

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DEFACTO: COUNTERFACTUAL THINKING WITH IM- AGES FOR ENFORCING EVIDENCE-GROUNDED AND FAITHFUL REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in multimodal language models (MLLMs) have achieved remarkable progress in vision-language reasoning, especially with the emergence of “thinking with images,” which integrates explicit visual steps into the reasoning process. While this paradigm strengthens image-based reasoning, a significant challenge remains: models may arrive at correct answers by relying on irrelevant or spurious regions, driven by prior knowledge or dataset biases. Even when the answer is correct, flawed reasoning indicates that the model has not truly understood the image, highlighting the critical importance of reasoning fidelity in multimodal tasks. To address this issue, we propose *DeFacto*, a counterfactual reasoning framework that jointly enforces accurate answering and faithful reasoning. A key component of our approach is the design of three complementary training paradigms: (i) positive, (ii) counterfactual, and (iii) random-masking. To enable these paradigms, we develop a pipeline that automatically localizes question-relevant evidence and constructs positive, counterfactual, and random variants, resulting in a dataset of about 100k images. Building on this framework, we train multimodal language models with GRPO-based reinforcement learning, where we design three complementary rewards to guide the model toward accurate answering and evidence-grounded reasoning. Experiments on diverse benchmarks demonstrate that *DeFacto* substantially improves both answer accuracy and reasoning faithfulness, establishing a stronger foundation for interpretable multimodal reasoning. The code and datasets will be released upon acceptance.

1 INTRODUCTION

Vision-language models (VLMs) Alayrac et al. (2022); Li et al. (2023a); Zhu et al. (2023); Liu et al. (2023; 2024a); Peng et al. (2023); Bai et al. (2023); Team et al. (2023); Chen et al. (2024c;b) have achieved remarkable progress in recent years, demonstrating strong capabilities across a wide range of multimodal tasks such as visual question answering, image captioning, and referring expression comprehension. By leveraging large-scale pretraining and cross-modal alignment, these models can generate fluent and semantically relevant outputs grounded in visual context. However, in complex scenarios that require multi-step reasoning or fine-grained perception, existing models often rely heavily on implicit language priors, producing plausible yet unfaithful responses that are weakly grounded in the actual image. Instead of genuinely learning to reason over visual content, these models often fall back on text-based chain-of-thought patterns, limiting their ability to handle cases where critical evidence must be directly perceived from the image.

Recent advances in “thinking with images” Microsoft (2024); OpenAI (2025) emphasize the integration of explicit visual steps into the reasoning process to enhance transparency and visual grounding. Early approaches employ supervised fine-tuning (SFT) Ouyang et al. (2022); Touvron et al. (2023); Liu et al. (2023); Dettmers et al. (2023), where models are trained in a chain-of-thought (CoT) Shao et al. (2024) manner to produce region-aware reasoning traces based on manually annotated visual steps. To reduce the annotation burden, subsequent works explore reinforcement learning strategies that allow models to autonomously develop visual interaction behaviors such as region cropping, attention shifting, or zooming Zheng et al. (2025); Cao et al. (2025); Liu et al. (2025b); Zhang et al. (2025b). Yet these approaches do not guarantee that the reasoning chains are faithful to the actual vi-

Figure 1: Qualitative examples of failure cases. Left: Mislocalized Failure (park scene). Right: Spurious Correctness (road scene).

sual evidence: since the model still has access to the entire image, it may either produce an incorrect answer by focusing on irrelevant regions or arrive at the correct answer even when the highlighted regions are unrelated. This issue is clearly illustrated in Fig. 1, where most existing models exhibit two characteristic error modes: *Mislocalized Failure*, in which the model selects irrelevant regions and consequently produces an incorrect answer, and *Spurious Correctness*, in which the answer happens to be correct even though the selected regions are unrelated to the reasoning process. In the park scene (left), GRIT mistakenly attends to the distant background, while Deepeyes zooms in on a faint and indistinct fallen leaf, both of which fail to capture the evidence and lead to an incorrect answer. In the road scene (right), GRIT fixates on the ground, and Deepeyes again zooms in on a helmeted rider, producing a reasoning path that contradicts the very premise of the question. These cases reveal a deeper problem: current approaches can still succeed superficially even when their reasoning is disconnected from the actual evidence. However, correct answers alone are not sufficient—the reasoning process itself must also be correct, since flawed reasoning often leads to erroneous predictions. Such superficial success leads to poor generalization on out-of-distribution inputs and undermines trustworthiness in downstream applications that demand evidence-based decisions. What is needed is a training paradigm that enforces both correct evidence selection and correct answering, ensuring that reasoning trajectories and final predictions are jointly faithful to the visual input.

Motivated by these failure cases, we introduce *Defacto*, a counterfactual reasoning framework that aligns reasoning trajectories with visual evidence, ensuring predictions are both reliable and interpretable. The core idea is to employ three complementary training forms that jointly constrain the model’s behavior: (i) positive supervision, (ii) counterfactual abstention, and (iii) random masking to strengthen evidence-grounded reasoning. In the positive case, the model is given the original image and trained to predict bounding boxes that cover the essential evidence together with the correct answer, receiving positive feedback only when both the evidence selection and the answer are correct. In the counterfactual case, the same question is paired with an image where the evidence regions \mathcal{R}^+ have been masked; since the necessary visual evidence is no longer available, the model is expected to abstain by outputting a designated token such as “unknown,” while any concrete an-

108 swer is penalized. In the random-masking case, irrelevant regions \mathcal{R}^- are masked independently
 109 of the question, preventing the model from exploiting superficial correlations between the presence
 110 of masks and abstention behavior. Training is performed with GRPO-based reinforcement learning,
 111 where the reward integrates three components: (i) Answer Correctness Reward, (ii) Format Consis-
 112 tency Reward, and (iii) Region Selection Coherence Reward. Through this design, DeFacto compels
 113 the model to produce reasoning that is logically grounded, answers that are accurate, and predictions
 114 where reasoning and outcomes remain consistent.

115 In practice, constructing counterfactual samples requires reliably identifying the question-relevant
 116 regions. To this end, we adopt a structured two-stage extraction pipeline. First, a multimodal lan-
 117 guage model (Qwen2.5-VL Bai et al. (2025)) parses the question and generates a set of key descrip-
 118 tors (e.g., “the red cup,” “the text on the shirt”). Next, candidate regions in the image are obtained
 119 from a region proposal network (RPN) Ren et al. (2015) and an OCR module Islam et al. (2017). The
 120 OCR regions are further matched with textual descriptors to capture evidence critical for text-centric
 121 questions. For visual objects, the descriptors are fed into an open-vocabulary detector (DINO-X Ren
 122 et al. (2024)), which provides bounding boxes that serve as positive evidence regions. Finally, the re-
 123 maining proposals from the RPN, after removing matched positives, are treated as irrelevant regions
 124 for counterfactual construction. Using this pipeline, we construct a counterfactual dataset about
 125 100k images, ensuring that positive, counterfactual, and random-masking instances differ only in
 126 the availability of essential evidence while preserving unrelated context. Building on this dataset,
 127 the model is further optimized with GRPO-based reinforcement learning. This training paradigm
 128 enforces consistency between evidence selection and final predictions, ensuring that reasoning traces
 129 remain faithful to visual cues. As illustrated in Fig. 1, our method consistently grounds its reasoning
 130 in the correct regions (e.g., focusing on the three motorcycles on the road and their passengers),
 thereby unifying reasoning steps with faithful visual evidence.

131 Our main contributions are threefold:
 132

133 (1) We propose a counterfactual “thinking with images” framework that aligns the reasoning process
 134 with essential visual evidence by jointly optimizing for answer correctness and region-level faithfulness
 135 via reinforcement learning. (2) We construct a new counterfactual dataset about 100k images
 136 using a language-guided algorithm that integrates open-vocabulary detection with targeted masking,
 137 ensuring that only question-relevant regions are removed while irrelevant context is preserved. (3)
 138 We demonstrate, through extensive experiments on diverse benchmarks, that our approach consis-
 139 tently improves both answer accuracy and visual grounding faithfulness over strong baselines.

140 2 RELATED WORK

141 **142 Structured Thinking with Images in Vision-Language Models.** The concept of “thinking with
 143 images” was initially highlighted in OpenAI o3 Achiam et al. (2023); OpenAI (2025) and later
 144 explored in works like COGCOM Qi et al. (2024) and GRIT Fan et al. (2025). Recent datasets
 145 also highlight the importance of evaluating visual reasoning beyond raw perception. For example,
 146 VisCoT Shao et al. (2024) provides visual-evidence for vqa, while datasets such as MSTI Chen
 147 et al. (2024d) emphasize structured visual understanding across detection, entity grounding, and
 148 answer generation. Existing approaches can be broadly categorized into two classes. The first
 149 category includes GRIT, which combines natural language and bounding boxes via reinforcement
 150 learning; REFOCUS Fu et al. (2025), which formulates visual editing as intermediate reasoning
 151 steps; COGCOM Qi et al. (2024), which models reasoning as visual manipulations such as crop-
 152 ping and OCR; and VisionReasoner Liu et al. (2025a), which unifies detection, segmentation, and
 153 counting under one framework. The second category emphasizes grounding quality. Fast-and-Slow
 154 Visual Agents Sun et al. (2024) model dual-system reasoning. DeepEyes Zheng et al. (2025) lever-
 155 ages reinforcement learning to train multimodal chains-of-thought and dynamically invoke zoom-in
 156 tools when visual evidence is ambiguous. MLLMs Know Where to Look Zhang et al. (2025a) im-
 157 proves small-object perception by applying inference-time cropping strategies to highlight fine de-
 158 tails. Chain-of-Focus Zhang et al. (2025b) further adapts zoom-in operations through reinforce-
 159 ment learning, enabling multi-scale reasoning across cluttered scenes. Ground-R1 Cao et al. (2025) en-
 160 hances faithfulness by introducing explicit reward signals that align reasoning outputs with grounded
 161 evidence. V* Wu & Xie (2024) formulates guided visual search as a core cognitive mechanism to
 explore high-resolution images efficiently. Visual-RFT Liu et al. (2025b) refines grounding via re-

162 inforcement fine-tuning. As a result, they often fail to ensure that reasoning trajectories remain
 163 consistent with the visual evidence, leaving open the need for a paradigm that jointly enforces faithful
 164 reasoning steps and accurate answers.

165 **Counterfactual Reasoning in Vision-Language Models.** Counterfactual reasoning in VLMs can
 166 be categorized into two types: counterfactual data generation and inference-based reasoning. The
 167 first enhances robustness by constructing or augmenting counterfactual samples to reduce bias and
 168 hallucination. For example, Learning Chain of Counterfactual Thought Zhang et al. (2020) disentangles
 169 factual knowledge from reasoning via CoBRA and CoCT datasets; C-VQA Zhang et al. (2024b) and
 170 CRIPP-VQA Patel et al. (2022) construct benchmarks for counterfactual VQA in static and
 171 video settings, respectively; Counterfactual Vision and Language Learning Abbasnejad et al. (2020)
 172 and Counterfactual Contrastive Learning Zhang et al. (2024c) generate counterfactuals through
 173 structural causal models and perturbation strategies, while CounterCurate Zhang et al. (2024a) im-
 174 proves compositional reasoning by augmenting training data with physically grounded examples
 175 and semantic counterfactuals using generative models. The second type focuses on inference with
 176 mechanisms such as Counterfactual-based Saliency Maps Wang et al. (2023) for contrastive visual
 177 explanation, DiG-IN Augustin et al. (2024) for diffusion-guided latent edits, and Counterfactual
 178 VQA Niu et al. (2021) for causal effect modeling. However, most existing approaches either treat
 179 counterfactuals as data augmentation without explicitly constraining the reasoning process, or apply
 180 them only at inference for explanation, leaving a gap in methods that can jointly enforce faithful
 181 reasoning steps and correct answers during training.

182 3 METHOD

183 In this section, we present the overall framework of DEFACTO, our counterfactual “thinking with
 184 images” approach. This section is organized into three parts: (1) the overall architecture and in-
 185 ference pipeline (Section 3.1); (2) the construction of counterfactual datasets via region masking
 186 and open-vocabulary filtering (Section 3.2); and (3) the reinforcement learning strategy with a tai-
 187 lored reward design that guides the model toward accurate answering, faithful reasoning, and their
 188 consistency (Section 3.3).

189 3.1 OVERALL FRAMEWORK

190 DEFACTO is a vision-language reasoning framework that enforces region-level faithfulness in mul-
 191 timodal question answering. It is designed to teach models not only *where to look* in the image but
 192 also *when to abstain* if the necessary evidence is absent. By combining structured prompting with
 193 counterfactual supervision, DEFACTO aligns the reasoning process with visual evidence rather than
 194 spurious correlations.

195 As illustrated in Figure 2, given a question and an image, the model is prompted to produce outputs
 196 in a structured format consisting of three fields. The `<bbox>` field contains one or more bounding
 197 boxes encoded as JSON objects of the form $\{\text{Position} : [x_1, y_1, x_2, y_2], \text{Confidence} : p\}$, the `<think>`
 198 field records a short rationale, and the `<answer>` field provides the final prediction. Multiple boxes
 199 can be returned when multiple evidence regions are required. If no valid evidence exists, the model
 200 outputs `unknown` in both the `<bbox>` and `<answer>` fields. This structured format ensures that every
 201 reasoning trajectory is explicitly tied to visual evidence through bounding boxes and aligned with the
 202 model’s final answer. Training is based on three complementary supervision forms. In the positive
 203 case, evidence-bearing regions remain visible and the model is rewarded for selecting them and
 204 producing the correct answer. In the counterfactual case, these regions are masked, and the model
 205 is expected to abstain by outputting `unknown`. In the random-masking case, irrelevant regions are
 206 occluded to prevent shortcut learning from superficial mask patterns. Together, these three forms
 207 establish a consistent learning signal that requires both the reasoning path and the answer to be
 208 faithful to the underlying visual support.

209 3.2 COUNTERFACTUAL DATASET CONSTRUCTION

210 **Positive, Counterfactual, and Random Instances.** Let $\mathcal{R} = \{r_1, r_2, \dots, r_n\}$ denote the set of
 211 candidate regions in an image I , obtained from a region proposal network (RPN) Ren et al. (2015)
 212 together with OCR to cover both object-level and text-bearing regions. Among them, $\mathcal{R}^+ \subseteq \mathcal{R}$

Figure 2: An overview of our counterfactual framework with three inputs: positive (full evidence), counterfactual (masked evidence), and random (masked irrelevant regions), guiding the model to answer correctly or abstain with “unknown.”

represents the evidence regions that are critical to answering the question q , while $\mathcal{R}^- = \mathcal{R} \setminus \mathcal{R}^+$ denotes the remaining irrelevant regions. Based on these definitions, we construct three complementary training instances:

$$I_{\text{pos}} = (I, q, \mathcal{R}^+, y) \quad I_{\text{cf}} = (I^{\mathcal{R}^+}, q, \mathcal{R}^-, y_{\text{cf}}) \quad I_{\text{rand}} = (I^{\mathcal{R}^-}, q, \mathcal{R}^+, y), \quad (1)$$

where y is the ground-truth answer, I_{pos} is the positive instance with evidence regions available, I_{cf} is the counterfactual instance where evidence regions are masked and the abstention label y_{cf} (e.g., “Unknown”) is required, and I_{rand} is the random-masking instance where irrelevant regions are occluded to prevent shortcut learning.

Construction Process. To automatically construct I_{pos} , I_{cf} , and I_{rand} without manual annotations, we follow three steps:

(1) Descriptor extraction. Given an image I and a question q , we employ a MLLM (Qwen2.5-VL Bai et al. (2025)) to extract a set of key descriptors:

$$\text{MLLM}(I, q) = \{d_1, d_2, \dots, d_m\}, \quad (2)$$

where each d_i is a textual phrase (e.g., an object, attribute, or relation) that captures the visual concepts in I explicitly mentioned or implied by q . As illustrated in Fig. 2 (“Automate Evidence Masking”), for the question “What does his shirt say?”, the MLLM decomposes the query into descriptors such as “a man” and “man’s shirt” as the critical evidence.

(2) Evidence localization. Let $\mathcal{R} = \{r_1, \dots, r_n\}$ be the set of candidate image regions. We employ the open-vocabulary detector DINO-X Ren et al. (2024), which computes grounding scores $\text{OVD}(r, k)$ for each $r \in \mathcal{R}$ and $k \in \mathcal{K}(q)$. Based on these scores, the regions are partitioned into evidence and irrelevant sets:

$$\mathcal{R}^+ = \{r \in \mathcal{R} \mid \max_{k \in \mathcal{K}(q)} \text{OVD}(r, k) > \tau\}, \quad \mathcal{R}^- = \mathcal{R} \setminus \mathcal{R}^+, \quad (3)$$

where τ is a confidence threshold. In the street example, \mathcal{R}^+ corresponds to bounding boxes covering the signboard, while \mathcal{R}^- contains all other regions.

270 (3) Instance generation. Once \mathcal{R}^+ and \mathcal{R}^- are obtained, the positive, counterfactual, and random-
271 masking instances are directly constructed as defined in Eq. 1.

272 For counterfactual dataset construction, we leverage a broad collection of vi-
273 sual question answering and document understanding benchmarks, including
274 VQAv2 Goyal et al. (2017), OKVQA Marino et al. (2019), GQA Hudson & Manning (2019),
275 ScienceQA Lu et al. (2022), VizWiz Gurari et al. (2018), TextVQA Singh et al. (2019),
276 OCRVQA Mishra et al. (2019), AI2D Kembhavi et al. (2016), DocVQA Mathew et al. (2021),
277 ChartQA Masry et al. (2022), InfoVQA Mathew et al. (2022), DeepForm Svetlichnaya (2020),
278 Kleister KLC Stanisławek et al. (2021), WikiTableQuestions (WTQ) Pasupat & Liang (2015),
279 TabFact Chen et al. (2019), and VisualMRC Tanaka et al. (2021). This diverse coverage ensures
280 that counterfactual supervision is tested across natural images, scientific diagrams, documents,
281 charts, tables, and multi-source reasoning tasks. A detailed visualization of the dataset distribution
282 is provided in Appendix B. Representative visualizations of the constructed dataset are provided in
283 Appendix C (Figures 5–20).

284 285 3.3 REINFORCEMENT LEARNING TRAINING

286 **Sequential Reasoning Formulation.** We formulate the reasoning process of DEFAC TO as a
287 Markov Decision Process (MDP), where the model interacts with the question and image in a se-
288 quential manner. At each step, the state s_t encodes the multimodal context, including the input
289 question, the image representation, and the history of previously predicted regions. The policy π_θ
290 then outputs either a new bounding box that localizes question-relevant evidence or a special STOP
291 token to terminate the process.

292 Formally, the state at step t is defined as

$$294 s_t = \{q, f_v(I), B_{<t}\}, \quad (4)$$

295 where q is the question, $f_v(I)$ the image representation, and $B_{<t}$ the set of bounding boxes predicted
296 before step t . The rollout continues until STOP is emitted or the maximum step limit is reached, and
297 the final answer is generated based on the accumulated trajectory.

298 **Reward Design.** To make training effective, we design three reward components. (1) *Answer*
299 *Correctness Reward*: encourages correct answers in positive/random cases, rewards “Unknown” in
300 counterfactual cases, and penalizes unsupported guesses. (2) *Format Consistency Reward*: ensures
301 outputs strictly follow the required schema. (3) *Region Selection Coherence Reward*: promotes
302 overlap with evidence regions \mathcal{R}^+ and penalizes overlap with irrelevant regions \mathcal{R}^- , with no reward
303 in counterfactual cases.

304 The overall training signal combines these components into the composite reward in Eq. 5.

$$306 R = R_{\text{ans}} + \lambda_1 R_{\text{fmt}} + \lambda_2 R_{\text{sel}}, \quad (5)$$

307 **1. Answer Correctness Reward.** To enforce correct behavior across the three training forms, we
308 define

$$310 R_{\text{ans}} = \begin{cases} \text{acc}(\hat{y}, y^*) - \underbrace{\gamma_{\text{unk}} \text{unk}(\hat{y})}_{\substack{\text{penalize “Unknown”} \\ \text{reward “Unknown”}}}, & t \in \{\text{pos, rand}\}, \\ \rho_{\text{unk}} \underbrace{\text{unk}(\hat{y})}_{\substack{\text{penalize guess} \\ \text{reward “Unknown”}}} - \underbrace{\gamma_{\text{guess}} [1 - \text{unk}(\hat{y})]}_{\substack{\text{penalize guess} \\ \text{penalize even if correct}}} - \underbrace{\gamma_{\text{corr}} \mathbf{1}[\hat{y} = y^*]}_{\substack{\text{penalize even if correct}}}, & t = \text{cf}, \end{cases} \quad (6)$$

315 where $\text{acc}(\hat{y}, y^*) \in \{0, 1\}$ indicates answer correctness, and $\text{unk}(\hat{y}) \in \{0, 1\}$ indicates an “Unknown”
316 response. Here $\gamma_{\text{unk}} > 0$ penalizes answering “Unknown” in positive or random cases, $\rho_{\text{unk}} > 0$ re-
317 wards “Unknown” in counterfactual cases, $\gamma_{\text{guess}} > 0$ penalizes any concrete guess in counterfactual
318 cases, and $\gamma_{\text{corr}} > \gamma_{\text{guess}}$ applies an even stronger penalty when the model outputs the correct answer
319 y^* without access to evidence.

320 **2. Format Consistency Reward.** We encourage well-formed outputs and valid region indices
321 selected from the prompt:

$$323 R_{\text{fmt}} = \begin{cases} \alpha, & \text{if output follows the required schema and indices are valid,} \\ 0, & \text{otherwise.} \end{cases} \quad (7)$$

324 Here, the “required schema” refers to the presence of `<think>...</think>` for the reasoning process,
 325 `<bbox>...</bbox>` for the predicted bounding boxes, and `<answer>...</answer>` for the final answer.
 326 In particular, the `<bbox>` field must contain well-formed bounding box coordinates in the format `[x1,`
 327 `y1, x2, y2]`, ensuring that the model explicitly grounds its predictions on localized visual regions.
 328

329 **3. Region Selection Coherence Reward.** Let $B = \{\text{bbox}^1, \dots, \text{bbox}^k\}$ be the set of bounding
 330 boxes predicted before `STOP`. We define the overlap scores with evidence regions \mathcal{R}^+ and irrelevant
 331 regions \mathcal{R}^- as

$$\phi^+(b) = \max_{r \in \mathcal{R}^+} \text{IoU}(b, r), \quad \phi^-(b) = \max_{r \in \mathcal{R}^-} \text{IoU}(b, r).$$

333 The reward is then defined as

$$R_{\text{sel}} = \begin{cases} \beta_{\text{pos}} \frac{1}{|B|} \sum_{b \in B} \phi^+(b) - \beta_{\text{neg}} \frac{1}{|B|} \sum_{b \in B} \phi^-(b), & t \in \{\text{pos, rand}\}, B \neq \emptyset, \\ -\gamma_{\emptyset}, & t \in \{\text{pos, rand}\}, B = \emptyset, \\ 0, & t = \text{cf}. \end{cases} \quad (8)$$

339 with $\beta_{\text{pos}}, \beta_{\text{neg}}, \gamma_{\emptyset} > 0$.

341 The full training dynamics of each reward component, along with the corresponding hyperparameter
 342 settings, are provided in the Appendix (see Table 9).

343 **Training Strategy.** Unlike prior works that require a supervised warm-up stage, we directly fine-
 344 tune Qwen2.5-VL with reinforcement learning, using Group Relative Policy Optimization (GRPO)
 345 and the composite reward in Eq. 6 and Eq. 8. GRPO compares multiple rollouts within a group and
 346 rewards each according to its improvement over the group average, eliminating the need for a value
 347 network and reducing variance. The objective is defined as:

$$\mathcal{L}_{\pi}(\theta) = \mathbb{E}_i \left[\frac{\pi_{\theta}(\tau^{(i)})}{\pi_{\theta_{\text{old}}}(\tau^{(i)})} \left(R(\tau^{(i)}) - \frac{1}{M} \sum_{j=1}^M R(\tau^{(j)}) \right) \right], \quad (9)$$

352 where we set the group size $M = 4$ to balance stability and exploration during training.

4 EXPERIMENT

4.1 SETUP

354 **Baselines.** We compare DEFACTO against a broad set of recent approaches that explicitly incor-
 355 porate visual reasoning into multimodal language models. Specifically, we include the QWEN2.5-
 356 VL Bai et al. (2025), a strong pretrained backbone widely used for visual understanding; VI-
 357 CROP Zhang et al. (2025a), which improves small-object perception via inference-time cropping;
 358 GRIT Fan et al. (2025), which integrates grounded reasoning traces through reinforcement learning;
 359 DEEPEYES Zheng et al. (2025), which incentivizes models to call visual tools during reasoning; and
 360 VISUAL-SR1 Li et al. (2025b), which enhances step-by-step visual reasoning with self-refinement.
 361 This selection covers both state-of-the-art backbones and recent “thinking with images” algorithms
 362 for visual reasoning.

367 **Benchmarks.** Our evaluation spans a diverse collection of visual reasoning benchmarks. For
 368 general-purpose VQA, we use OKVQA Marino et al. (2019), VQAv2 Goyal et al. (2017),
 369 GQA Hudson & Manning (2019), VizWiz Gurari et al. (2018), ScienceQA Lu et al. (2022), and
 370 VSR Liu et al. (2023). For document- and structure-centric evaluation, we adopt DocVQA Mathew
 371 et al. (2021), ChartQA Masry et al. (2022), InfoVQA Mathew et al. (2022), DeepForm Svetlichnaya
 372 (2020), Kleister KLC Stanislawek et al. (2021), and WikiTableQuestions (WTQ) Pasupat & Liang
 373 (2015). To test text-intensive reasoning, we include TextVQA Singh et al. (2019), AI2D Kemb-
 374 havi et al. (2016), and STVQA Biten et al. (2019). We further evaluate on additional benchmarks,
 375 including OCRBench Liu et al. (2024c), MMstar Chen et al. (2024a), MMMU Yue et al. (2024),
 376 MMB_{1.1} Liu et al. (2024b), and POPE Li et al. (2023b), with detailed results reported in Appendix E
 377 (Table 6). In addition, to more rigorously assess reasoning faithfulness, we constructed a manu-
 378 ally annotated test set of 1,000 images, where annotators labeled the regions most relevant to each

378
379
380
Table 1: Results on General VQA Benchmarks (accuracy, %). Δ indicates improvements of DeFacto
over Qwen2.5-VL 7B.

Model	Backbone	VQAv2	OKVQA	GQA	SciQA	VizWiz	VSR
Qwen2.5-VL	Qwen2.5-VL-7B	57.3	54.5	41.3	85.3	37.7	2.2
ViCrop	LLaVA-1.5 (Vicuna-7B)	76.5	60.7	61.0	88.2	64.4	65.4
GRIT	Qwen2.5-VL-3B	71.5	55.4	59.3	60.5	46.3	61.0
DeepEyes	Qwen2.5-VL-7B	—	46.9	47.3	59.2	25.1	27.3
Visual-SR1	Qwen2.5-VL-7B	71.5	45.1	58.5	88.6	32.0	62.3
DeFacto (ours)	Qwen2.5-VL-7B	79.7	68.0	70.1	88.2	64.5	70.3
Δ (vs Qwen2.5-VL 7B)	—	+22.4	+13.5	+28.8	+2.9	+26.8	+68.1

381
382
383
384
385
386
387
388
Table 2: Results on Document VQA and Scene Text-centric Benchmarks (accuracy, %). Δ indicates
improvements of DeFacto over Qwen2.5-VL 7B.

Model	Document VQA						Scene Text-centric		
	DocVQA	ChartQA	InfoVQA	DeepForm	KLC	WTQ	STVQA	TextVQA	AI2D
Qwen2.5-VL	84.4	77.8	66.0	30.3	35.9	63.9	64.9	71.0	71.2
GRIT	76.4	68.7	49.1	15.8	19.9	35.7	71.3	73.4	77.2
ViCrop	33.7	52.5	54.9	21.9	33.4	54.3	74.0	63.4	69.2
DeepEyes	66.8	44.4	42.3	—	33.1	54.6	48.9	39.9	38.5
Visual-SR1	82.3	73.8	75.1	52.4	39.6	72.2	60.2	69.2	71.5
DeFacto (ours)	85.8	82.4	76.9	51.8	37.6	74.5	74.1	73.4	79.0
Δ (vs Qwen2.5-VL 7B)	+1.4	+4.6	+10.9	+21.5	+1.7	+10.6	+9.2	+2.4	+7.8

400
401
402 question. The set contains 60% general VQA samples and 40% text-centric VQA samples. This
403 auxiliary dataset allows us to directly measure whether models ground their reasoning on the correct
404 evidence rather than relying on spurious priors.405
406 **Training Configuration.** We train all models with the AdamW optimizer using a learning rate of
407 1×10^{-6} , $(\beta_1, \beta_2) = (0.9, 0.999)$, and $\epsilon = 1 \times 10^{-8}$. Training is performed with a global batch size
408 of 8 and micro-batch size of 1 per GPU, combined with gradient accumulation steps of 2. Gradients
409 are clipped to a maximum norm of 1.0 to ensure stability. We enable BF16 precision training. All
410 experiments are conducted on 8 NVIDIA H100 GPUs with 80GB memory each, and models are
411 trained for one epoch over the collected dataset.412
413

4.2 MAIN RESULTS

414
415 **Results on General VQA Benchmarks.** Table 1 compares DEFACTO with recent visual
416 reasoning and thinking with images baselines on six widely used benchmarks. DEFACTO achieves
417 state-of-the-art performance across the board, outperforming the strongest competing method, Vi-
418 Crop, by clear margins. In particular, it improves over ViCrop by +3.2% on VQAv2, +7.3% on
419 OKVQA, and +9.1% on GQA, demonstrating stronger compositional and commonsense reasoning.
420 On perception-heavy datasets, DEFACTO also shows advantages: it slightly surpasses Visual-SR1
421 on SciQA while matching ViCrop on VizWiz, and it exceeds all baselines on VSR by +4.9%, con-
422 firming its robustness under visually complex or noisy conditions. These consistent gains over
423 the best-performing alternatives highlight the effectiveness of counterfactual training in enforcing
424 evidence-grounded reasoning.425
426 **Performance on Document and Text-centric Benchmarks.** As shown in Table 2, DEFACTO
427 also leads on document-style and scene text-centric benchmarks. It surpasses the strongest alter-
428 natives by notable margins, including +1.4% over Qwen2.5-VL on DocVQA, +4.6% on ChartQA,
429 and +1.8% over Visual-SR1 on InfoVQA. On DeepForm, although Visual-SR1 achieves the best
430 score, DEFACTO remains highly competitive with a close result of 51.8%. Similarly, while GRIT
431 ties for the highest score on TextVQA, DEFACTO delivers the best overall performance across all
432 text-centric tasks, including a +13.9% gain over Visual-SR1 on STVQA and a +1.8% improvement
433 over GRIT on AI2D. These results confirm that DEFACTO not only consistently outperforms the
434 strongest existing methods but also maintains competitive accuracy in the few cases where another

432 baseline achieves the top result, establishing a new state of the art in document and OCR-centric
 433 reasoning tasks.
 434

435 Table 3: Comparison of reasoning faithfulness across models on the 1k faithfulness validation set.
 436

437 Model	438 mAP	439 AP50	440 AP75	441 Accuracy (%)
438 GRIT	439 0.0	440 0.0	441 0.0	442 73.7
438 DeepEyes	439 0.0	440 2.2	441 0.9	442 44.0
438 Qwen2.5-VL + GRPO	439 20.4	440 28.8	441 18.9	442 65.0
438 DeFacto (ours)	439 30.6	440 36.1	441 24.8	442 79.4

443
 444 **Faithful reasoning evaluation.** Table 3 complements the qualitative examples in Fig. 1 with a
 445 large-scale quantitative evaluation on our 1k-image human-annotated validation set. The results re-
 446 veal several consistent patterns. GRIT achieves relatively high answer accuracy, but its grounding
 447 metrics remain nearly zero, suggesting that it has learned to rely on shortcuts rather than visually
 448 grounded reasoning. Such shortcut behaviors allow the model to answer correctly without identify-
 449 ing the relevant evidence, which is undesirable for faithful multimodal reasoning. DeepEyes shows
 450 a different failure pattern: while it learns to invoke visual tools more actively, it does not reliably
 451 learn where to focus. As a result, its predicted regions often diverge from the true evidence, leading
 452 to low IoU-based AP despite occasional correct answers. GRPO improves over these baselines by
 453 producing more stable predictions, but its evidence regions are still coarse and only partially aligned
 454 with the annotated visual cues. In contrast, DeFacto achieves the highest grounding fidelity across
 455 all metrics. The counterfactual reward and region-level constraints guide the model toward consis-
 456 tently selecting the evidence required for its predicted answer, resulting in reasoning trajectories that
 457 better reflect the underlying visual content.

458 4.3 ABLATION STUDY

459
 460 We compare four training settings on Qwen2.5-VL 7B. (i) **SFT (no CF)**: trained only on original
 461 data. (ii) **SFT (CF alignment)**: trained on original + counterfactual data, but counterfactuals are
 462 supervised only with the “Unknown” label, together with random-masking. (iii) **GRPO (no CF re-
 463 ward)**: “No CF reward” means that GRPO training that uses only the first term of Eq. 6 (answer cor-
 464 rectness) and the format reward, without the counterfactual answer constraint or the region-selection
 465 coherence term. (iv) **DeFacto (full)**: our complete framework with all three rewards.
 466

467 Table 4: Ablation results on representative benchmarks (accuracy, %). Δ indicates improvements of
 468 DeFacto over baselines.
 469

470 Model Variant	471 VQAv2	472 OKVQA	473 SciQA	474 VSR	475 DocVQA	476 TextVQA
471 Qwen2.5-VL (SFT, no CF)	472 61.2	473 42.0	474 82.7	475 54.5	476 51.9	477 56.0
471 Qwen2.5-VL (SFT, CF alignment)	472 66.5	473 55.7	474 84.7	475 53.7	476 84.3	477 73.0
471 Qwen2.5-VL (GRPO, no CF reward)	472 70.4	473 56.9	474 85.9	475 58.4	476 85.4	477 72.8
471 DeFacto (CF reward + GRPO)	472 79.7	473 68.0	474 88.2	475 70.3	476 85.8	477 73.4
471 Δ (vs GRPO no CF reward)	472 +9.3	473 +11.1	474 +2.3	475 +11.9	476 +0.4	477 +0.6

478 **Effect of Counterfactual Supervision.** The first two rows show that introducing counterfactual
 479 data with abstention alignment improves over standard SFT, with clear gains such as +5.3% on
 480 VQAv2 and +13.7% on OKVQA. This suggests that counterfactual supervision effectively reduces
 481 spurious correlations and strengthens evidence alignment.

482 **Effect of Reinforcement Learning.** GRPO without counterfactual rewards further boosts reason-
 483 ing, e.g., +4.7% on VSR over SFT no CF. DeFacto achieves the best results overall, with additional
 484 gains of +9.3% on VQAv2, +11.1% on OKVQA, and +11.9% on VSR compared to GRPO. Even
 485 on DocVQA and TextVQA, improvements (+0.4%, +0.6%) remain consistent, confirming the im-
 486 portance of counterfactual rewards for robust, region-faithful reasoning.

486 **Faithfulness Evaluation.** In the experiment, we compared different training variants under the
 487 same setup, using the same data, backbone, and hyperparameters. The results, shown in Table 5,
 488 indicate that DeFacto outperforms all other variants in terms of mAP, AP50, AP75, and accuracy,
 489 demonstrating that our approach effectively combines correct evidence selection and accurate an-
 490 swering.

491
492 Table 5: Performance of Different Training Variants on the 1k-annotated Validation Set
493

494 Model Variant	495 mAP	496 AP50	497 AP75	498 Accuracy (%)
495 Qwen2.5-VL (Base)	496 2.3	497 1.2	498 1.5	499 55.1
496 Qwen2.5-VL + SFT (no CF)	497 15.7	498 13.9	500 12.8	501 61.4
497 Qwen2.5-VL + SFT (CF alignment)	498 18.9	499 16.4	500 15.7	501 63.8
498 Qwen2.5-VL + GRPO (no CF reward)	499 20.4	500 28.8	501 18.9	502 65.0
500 DeFacto (ours)	501 30.6	502 36.1	503 24.8	504 79.4

500
501

5 VISUALIZATION AND ERROR ANALYSIS

502

503 We first visualize and analyze several failure cases to better understand the limitations of DeFacto.
 504 Our errors mainly fall into four categories: (1) semantic ambiguity in spatial expressions (Figure 3a),
 505 such as interpreting “on top of” too literally; (2) unclear or subjective attribute definitions (Figure
 506 3b), such as the notion of “large”; (3) ambiguous comparative reasoning (Figure 3c), where concepts
 507 like “higher than” admit multiple valid interpretations; and (4) confusion in fine-grained human
 508 action recognition (Figure 3d).
 509

535 Figure 3: Four representative failure cases illustrating different types of semantic and perceptual
 536 ambiguities.
 537

538 Beyond failure cases, we further visualize comparisons between DeFacto and standard GRPO to
 539 assess the quality of their reasoning paths. As shown in Appendix D (Figures 21–28), DeFacto
 consistently selects more accurate and semantically aligned evidence regions.

540 ETHICS STATEMENT
541542 This work does not involve human subjects, sensitive personal data, or applications with foreseeable
543 ethical risks. All experiments are conducted on publicly available benchmarks or our automatically
544 constructed counterfactual dataset, which contains no personally identifiable information. We
545 therefore believe this research poses no ethical concerns.
546547 REPRODUCIBILITY STATEMENT
548549 We have made every effort to ensure reproducibility of our results. The full training pipeline, in-
550 cluding dataset construction, reward design, and reinforcement learning setup, is described in detail
551 in the main paper and appendix. Our implementation is based on the open-source `open_r1` OpenAI
552 (2025) repository, which we modified to incorporate our counterfactual dataset, reward functions,
553 and GRPO training. The source code is provided in the supplementary materials to facilitate repro-
554 duction. Due to anonymity requirements and the large size of the dataset, we are unable to release
555 the full dataset at this stage; however, it will be made publicly available upon acceptance. In the
556 meantime, partial dataset visualizations are included in Appendix H to illustrate the construction
557 process and provide qualitative insights.
558559 REFERENCES
560561 Ehsan Abbasnejad, Damien Teney, Amin Parvaneh, Javen Shi, and Anton van den Hengel. Counter-
562 factual vision and language learning. In *Proceedings of the IEEE/CVF conference on computer*
563 *vision and pattern recognition*, pp. 10044–10054, 2020.564 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
565 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
566 report. *arXiv preprint arXiv:2303.08774*, 2023.
567568 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
569 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
570 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–
571 23736, 2022.572 Maximilian Augustin, Yannic Neuhaus, and Matthias Hein. Dig-in: Diffusion guidance for investi-
573 gating networks-uncovering classifier differences neuron visualisations and visual counterfac-
574 tual explanations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
575 *Recognition*, pp. 11093–11103, 2024.576 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
577 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.578 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
579 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
580 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
581 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv*
582 *preprint arXiv:2502.13923*, 2025.583 Ali Furkan Biten, Ruben Tito, Andres Mafla, Lluis Gomez, Marçal Rusinol, Ernest Valveny,
584 CV Jawahar, and Dimosthenis Karatzas. Scene text visual question answering. In *Proceedings of*
585 *the IEEE/CVF international conference on computer vision*, pp. 4291–4301, 2019.586 Meng Cao, Haoze Zhao, Can Zhang, Xiaojun Chang, Ian Reid, and Xiaodan Liang. Ground-
587 r1: Incentivizing grounded visual reasoning via reinforcement learning. *arXiv preprint*
588 *arXiv:2505.20272*, 2025.589 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
590 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
591 models? *arXiv preprint arXiv:2403.20330*, 2024a.

594 Wenhui Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
 595 and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification. *arXiv*
 596 *preprint arXiv:1909.02164*, 2019.

597

598 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
 599 Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to
 600 commercial multimodal models with open-source suites. *Science China Information Sciences*, 67
 601 (12):220101, 2024b.

602 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 603 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 604 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer*
 605 *vision and pattern recognition*, pp. 24185–24198, 2024c.

606

607 Zixin Chen, Hongzhan Lin, Ziyang Luo, Mingfei Cheng, Jing Ma, and Guang Chen. Cofipara: A
 608 coarse-to-fine paradigm for multimodal sarcasm target identification with large multimodal mod-
 609 els. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*
 610 (*Volume 1: Long Papers*), pp. 9663–9687, 2024d.

611 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
 612 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

613

614 Yue Fan, Xuehai He, Diji Yang, Kaizhi Zheng, Ching-Chen Kuo, Yuting Zheng, Sravana Jyothi
 615 Narayananaraju, Xinze Guan, and Xin Eric Wang. Grit: Teaching mllms to think with images.
 616 *arXiv preprint arXiv:2505.15879*, 2025.

617 Xingyu Fu, Minqian Liu, Zhengyuan Yang, John Corring, Yijuan Lu, Jianwei Yang, Dan Roth, Dinei
 618 Florencio, and Cha Zhang. Refocus: Visual editing as a chain of thought for structured image
 619 understanding. *arXiv preprint arXiv:2501.05452*, 2025.

620

621 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
 622 matter: Elevating the role of image understanding in visual question answering. In *Proceedings*
 623 *of the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.

624

625 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 626 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 627 of models. *arXiv preprint arXiv:2407.21783*, 2024.

628

629 Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
 630 Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
 631 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3608–3617,
 2018.

632

633 Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
 634 Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
 635 with scalable training strategies. *arXiv preprint arXiv:2404.06395*, 2024.

636

637 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 638 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer*
 639 *vision and pattern recognition*, pp. 6700–6709, 2019.

640

641 Noman Islam, Zeeshan Islam, and Nazia Noor. A survey on optical character recognition system.
 642 *arXiv preprint arXiv:1710.05703*, 2017.

643

644 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
 645 Farhadi. A diagram is worth a dozen images. In *Computer Vision–ECCV 2016: 14th Euro-
 646 pean Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14*,
 647 pp. 235–251. Springer, 2016.

648

649 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 650 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 651 *arXiv:2408.03326*, 2024.

648 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 649 pre-training with frozen image encoders and large language models. In *International conference*
 650 *on machine learning*, pp. 19730–19742. PMLR, 2023a.

651 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 652 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.

654 Zhiqi Li, Guo Chen, Shilong Liu, Shihao Wang, Vibashan VS, Yishen Ji, Shiyi Lan, Hao Zhang,
 655 Yilin Zhao, Subhashree Radhakrishnan, et al. Eagle 2: Building post-training data strategies from
 656 scratch for frontier vision-language models. *arXiv preprint arXiv:2501.14818*, 2025a.

657

658 Zongxia Li, Wenhao Yu, Chengsong Huang, Rui Liu, Zhenwen Liang, Fuxiao Liu, Jingxi Che, Dian
 659 Yu, Jordan Boyd-Graber, Haitao Mi, et al. Self-rewarding vision-language model via reasoning
 660 decomposition. *arXiv preprint arXiv:2508.19652*, 2025b.

661 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 662 *in neural information processing systems*, 36:34892–34916, 2023.

663

664 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 665 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 666 nition*, pp. 26296–26306, 2024a.

667 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 668 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 669 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024b.

670

671 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
 672 Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large
 673 multimodal models. *Science China Information Sciences*, 67(12):220102, 2024c.

674

675 Yuqi Liu, Tianyuan Qu, Zhisheng Zhong, Bohao Peng, Shu Liu, Bei Yu, and Jiaya Jia. Vision-
 676 reasoner: Unified visual perception and reasoning via reinforcement learning. *arXiv preprint*
 677 *arXiv:2505.12081*, 2025a.

678 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 679 Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025b.

680

681 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 682 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 683 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 684 2022.

685

686 Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
 687 question answering benchmark requiring external knowledge. In *Proceedings of the IEEE/cvpr
 conference on computer vision and pattern recognition*, pp. 3195–3204, 2019.

688

689 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
 690 mark for question answering about charts with visual and logical reasoning. *arXiv preprint*
 691 *arXiv:2203.10244*, 2022.

692

693 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 694 images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 pp. 2200–2209, 2021.

695

696 Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
 697 Infographicvqa. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
 698 Vision*, pp. 1697–1706, 2022.

699

700 Microsoft. Introducing gpt-4o-2024-08-06 api with structured outputs on
 701 azure. <https://techcommunity.microsoft.com/blog/azure-ai-services-blog/introducing-gpt-4o-2024-08-06-api-with-structured-outputs-on-azure/4232684>, 2024.
 Accessed: 2025-03-07.

702 Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. Ocr-vqa: Visual
 703 question answering by reading text in images. In *ICDAR*, 2019.

704

705 Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-Sheng Hua, and Ji-Rong Wen. Counter-
 706 factual vqa: A cause-effect look at language bias. In *Proceedings of the IEEE/CVF conference on*
 707 *computer vision and pattern recognition*, pp. 12700–12710, 2021.

708 OpenAI. Thinking with images, 2025. URL <https://openai.com/index/thinking-with-images/>.
 709 Accessed: 2025-08-06.

710

711 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 712 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 713 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 714 27730–27744, 2022.

715 Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables.
 716 *arXiv preprint arXiv:1508.00305*, 2015.

717

718 Maitreya Patel, Tejas Gokhale, Chitta Baral, and Yezhou Yang. Cripp-vqa: Counterfactual
 719 reasoning about implicit physical properties via video question answering. *arXiv preprint*
 720 *arXiv:2211.03779*, 2022.

721 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
 722 Wei. Kosmos-2: Grounding multimodal large language models to the world. *arXiv preprint*
 723 *arXiv:2306.14824*, 2023.

724

725 Ji Qi, Ming Ding, Weihan Wang, Yushi Bai, Qingsong Lv, Wenyi Hong, Bin Xu, Lei Hou, Juanzi Li,
 726 Yuxiao Dong, et al. Cogcom: A visual language model with chain-of-manipulations reasoning.
 727 *arXiv preprint arXiv:2402.04236*, 2024.

728

729 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 730 detection with region proposal networks. *Advances in neural information processing systems*, 28,
 2015.

731

732 Tianhe Ren, Yihao Chen, Qing Jiang, Zhaoyang Zeng, Yuda Xiong, Wenlong Liu, Zhengyu Ma,
 733 Junyi Shen, Yuan Gao, Xiaoke Jiang, Xingyu Chen, Zhuheng Song, Yuhong Zhang, Hongjie
 734 Huang, Han Gao, Shilong Liu, Hao Zhang, Feng Li, Kent Yu, and Lei Zhang. Dino-x: A unified
 735 vision model for open-world object detection and understanding, 2024. URL <https://arxiv.org/abs/2411.14347>.

736

737 Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and Hong-
 738 sheng Li. Visual cot: Advancing multi-modal language models with a comprehensive dataset and
 739 benchmark for chain-of-thought reasoning. *Advances in Neural Information Processing Systems*,
 740 37:8612–8642, 2024.

741

742 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 743 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF*
 744 *conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.

745

746 Tomasz Stanisławek, Filip Graliński, Anna Wróblewska, Dawid Lipiński, Agnieszka Kaliska,
 747 Paulina Rosalska, Bartosz Topolski, and Przemysław Biecek. Kleister: key information extrac-
 748 tion datasets involving long documents with complex layouts. In *International Conference on*
 749 *Document Analysis and Recognition*, pp. 564–579. Springer, 2021.

750

751 Alex Su, Haozhe Wang, Weiming Ren, Fangzhen Lin, and Wenhu Chen. Pixel reasoner: In-
 752 centivizing pixel-space reasoning with curiosity-driven reinforcement learning. *arXiv preprint*
 753 *arXiv:2505.15966*, 2025.

754

755 Guangyan Sun, Mingyu Jin, Zhenting Wang, Cheng-Long Wang, Siqi Ma, Qifan Wang, Tong Geng,
 756 Ying Nian Wu, Yongfeng Zhang, and Dongfang Liu. Visual agents as fast and slow thinkers.
 757 *arXiv preprint arXiv:2408.08862*, 2024.

S Svetlichnaya. Deepform: Understand structured documents at scale. 2020.

756 Ryota Tanaka, Kyosuke Nishida, and Sen Yoshida. Visualmrc: Machine reading comprehension on
 757 document images. In *AAAI*, 2021.

758

759 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 760 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 761 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

762 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 763 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 764 standing across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

765

766 OpenAI Team. Gpt-4v (ision) system card. 2023. URL <https://api.semanticscholar.org/CorpusID,263218031>.

767

768 OpenGVLab Team. Internvl2: Better than the best—expanding performance boundaries of open-
 769 source multimodal models with the progressive scaling strategy, 2024.

770

771 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 772 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 773 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

774 Xue Wang, Zhibo Wang, Haiqin Weng, Hengchang Guo, Zhifei Zhang, Lu Jin, Tao Wei, and Kui
 775 Ren. Counterfactual-based saliency map: Towards visual contrastive explanations for neural net-
 776 works. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 2042–
 777 2051, 2023.

778

779 Penghao Wu and Saining Xie. V?: Guided visual search as a core mechanism in multimodal llms.
 780 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 13084–13094, 2024.

781

782 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 783 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 784 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF
 785 Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

786 Jianrui Zhang, Mu Cai, Tengyang Xie, and Yong Jae Lee. Countercurate: Enhancing physical and
 787 semantic visio-linguistic compositional reasoning via counterfactual examples. *arXiv preprint
 788 arXiv:2402.13254*, 2024a.

789

790 Jiarui Zhang, Mahyar Khayatkhoei, Prateek Chhikara, and Filip Ilievski. Mllms know where to
 791 look: Training-free perception of small visual details with multimodal llms. *arXiv preprint
 792 arXiv:2502.17422*, 2025a.

793 Letian Zhang, Xiaotong Zhai, Zhongkai Zhao, Yongshuo Zong, Xin Wen, and Bingchen Zhao. What
 794 if the tv was off? examining counterfactual reasoning abilities of multi-modal language models.
 795 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 796 21853–21862, 2024b.

797

798 Xintong Zhang, Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaowen Zhang, Yang Liu, Tao Yuan, Yuwei
 799 Wu, Yunde Jia, Song-Chun Zhu, et al. Chain-of-focus: Adaptive visual search and zooming for
 800 multimodal reasoning via rl. *arXiv preprint arXiv:2505.15436*, 2025b.

801 Yifeng Zhang, Ming Jiang, and Qi Zhao. Learning chain of counterfactual thought for bias-robust
 802 vision-language reasoning. In *European Conference on Computer Vision*, pp. 334–351. Springer,
 803 2024c.

804

805 Zhu Zhang, Zhou Zhao, Zhipie Lin, Xiuqiang He, et al. Counterfactual contrastive learning for
 806 weakly-supervised vision-language grounding. *Advances in Neural Information Processing Sys-
 807 tems*, 33:18123–18134, 2020.

808

809 Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and
 Xing Yu. Deepeyes: Incentivizing” thinking with images” via reinforcement learning. *arXiv
 preprint arXiv:2505.14362*, 2025.

810 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
811 hancing vision-language understanding with advanced large language models. *arXiv preprint*
812 *arXiv:2304.10592*, 2023.

813
814 Shiding Zhu, Wenhui Dong, Jun Song, Yingbo Wang, Yanan Guo, and Bo Zheng. Hyvilm: Enhanc-
815 ing fine-grained recognition with a hybrid encoder for vision-language models. *arXiv preprint*
816 *arXiv:2412.08378*, 2024.

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

APPENDIX

A ADDITIONAL RESULTS

Table 6 provides an extended comparison of *DeFacto* with both closed-source and publicly available vision-language models on additional benchmarks, including **OCRbench**, **MMstar**, **MMMU**, **MMB_{1,1}**, and **POPE**. As shown, *DeFacto* achieves the best score on OCRbench (871) and competitive performance across the remaining benchmarks. In particular, our method surpasses most open-source models by a clear margin and remains close to strong closed-source systems such as GPT-4o. These results further demonstrate that *DeFacto* effectively balances answer accuracy and reasoning faithfulness across diverse evaluation settings.

In addition, we also evaluate *DeFacto* on the MSTI 2.0 dataset Chen et al. (2024d), which jointly assesses detection, entity recognition, and answer generation. As shown in Table 7, *DeFacto* consistently improves over both the zero-shot Qwen2.5-VL model and the GRPO-CoT variant across EM, F1, and AP metrics. This indicates that *DeFacto*’s counterfactual supervision also benefits structured multimodal tasks requiring fine-grained grounding.

Table 6: Comparison with SoTA models on Various Benchmarks.

Model	OCRbench	MMstar	MMMU	MMB _{1,1}	POPE
Closed-Source Models					
GPT-4o-0513 Microsoft (2024)	736	63.9	69.2	82.2	-
GPT-4V Team	656	56.0	61.7	79.8	-
Gemini-1.5-Pro Team et al. (2024)	754	-	<u>62.2</u>	-	-
Publicly Available Models					
LLaVa-OneVision-0.5B Li et al. (2024)	565	37.7	31.4	50.3	-
InternVL2-1B Team (2024)	754	45.7	36.7	59.7	-
Eagle2-1B Li et al. (2025a)	767	48.5	38.8	63.0	-
InternVL2-2B Team (2024)	784	50.1	36.3	69.6	-
Eagle2-2B Li et al. (2025a)	818	56.4	43.1	74.9	-
InternVL2-8B Team (2024)	794	60.9	51.8	79.4	-
MiniCPM-V2.6 Hu et al. (2024)	852	57.5	49.8	78.0	-
LLaVA-One-Vision-7B Li et al. (2024)	622	61.7	48.8	80.9	-
InternVL2-26B Team (2024)	825	61.0	50.7	81.2	-
LLaMa-3.2-90B-Vision Grattafiori et al. (2024)	783	55.3	60.3	77.3	-
HyViLMZhu et al. (2024)	596	-	41.8	76.6	-
Eagle2-9B Li et al. (2025a)	<u>868</u>	62.6	56.1	80.6	-
Thinking with Images					
GRIT Fan et al. (2025)	322	36.3	17.1	9.7	85.7
ViCrop Zhang et al. (2025a)	233	33.1	26.1	51.7	87.3
DeepEyes Zheng et al. (2025)	636	43.6	44.1	29.4	87.7
Visual-SR1 Li et al. (2025b)	449	62.8	57.2	77.4	86.0
Chain-of-focus Zhang et al. (2025b)	632	58.1	46.1	75.3	<u>88.4</u>
Pixel Reasoner Su et al. (2025)	597	62.9	52.5	78.5	87.8
DeFacto-7B (ours)	871	63.2	56.6	81.2	88.6

Table 7: Comparison of Qwen2.5-VL variants and *DeFacto* on the MSTI2.0 dataset.

	Dev			Test		
	EM	F1	AP	EM	F1	AP
Qwen2.5-VL (Zero-shot)	22.2	1.1	1.2	18.6	2.6	0.7
Qwen2.5-VL (GRPO-CoT)	24.3	1.4	3.3	19.7	3.1	1.2
DeFacto (ours)	28.4	1.6	4.1	23.1	4.5	2.5

918 B DATASET DISTRIBUTION VISUALIZATION

920 The full distribution of the 100k training samples is illustrated in Figure 4. The dataset is divided
 921 into three major groups: general VQA (47.67%), scene text-centric VQA (22.05%), and document-
 922 oriented VQA (30.28%).

923 General VQA primarily corresponds to natural-image domains such as everyday scenes and ob-
 924 jects, providing perception-heavy signals. Scene text-centric VQA consists largely of OCR-focused
 925 questions in real-world contexts, capturing text in cluttered environments. Document-oriented VQA
 926 covers structured layouts including documents, charts, tables, and forms, emphasizing fine-grained
 927 text extraction and layout reasoning. This mixture ensures broad coverage across both natural-image
 928 and document-like domains. By preventing dominance from any single modality and exposing the
 929 model to heterogeneous visual structures, the dataset encourages stronger domain generalization
 930 and reduces reliance on narrow visual priors. Such diversity is particularly important for improving
 931 robustness in downstream tasks that span multiple visual domains.

946 Figure 4: VQA Data Distribution across different categories: General VQA, Scene-text VQA, and
 947 Document-oriented VQA.

949 C VISUALIZATION OF COUNTERFACTUAL DATASET

951 In this section, we provide visualizations of the constructed counterfactual dataset. Each sample
 952 consists of three views:

- 954 (a) **Original**: the original unmodified image.
- 955 (b) **Original_smask**: the image with task-relevant (key) regions masked out.
- 956 (c) **Original_rmask**: the image with task-irrelevant regions masked out.

958 Figures 5–20 show representative examples from the dataset.

972

973

974 Question: What type of boat is this? Answer:

975 Answer: barge

976

977

978

987

988

Figure 5: Visualization Example 1

989

990

991

992 Question: What is the red line represents? Answer:

993 Answer: Share of women who prefer a male boss

994

995

996

1005

1006

1007

1008

1009

1010 Question: Which kind of food is to the left of the fork? Answer:

1011 Answer: salad

1012

1013

1014

1024

1025

Figure 7: Visualization Example 3

1026

1027

1028 Question: What is the water in front of? Answer:

1029 Answer: trees

1030

1031

1032

1033

(a) Original

(b) Original_smask

(c) Original_rmask

1034

1035

1036

1037

1038

1039

1040

Figure 8: Visualization Example 4

1041

1042

1043

1044

1045

1046 Question: What is the frame made of? Answer:

1047 Answer: wood

1048

1049

1050

(a) Original

(b) Original_smask

(c) Original_rmask

1051

1052

1053

1054

1055

1056

1057

1058

Figure 9: Visualization Example 5

1059

1060

1061

1062

1063

1064 Question: Is the truck parked straight on a driveway? Answer:

1065 Answer: no

1066

1067

1068

1069

(a) Original

(b) Original_smask

(c) Original_rmask

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Figure 10: Visualization Example 6

1134

1135

Question: Who is wearing a vest? Answer:

1136

Answer: woman

1137

1138

1139

(a) Original

(b) Original_smask

(c) Original_rmask

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

Figure 14: Visualization Example 10

1150

1151

1152

1153

Question: what number gate is this? Answer:

1154

Answer: 97

1155

1156

1157

(a) Original

(b) Original_smask

(c) Original_rmask

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

Figure 15: Visualization Example 11

1168

1169

Question: where is this bus going? Answer:

1170

1171

1172

Answer: 8mt st vincent

1173

1174

1175

1176

1177

(a) Original

(b) Original_smask

(c) Original_rmask

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Figure 16: Visualization Example 12

1188

1189

1190

Question: What color is the bag? Answer:

1191

Answer: green

1192

1193

1194

1195

(a) Original

(b) Original_smask

(c) Original_rmask

1196

1197

1198

1199

1200

1201

Figure 17: Visualization Example 13

1202

1203

1204

1205

1206

Question: What was the GDP per capita in Madagascar in 2020? Answer:

1207

Answer: 501.76

1208

1209

1210

1211

(a) Original

(b) Original_smask

(c) Original_rmask

1220

1221

1222

1223

1224

Question: What company had a share of 16.5 percent of the world liner fleet? Answer:

1225

Answer: Mediterranean Shg Co

1226

1227

1228

(a) Original

(b) Original_smask

(c) Original_rmask

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Figure 19: Visualization Example 15

1242
1243 Question: What hairstyle does the woman have? Answer:
1244 Answer: ponytail
1245
1246

Figure 20: Visualization Example 1

D VISUALIZATION EXAMPLES

Figure 21: Visualization examples comparing DeFACTO and standard GRPO (Example 1)

Figure 22: Visualization examples comparing DeFACTO and standard GRPO (Example 2)

1293
1294
1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

Question: What are the pieces of furniture that are mounted on the beige wall?
GT: shelves

Defacto: shelves ✓

Grpo: desks ✗

Figure 23: Visualization examples comparing DeFACTO and standard GRPO (Example 3)

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

Question: What contains cups?
GT: cupboard

Defacto: cabinet ✓

Grpo: kitchen ✗

Figure 24: Visualization examples comparing DeFACTO and standard GRPO (Example 4)

1336

1337

1338

1339

Question: What animal is standing on the grass?
GT: None

Defacto: There is no animal in the image. ✓

Grpo: bird ✗

Figure 25: Visualization examples comparing DeFACTO and standard GRPO (Example 5)

1348

1349

Figure 26: Visualization examples comparing DeFACTO and standard GRPO (Example 6)

Figure 27: Visualization examples comparing DeFACTO and standard GRPO (Example 7)

Figure 28: Visualization examples comparing DeFACTO and standard GRPO (Example 8)

1404

1405

E SYSTEM PROMPT EXAMPLE

1406

1407

System Prompt

1408
1409
1410
1411
1412
1413
1414
1415

Please answer my question based on the image I have provided. Identify the region in the image that is most relevant to the question and provide bounding box coordinates.

Output requirements:

1. The bounding boxes must be wrapped in `<bbox> ... </bbox>` tags.
2. The thinking process must be wrapped in `<think> ... </think>` tags.
3. The final answer must be wrapped in `<answer> ... </answer>` tags.

Format of the response (must strictly follow this structure): `<bbox>['Position': [x1, y1, x2, y2], 'Confidence': number] </bbox> <think> ... </think> <answer>...</answer>`

The current question is:

1416

F TRAINING CONFIGURATION DETAILS

1419

Table 8 summarizes the key hyperparameters used in our experiments.

1422

Table 8: Training configuration.

Parameter	Value
Optimizer	AdamW
Learning rate	1×10^{-6}
Adam betas	(0.9, 0.999)
Adam ϵ	1×10^{-8}
Weight decay	0.0
Precision	BF16 (FP16 disabled)
Batch size (global)	8
Micro batch size / GPU	1
Gradient accumulation steps	2
Gradient clipping	1.0
ZeRO optimization	Stage 3 with CPU offloading
Overlap communication	Enabled
Pinned memory	Enabled
Steps per print	inf
Wall clock breakdown	False
Hardware	8 \times NVIDIA H100 (80GB)
Epochs	1

1437

1438

G PROMPT FOR EVALUATION

1440

During evaluation, we employed Qwen3 as the judge model to score the generated answers. The following prompt was used to guide the evaluation process:

1443

1444

Evaluation Prompt

1445
1446
1447
1448
1449
1450

"prompt": "Human: You are responsible for proofreading the answers, you need to give a score to the model's answer by referring to the standard answer, based on the given question. The full score is 1 point and the minimum score is 0 points. Please output the score in the format <score>. The evaluation criteria require that the closer the model's answer is to the standard answer, the higher the score. Note that the standard answer may be a list containing multiple possible correct answers."

1451

H REWARD HYPERPARAMETERS

1454
1455
1456
1457

Table 9 reports the hyperparameter settings used in our reward design (Eq. 5). These values were tuned to balance the contributions of the three reward components: answer correctness (R_{ans}), format consistency (R_{fmt}), and region selection coherence (R_{sel}). The settings reflect the following intuition: γ_{corr} is set larger than γ_{guess} to penalize counterfactual “lucky guesses” more severely, ρ_{lunk} rewards

1458 correct abstentions in counterfactual cases, and β_{pos} is emphasized to encourage stronger alignment
 1459 with evidence regions in positive/random cases. Together with the weighting (λ_1, λ_2) .
 1460

1461 Table 9: Reward hyperparameter settings for the composite reward in Eq. 5.
 1462

Component	Parameter	Value
Answer Correctness (R_{ans})	γ_{unk}	0.2
	ρ_{unk}	1.0
	γ_{guess}	0.8
	γ_{corr}	1.0
Format Consistency (R_{fmt})	α	1.0
Region Selection (R_{sel})	β_{pos}	1.0
	β_{neg}	0.6
	γ_{\emptyset}	0.5
Composite Reward	(λ_1, λ_2)	(0.3, 0.5)

1475

I LIMITATIONS

1476 While *DeFacto* demonstrates consistent improvements in answer accuracy and reasoning faithfulness,
 1477 there are a few limitations to note. First, our current implementation relies on publicly available
 1478 detectors (e.g., RPN, OCR, and open-vocabulary models) for region proposal, which may introduce
 1479 occasional errors or inefficiencies; however, this can be alleviated as stronger detectors become
 1480 available. Second, our counterfactual dataset consists about 100k images, which is sufficient for
 1481 controlled experiments but still modest compared to large-scale pretraining corpora. Lastly, our
 1482 framework has so far been evaluated on static images, leaving the extension to videos and temporal
 1483 reasoning as an open direction for future work.
 1484

1485

J BROADER IMPACT

1486 Our work promotes safer and more interpretable multimodal reasoning by ensuring that models align
 1487 their predictions with visual evidence. Beyond algorithmic contributions, we release a large-scale
 1488 counterfactual dataset of about 100k images, which we believe will be a valuable resource for the
 1489 community to study faithful reasoning.
 1490

1491

K THE USE OF LARGE LANGUAGE MODELS (LLMs)

1492 In this work, we employed LLMs in a limited capacity to support writing and presentation. Specifically,
 1493 we used an LLM to help with linguistic refinement in the *Introduction* and *Related Work*
 1494 sections, ensuring clarity and fluency of exposition. In addition, we used LLM assistance for for-
 1495 matting tasks in the *Method* and *Experiment* sections, such as rendering mathematical formulas into
 1496 standard L^AT_EX notation and typesetting tables in the appropriate style. All core research contribu-
 1497 tions, including algorithm design, dataset construction, experimental execution, and analysis, were
 1498 entirely conducted by the authors without LLM involvement.
 1499

1500

L CONCLUSION

1501 In this work, we introduced *DeFacto*, the first vision-language reasoning framework explicitly
 1502 grounded in counterfactual supervision, designed to enforce region-faithful reasoning and abstention
 1503 behavior when critical evidence is missing. To enable this counterfactual reasoning paradigm, we
 1504 proposed an automatic pipeline for constructing counterfactual datasets, which leverages language
 1505 model parsing, open-vocabulary detection, and OCR to mask question-relevant regions without re-
 1506 quiring manual annotations. Using this pipeline, we built a counterfactual dataset about 100k im-
 1507 ages to support training and evaluation. Extensive experiments across multiple diverse benchmarks
 1508

1512 demonstrate that DeFacto consistently improves both answer accuracy and visual grounding faith-
1513 fulness over strong baselines. Our ablation studies further confirm the necessity of counterfactual
1514 training and region-level reward design in enhancing interpretability and robustness. We believe
1515 these findings open new directions for integrating counterfactual supervision into multimodal rea-
1516 soning systems, with potential extensions to video understanding and embodied AI.

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565