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Abstract. Misalignment of the orientations between a 360 camera and
the scene results in a wavy and distorted spherical panorama image,
which may look unstable and have poor perceptual quality. To auto-
matically correct such mis-oriented 360 panoramas, this paper proposes
a novel upright adjustment framework based on a convolutional neural
network. Instead of directly predicting the 3D rotation of the camera
on a given panorama image, our method estimates the rotation by ana-
lyzing the projected 2D rotations of multiple images sampled from the
panorama. To accurately estimate the rotations of 2D sampled images,
we train a 2D roll estimation network using a large-scale labeled im-
age dataset generated by cropping 360 spherical panoramas with various
view orientations. Experimental results demonstrate that the proposed
method accurately and robustly handles upright adjustment of rotated
panoramas while outperforming the previous methods on test datasets
that consist of a variety of scenes.

1 Introduction

With the progress of imaging sensors, consumer-level 360 panorama cameras
(e.g., Ricoh Theta S, Samsung Gear 360) become cheaper and popular. Typical
360 cameras do not have viewfinder screens while simultaneously capturing the
entire view directions (omni-direction) in any poses, so casual users tend not to
care about the camera orientations during the capture. However, misalignment of
the orientations between the camera and the scene results in wavy and distorted
panorama images (Fig. 1a). The wavy horizon and distorted objects look visually
unstable, especially when the panorama is used for a VR application with a
narrow field-of-view display, such as HMD [14]. Moreover, the objects on the
wavy horizon may suffer from severe deformations, which drastically reduce the
perceptual quality of panorama images as salient parts of a scene are usually
located around the horizon.

Correction of this mis-orientation of the camera is called upright adjust-
ment [19], and it requires the estimation of the 3D camera rotation relative to
the scene. Few recent works [3,14] addressed upright adjustment of 360 panora-
mas by analyzing the structural features of the scene, especially horizontal and
vertical lines as well as vanishing points. Unfortunately, these methods work well
only if the given scene follows the specific assumption on the orthogonality of



2 Jeon et al.

(a) input distorted panorama (b) upright adjustment result

Fig. 1. Our upright adjustment method works accurately and robustly for a severely
rotated 360 spherical panorama even when the vanishing structures are not clearly
detectable.

scene structures, such as Manhattan or Atlanta world [6, 26], which could be
violated in many cases, e.g., natural scenes.

In this paper, we propose a novel automatic upright adjustment framework
for 360 panorama images based on a deep convolutional neural network. Instead
of using hand-crafted features extracted from a given 360 spherical panorama,
our method indirectly estimates the camera rotation by analyzing the projected
2D rotations estimated from multiple narrow field-of-view images sampled from
the input panorama. Our proposed framework exploits the semantically trained
CNN features rather than straight line segments and vanishing points, and can
robustly handle a variety of scenes no matter whether they follow the Manhattan
or Atlanta world assumption.

Various experiments on a test dataset show that our method achieves the
state-of-the-art performance in both accuracy and robustness, compared to pre-
vious methods that are based on straight lines and vanishing points detected
in the scene. Furthermore, our method works well on datasets of various scene
categories which do not follow the Manhattan and Atlanta world assumptions,
demonstrating the benefits of our deep neural network based approach that could
learn the semantic upright direction of the scene even when the horizontal and
vertical lines are not clearly detectable.

In summary, the key contributions of our work are as follows:

– we propose a 3D camera rotation estimation method for 360 spherical panora-
mas by exploiting the geometric relationship between a 3D rotation and
projected 2D rotations.

– we generate a large-scale labeled narrow field-of-view image dataset that can
be used for supervised learning of roll (in-plane image rotation) angle estima-
tion, by cropping 360 spherical panoramas using various view orientations.

– our trained convolutional neural network shows mean absolute error (MAE)
about 1◦ in roll angle estimation for a 2D image.

– our 3D camera rotation estimation for 360 panoramas shows the state-of-the-
art performance in both accuracy and robustness, and can handle a variety
of scenes where the Manhattan or Atlanta world assumption is not satisfied.
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2 Related Work

2.1 Upright adjustment and camera orientation estimation

Automatic correction of a tilted photograph has been researched for a decade,
and the existing works are mainly based on vanishing structure analysis [2,8,10,
23]. Recently Lee et al. [18,19] proposed a set of criteria to straighten-up slanted
photos while minimizing perceptual distortions.

Camera calibration estimates the relative orientation of a camera in the en-
vironment. With the Manhattan and Atlanta world assumptions [6, 26], scene
structure analysis for camera calibration has been actively studied. Bazin et
al. [4] proposed a method to estimate the globally optimal vanishing points in a
Manhattan world. Joo et al. [12] presented a precise Atlanta direction estimation
algorithm with inlier set maximization. Recently Zhai et al. [30] proposed a hori-
zon and vanishing point detection algorithm without assuming the Manhattan
or Atlanta world.

2.2 Upright adjustment of 360 spherical panoramas

Although omnidirectional vision has been actively researched in computer vision
and robotics [5,15,17,25], estimation of 3D camera rotation for 360 panoramas,
i.e., upright adjustment of a single 360 panorama image, has not been much
studied yet. Bazin et al. [3] presented a top-down approach for rotation estima-
tion of an omnidirectional camera based on vanishing point detection with the
Manhattan world assumption. Jung et al. [14] proposed vertical/horizontal line
clustering and iterative optimization to robustly estimate 360 camera rotation
under the Atlanta world assumption.

These methods [3, 14] assume the environment as a Manhattan or Atlanta
world, and may fail for panoramas which do not follow the assumption. In addi-
tion, as the methods depend on detecting and clustering straight line segments
and vanishing points, lack of such features would incur inaccurate and unsta-
ble upright adjustment results. In this paper, we overcome these limitations by
proposing a deep learning based approach that does not assume any specific
scene structure.

2.3 CNN-based upright adjustment

With the success of deep learning on image analysis and understanding, there
have been a few attempts to apply deep learning for image orientation estimation.
Fischer et al. [9] trained a CNN with an artificially rotated image dataset to
predict in-plane image rotation (roll). Olmschenk et al. [24] proposed a network
to estimate pitch and roll at the same time for a given image. Recently Joshi
and Guerzhoy [13] trained a CNN classifier to distinguish the orientation of an
image in four directions {0◦, 90◦, 180◦, 270◦}.

All these existing methods focus on ordinary images with conventional field-
of-views, and a deep learning based approach has not been exploited yet for
upright adjustment of 360 spherical panoramas.
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3 3D Rotation Estimation of 360 Spherical Panoramas

A 360 spherical panorama captured with a rotated camera shows wavy and
distorted appearance when it is represented using equirectangular projection. A
narrow field-of-view projection of the panorama shows a tilted image, as the 3D
rotated world is projected onto the 2D image plane. In this section, we formulate
the relationship between a 3D camera rotation and a projected 2D rotation, and
propose a novel framework to compute the 3D rotation using multiple samples
of 2D rotation estimates.

3.1 Rotation of 360 spherical panorama

Upright adjustment of a 360 spherical panorama can be considered as 3D ro-
tation estimation for a 360 camera from the input panorama. Once we have
estimated the camera rotation, the given panorama can easily be made upright
by applying the inverse rotation. Since a 3D rotation can be represented by var-
ious conventions, we first clarify the notation before describing the relationship
between 2D and 3D rotations.

A 3D rotation that should be estimated for upright adjustment of 360 panora-
mas has only two degree-of-freedoms (DOFs) as it can be modeled as a position
change of the north pole on the globe [14], as illustrated in Fig. 2a. In the pre-
vious work [14], a 3D rotation is represented with two rotation angles, tilt and
roll. For better understanding, in this paper, we use a different but equivalent
definition of a 3D intrinsic rotation of a 360 camera using yaw α and roll β.
Intrinsic rotation means that each element rotation (yaw and roll) occurs with
the intrinsic vertical axis attached to the camera itself. As shown in Fig. 2a, an
arbitrary camera rotation (α, β) is performed in two steps. The viewing direction
of the camera is first rotated by α around the vertical axis, and then the camera
with the vertical axis is rotated by β around the rotated viewing direction.

As shown in Fig. 2b, an equirectangular panorama captured by a rotated
360 camera shows a wavy horizon along the horizontal centerline of the image. If
we crop the panorama into perspective images with narrow field-of-views, which
we call sampled images, this wavy horizon would be shown as tilted (slanted
horizon) or nodded (higher or lower eye level) in accordance with the viewing
directions. Intuitively, the horizon is most slanted when the viewing direction
agrees with the yaw α of the 3D rotation, while the horizon becomes flat for the
viewing direction orthogonal to the yaw.

With this observation, we can develop an algorithm that estimates a 3D rota-
tion (α, β) for a given distorted (rotated) 360 spherical panorama by analyzing
the rotations of multiple sampled images. To this end, we formulate the relation-
ship between the 3D rotation of a 360 camera and the 2D rotations of sampled
images in the following section.
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(a) 3D rotation of camera (b) spherical panorama (c) projection of
and projected images 3D rotation

Fig. 2. Relation between 3D and 2D rotations. (a) 3D rotation (α, β) of the camera
and the captured 360 panorama image. (b) Original ground plane (blue) becomes a
wavy horizon when projected along the horizontal centerline of the rotated 360 camera
(red). Perspective projections of the panorama with a narrow field-of-view produce
tilted or nodded images according to the viewing directions (small rectangles). (c) The
angle between the original upright direction and a rotated direction (roll of a 2D image)
becomes smaller as it is projected onto a rotated image plane.

3.2 3D rotation estimation from multiple 2D sampled images

The geometric derivation between 2D and 3D rotations in a spherical panorama
can be explained with Fig. 2. The blue vertical line in Fig. 2a represents the
vertical axis perpendicular to the ground. As shown in Fig. 2c, when the vertical
axis is projected to a rotated image plane (gray), the angle β̂ between the vertical
axis of the camera (solid red line) and the projected vertical axis (dashed blue
line) can be derived using a trigonometric relationship.

We call β̂ as the projected roll because the angle is identical to the in-plane
rotation angle of the projected horizon. When the view direction is rotated with
an angle ∆α from the yaw α, the projection image plane is also rotated away
from α + π/2 by the amount of ∆α. We can then derive the following function

f that relates the rotation angle ∆α with the projected roll β̂:

tan β̂ =
sinβ cos(∆α)

cosβ

β̂ = f(∆α;β) = tan−1
(

tanβ cos (∆α)
)
,

where the function f(∆α;β) is a periodic function that has the maximum β and
minimum −β at ∆α = 0 and ∆α = π, respectively.

To measure the yaw angle α, we introduce an auxiliary variable α̂, where
α̂ = 0 at the leftmost of the panorama image, and define ∆α as the difference
between α̂ and the yaw angle α, i.e., ∆α = α̂ − α. Then the function f can be
represented as follows:

β̂ = f(α̂;α, β) = tan−1
(

tanβ cos (α̂− α)
)
.

If we know two distinct points (α̂1, β̂1), (α̂2, β̂2) on f(α̂;α, β), we can deter-
mine a unique solution for α and β, i.e., 3D rotation of the camera. However,
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(a) input spherical panorama (b) estimated samples and fitted curve

Fig. 3. Estimation of 3D rotation function f(α̂;α, β). (a) input panorama image. (b)
sample estimates (blue dots) and some corresponding images with the best hypothesis
(black dashed curve) and the least squares solution (green curve).

for more robust estimation, we determine a 3D rotation (α, β) using the roll
estimation results from multiple sampled images. Fig. 3 illustrates the pipeline
of our framework and the detailed steps are in the following.

1. Sample N narrow field-of-view images {Ii}Ni=1 around the horizontal cen-
terline of a given spherical panorama using uniformly distributed viewing
angles {α̂i}Ni=1.

2. Estimate the projected roll {β̂i}Ni=1 of the sample images using our roll es-
timation network, which will be described in the following section. Now we
have multiple yaw/roll pairs {(α̂i, β̂i)}Ni=1.

3. Use exhaustive search to find the best hypothesis (α′, β′), which maximizes
the number of inlier samples among the multiple pairs.

4. Determine the function parameters (α, β) using the least-squares fitting of
inlier samples.

Through all experiments in this paper, we used 36 uniformly sampled images
(i.e., N = 36) with 60◦ for the field-of-view. As the number of samples are only
36, we use an exhaustive search to find the best hypothesis for outlier rejection.
If a larger number of samples are used for better accuracy, RANSAC could be
an option, instead of the exhaustive search, for avoiding too much increase of
the computation time.

Even though we use outlier rejection and least-squares fitting with inlier
samples for robust estimation, the performance of our algorithm would highly
depend on the accuracy and reliability of 2D roll estimation of sampled im-
ages. As described in Section 2, previous rotation estimation methods for 2D
images mainly utilize hand-crafted features, such as lines and vanishing points,
with specific assumptions on the scene structure, i.e., the Manhattan or Atlanta
world. To overcome the limitations, we present a CNN-based approach that can
precisely estimate the rotation of a 2D image.
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(a) input panorama (b) projected image dataset

Fig. 4. Large-scale dataset generation with various perspective projections.

4 CNN-based 2D Roll Estimation

In this section, we first present a massive 2D image dataset, where individual
images are labeled with how much they have been rotated. The dataset is gener-
ated by cropping 360 spherical panoramas into perspective narrow field-of-view
images. Our CNN is trained with the dataset to estimate the projected roll angle
β̂ of a given sampled image.

4.1 Rotated image dataset generation using 360 panoramas

Recent tremendous success of image understanding using deep learning is built
upon large-scale labeled datasets [7, 21]. Similarly we need a large-scale dataset
for training our roll estimation network. However, it would be time-consuming
to label the rotation angles for many captured images, and applying artificial
rotations to upright images [9] may suffer from information losses due to the
cropping after image rotation. To annotate the ground truth rotation angles,
Olmsschenk et al. [24] used the camera poses of a RGB-D stream estimated by 3D
reconstruction, and additionally utilized the onboard accelerometer of a RGB-D
sensor to extend the dataset. However, as the RGB-D dataset only consists of
images captured from indoor environments, the dataset is not suitable for 2D
images sampled from 360 spherical panoramas that may come from a variety of
scenes.

In this paper, we generate a novel large-scale dataset for 2D image roll estima-
tion using an existing 360 spherical panorama dataset. A 360 spherical panorama
has 360◦ horizontal and 180◦ vertical field-of-views. So even when we sample nar-
row field-of-view images multiple times, resulting images are seldom much over-
lapped with each other. In addition, as a 360 panorama contains information
from all view directions, no cropping is needed for a rotated image.

We use SUN360 panorama dataset [29]. The dataset consists of 30K high-
resolution 360 spherical panoramas from a large variety of scene categories. Since
the dataset contains non-upright panoramas, we manually correct the 3D rota-
tions for randomly chosen 2000 panoramas, where the selection covers various
scene categories, both indoor and outdoor environments. Then we generate a
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labeled image dataset by projecting the panoramas onto intentionally rotated
viewing angles and image frames as follows.

For the purpose of uniform sampling, we first divided the 360◦ yaw angle into
10 uniform intervals. Then we randomly sampled a yaw value from each interval,
and for each yaw value, we sampled 30 images with random rotations, where the
angle ranges are -20◦≤ pitch ≤20◦ and -40◦ ≤ roll ≤ 40◦. We used 45◦ and 60◦

for the field-of-views to obtain perspective diversity of feature learning. Conse-
quently, 600 narrow field-of-view images were sampled from each 360 spherical
panorama with random 3D rotations. The ground truth label for a sampled im-
age becomes the roll angle used for the sampling. As a result, we generated 1.2M
randomly sampled images labeled with rotation angles in total.

We randomly chose 100 out of 2000 panoramas for a validation set and sam-
pled training and validation images from the disjoint sets of panoramas. We used
1140K training images and 60K validation images for training our roll estimation
network.

4.2 Network structure and training details

We choose Deep Residual Network (ResNet) [11] as our base network architec-
ture, and modify the last layer to produce a single real value that represents
the rotation angle of a given image, instead of the original 1000 class probabili-
ties. To reduce the burden for exploring semantic features from scratch, we use
a ResNet34 model pretrained for ImageNet-1K classification task. The network
parameters are trained using stochastic gradient descent algorithm [16] for 142K
iterations (16 epochs) with mini-batch size of 128. We set the initial learning rate
to 5e-4, and decrease the learning rate by 0.1 times when the validation error
does not drop for two epochs. The final learning rate was 5e-7 after training. We
use L1 loss to minimize the absolute error between the prediction and ground
truth angles.

5 Experimental Results

In this section, we present various experimental results that show our method
achieves the state-of-the-art performance on upright adjustment of 360 spherical
panoramas. We first show some 2D image upright adjustment results to demon-
strate the performance of our trained network. We then compare our 360 upright
adjustment results qualitatively and quantitatively on a test dataset [14]. In ad-
dition, with a newly constructed test dataset, we show that our method produces
robust results for input panoramas violating the Manhattan and Atlanta world
assumptions.

Implementation details For outlier rejection, we set the inlier threshold to 2◦,
which is the distance between a sample and the hypothesis function. We used the
Levenberg–Marquardt algorithm [20, 22] for the non-linear least squares fitting
of function f(α̂;α, β) to obtain the final 3D rotation. We tested our algorithm on
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(a) (b) (c) (d)

Fig. 5. Correction of slanted 2D images (top: input images, bottom: results). Our net-
work precisely predicts the rotation angles of images sampled from spherical panoramas
(a, b) and works even for natural images that were captured by ordinary perspective
cameras (c, d). We selected the test natural images in (c, d) from DIV2K dataset [1].

an Intel i7-6700K 4.00GHz CPU, 32GB RAM and NVIDIA GeForce GTX 1080.
For an input image of size 9104×4552, our algorithm takes about 0.6 seconds
on average. Jung et al. [14] consumes less than one second, and Bazin et al. [3]
takes about five seconds with a MATLAB implementation.

5.1 Rotation estimation for 2D images

After network training, the average absolute error on the validation set is 1.08◦.
We also define the in-k accuracy as the percentage of samples whose error is less
then k◦, which is similar to top-k accuracy in classification tasks. Our network
shows 67.5%, 94.9%, and 97.9% on the validation set for in-1, 3, and 5 accuracies,
respectively.

Although our CNN is trained on images sampled from 360 spherical panora-
mas, it shows satisfying prediction results on ordinary perspective images. Fig. 5
shows 2D roll correction results on different images, where the correction works
well even when the image is cluttered and does not have enough straight lines.

5.2 New test datasets

To evaluate the performance of our framework, we use two different kinds of test
datasets. Jung et al. [14] constructed a test dataset by applying various rotations
to 360 panoramas that have been carefully taken with no camera rotations.
It consists of 840 test images generated from 14 panoramas. As Jung et al.’s
work [14] assumes the Atlanta world for the scene, most of test images in the
dataset follow the assumption well. In contrast, our method does not assume any
specific scene structures, and the dataset would not be enough to thoroughly
evaluate the performance in various situations.
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Table 1. Numerical comparison with existing 360 panorama upright adjustment meth-
ods on Jung et al.’s test dataset [14] and our newly generated test datasets with four
categories. We measured the average absolute angular error between the predicted
rotation and the ground truth label.

Jung et al.’s
dataset [14]

our test datasets

street indoor park mountain total

Bazin et al. [3] 3.66◦ 3.76◦ 4.13◦ 13.29◦ 17.67◦ 9.71◦

Jung et al. [14] 1.12◦ 1.78◦ 2.21◦ 3.75◦ 12.98◦ 5.18◦

ours (best hypothesis) 1.02◦ 1.14◦ 1.09◦ 1.58◦ 3.85◦ 1.92◦

ours (best hypothesis+lsq.) 0.84◦ 0.96◦ 0.81◦ 1.50◦ 3.80◦ 1.77◦

(a) Jung et al.’s test dataset [14] (b) Our test dataset

Fig. 6. Cumulative histograms of the errors of different methods on Jung et al.’s test
dataset [14] and our dataset. Our method outperforms previous methods on both
datasets.

To this end, we built a new test dataset by collecting four scene categories
from SUN360 dataset [29]: street, indoor, park, and mountain. Intuitively, street
and indoor scenes usually follow the Manhattan or Atlanta world assumption,
and contain lots of structural features useful for rotation estimation. However,
park scenes consist of mainly natural structures, such as trees, which may yield
many false vanishing structures. Lastly, mountain scenes contain images cap-
tured at mountain tops, which rarely include straight lines and vanishing struc-
tures and hardly follow the Atlanta world assumption. We manually corrected
the randomly chosen 50 panoramas from each category in SUN360 dataset, 200
panoramas in total. Then we randomly rotated each panorama image with 10
different rotations within a range of ±30◦, resulting in 2000 labeled test cases in
total.

5.3 Comparisons and quantitative evaluation

We quantitatively evaluated our method on two test datasets: Jung et al.’s and
ours. We measured the angular error between the predicted vertical direction
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Input image Bazin et al. [3]

Jung et al. [14] Our result

Input image Bazin et al. [3]

Jung et al. [14] Our result

Fig. 7. Visual comparisons of the upright adjustment results on 360 panorama images
from mountain scenes that do not contain strong structural features.

of the rotated camera and the ground truth label. Table 1 shows average abso-
lute angular errors on both datasets. Fig. 6 shows the cumulative histograms of
prediction errors comparing with existing methods [3, 14]. The table and figure
show the superior performance of our method in both accuracy and robustness.
For Jung et al.’s test dataset [14] that follows the Atlanta world assumption,
the average error of our method reaches the state-of-the-art performance and
more than 99% of test panoramas are corrected with the errors less than 2.2◦.
Interestingly, our errors of upright adjustment of 360 panoramas are lower than
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Input image Bazin et al. [3]

Jung et al. [14] Our result

Fig. 8. Comparison on a scene not following the Atlanta world assumption (e.g., the
slide in the playground).

those of 2D roll estimation network. The reason would be our framework uses
outlier rejection and least-squares fitting to robustly find the best 3D rotation
despite possible mistakes in roll predictions.

For our newly generated test dataset, our method outperforms previous meth-
ods by a large margin. For easy scenes, i.e., street and indoor, all methods show
similar performances compared to the previous test set of Jung et al. [14]. How-
ever, as can be expected, for the test images from the hard case of mountain
scenes, previous methods easily fail as the scenes rarely contain strong structural
features such as straight lines. In contrast, our method uses a roll estimation
network trained with a large-scale dataset, and robustly estimates semantically
correct upright directions regardless of the existences of structural features. Fig.
7 shows visual comparisons of the upright adjustment results for some mountain
scenes.

In addition, as shown in Fig. 8, our method works well on a scene that does
not follow the Atlanta world assumption. Various examples of our algorithm in
Fig. 9 and the supplementary material show that our method can robustly and
accurately handle spherical panoramas from a variety of scenes.

6 Conclusions

Upright adjustment of a mis-oriented 360 spherical panorama improves the per-
ceptual quality by correcting the wavy horizon and distorted objects. In this
paper, we presented a novel upright adjustment framework for 360 spherical
panoramas which indirectly uses a convolutional neural network. By exploiting
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Input image Our upright adjustment result

Fig. 9. Additional results of our method for a variety of scenes.

the relationship between a 3D camera rotation and projected 2D rotations of
multiple sampled images, our method accurately estimates the 3D camera ro-
tation relative to the scene from a given single 360 panorama. Differently from
existing methods based on straight lines and vanishing points, our method uses
a CNN for 2D roll estimation by training it using a massively generated 2D
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image dataset, enabling the network to learn semantic upright directions (e.g.,
standing people). Extensive experiments on test datasets demonstrate that our
method provides highly accurate and robust results for upright adjustment of
360 panoramas even when existing methods could fail.

There remains a limitation of our method. A uniform sampling along the
horizontal centerline of the image could crop only the ground or sky when the
camera has been severely rotated, introducing many outliers in roll estimation.
Adaptive sampling based on saliency or objectness would improve our method.

Directly applying CNN to a 360 spherical panorama has not been straightfor-
ward due to severe distortions around the north and south poles of the panorama
and the lack of a large-scale labeled dataset. In this paper, to avoid the diffi-
culties, we took an indirect approach that uses CNN to estimate rotations of
2D sampled images and computes the 3D rotation from the estimated 2D rota-
tions. Recently Su and Grauman [28] proposed a novel approach to extract CNN
features directly from a spherical panorama image by adjusting the shapes of
pre-trained convolution kernels according to the spherical distortions. Directly
predicting the 3D camera rotation using CNN from a given panorama would be
interesting future work.
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