 73.24 30.78 1.97 1.57
MSE −− −− 48.65 37.21 3.88 2.96 0.20 0.19 7.32 2.44 5.17 4.94
∆ −− −− 11.44 0.92 0.01 4.88 0.23

The upstream architecture is ViT and downstream does not specify a particular model architecture.

ConvLSTM [2015]
MAE 5.52 3.27 128.33 53.10 41.93 44.88 3.98 3.64 100.44 58.39 11.21 10.97
MSE 0.33 0.27 126.32 89.35 3.84 3.17 0.49 0.30 10.98 5.47 17.22 16.43
∆ 0.06 36.97 0.67 0.19 5.51 0.79

PredRNN-V2 [2022b]
MAE 4.33 3.25 51.38 40.37 40.83 44.99 2.67 2.43 95.43 72.77 4.32 3.97
MSE 0.27 0.20 51.36 45.76 3.98 3.17 0.41 0.33 9.65 7.35 5.87 4.53
∆ 0.07 5.60 0.81 0.08 2.30 1.34

E3D-LSTM [2018b]
MAE 4.25 3.27 86.37 52.98 40.56 45.38 3.88 3.72 100.23 78.34 4.98 4.65
MSE 0.29 0.25 87.69 59.49 4.37 3.89 0.38 0.29 10.34 7.35 8.76 8.12
∆ 0.04 28.20 0.48 0.09 2.99 0.64

SimVP [2022a]
MAE 3.07 2.56 43.39 33.98 45.98 47.09 1.27 1.02 50.93 31.55 1.98 1.54
MSE 0.14 0.07 40.93 32.89 3.44 2.92 0.28 0.20 5.48 3.24 2.65 2.42
∆ 0.07 8.04 0.52 0.08 2.24 0.23

In our predictions, we simultaneously utilize the past 10 images to forecast the next 10. Additionally,
due to the larger resolution of the PD dataset, we adopt a 6→ 6 approach. Given that the upstream
framework employs a Transformer-based architecture, we ensure the downstream structure both em-
ulates and differentiates from the upstream one in order to validate the universality of our algorithm.
Concretely, we use Transformer-based models as our backbone, such as ViT (Dosovitskiy et al.,
2020), SwinT (Liu et al., 2021), Rainformer (Bai et al., 2022) and Earthformer (Gao et al., 2022b),
as well as non-Transformers such as ConvLSTM (Shi et al., 2015), PredRNN-V2 (Wang et al.,
2022b), E3D-LSTM (Wang et al., 2018b) and SimVP (Gao et al., 2022a). All Transformers had 12
encoder blocks, while non-Transformers used Transpose Conv2d for upsampling. This evaluation
aims to clarify the efficacy of each architecture in managing NuwaDynamics’ complexities, laying
a solid foundation for future model refinement. More detail can be found in Appendix C.
Measurement metric. We delve into the metrics used by evaluation methods. Concretely, we train
backbones with mean squared error (MSE), and use mean absolute error (MAE), MSE and structural
similarity index measure (SSIM) as evaluation metrics. Specifically, for the SEVIR dataset, we
incorporate the CSI index (Ayzel et al., 2020) to replace MAE as a primary metric for comparison.
For MAE and MSE, we use ↓ indicates better performance, and higher value (↑) denotes better
results for SSIM and CSI-M. More details are placed in Appendix C.

4.2 ASSESSING THE EFFICACY OF NUWADYNAMICS (RQ1)

As a preparation, we selected both Transformer and non-Transformer architectures. For the Trans-
former architecture in our upstream tasks, we ensure that the sequence lengths of the upstream
reconstruction tasks and downstream prediction tasks are consistent, allowing for direct model pa-
rameter transfer. For non-transformer architectures, we only transfer the data to train the downstream
models. Marker and denote the decrement in MSE and the variation in CSI-M, respectively. We
summarize the results in Tab 1, from the experimental results, We make the following Observations:
Obs 1. +Nuwa consistently outperforms without NuwaDynamics concept. As shown in Tab 1,
we can easily observe that upon integrating the NuwaDynamics concept into the model (+Nuwa),
there were consistent improvements in performance. This is evident from the reductions observed in
both MSE and MAE. Specifically, for complex spatiotemporal data such as PD, introducing +Nuwa
can yield significant benefits: a range of 4.88 ∼ 6.51 descents in Transformer scenarios and 0.08 ∼
7.35 in non-transformer scenarios across 8 different backbones based on MSE metrics.
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Figure 5: Visualization on KTH & SEVIR. For simplicity, we display the results of the last 6 frames.

SimVP
+Nuwa

PredRNN-V2
+Nuwa

Earthformer +Nuwa

� = 6 � = 7~18
Inputs Ground-truth & Predictions

128 x 128

32 x 32

Figure 4: Visualizations on backbones and +Nuwa. For
layout convenience, we only display the last six frames
and showcase complete results in Appendix E.

Settings (TaxiBJ+) Output Sequence
Backbone Input Seq (6) → 6 → 8 → 12

SimVP w/o Nuwa 98.67 96.43 94.32

+ Nuwa 99.12 97.77 95.12

PredRNN-V2 w/o Nuwa 94.53 93.41 89.77

+ Nuwa 96.89 94.54 91.21

Earthformer w/o Nuwa 87.12 85.44 76.56

+ Nuwa 89.92 86.43 77.12

Table 2: Model performances on three
backbones under w/o and + Nuwa con-
ditions. We set the input sequence as 6
frames and the predictive length as 6, 8,
12 with SSIM performances.

Obs 2. NuwaDynamics demonstrates remarkable adaptability across a myriad of spatiotempo-
ral scenarios. NuwaDynamics has been validated across a wide range of ST realm, including traffic,
human motion, climate, precipitation, etc. These real-world datasets repeatedly attest to the robust
generalizability of NuwaDynamics. For instance, on climate and precipitation datasets like SEVIR
and RainNet, there was an average MSE reduction of approximately 0.13 and 0.91, respectively.
Notably, when integrating causal perturbations on the SEVIR dataset under the CSI-M metric, im-
provements of approximately 7.40 and 3.28 were observed for Transformer and non-transformer
architectures, respectively. Further analysis of visualization results are presented in Fig 12.
Obs 3. NuwaDynamics excels in capturing predictive details. When attached NuwaDynamics,
Earthformer and PredRNN-V2 present the predictions in good sharpness. In KTH, NuwaDynamics
could help the model to predict the sharpest sequence compared with original backbones and largely
enrich the details for each part of the body, especially for the arms and legs. In SEVIR, the model
achieves more reliable predictions on details, with texture information becoming more pronounced.

4.3 EVALUATING THE PERFORMANCES ON CHALLENGING TASK (RQ2)

Although the aforementioned experiments have demonstrated the efficacy of NuwaDynamics, val-
idations have been limited. For instance, we have only verified the model under conditions where
the temporal lengths and image sizes between upstream and downstream tasks are consistent. To
further elucidate the robust adaptability, we choose a more challenging ST task, i.e., the long tempo-
ral step super-resolution prediction. Specifically, we selected TaxiBJ+ as the validation benchmark,
since it has intricate temporal dynamics. The input images were downsampled to 32 × 32, and we
utilize the past 6 frames to predict the next 12 frames at a resolution of 128× 128. To accommodate
various spatial resolutions and diverse temporal lengths, we employ a spatial sampling module for
the downstream framework (Here we choose SimVP, PredRNN-V2 and Earthformer). For a fairer
comparison, we only perform data transfer without transferring model parameters. We have placed
the setting details in Appendix F. From the Fig 4 and Tab 2, we make observations:
Obs 4. NuwaDynamics shows great prominence in challenging task. We find that for long-range
super-resolution prediction tasks, all models benefit from Nuwa. As depicted in Fig 4, Earthformer
exhibits the most pronounced advantage. In long-distance forecasting scenarios, especially for 12-
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time-step predictions, SimVP, PredRNN-V2, and Earthformer all achieve an improvement ranging
from 0.56 to 1.44 on SSIM. This further attests to the efficacy of our model.

4.4 TRANSFERABILITY OF NUWADYNAMICS (RQ3)

ST transfer learning has long been considered a challenging problem, given its intricate ST cor-
relations (Yao et al., 2020; Wang et al., 2018a). Few works have managed to effectively transfer
certain ST patterns to assist another scene. RegionTrans (Wang et al., 2018a) takes the first step
to achieve inter-city knowledge transfer, and (Yao et al., 2020) designs a differentiable frame for
unsupervised transfer learning across multiple ST tasks. In this study, we chose a more complex
sense of meteorological prediction as a backdrop to explore whether ST transfer tasks can bene-
fit from NuwaDynamics. Concretely, we select two meteorological datasets, RainNet (50GB) and
SEVIR (100.6GB), as source data and target data (Note as RainNet ⇌ SEVIR), respectively. Fur-
ther, we choose SOTA frameworks based on CNN (SimVP), RNN (PredRNN-V2), and Transformer
(Earthformer) to systematically validate the feasibility of our framework.

Obs 5. NuwaDynamics greatly improves transferability of general models. From a holistic in-
sight, the model’s transfer capability has improved by approximately 1.34 ∼ 7.75 on SSIM. This
demonstrates Nuwa’s assistance in transfer learning. An intriguing observation was made by us:
Earthformer exhibits greater capability than SimVP and PredRNN-V2, further supporting the po-
tential superiority of transformers in transfer learning tasks and effectiveness of our upstream task.
We showcase the visualizations of the transfer learning results in Appendix G.

Table 3: Performances under w/o and + Nuwa. Marker and denote the RainNet (R)→ SEVIR
(S), and RainNet (R)← SEVIR (S) performances. ∆ denotes improvements in SSIM metrics.

SimVP, (10 → 10) PredRNN-V2, (10 → 10) Earthformer, (10 → 10)

w/o Nuwa +Nuwa ∆ w/o Nuwa +Nuwa ∆ w/o Nuwa +Nuwa ∆

R → S 72.12 76.98 4.86 65.43 66.97 1.54 82.18 85.67 3.49
S → R 65.49 66.97 1.48 64.37 72.12 7.75 75.32 76.66 1.34

4.5 EXTREME WEATHER FORECASTING OF NUWA (RQ4)

Extreme weather forecasting has always been considered a highly challenging task with significant
real-world implications (Bi et al., 2022). Due to the rarity of extreme events, current research often
struggles to achieve high fidelity in detailing (Scher & Messori, 2019; Schultz et al., 2021; Keisler,
2022). SEVIR and RainNet contain a vast collection of high-quality extreme events like Storm,
Hurricane Florence and Squall. We showcase the visualizations in Fig 6 to illustrate that the en-
hancements in Nuwa’s upstream can aid in better discerning the distribution of potential extreme
events, thereby improving perceptual capability. As expected, Nuwa helps the model in capturing
the intricate details of extreme weather, achieving exceptional local fidelity.

Ground-
truth

Rainformer

Rainformer
+Nuwa

Storm Hurricane Florence Squall

Figure 6: Visualization of storm, hurricane florence, and squall.

5 CONCLUSION
In this paper, we present the first attempt to introduce the causality philosophy in ST forecasting
tasks. We propose a two-stage causal framework, NuwaDynamics, to discover non-trivial regions
in data and update the model into causal frameworks. It performs self-supervised learning in up-
stream reconstruction tasks for intervening in environmental regions and augmentation on trivial
part (aligned with the backdoor adjustment). Extensive experiments across six real-world spatiotem-
poral (ST) benchmarks demonstrate that models enhanced with the NuwaDynamics concept yield
improved results. In the future, we plan to explore causal learning on spatio-temporal graphs.
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A EXAMPLES

We present the global distribution of PH in 2022, sourced from the average of monthly observations
distributed at the Global Disaster Alert and Coordination System (GDACS) over the calendar year
(https://www.ocean-ops.org/). From the data (Fig 7), we easily observe a significant
imbalance in the PH distribution within global ocean currents. Within each grid area, the number
of grids ranging from 0.01 to 0.50 is more than five times greater than the number of grids ranging
from 1.01 to 1.50. During data analysis, it becomes challenging to predict extreme regions (e.g.,
regions with PH > 3.0) using models.

Figure 7: Global distribution of PH in 2022, sourced from the average of monthly observations
distributed at the Global Disaster Alert and Coordination System (GDACS) over the calendar year.

Another case of uneven sensor distribution (Fig 8) reveals that the deployment of observation equip-
ment in the Indian Ocean is significantly sparser compared to the Pacific and Atlantic Oceans. This
imbalance in observation deployment can lead to challenges in data collection. Leveraging data
from regions with a higher density of sensor deployment to guide regions with relatively fewer
deployments can provide significant assistance in addressing these challenges.

Sparse

Dense 

Dense

Indian Ocean

Pacific Ocean

Atlantic Ocean

Figure 8: Launch locations for all profile buoy deployments in 2022.
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B AN QUANTITATIVE EXAMPLE SUPPORT MOTIVATION

We next contemplate a more quantitative example in the lower part of Fig 2. Suppose we are in-
vestigating whether a drug aids in recovery from an illness. For males, out of 270/87 who did not
take or took the medicine, and the recovery rate among those who took the medicine was 0.93,
which is higher than those who did not. A similar phenomenon can be observed in the female co-
hort (0.73>0.69). However, when we disregard gender, we reach the opposite conclusion, with the
recovery rates being 0.79 for those who took the medicine and 0.83 for those who did not. This
phenomenon is known as Simpson’s Paradox (Pearl et al., 2000), caused by the unobserved gender
variable in the aggregate data. By thoroughly traversing the confounder variables, we can effectively
mitigate the above issue. This approach forms the crux of our framework and is also referred to as
“backdoor adjustment” (Pearl & Mackenzie, 2018; Pearl et al., 2000).

C EXPERIMENTAL SETTINGS

Evaluation metrics. The Critical Success Index (CSI) (Ayzel et al., 2020; Gao et al., 2022b) serves
as a prevalent metric in precipitation forecasting to gauge prediction accuracy. CSI is given by: CSI
= Hits/(Hits +Misses + F.Alarms). Here, Hits, Misses, and F.Alarms are the quantities of true
positives, false negatives, and false positives. To compute these quantities, we rescale the predicted
and true values to lie between 0 and 255 and determine binary classifications using the thresholds
[16, 74, 133, 160, 181, 219]

By computing CSI values across various thresholds, we assess the predictive performance of the
model, employing the mean CSI-M as a comprehensive evaluation metric. A superior CSI value
signifies precise precipitation prediction by the model, whereas an inferior CSI suggests room for
enhancement in predictive capability. Thus, the CSI stands as a pivotal metric in precipitation
forecasting, offering insight into the model’s efficacy and directing refinements in the prediction
algorithm.

Hits, Misses, and F.Alarms are important indicators for evaluating the performance of the prediction.
Specifically:

• True positive (Hits): Denotes the model’s accurate prediction of precipitation occurrence.

• False negative (Misses): Indicates the model’s oversight in predicting an actual precipitation event.

• False positive (F.Alarms): Reflects the model’s erroneous prediction of precipitation, specifically
when precipitation does not materialize.

In predictive modeling, a greater count of Hits, Misses, and F.Alarms implies diminished perfor-
mance. In precipitation forecasting, our objective is to maximize the number of Hits, concurrently
minimizing Misses and F.Alarms, thereby enhancing the accuracy and trustworthiness of the pre-
dictions.

Details of benchmarks. Here we provide a systematic introduction to the benchmark we used. For
a clearer and better understanding, we have placed the statistical characteristics in Tab 4.

Table 4: Dataset statistics. N tr and N te denote the number of instances in the training and test
sets. The lengths of the input and prediction sequences are Il and Ol, respectively.

Dataset N tr N te (C,H,W ) Il Ol Interval
TaxiBJ+ 3555 445 (2, 128, 128) 10 10 30 mins
KTH 108717 4086 (1, 128, 128) 10 10 –
SEVIR 4158 500 (1, 384, 384) 10 10 5 mins
RainNet 6000 1500 (1, 208, 333) 10 10 1 hour
PD 2000 500 (3, 1400, 1400) 6 6 5 seconds
FireSys 2000 500 (3, 128, 128) 10 10 –

• TaxiBJ+: This dataset encompasses trajectory information sourced from Beijing taxis’ GPS, de-
lineated into two distinct channels: inflow and outflow. Furthermore, we’ve augmented the origi-
nal dataset by gathering recent trajectory details from Beijing and enhancing the resolution from
32×32 to 128×128, designating it as TaxiBJ+.
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• KTH: This dataset comprises 25 individuals executing six distinct actions: walking, jogging,
running, boxing, waving, and clapping. The intricacy of human movements stems from the unique
variations individuals exhibit when performing these actions. By analyzing preceding frames, the
model can grasp the nuances of human dynamics and anticipate future prolonged postural shifts.

• SEVIR: The SEVIR dataset features radar-based readings of vertical accumulation liquid (VIL),
captured at 5-minute intervals with a 1 km resolution. This dataset serves as the foundational
source for rain and hail detection.

• RainNet: This benchmark boasts over 62,400 pairs of top-notch low/high-resolution precipitation
maps spanning more than 17 years, primed to facilitate the advancement of deep learning models
in precipitation downscaling.

• Pollutant-Diffusion (PD): This data is derived from the computational fluid dynamics (CFD)
simulation outcomes related to pollutant dispersion within a designated area. We selected a wind
speed of 15m/s, with the wind direction set to due north, and utilized the centering point as the
dynamic data for the pollutant release point.

• FireSys: The FireSys dataset encompasses data related to fire observations, where both temporal
and spatial trends of fire evolution accurately reflect the progression status in nature.

D VISUALIZATIONS TO ANSWER RQ1.

Input

Ground-
Truth

SimVP
+Nuwa

Input

Ground-
Truth

SimVP
+Nuwa

Figure 9: Visualization results of SEVIR under SimVP+Nuwa, we can observe that incorporating
NuwaDynamics significantly enhances the model’s ability to capture fine-grained details.

Input

Ground-
Truth

SimVP
+Nuwa

Figure 10: Visualization results of FireSys under SimVP+Nuwa, We find that upon integrating
NuwaDynamics, the model’s predictive outcomes adeptly capture the edge information of flames,
offering a commendable prediction in terms of fine details.
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E VISUALIZATIONS TO ANSWER RQ2.

In this section, we present the complete visualization results on TaxiBJ+. It’s evident that SimVP
achieves the best visual details in prediction, while Earthformer’s visualization performance is in-
consistent. However, when enhanced with Nuwa, all models achieve improved visualization out-
comes. This improvement is most notably observed in Earthformer’s results.

� = 6 � = 7~18
Inputs Ground-truth & Predictions

SimVP

PredRNN-V2

Earthformer

SimVP
+Nuwa

PredRNN-V2
+Nuwa

Earthformer
+Nuwa

Figure 11: Visualization results of TaxiBJ+ under SimVP+Nuwa, PredRNN-V2+Nuwa and Earth-
former+Nuwa. Here we showcase the last eight frames for ease of understanding.

F EXPERIMENTAL SETTINGS ON LONG TEMPORAL STEP
SUPER-RESOLUTION PREDICTION

In this section, we have delved into scenarios where the input-output dimensions of pre-trained
models differ from those of downstream tasks. We addressed this in two parts: (1) handling low-
resolution data inputs, and (2) managing varying prediction lengths. Specifically, the details are as
follows:

Spatial Upsampling in Spatio-temporal Data The spatio-temporal upsampler contains a spe-
cially designed upsampling module aimed at enhancing the spatial resolution of time series data.
Given a five-dimensional input tensor x with the shape B×T ×C×H×W , where B represents the
batch size, T denotes the number of time steps, C stands for the channel count, and H and W respec-
tively describe the height and width of the feature map. This tensor is initially reshaped into a four-
dimensional form as shown by xreshape = reshape(x, (B×T,C,H,W )). Subsequently, through a
transpose convolution operation with a stride of 4, a kernel size of 4, and zero padding, the spatial di-
mensions of the feature map are expanded, yielding xupsampled =↑4,4,0 (xreshape), with the result-
ing dimensions being 4H × 4W . Ultimately, the output feature map xfinal is reshaped back into its
original five-dimensional shape, expressed as xfinal = reshape(xupsampled, (B, T,C, 4H, 4W )).
In summary, the entire upsampling process can be represented as xfinal = reshape(↑4,4,0
(reshape(x, (B×T,C,H,W ))), (B, T,C, 4H, 4W )), thereby facilitating a precise transformation
from low to high resolution.

Adaptive Temporal Forecasting with Autoregressive Process In the context of time series fore-
casting using a CNN-based method with an input tensor of dimensions B× T ×C ×H ×W , there
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exists a challenge in flexibly extending the temporal dimension. While expanding temporal channels
offers a means to alter the length of output predicted frames, a more computationally efficient strat-
egy is sought. Mimicking RNNs provides a solution: RNNs inherently generate long-term forecasts
by recycling prior predictions as present inputs. When the desired prediction length K is shorter
than the input sequence length T , the most recent K timesteps are sliced from the input, adjusting it
to B×K ×C ×H ×W . This adjustment ensures that the model’s autoregressive predictions align
with the intended temporal horizon.

G TRANSFERABILITY OF NUWADYNAMICS

Ground-truth & Predictions

+Nuwa

+Nuwa

+Nuwa

Earthform
er

SimVP

PredRNN
-V2

Ground-truth & Predictions

Earthformer
+Nuwa

+Nuwa
SimVP

+Nuwa
PredRNN-V2

Figure 12: Visualizations of the transfer learning. We only display the last six frames for conve-
nience.

H PROOFS OF BACKDOOR ADJUSTMENT IN NUWADYNAMICS

Backdoor adjustment refers to a method used in causal inference to eliminate or control for con-
founding variables that may affect the relationship between the treatment and the outcome. This is
achieved by conditioning on a set of variables (the backdoor criterion) that blocks all backdoor paths
from the treatment to the outcome through confounders. By doing so, one can isolate the causal ef-
fect of the treatment on the outcome from the biases introduced by confounders. In this work,
we employ the backdoor adjustment mechanism to better assist downstream models in perceiving
potential test distributions (Yu et al., 2023c;b;a; Liu et al., 2023c).

The do-calculus is a set of three rules introduced by (Pearl et al., 2000) as a part of the causal
inference framework. It’s a mathematical formalism for reasoning about interventions and causal
effects. The do-calculus is utilized for deriving expressions for causal effects in terms of observed
distributions, which can be evaluated from data. The rules of do-calculus allow for the manipulation
of expressions involving “do” operators, which correspond to interventions in a causal model. As
shown in Fig 13, based on the above descriptions, we can apply the following three rules:

• Rule 1: Insertion/deletion of observations. P
(
Y|do

(
C̃
)
, S

)
= P (Y|C̃) since the environment

variable S does not affect the prediction of C̃ to Y , i.e., Y⊥S|C̃.

• Rule 2: Action/observation exchange.
(
Y|do

(
C̃
)
, do (S)

)
= P (Y|do

(
C̃
)
, S) if C̃ is not a

descendant of S.

• Rule 3: Rule of Reversal. P
(
C̃|do (Y)

)
= P (C̃|Y) if C̃ is not a descendant of Y .

Backdoor Adjustment. Based on the above three rules, we showcase the relevance of our algorithm
and backdoor adjustment. Our algorithm can be well-understood as a form of backdoor adjustment
to enhance the potential data and remove backdoor paths. Uniquely, due to the complexity of envi-
ronmental variables in the backdoor paths, it significantly increases the training burden. In Section
3.3, we introduced the concept of spatio-temporal (ST) bank to better select influential patches,
thereby achieving a trade-off between performance and computational resources.
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Figure 13: Fig (a) represents the general deep models prediction processes, which consider the envi-
ronmental parts. Fig (b) illustrates that within the input, there exists an environmental portion S. S
does not contribute to the model’s prediction, which may consequently lead to spurious associations.
(c) denotes the model prediction after backdoor adjustment, we can remove spurious correlations by
traversing the potential test distributions.

P
(
Y|do

(
C̃
))

=

T∑
i

P
(
Y|do

(
C̃
)
, S = Si

)
P
(
S = Si|do

(
C̃
))

=

T∑
i

P
(
Y|do

(
C̃
)
, S = Si

)
P (S = Si) Rule 3

=

T∑
i

P
(
Y|C̃, S = Si

)
P (S = Si) Rule 1

(8)

I DESCRIPTIONS OF ST BANK AND GAUSSIAN SAMPLING

We employ a discretized Gaussian formula to extract data from historical time steps to construct
sequences, aiming to better aid the model in creating backups of spatio-temporal prediction data:

G
(
T, σ2) =

1

σ
√
2π

exp

(
− (x− T )2

2σ2

)
(9)

The aforementioned formula can be further illustrated in Fig 15, we use the current moment t as the
mean, and with a variance of σ2 , apply a Gaussian distribution probability to sample the intervention
data in the ST bank. Evidently, in the ST bank, the closer the data is to the current moment, the higher
the sampling ratio, and vice versa.

�� − 1� − 2

Sampling Probability

�

� − 1

� − 2
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�0

� − 3

� − 4

Not Filtered

Figure 14: An illustration of discretized Gaussian formula.
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J ABLATION EXPERIMENTS ON SPATIAL AND TEMPORAL AUGMENTATION

In this section, we meticulously execute three distinct ablations to elucidate the influence of key
components within our proposed model. These methodologies are articulated as follows:

1. Strategy A1: This method primarily involves the manipulation of only the causal patches at the
current time point, deliberately omitting historical patches. This approach is intended to isolate and
evaluate the impact of immediate causal effects, devoid of historical influences, thereby providing
insight into the temporal immediacy of the model’s performance.

2. Strategy A2: In this variant, our attention pivots to historical data, but with a significant alteration:
all historical patches are accorded equal significance, effectively disregarding the time decay factor.
Each time point is uniformly weighted, with a value of 1. This modification is designed to probe the
model’s sensitivity to temporal variations and to ascertain the importance of differentially weighting
historical data based on their temporal proximity.

3. Strategy A3: This strategy concentrates on the examination of historical patches specific to
the region of interest, while excluding the broader spatial context and other causal patches. These
patches are incorporated with a decay factor, with the objective of exploring the localized temporal
dynamics and their isolated influence on the model’s predictive accuracy.

For clarity and consistency in our analysis, these strategies are systematically designated as A1, A2,
and A3. The outcomes of these ablation tests, particularly in terms of MAE, are tabulated. This
structured presentation is chosen to enable a lucid comparison and an in-depth understanding of the
distinct and collective impacts of these strategies on our model’s efficacy. Through this comprehen-
sive ablation study, we aim to unravel the complex inter-dependencies among causal, temporal, and
spatial elements in our analytical construct.

TaxiBJ+ KTH RainNet PD

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

ViT + SimVP 2.89 2.72 3.02 37.64 35.25 43.26 1.16 1.08 1.25 40.86 35.64 50.62

SWin + SimVP 2.72 2.61 2.94 35.56 34.12 42.64 1.05 0.99 1.16 39.34 34.16 49.13

ViT + PredRNN 3.81 3.54 4.28 45.42 42.06 51.25 2.55 2.49 2.62 84.36 79.92 92.86

SWin + PredRNN 3.72 3.41 4.15 44.32 41.17 50.14 2.45 2.48 2.53 82.32 77.43 90.95

Table 5: Ablation study results showing MAE across different datasets and backbones.

The comparison across strategies indicates that Strategy A2, which treats all historical data equally
and does not consider time decay, typically offers superior performance. This suggests the pre-
dominance of historical data in enhancing predictive accuracy. Conversely, Strategy A1, which
concentrates solely on the current causal patches, is advantageous for datasets where present data is
more indicative of future outcomes. However, Strategy A3 leads to increased MAE for the KTH and
PD datasets, underscoring the significance of spatial context in these scenarios. Collectively, these
insights reveal that while historical data is paramount, spatial context is indispensable for datasets
with intricate spatial dependencies.

K ADDITIONAL RESULTS ON HIGH-RESOLUTION DATASETS

In order to deeply study Nuwa’s capability in handling high-resolution datasets (Khojasteh et al.,
2022), we chose a cylinder dataset with 768x768 resolution to systematically validate the perfor-
mance and effectiveness of our algorithm. In order to maintain the consistency of the main paper,
we chose ViT, Swin Transformer, Rainformer, Earthformer, as well as ConvLSTM, PredRNN-V2,
E3D-LSTM, and SimVP as the backbone networks for our experiments. We ensure that the experi-
mental setup remains consistent with the main part.

The implementation of Nuwa across various deep learning models consistently enhances model
accuracy, with notable reductions in both MSE and MAE metrics. The Earthformer model exhibits
the most dramatic improvement, dropping from 0.49 to 0.33 in MSE and from 0.43 to 0.32 in MAE.
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Table 6: Experimental results on top of the high-resolution cylinder dataset

Backbone MSE MAE

Ori +NuWa Ori +NuWa

ViT 0.67 0.37 0.56 0.37
SwinT 0.61 0.34 0.55 0.33
Rainformer 0.55 0.49 0.36 0.40
Earthformer 0.49 0.33 0.43 0.32
ConvLSTM 0.61 0.48 0.53 0.38
PredRNN-V2 0.70 0.61 0.49 0.39
E3D-LSTM 0.54 0.31 0.43 0.31
SimVP 0.40 0.31 0.37 0.30

The experimental results also show the robustness of SimVP, which maintains the lowest MSE and
MAE both before and after the enhancement using Nuwa. While the Rainformer model displays an
unusual increase in MAE, suggesting a trade-off introduced by NuWa Improvements vary among
models, with Earthformer, SimVP, and E3D-LSTM benefiting substantially, illustrating NuWa’s
variable impact.

Inputs

Ground-truth

SimVP

SimVP
+ Nuwa

PredRNN-V2

PredRNN-V2 
+ Nuwa

Figure 15: Visualization of spatiotemporal prediction with cylinder dataset. The figure demonstrates
that upon incorporating Nuwa, the model achieves greater precision in details, with predictions
displaying more accurate textural information.

L EVALUATIONS OF CAUSAL DISCOVERY

In light of the lack of a well-defined causal region in traditional datasets, this section elucidates
the accuracy of our causal discovery through a real pedestrian movement dataset. We select the
Human3.6m for upstream self-supervised tasks and employ attention maps to visualize the areas of
importance Ionescu et al. (2013). The results, as depicted in the following figure, demonstrate that
our method proficiently correlates pedestrians with causal regions.

As illustrated in the accompanying Figure 16. It is readily apparent that our upstream model profi-
ciently identifies significant areas. These results serve to validate the causal discovery capabilities
of our algorithm.

M FUTURE WORK

In this paper, we have pioneered the investigation into the integration of causal reasoning with spatio-
temporal observable data, systematically formulating a solution that addresses out-of-distribution
generalization issues in spatio-temporal contexts. By implementing a Mixup data augmentation
technique, we have laid the groundwork for substantial improvements in model performance. Rec-
ognizing the potential for further advancements. Our future work will delve into extending the appli-
cation of our work to a broader spectrum of downstream graph learning tasks, such as graph pruning
(Wang et al., 2023b; Xia et al., 2023; Wang et al., 2023c;a), graph sparification (Li et al., 2023; Wu
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Figure 16: Left. Attention map regions on the Human3.6m dataset. Right. Augmented samples by
Nuwa.

et al., 2023a; Wang et al., 2024; Zhang et al., 2024; Fang et al., 2024a) and graph explainability
(Fang et al., 2023b;c; 2022). Moreover, we plan to explore the utility of stable diffusion (Rombach
et al., 2022; Zhang et al., 2023) for environmental patch enhancement and leverage Language Model
Learning (LLM) (Liu et al., 2023b; Fang et al., 2024b) for more sophisticated data description and
send these textual information for guide agumentation. These endeavors aim to refine our model’s
predictive capabilities and generalizability, thereby contributing to the evolution of robust analytical
tools in spatio-temporal data analysis. Interestingly, our method’s ability to identify causal compo-
nents can be further refined and optimized using advanced quantitative metrics. A notable example
is the OAR metric (Fang et al., 2023a), which takes the first step to tackle the inherent OOD issues
of traditional metrics in deep learning explainability domains. On the other hand, we acknowledge
that there is still room for improvement in the efficiency of Nuwa, which can be optimized using the
latest pruning paradigms. For instance, RGLT (Wang et al., 2023a) achieves joint pruning of data
and networks while maintaining generalization and robustness through causal pruning theory.

TaxiBJ+ KTH RainNet PD

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

ViT + SimVP 2.89 2.72 3.02 37.64 35.25 43.26 1.16 1.08 1.25 40.86 35.64 50.62

SWin + SimVP 2.72 2.61 2.94 35.56 34.12 42.64 1.05 0.99 1.16 39.34 34.16 49.13

ViT + PredRNN 3.81 3.54 4.28 45.42 42.06 51.25 2.55 2.49 2.62 84.36 79.92 92.86

SWin + PredRNN 3.72 3.41 4.15 44.32 41.17 50.14 2.45 2.48 2.53 82.32 77.43 90.95

Table 7: Ablation study results showing MAE across different datasets and backbones.
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