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Abstract

We propose a novel framework for solving
continuous-time non-Markovian stochastic con-
trol problems by means of neural rough differ-
ential equations (Neural RDEs) introduced in
Morrill et al. (2021). Non-Markovianity naturally
arises in control problems due to the time delay
effects in the system coefficients or the driving
noises, which leads to optimal control strategies
depending explicitly on the historical trajectories
of the system state. By modelling the control
process as the solution of a Neural RDE driven
by the state process, we show that the control-
state joint dynamics are governed by an uncon-
trolled, augmented Neural RDE, allowing for fast
Monte-Carlo estimation of the value function via
trajectories simulation and memory-efficient back-
propagation. We provide theoretical underpin-
nings for the proposed algorithmic framework by
demonstrating that Neural RDEs serve as univer-
sal approximators for functions of random rough
paths. Exhaustive numerical experiments on non-
Markovian stochastic control problems are pre-
sented, which reveal that the proposed framework
is time-resolution-invariant and achieves higher
accuracy and better stability in irregular sampling
compared to existing RNN-based approaches.
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1. Introduction
The field of stochastic control is concerned with problems
where an agent interacts over time with some random envi-
ronment through the action of a control. In this setting, the
agent seeks to select the control such that some objective
depending on the trajectory of the system under their control
and the choice of the control itself is optimised; commonly,
as the system is stochastic, such an objective takes the form
of an expectation of some pathwise cost or reward. The
study of this class of problems has been successfully ap-
plied to many fields of modern sciences, including biology
Cucker & Smale (2007), economics Kamien & Schwartz
(2012), engineering Grundel et al. (2007), finance Pham
(2009), and more recently, epidemics control Hubert et al.
(2022).

Stochastic control is nowadays regarded as a well-
established field of mathematics. Two main approaches
govern the analysis: the stochastic maximum principle and
the dynamic programming approach, see Yong & Zhou
(1999); Pham (2009). In either case, an agent is interested
in characterising a set of optimal strategies, the dynam-
ics of the system under such strategies, and the optimal
value of the corresponding reward functional. The two main
sources of complexity for tackling these problems are: 1) the
continuous-time nature of the underlying stochastic dynam-
ics, and 2) the presence of memory yielding a non-negligible
impact of the system’s history on its future evolution.

Continuous-time non-Markovian stochastic control prob-
lems, where the evolution of the system depends on its
history and not only on its current state, have received
an increasing amount of attention in recent years. Non-
Markovian system provides a more faithful class of mod-
els to describe real-world phenomena than their Markov
counterparts, where the (infinitesimal) displacement of the
state dynamics depend only on the current state. Non-
Markovianity naturally arises in control problems due to the
time delay effects in the system coefficients or the driving
noises, which leads to the optimal control strategy being
influenced by the historical trajectories of the system states.

Typical examples of continuous-time non-Markovian
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stochastic control problems include rough volatility models
Gatheral et al. (2018) from quantitative finance in which the
non-Markovianity stems from having a fractional Brow-
nian motion as the driving noise. Fractional Brownian
motion generalises Brownian motion and involves history-
dependent increments. As a result, the state dynamics driven
by fractional Brownian motion exhibit non-Markovian be-
havior. Another example of non-Markovian problems are
delayed control problems, where memory is incorporated
into the system by assuming path-dependence of the vector
fields governing the dynamics (see Sec. 3 for a precise state-
ment). Optimal decision with time delay is ubiquitous in
economics, for example in the study of growth models with
delayed production or pension funds models, Kydland &
Prescott (1982); Salvatore (2011), in marketing for models
of optimal advertising with distributed lag effects Gozzi
et al. (2009), and in finance for portfolio selection under the
market with memory and delayed responses Øksendal et al.
(2011). See also Kolmanovskiı & Shaıkhet (1996) for mod-
elling systems with after-effect in mechanics, engineering,
biology, and medicine.

As the solution to a continuous-time non-Markovian stochas-
tic control problem is in general not known analytically, it
is important to construct effective and robust numerical
schemes for solving these control problems. An essential
numerical challenge is to effectively capture the nonlinear
dependence of the optimal control strategy on the historical
trajectories of the system states.

Contributions Using the modern tool set offered by neu-
ral rough differential equations (Neural RDEs) Morrill et al.
(2021) — a continuous-time analogue to recurrent neu-
ral networks (RNNs) — we propose a novel framework
which, to the best of our knowledge, is the first numeri-
cal approach allowing to solve non-Markovian stochastic
control problems in continuous-time. More precisely, we
parameterise the control process as the solution of a Neural
RDE driven by the state process, and show that the control-
state joint dynamics are governed by an uncontrolled RDE
with vector fields parameterised by neural networks. We
demonstrate how this formulation allows for trajectories
sampling, Monte-Carlo estimation of the reward functional
and backpropagation. To deal with sample paths of infinite
1-variation, which is necessary in stochastic control, we
also extend the universal approximation result in Kidger
et al. (2020) to a probabilistic density result for Neural
RDEs driven by random rough paths. The interpretation
is that we are able to approximate continuous feed-back
controls arbitrarily well in probability. Through various
experiments, we demonstrate that the proposed framework
is time-resolution-invariant and capable of learning optimal
controls with higher accuracy than traditional RNN-based
approaches.

The rest of the paper is organised as follows: in Sec. 2 we
discuss some related work, in Sec. 3 we present our algo-
rithmic framework and the universal approximation result
of Neural RDEs, and in Sec. 4 we demonstrate the effective-
ness of the algorithm through numerical experiments.

2. Related work
Over the last decade, a large volume of research has been
conducted to solve Markovian stochastic control problems
numerically using neural networks, either by directly pa-
rameterising the control and then sampling from the state
process, such as done by Han et al. (2016), or by solving the
partial differential equations (PDEs) or backward stochastic
differential equations (BSDEs) associated with the problem;
see Germain et al. (2021) for a recent survey about neural
networks-based algorithms for stochastic control and PDEs.
We also mention two examples from the growing literature.
The Deep BSDE model from Han et al. (2017), where the
authors propose an algorithm to solve parabolic PDEs and
BSDEs in high dimension and think of the gradient of the
solution as the policy function, approximated with a neural
network. The Deep Galerkin model Sirignano & Spiliopou-
los (2018) is a mesh-free algorithm to solve PDEs associated
with the value function of control problems; the authors ap-
proximate the solution with a deep neural network which
is trained to satisfy the PDE differential operator, initial
condition, and boundary conditions.

Recently, signatures methods Lyons (2014); Kidger et al.
(2019) have been employed for solving both Markovian
and non-Markovian control problems in simplified settings
Kalsi et al. (2020); Cartea et al. (2022). This approach
does not rely on a model underpinning the dynamics of the
unaffected processes and has shown excellent results when
solving a number of algorithmic trading problems. However,
this method has two main drawbacks: (i) it suffers from the
curse of dimensionality — this happens when one wishes to
compute signatures of a high-dimensional (more than five)
process to make online decisions, and (ii) it requires that the
flow of information observed by the controller is unaffected
by the control and everything else the controller observes
can be explicitly constructed from such information and
the policy. We also point out the theoretical contribution
by Diehl et al. (2017) studying control problems where the
driving noise is a random rough path.

The approach of directly parameterising the control and
training by sampling trajectories from the system was re-
cently studied in the setting of delay-type non-Markovian
stochastic control by Han & Hu (2021). Specifically, the
control is taken to be a Long Short-Term Memory (LSTM)
recurrent neural network with the discrete simulated val-
ues of the state process as input, so as to capture the path-
dependence of the problem. The method is shown to out-
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perform a baseline parameterisation using a fully-connected
feed-forward network taking as input a segment of the his-
tory of the sample path, and demonstrated to have theoretical
advantages in handling non-Markovian problems.

Neural RDEs, as popularised by Kidger et al. (2020); Morrill
et al. (2021) provide an elegant way of modelling tempo-
ral dynamics by parameterising the vector fields of some
classes of differential equations by neural networks. The
input to such models is a multivariate time series interpo-
lated into a continuous path X . Depending on the level
of (ir)regularity of X , the corresponding equation can be
solved in different ways. In (Kidger et al., 2020), X is as-
sumed differentiable almost everywhere, and the equation
becomes an ordinary differential equation (ODE) that can be
evaluated numerically via a call to an ODE solver of choice.
More generally, if X is of bounded variation, then the Neu-
ral RDE can be solved using classical Riemann–Stieltjes or
Young integration (Young, 1905).

Of particular interest in the field of stochastic control is the
setting where the driving noise is Brownian motion , and
the resulting dynamical systems are typically referred to as
stochastic differential equations (SDEs). Because sample
paths from Brownian motion are not of bounded variation,
the integral cannot be interpreted in the classical sense, but
rather using the framework of stochastic integration (Itô,
Stratonovich, etc.). The corresponding ”neural” version
of such models has been the object of several studies Liu
et al. (2019); Li et al. (2020); Kidger et al. (2021b;a), in
particular in the context of generative modelling for time
series. Rough integration Lyons (1998) is arguably the most
general type of integration theory accommodating driving
signals X of arbitrary roughness, and in particular non-
Markovian processes such as fractional Brownian motion.
In this paper, we position ourselves in this general setting.
In the appendix, we provide a minimal summary of the basic
notions of this theory underpinning the content of this paper.

3. Problem formulation and methodology
3.1. Control problems with path-dependent coefficients

Let us introduce the non-Markovian control problems over
closed-loop controls. We fix d, da, dW ∈ N, a real num-
ber T > 0 and Cd := C([0, T ];Rd), the space of con-
tinuous paths from [0, T ] to Rd endowed with the sup
norm. Let (Ω,F ,P) be a probability space supporting
a dW -dimensional Brownian motion W = (Wt)t∈[0,T ],
and F be the natural filtration of W augmented with the
P-null sets. Let H2(Rda) be the space of all square inte-
grable F-progressively measurable processes, and for each
α ∈ H2(Rda), consider the following controlled state dy-
namics: for all t ∈ [0, T ],

dXt = µ(t,X·∧t, αt)dt+ σ(t,X·∧t, αt)dWt, (1)

where X0 = x0, X·∧t = {Xs}s∈[0,t], and (µ, σ) : [0, T ]×
Cd × Rda −→ Rd × Rd×dW are non-anticipative and suf-
ficiently regular mappings so that equation (1) admits a
unique solution X inH2(Rd).1 We denote by A the set of
admissible controls containing all α ∈ H2(Rda) that are
adapted to the filtration generated by X . Such controls are
often referred to as closed-loop, or feedback, controls.

The agent’s goal is to minimise the following cost functional

J(x0, α) = E

[∫ T

0

f(t,X·∧t, αt)dt+ g(X·∧T )

]
(2)

over all controls α ∈ A, where f : [0, T ]× Cd × Rda → R
and g : Cd → R are given measurable functions. Note
that equation (2) is a non-Markovian control problem, as
the coefficients of the state dynamics and the cost functions
depend on the history of the system state. Hence, the optimal
control process will also depend on the entire state trajectory,
instead of the current system state.

3.2. Policy parametrisation via Neural RDE

Here, we are going to parameterise the control process α
in equation (1) as the solution of a Neural RDE driven by
the state process X . Let ℓθ : Rda → Rdh , hθ : Rdh →
Rdh×d, Aθ ∈ Rd×dh be (Lipschitz) neural networks. Col-
lectively, they are parameterised by θ. The dimension
dh > 0 is a hyperparameter describing the size of the hidden
state.

We parameterise controls αθ ∈ A as solutions to Neural
RDEs driven by X ,

Y0 = ℓθ(x0), dYt = hθ(Yt)dXt, αθ
t = AθYt. (3)

With this choice of parameterisation, the dynamics of the
joint process (X,Y ) are governed by the following uncon-
trolled RDE with structured vector fields

d

(
X
Y

)
t

= µ (t,X·∧t, AθYt)

(
1

hθ(Yt)

)
dt (4)

+ σ (t,X·∧t, AθYt)

(
Id 0
0 hθ(Yt)

)
d

(
W
W

)
t

Thus, the infinite dimensional minimisation over admissible
controls of the reward functional J in equation (2) can be
replaced with the finite-dimensional minimisation over the
parameters θ of the following objective functional

J(x0, α
θ) = E

[∫ T

0

f(t,X·∧t, AθYt)dt+ g(X·∧T )

]
,

(5)
1This is the case if, for instance, Cd × A ∋ (x, a) 7−→

φ(t, x, a) has linear growth and is Lipschitz continuous uniformly
in t for φ = µ, σ, see Protter (2005).
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Here, we perform this minimisation by first solving numer-
ically the uncontrolled Neural RDE (4) using a classical
Euler-Maruyama scheme2; we then use the obtained sample
trajectories to compute a Monte-Carlo estimate of the ob-
jective functional in (5), where the integral is approximated
using classical quadrature; finally we compute gradients
of the estimated objective functional with respect to model
parameters θ and optimise by (stochastic) gradient descent.

Contrary to the approach taken by Han & Hu (2021) using
an LSTM-parameterisation of the control, our formulation
does not rely on any specific discretisation or choice of
numerical method. A key feature of Neural RDEs is their ro-
bustness to irregular sampling of the data, essentially due to
operating continuously in time. The sampled data enters the
model only through the construction of the interpolated path,
after which the RDE can be solved numerically on any de-
sired grid using adaptive schemes that changes the step size
to appropriately resolve the variations in the path. There-
fore, because our scheme can be formulated completely
in continuous-time and independently of whichever way
one chooses to estimate J(α), it is naturally time-resolution
invariant, in the sense that even if trained on a coarser res-
olution it can be directly evaluated on a finer resolution
without retraining.

3.3. Extension to problems with non-Markovian noises

The algorithm proposed in Section 3.2 can be easily applied
to other types of non-Markovian control problems. For
instance, consider minimising the following cost functional:

J(x0, α) = E

[∫ T

0

f(t,Xt, αt)dt+ g(XT )

]
, (6)

subject to the following state dynamics (cf. equation (1)):
for all t ∈ [0, T ],

dXt = µ(t,Xt, αt)dt+ σ(t,Xt, αt)dW
H
t , (7)

where (µ, σ) : [0, T ] × Rd × Rda −→ Rd × Rd×dW are
given functions, and WH is a dW -dimensional fractional
Brownian motion with Hurst index H ∈ (0, 1) defined by

WH
t =

1

Γ(H + 1
2 )

∫ t

0

(t− s)H− 1
2 dWs,

with Γ(·) being the Gamma function.

Note that the distribution of the noise increment WH
t+δ −

WH
t , δ > 0, depends on the trajectory (WH

s )s≤t, and hence
the state process X is non-Markovian, even if all coefficients
of equation (6) and equation (7) depend only on the current

2For convergence guarantees of Euler-Maruyama schemes ap-
plied to SDEs with path-dependent vector fields we refer the reader
to Mao (2003). Other choices of solvers are possible.

state and control variables. As a result, the optimal feedback
control of equation (7) typically depend on the entire history
of the state process (see e.g., (Duncan & Pasik-Duncan,
2010)).

However, the approach in Sec. 3.2 can be naturally extended
to this setting, as the algorithm directly parameterises the
feedback controls and hence is invariant with respect to
different driving noises. In contrast, as in the case of path-
dependent coefficients, the classical methods for Markovian
control problems will result in sub-optimal policies in the
presence of fractional noises.

3.4. Universality of Neural RDEs

The section provides theoretical underpinnings for the pro-
posed algorithmic framework by demonstrating that Neural
RDEs serve as universal approximators for functions of
random rough paths.

More precisely, we prove the density (in probability) of
linear functionals on the signature of rough paths, which
implies the universality of Neural RDEs (see Theorem 3.2).
We refer the reader to subsection A.1 for basic backgrounds
of rough path theory, which will be used in this section.
Let α ∈ (0, 1] and X : Ω × [0, T ] → T ⌊1/α⌋(R1+d) be
a stochastic α-Hölder rough path with the property that
the zero-th component of its trace is the time coordinate,
X0

t = t, and whose higher components that involve the
zero-th are defined canonically through Stieltjes integration.
In practice, X can represent either the state trajectory, or
the underlying driving (fractional) Brownian noise.

The following Theorem 3.1 is the probabilistic analogue
of a well-known universal approximation property of the
deterministic signature, see for instance Proposition 3 in
Fermanian (2021a).3 The main contribution of Theorem 3.1,
compared to its deterministic counterpart (e.g. see Kidger
et al. (2020)), is that it avoids imposing a compactness
assumption and establishes the universality in probability.
As a result, the application of Theorem 3.1 is simplified, as it
eliminates the need to select a compact set in the space of α-
Hölder continuous paths, which typically entails additional
boundedness and smoothness conditions of the paths.

Theorem 3.1. Let β < α, X as above, and
F : Cβ([0, T ],R1+d) → R be a continuous map. Then
for each ε, δ > 0 there exists a truncation level N and a
linear map ℓ ∈ TN (R1+d) such that

P
[
|F (X)− ⟨ℓ, SN (X)0T ⟩| ≥ ε

]
< δ, (8)

where SN (X) refers to the truncated signature of X
(cf. subsection A.1).

3It is not to be confused with the universality property of the
expected signature with respect to functions of distributions on
paths, see Theorem 3.2 in Lemercier et al. (2021).
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Proof. Let Dα
r be the closed disk centred at the 0 rough

path, of radius r > 0 in Cα([0, T ],R1+d). Since X is a.s.
α-Hölder continuous in the rough path sense

lim
r→∞

P[X ∈ Dα
r ] = P

[ ⋃
r>0

X−1(Dα
r )
]

= P
[
X−1(

⋃
r>0

Dα
r )
]

= P[X ∈ Cα([0, T ],R1+d)]

= 1

and thus given δ as in the statement there exists r s.t.
P[X ∈ Dα

r ] > 1 − δ. By Proposition 8.17 (ii) in Friz
& Victoir (2010), for any β < α, Dα

r is sequentially com-
pact in Cβ([0, T ],R1+d), and thus compact since this is
a metric space. Let D̃α

r be the intersection of Dα
r with

the aforementioned set of rough paths in Cα([0, T ],R1+d)
whose zero-th coordinate is time t; this is a closed set and
thus D̃α

r is still compact. Thanks to the inclusion of the
time coordinate, linear functions on the signature sepa-
rate points in D̃α

r , and by the Stone-Weierstrass theorem
applied to F |D̃α

r
there exist N and ℓ as in the statement

s.t. |F (X(ω)) − ⟨ℓ, SN (X(ω))0T ⟩| < ε for ω ∈ Ω s.t.
X(ω) ∈ Dα

r , and the conclusion now follows.

The choice for F that we have in mind is the solution map
of an SDE, which can be equivalently viewed as an RDE
driven by the enhanced (fractional) Brownian rough path.
The reduction of the Hölder exponent from α to β is due
to a technical step in the proof, but this adjustment does
not impact the validity of applying the theorem with this
specific choice of F .
Remark 3.2 (Universal approximations of Neural RDEs). It
follows immediately from Theorem 3.1 and the fact that the
signature of a stochastic process satisfies a linear SDE (see
equation (13)) that Neural RDEs parametrised by feedfor-
ward neural networks with linear activation functions are
dense in probability (in the sense of equation (8)) in the
space of all continuous functions on driving rough paths.
This indicates that smooth (and indeed linear) functions of
solutions to Neural RDEs can well-approximate the optimal
controls of a non-Markovian control problem, as the opti-
mal strategies typically depend continuously on the driven
noise. In practice, one can expect superior performance
(e.g. lower dimensions involved) when using non-linear ac-
tivations, even though it is not needed for the theoretical
result. This is because the non-linearity is already contained
in operation of solving the SDE.
Remark 3.3. We would like to thank Terry Lyons for point-
ing out a shortcut to the proof of Theorem 3.1, valid in the
case of Brownian rough paths, which goes as follows: the
Stratonovich rough path lift X 7→ X is measurable, and
thus by Lusin’s theorem, for any δ > 0 continuous on a

compact set K of probability 1− δ. We may then apply the
classical Stone-Weierstrass theorem for signatures of rough
paths with trace valued in K to obtain the result.

4. Experiments
We present a number of numerical experiments demonstrat-
ing the capabilities of our method to compute approximate
solutions of non-Markovian stochastic control problems in
continuous-time. We benchmark the performance of our ap-
proach against a selection of alternative RNN-based models
parameterising the feed-back control Han & Hu (2021). This
choice of benchmarks is motivated mainly by the fact that
this class of models, due to the connection between neural
RDEs and RNNs, are the closest currently available alter-
natives to our method. The three alternative architectures
we consider are: 1) RNN, 2) Long Short-Term Memory
(LSTM), and 3) a Gated Recurrent Unit (GRU).

One key feature of the proposed model that we wish to study
empirically is the time-resolution invariance discussed at
the end of Sec. 3.2. Concretely, to test their robustness to
changes in time-resolution, we train all models on a coarser
time grid and then we evaluate them on a finer grid. Such a
property is desirable both from the perspective of efficient
training under computational budget constraints, and as an
indication that the model is in fact learning a solution to the
actual continuous-time problem. Lastly, a learned control
that is heavily dependent on the grid that it was trained on
may not be suitable for practical use; in such a case, this
invariance property is critical.

Another performance criterion we will be using is the path-
wise L2 error between the state trajectories obtained using
the NCDE control strategy and the ones obtained using the
theoretical optimal control. The lower this error, the closer
the trajectories sampled from the learnt state process to the
trajectories of the theoretical state process.

All models are trained by sampling batches of trajectories
from the state process under the parametric control, of the
form given by equation (4), and then performing direct back-
propagation using an Adam optimiser (Kingma & Ba, 2014)
to minimise the Monte-Carlo estimate of the value of the re-
ward functional J(αθ) in equation (5). For each experiment,
the grid on which the system is simulated and the number of
sample trajectories used to train and evaluate all models are
kept the same. For a fair comparison, the hyperparameters
of each model are adjusted such that the models all have an
approximately equal number of trainable parameters. All
experiments are implemented using version 1.11.0 of Py-
Torch and run on an NVIDIA Tesla K80 GPU. Additional
experimental details can be found in the appendix.
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4.1. Stochastic control problem with delay

We consider first the example of a linear-quadratic problem
with delay, also used by Han & Hu (2021). Linear-quadratic
control problems are widely used to address real-world chal-
lenges. An example from the mathematical finance com-
munity is the control of intraday fill ratios when volatility
is stochastic; see Cartea & Sánchez-Betancourt (2021). In
their paper, the control affects the state dynamics linearly
and the performance criterion is composed of a square run-
ning penalty on the control and a square running penalty on
one of the entries of the state process. A detailed discus-
sion of this problem and how an explicit solution may be
obtained is given by Bauer & Rieder (2005).

With notation as before, the dynamics of the state process
X under a control α are given by

dXt = (A1Xt +A2Yt +A3Xt−δ +Bαt)dt+ σdWt,
(9)

for t ∈ [0, T ] with Xt = ϕ for t ∈ [−δ, 0], δ > 0 a delay
parameter, the distributed delay satisfying

Yt :=

∫ 0

−δ

eλξh(Xt+ξ)dξ, t ∈ [0, T ]

and the goal functional that we seek to minimise

J(α) = E
[ ∫ T

0

(
Z⊤
t QZt + α⊤

t Rαt

)
dt+ Z⊤

T GZT

]
,

Zt : = (Xt + eλδA3Yt), t ∈ [0, T ].

The parameters A1, A2, A3 ∈ Rd×d, B ∈ Rd×dα , σ ∈
Rd×dW , Q,G ∈ Rd×d,R ∈ Rd×d,λ, δ and T are all taken
to be the same values as those used by Han & Hu (2021).
In particular, the problem is considered in 10 dimensions in
state, noise and control, Q,R,G are proportional to identity
matrices, the elements of A1, A3, B and σ are selected ran-
domly and A2 is determined by a condition guaranteeing an
explicit solution. We refer to Han & Hu (2021) for further
details. The constant initial condition ϕ is taken to be zero.
The explicit value function and optimal control are obtained
in terms of the solution to an associated Riccati equation,
which can be solved numerically.

The results for this experiment are shown in table 1. We
see that, trained at full resolution, the LSTM, GRU and
Neural RDE models all perform approximately as well.
However, when the training grid is made coarser, the
Neural RDE model remains relatively stable with only
slight increases in error, dramatically outperforming the
benchmark models whose performance rapidly deteriorates.

4.2. Stochastic control problem driven by Fractional
Brownian Motion

Next, we demonstrate the application of the proposed
method to a problem with non-Markovianity stemming

Table 1. Linear-quadratic problem with delay. Final estimate of
the goal functional on the evaluation grid. Lower indicates smaller
error. Analytical value: 2.231. Training resolution is given as a
percentage of the evaluation resolution of 80 time steps.

Training Resolution
Model 100% 50% 25% 12.5%

RNN 2.493 5.162 8.870 7.600
LSTM 2.357 7.323 5.888 6.863
GRU 2.356 2.830 7.311 18.70

Neural RDE (ours) 2.358 2.457 2.509 2.803

from correlated noise increments by considering a linear-
quadratic problem driven by fractional Brownian motion.
The dynamics for the state X are given by

dXt = (AXt+Cαt)dt+σdWH
t , t ∈ [0, T ], X0 = 0

(10)
where A ∈ Rd×d, C ∈ Rd×da , σ ∈ Rd×dW are parameters
and WH is a dW -dimensional fractional Brownian motion
with components with Hurst parameters H ∈ (0, 1) (as-
sumed the same across all dW channels). We choose the
Hurst parameter H = 0.3, so as to highlight the applicabil-
ity of the method also in the case where solution paths are
rougher than Brownian motion (H = 0.5).

The quadratic cost functional is as follows

J(α) =
1

2
E

[∫ T

0

(
X⊤

s QXs + α⊤
s Rαs

)
ds+X⊤

T GXT

]
,

(11)
where Q,R,G are symmetric and positive definite. We
consider the problem specifically in two dimensions in both
state and control and take T = 1, σ = I ,

A =
1

10

(
12 2
2 12

)
, C =

1

10

(
15 −3
−3 15

)
,

Q = R = G =
1

10
I.

Table 2. Linear-quadratic problem driven by fractional Brown-
ian motion. Final estimate of the goal functional on the evaluation
grid. Lower indicates smaller error. Training resolution is given as
a percentage of the evaluation resolution of 40 time steps.

Training Resolution
Model 100% 50% 25% 12.5%

RNN 0.923 0.911 1.246 2.785
LSTM 0.873 0.961 1.779 3.422
GRU 0.891 0.925 1.236 2.791

Neural RDE (ours) 0.896 0.902 0.927 1.104
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Table 2 shows the results for this experiment. We observe
comparable performance between the LSTM, GRU and
Neural RDE models at full training resolution, but with the
Neural RDE significantly outperforming the other models
when training resolution is decreased. At 12.5% of evalua-
tion resolution, the models are trained on simulations using
just five time steps; nevertheless, the Neural RDE appears
to produce reasonable results with an error compared to
the full resolution case more than one order of magnitude
smaller than for the other models.

4.3. Portfolio optimisation problem with complete
memory

We consider a portfolio optimisation problem with com-
plete memory also studied in Han & Hu (2021). A detailed
analysis of this problem including derivations of explicit
solutions under exponential, power and log utilities is given
in Pang & Hussain (2017). Here, the state process Xt rep-
resents the wealth of an investor and the αt = (α1

t , α
2
t ) is

a 2-dimensional control process, where α1
t is the amount

of investment and α2
t is the consumption of the underlying

asset, i.e. the fraction of wealth consumed at time t. The
dynamics are given, for t ∈ [0, T ], by

dXt = (((µ1 − r)α1
t − α2

t + r)Xt + µ2Yt)dt (12)

+ σα1
tXtdWt,

Yt : =

∫ 0

−∞
eλξXt+ξdξ,

with X0 = ϕ(0), Y0 =
∫ 0

−∞ eλξϕ(t+ξ)dξ, for some square
integrable function ϕ. The goal functional that we seem to
maximise is as follows

J(α) = E
[ ∫ T

0

e−βtU1(α
2
tXt)dt+ e−βTU2(XT ,YT )

]
,

where U1(x) = log(x), U2(x, y) = 1
β log(x + ηy), η =

1
2 (
√
(r + λ2) + 4µ2−(r+λ)). As in the previous example

all the parameters are taken to be the same as in Han & Hu
(2021).

The results for this experiment are shown in table 3, where
we report the relative difference between the estimated and
the theoretical goal functionals as well as relative pathwise
L2 error between the true and estimated process trajectories.
We can see that the Neural RDE model slightly outperforms
all alternative models on the relative difference of goal
functionals and outperforms the second best model by one
order of magnitude on the pathwise L2 error.

5. Conclusion
We proposed a framework for solving non-Markovian
stochastic control problems continuous-time leveraging

Table 3. Portfolio optimisation with complete memory. Relative
difference between the estimated and the theoretical goal func-
tionals as well as relative pathwise L2 error between the true and
estimated process trajectories. Lower indicates smaller error.

Relative errors (×10−3)
Model Goal functional Pathwise L2

RNN 0.262 0.555
LSTM 1.034 2.929
GRU 0.541 1.116

Neural RDE (ours) 0.238 0.043

Neural RDEs. The main idea consists in parameterising
the control process as the solution of a Neural RDE driven
by the state process, so that the control-state joint dynamics
are governed by an uncontrolled RDE with vector fields
parameterised by neural networks. To deal with input paths
of infinite 1-variation, we prove Theorem 3.1 which extends
the universal approximation result in Kidger et al. (2020)
to Neural RDEs driven by random rough paths. We show-
cased the time-resolution-invariance of our approach on vari-
ous non-Markovian problems, achieving better performance
than traditional RNN-based approaches. A natural next step
is to enhance the algorithm’s efficiency by exploring the
relationship between non-Markovian control problems and
path-dependent PDEs and BSDEs.
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A. Appendix
A.1. Background on rough path theory

The purpose of this appendix is to give an informal and very concise introduction to rough paths, their signatures, and their
applications to machine learning.

For the abstract theory of rough paths we refer to Friz & Victoir (2010); Friz & Hairer (2020). An α-Hölder rough path
X consists of an α-Hölder continuous path X : [0, T ] → Rd (the trace of X) together with a collection of higher-order
functions defined on the simplex ∆[0, T ] := {(s, t) ∈ [0, T ]2 | 0 ≤ s ≤ t ≤ T} which represent, in a precise algebraic
and analytic sense, iterated integrals of X against itself. When X is smooth or of bounded variation, such integrals can be
defined canonically in the usual Stieltjes sense, and similarly when X is 1/2 < α-Hölder continuous they can be defined via
Young integration. However, when α ≤ 1/2 there is no canonical way of defining them, and if X is a stochastic process, X
is often defined through some notion of stochastic integration such as Itô or Stratonovich. X takes values in T ⌊1/α⌋(Rd),
where TN (Rd) :=

⊕N
n=0(Rd)⊗n denotes the tensor algebra over Rd truncated at level N and ⌊·⌋ is the floor function:

this means, the rougher X is, the more terms X must contain. Once such terms are defined, the signature S(X) of X is
canonically defined through well-known notions of path integration. S(X) is a map ∆[0, T ] → T ((Rd)) (the algebra of
formal series of tensors), and when α > 1/2 it is canonically defined by Young integration as

S(X)
(n)
st :=

∫
s<u1<...<un<t

dXu1
⊗ · · · ⊗ dXun

where the superscript (n) denotes projection onto (Rd)⊗n. When α ≤ 1/2 the whole of X , not just the trace X , is
needed to define S(X), and S(X)(n) = X(n) for n ≤ ⌊1/α⌋. We will denote Cα([0, T ],Rd) the metrisable topolog-
ical space of α-Hölder rough paths taking values in Rd with time horizon T : this is what Friz & Victoir (2010) call
Cα-Höl([0, T ], G⌊1/α⌋(Rd)); in Friz & Hairer (2020) (which only treats the case of α > 1/3, nevertheless sufficient for
Brownian motion, which is α-Hölder regular for any α < 1/2) this space is denoted Cα

g ([0, T ],Rd), the superscript g
standing for “geometric”. Geometric rough paths are those which satisfy integration by parts relations, and are the only
ones considered here; for example, Itô and Stratonovich integration both define rough paths above Brownian motion, but
only the latter is geometric. This is not an issue when considering Itô SDEs, however, which can canonically be rewritten
in Stratonovich form. The main example of rough path that we will consider is the Stratonovich Brownian rough path
augmented with time: if W is a d-dimensional Brownian motion, we take α to be any real number in (1/3, 1/2) and
for i, j = 1, . . . d we let W ij

st :=
∫
s<u<v<t

◦dW i
u ◦dW j

v , where ◦dW denotes Stratonovich integration. Time will take
the zero-th coordinate, which means that when i or j above is 0, the integral is defined through standard Young/Stieltjes
integration.

The main purpose of rough path theory is to give meaning to rough differential equations (RDEs) dY = V (Y )dX which, in
addition to having usual existence and uniqueness theorems, have the property that the solution map X 7→ Y is continuous.
This is not the case when considering SDEs: the map sending the Brownian sample path to the corresponding path of the
solution, though defined on a set of full measure and measurable, is not continuous. An important RDE is the one satisfied
by the signature itself on T ((Rd)): given a rough path X it holds that

dS(X)0t = S(X)0t ⊗ dXt (13)

The study of signatures is somewhat independent from that of rough paths, and is interesting even in the case of smooth or
bounded variation paths (in which case X = X). The main property of interest of the signature, established in Hambly &
Lyons (2010) (and extended to the full rough path case in Boedihardjo et al. (2016)), is that, for paths of bounded variation,
the series of tensors S(X)0T determines the path X up to treelike equivalence. Roughly speaking, the latter means that if
two paths X , Y are such that X ⋆

←−
Y — with ⋆ denoting path concatenation and

←−
denoting path inversion — is a path

that retraces itself and returns to the starting point, then the signature will not distinguish them: S(X)0T = S(Y )0T . We
will write X ∼ Y for treelike equivalence (and similarly X ∼ Y in the generalised rough path sense of Boedihardjo et al.
(2016)), and note that this includes (but is not limited to) the case in which Y is a reparameterisation of X . “Generic” paths
Rd valued paths can be expected not to be tree-like (i.e. not to retrace themselves) when d > 1; for example, in Le Jan &
Qian (2013) it was shown that Brownian rough paths in dimension 2 or greater a.s. do not contain tree-like pieces.

The result of Hambly & Lyons (2010) is a powerful statement that makes it possible to understand a path X : [0, T ]→ Rd

in terms of the series of tensors S(X)0T . What’s more, the signature has the property of “linearising” all functions on paths:
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any non-linear function of X can be approximately expressed as a linear functional on S(X). A precise version of this
statement in the random rough path case is proved in 3.1 below. A fundamental ingredient for proving this type of result
is the Stone-Weierstrass theorem: given a compact Hausdorff topological space K and a subalgebra A of C(K,R) which
contains a non-zero constant function and separates points (this means that for any two distinct x, y ∈ K there exists a ∈ A
s.t. a(x) ̸= a(y)), it holds that A is dense in C(K,R). The prototypical application of this theorem is the proof of density of
polynomials in C([a, b],R). An important property that makes it possible to apply it to signatures is that linear functions on
the signature, just like polynomials, form an algebra: if ℓ1, ℓ2 : T ((Rd))∗ = T (Rd)→ R are linear maps then

⟨ℓ1, S(X)0T ⟩⟨ℓ1, S(X)0T ⟩ = ⟨ℓ1 � ℓ2, S(X)0T ⟩

where� is the combinatorial operation of shuffling. This relation can be understood as a generalised integration by parts
relation, as can be seen by taking ℓ1 and ℓ2 to be evaluations against elementary tensors: in this case (and X of bounded
variation) the above identity reads(∫

s<u1<...<un<t

dXi1
u1
· · · dXim

um

)(∫
s<v1<...<vn<t

dXj1
v1 · · · dX

jn
vn

)
=

∑
k∈Sh(i,j)

∫
s<r1<...<rn+m<t

dXk1
r1 · · · dX

km+n
rm+n

where we are summing over all multiindices k obtained by shuffling the multiindices (i1, . . . , im) and (j1, . . . , jm). For
these reasons, signatures have been extensively used for in the context of machine learning for time series, see e.g. Chevyrev
& Kormilitzin (2016); Fermanian (2021b).

A.2. Additional experimental details

In this final section of the appendix we present additional experimental details.

Stochastic control problem with delay (sec. 4.1) Trajectories of equation (9) are simulated using an Euler-Maruyama-
type scheme on a uniform grid. All models are trained over 300 batches of 256 sample trajectories simulated on grid with 80,
40, 20 and 10 time steps. The final evaluation estimates of the goal functional are computed using 4096 sample trajectories
simulated on a grid with 80 time steps. The dimension of the hidden states in the baseline models are: 400 for the RNN,
200 for the LSTM and 230 for the GRU. The latent dimension of the Neural RDE model is 200 and the vector field and
initial lift are parameterised by fully connected feed-forward neural networks with two hidden layers of width 64. We take
activations given by elementwise application of the SiLU function x 7→ x

1+e−x and apply a final tanh non-linearity to the
outputs to prevent unreasonably large values and initial losses.

Stochastic control problem driven by fractional Brownian motion (sec. 4.2) Trajectories are simulated using an
Euler-Maruyama scheme with increments of fractional Brownian motion sampled using the Python package fbm (Flynn).
We use uniform grids with 40 time steps for evaluation and 40, 20, 10 and 5 steps for training. All models are trained over
300 batches of 256 sample trajectories. The final evaluation estimates of the value of the goal functional are computed using
4096 sample trajectories. The dimension of the hidden states in the baseline models are: 250 for the RNN, 130 for the
LSTM and 150 for the GRU. The latent dimension of the Neural RDE model is 200 and the vector field and initial lift are
parameterised by feed-forward neural networks with two hidden layers of width 64 respectively.

Portfolio optimisation problem with complete memory (sec. 4.3) We simulate trajectories of equation (12) using an
Euler-Maruyama-type scheme on a uniform grid of 200 time steps. All models are trained over 500 batches of 256 sample
trajectories (similarly for evaluation). The dimension of the hidden states in the baseline models are: 600 for the RNN, 300
for the LSTM and 300 for the GRU. The latent dimension of the Neural RDE model is 350 and the vector field and initial
lift are parameterised by feed-forward neural networks with two hidden layers of width 128.


