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ABSTRACT

Recent advances in multimodal language models (MLLMs) have achieved re-
markable progress in vision-language reasoning, especially with the emergence of
“thinking with images,” which integrates explicit visual steps into the reasoning
process. While this paradigm strengthens image-based reasoning, a significant
challenge remains: models may arrive at correct answers by relying on irrele-
vant or spurious regions, driven by prior knowledge or dataset biases. Even when
the answer is correct, flawed reasoning indicates that the model has not truly un-
derstood the image, highlighting the critical importance of reasoning fidelity in
multimodal tasks. To address this issue, we propose DeFacto, a counterfactual
reasoning framework that jointly enforces accurate answering and faithful reason-
ing. A key component of our approach is the design of three complementary
training paradigms: (i) positive, (ii) counterfactual, and (iii) random-masking.
To enable these paradigms, we develop a pipeline that automatically localizes
question-relevant evidence and constructs positive, counterfactual, and random
variants, resulting in a dataset of about 100k images. Building on this framework,
we train multimodal language models with GRPO-based reinforcement learning,
where we design three complementary rewards to guide the model toward accu-
rate answering and evidence-grounded reasoning. Experiments on diverse bench-
marks demonstrate that DeFacto substantially improves both answer accuracy and
reasoning faithfulness, establishing a stronger foundation for interpretable multi-
modal reasoning. The code and datasets will be released upon acceptance.

1 INTRODUCTION

Vision-language models (VLMs) Alayrac et al. (2022); Li et al. (2023); Zhu et al. (2023); Liu et al.
(2023; 2024a); Peng et al. (2023); Bai et al. (2023); Team et al. (2023); Chen et al. (2024c;b) have
achieved remarkable progress in recent years, demonstrating strong capabilities across a wide range
of multimodal tasks such as visual question answering, image captioning, and referring expression
comprehension. By leveraging large-scale pretraining and cross-modal alignment, these models can
generate fluent and semantically relevant outputs grounded in visual context. However, in complex
scenarios that require multi-step reasoning or fine-grained perception, existing models often rely
heavily on implicit language priors, producing plausible yet unfaithful responses that are weakly
grounded in the actual image. Instead of genuinely learning to reason over visual content, these
models often fall back on text-based chain-of-thought patterns, limiting their ability to handle cases
where critical evidence must be directly perceived from the image.

Recent advances in “thinking with images” Microsoft (2024); OpenAI (2025) emphasize the integra-
tion of explicit visual steps into the reasoning process to enhance transparency and visual grounding.
Early approaches employ supervised fine-tuning (SFT) Ouyang et al. (2022); Touvron et al. (2023);
Liu et al. (2023); Dettmers et al. (2023), where models are trained in a chain-of-thought (CoT) Shao
et al. (2024) manner to produce region-aware reasoning traces based on manually annotated visual
steps. To reduce the annotation burden, subsequent works explore reinforcement learning strategies
that allow models to autonomously develop visual interaction behaviors such as region cropping,
attention shifting, or zooming Zheng et al. (2025); Cao et al. (2025); Liu et al. (2025b); Zhang et al.
(2025b). Yet these approaches do not guarantee that the reasoning chains are faithful to the actual vi-
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 Question:
 What kind of tree are those 

leaves from?

Tool Calls Found: 
BBox: [x1,y1,x2,y2] , Label: 
'leaves' 

<think>The leaves in the image 
are from an oak tree…</think>

Answer: oak

BBox : [x1,y1,x2,y2]...
<think>The leaves in the image 
appear to be from deciduous 
trees…</think>     
Answer: deciduous ground

Deepeye

GRIT

Ground Truth: maple 
M

is
lo

ca
liz

ed
 F

ai
lu

re

Case 1 Case 2
 Question:

 How safe is this with no 
helmet passengers?

Ground Truth: not safe 

BBox: [x1,y1,x2,y2]...
<think>The image shows a group 
of people riding 
motorcycles....</think>
Answer: Unsafe

Deepeye

GRIT

Spurious Correctness

❌

BBox : [x1,y1,x2,y2]...

<think>The picture shows ...
box0 is a chair without leaves, 
while box1 and box2 contain 
leaves and are jagged, so it can be 
inferred that box1 and box2 
contain maple leave, so...</think>

Answer: maple

Defacto

Co
rr

ec
t 

ex
am

pl
e BBox : [x1,y1,x2,y2]...

<think>The image shows three 
motorcycles on a road with two 
passengers each...
Since the question asks about the 
safety of passengers without 
helmets, the relevant …</think>

Answer: not safe

Defacto

Correct exam
ple

❌

❌

Tool Calls Found: 
BBox: [x1,y1,x2,y2] , Label:  
'motorcycle with passenger'

<think>In the image, the 
passengers are ...</think>

Answer: not safe

Figure 1: Qualitative examples of failure cases. Left: Mislocalized Failure (park scene). Right:
Spurious Correctness (road scene).

sual evidence: since the model still has access to the entire image, it may either produce an incorrect
answer by focusing on irrelevant regions or arrive at the correct answer even when the highlighted
regions are unrelated. This issue is clearly illustrated in Fig. 1, where most existing models exhibit
two characteristic error modes: Mislocalized Failure, in which the model selects irrelevant regions
and consequently produces an incorrect answer, and Spurious Correctness, in which the answer
happens to be correct even though the selected regions are unrelated to the reasoning process. In
the park scene (left), GRIT mistakenly attends to the distant background, while Deepeyes zooms
in on a faint and indistinct fallen leaf, both of which fail to capture the evidence and lead to an
incorrect answer. In the road scene (right), GRIT fixates on the ground, and Deepeyes again zooms
in on a helmeted rider, producing a reasoning path that contradicts the very premise of the question.
These cases reveal a deeper problem: current approaches can still succeed superficially even when
their reasoning is disconnected from the actual evidence. However, correct answers alone are not
sufficient—the reasoning process itself must also be correct, since flawed reasoning often leads to
erroneous predictions. Such superficial success leads to poor generalization on out-of-distribution
inputs and undermines trustworthiness in downstream applications that demand evidence-based de-
cisions. What is needed is a training paradigm that enforces both correct evidence selection and
correct answering, ensuring that reasoning trajectories and final predictions are jointly faithful to the
visual input.

Motivated by these failure cases, we introduce DeFacto, a counterfactual reasoning framework that
aligns reasoning trajectories with visual evidence, ensuring predictions are both reliable and inter-
pretable. The core idea is to employ three complementary training forms that jointly constrain the
model’s behavior: (i) positive supervision, (ii) counterfactual abstention, and (iii) random masking
to strengthen evidence-grounded reasoning. In the positive case, the model is given the original
image and trained to predict bounding boxes that cover the essential evidence together with the cor-
rect answer, receiving positive feedback only when both the evidence selection and the answer are
correct. In the counterfactual case, the same question is paired with an image where the evidence
regions R+ have been masked; since the necessary visual evidence is no longer available, the model
is expected to abstain by outputting a designated token such as “unknown,” while any concrete an-
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swer is penalized. In the random-masking case, irrelevant regions R− are masked independently
of the question, preventing the model from exploiting superficial correlations between the presence
of masks and abstention behavior. Training is performed with GRPO-based reinforcement learning,
where the reward integrates three components: (i) Answer Correctness Reward, (ii) Format Consis-
tency Reward, and (iii) Region Selection Coherence Reward. Through this design, DeFacto compels
the model to produce reasoning that is logically grounded, answers that are accurate, and predictions
where reasoning and outcomes remain consistent.

In practice, constructing counterfactual samples requires reliably identifying the question-relevant
regions. To this end, we adopt a structured two-stage extraction pipeline. First, a multimodal lan-
guage model (Qwen2.5-VL Bai et al. (2025)) parses the question and generates a set of key descrip-
tors (e.g., “the red cup,” “the text on the shirt”). Next, candidate regions in the image are obtained
from a region proposal network (RPN) Ren et al. (2015) and an OCR module Islam et al. (2017). The
OCR regions are further matched with textual descriptors to capture evidence critical for text-centric
questions. For visual objects, the descriptors are fed into an open-vocabulary detector (DINO-X Ren
et al. (2024)), which provides bounding boxes that serve as positive evidence regions. Finally, the re-
maining proposals from the RPN, after removing matched positives, are treated as irrelevant regions
for counterfactual construction. Using this pipeline, we construct a counterfactual dataset about
100k images, ensuring that positive, counterfactual, and random-masking instances differ only in
the availability of essential evidence while preserving unrelated context. Building on this dataset,
the model is further optimized with GRPO-based reinforcement learning. This training paradigm
enforces consistency between evidence selection and final predictions, ensuring that reasoning traces
remain faithful to visual cues. As illustrated in Fig. 1, our method consistently grounds its reasoning
in the correct regions (e.g., focusing on the three motorcycles on the road and their passengers),
thereby unifying reasoning steps with faithful visual evidence.

Our main contributions are threefold:

(1) We propose a counterfactual ”thinking with images” framework that aligns the reasoning process
with essential visual evidence by jointly optimizing for answer correctness and region-level faithful-
ness via reinforcement learning. (2) We construct a new counterfactual dataset about 100k images
using a language-guided algorithm that integrates open-vocabulary detection with targeted masking,
ensuring that only question-relevant regions are removed while irrelevant context is preserved. (3)
We demonstrate, through extensive experiments on diverse benchmarks, that our approach consis-
tently improves both answer accuracy and visual grounding faithfulness over strong baselines.

2 RELATED WORK

Structured Thinking with Images in Vision-Language Models. The concept of ”thinking with
images” was initially highlighted in OpenAI o3 Achiam et al. (2023); OpenAI (2025) and later ex-
plored in works like COGCOM Qi et al. (2024) and GRIT Fan et al. (2025). Existing approaches
can be broadly categorized into two classes: those that inject visual information into the reasoning
process as explicit intermediate steps, and those that enhance region selection and visual ground-
ing through learning or optimization. The first category includes GRIT, which combines natural
language and bounding boxes via reinforcement learning; REFOCUS Fu et al. (2025), which for-
mulates visual editing as intermediate reasoning steps; COGCOM Qi et al. (2024), which models
reasoning as visual manipulations such as cropping and OCR; and VisionReasoner Liu et al. (2025a),
which unifies detection, segmentation, and counting under one framework. The second category em-
phasizes grounding quality. Fast-and-Slow Visual Agents Sun et al. (2024) model dual-system rea-
soning. DeepEyes Zheng et al. (2025) leverages reinforcement learning to train multimodal chains-
of-thought and dynamically invoke zoom-in tools when visual evidence is ambiguous. MLLMs
Know Where to Look Zhang et al. (2025a) improves small-object perception by applying inference-
time cropping strategies to highlight fine details. Chain-of-Focus Zhang et al. (2025b) further adapts
zoom-in operations through reinforcement learning, enabling multi-scale reasoning across cluttered
scenes. Ground-R1 Cao et al. (2025) enhances faithfulness by introducing explicit reward signals
that align reasoning outputs with grounded evidence. V* Wu & Xie (2024) formulates guided visual
search as a core cognitive mechanism to explore high-resolution images efficiently. Visual-RFT Liu
et al. (2025b) refines grounding via reinforcement fine-tuning. As a result, they often fail to ensure
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that reasoning trajectories remain consistent with the visual evidence, leaving open the need for a
paradigm that jointly enforces faithful reasoning steps and accurate answers.

Counterfactual Reasoning in Vision-Language Models. Counterfactual reasoning in VLMs can
be categorized into two types: counterfactual data generation and inference-based reasoning. The
first enhances robustness by constructing or augmenting counterfactual samples to reduce bias and
hallucination. For example, Learning Chain of Counterfactual Thought Zhang et al. (2020) disentan-
gles factual knowledge from reasoning via CoBRa and CoCT datasets; C-VQA Zhang et al. (2024b)
and CRIPP-VQA Patel et al. (2022) construct benchmarks for counterfactual VQA in static and
video settings, respectively; Counterfactual Vision and Language Learning Abbasnejad et al. (2020)
and Counterfactual Contrastive Learning Zhang et al. (2024c) generate counterfactuals through
structural causal models and perturbation strategies, while CounterCurate Zhang et al. (2024a) im-
proves compositional reasoning by augmenting training data with physically grounded examples
and semantic counterfactuals using generative models. The second type focuses on inference with
mechanisms such as Counterfactual-based Saliency Maps Wang et al. (2023) for contrastive visual
explanation, DiG-IN Augustin et al. (2024) for diffusion-guided latent edits, and Counterfactual
VQA Niu et al. (2021) for causal effect modeling. However, most existing approaches either treat
counterfactuals as data augmentation without explicitly constraining the reasoning process, or apply
them only at inference for explanation, leaving a gap in methods that can jointly enforce faithful
reasoning steps and correct answers during training.

3 METHOD

In this section, we present the overall framework of DEFACTO, our counterfactual “thinking with
images” approach. This section is organized into three parts: (1) the overall architecture and in-
ference pipeline (Section 3.1); (2) the construction of counterfactual datasets via region masking
and open-vocabulary filtering (Section 3.2); and (3) the reinforcement learning strategy with a tai-
lored reward design that guides the model toward accurate answering, faithful reasoning, and their
consistency (Section 3.3).

3.1 OVERALL FRAMEWORK

DEFACTO is a vision-language reasoning framework that enforces region-level faithfulness in mul-
timodal question answering. It is designed to teach models not only where to look in the image but
also when to abstain if the necessary evidence is absent. By combining structured prompting with
counterfactual supervision, DEFACTO aligns the reasoning process with visual evidence rather than
spurious correlations.

As illustrated in Figure 2, given a question and an image, the model is prompted to produce outputs
in a structured format consisting of three fields. The <bbox> field contains one or more bounding
boxes encoded as JSON objects of the form {Position : [x1, y1, x2, y2],Confidence : p}, the <think>
field records a short rationale, and the <answer> field provides the final prediction. Multiple boxes
can be returned when multiple evidence regions are required. If no valid evidence exists, the model
outputs unknown in both the <bbox> and <answer> fields. This structured format ensures that every
reasoning trajectory is explicitly tied to visual evidence through bounding boxes and aligned with the
model’s final answer. Training is based on three complementary supervision forms. In the positive
case, evidence-bearing regions remain visible and the model is rewarded for selecting them and
producing the correct answer. In the counterfactual case, these regions are masked, and the model
is expected to abstain by outputting unknown. In the random-masking case, irrelevant regions are
occluded to prevent shortcut learning from superficial mask patterns. Together, these three forms
establish a consistent learning signal that requires both the reasoning path and the answer to be
faithful to the underlying visual support.

3.2 COUNTERFACTUAL DATASET CONSTRUCTION

Positive, Counterfactual, and Random Instances. Let R = {r1, r2, . . . , rn} denote the set of
candidate regions in an image I , obtained from a region proposal network (RPN) Ren et al. (2015)
together with OCR to cover both object-level and text-bearing regions. Among them, R+ ⊆ R
represents the evidence regions that are critical to answering the question q, while R− = R \ R+

4
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Please answer my question based on the image .  Output  the 
bounding boxes within <bbox> </bbox> tags, the thinking 
process in <think> </think> tags, and the final answer within 
<answer> </answer> tags. The format of the ...

Automate Evidence Masking

Question Input

What does his shirt say?

M
LLM

Ximg

Xtext
Person

Shirt

Ximg

O
V

D

M
A

SK

Extract Word Target Detection Mask covering

Counterfactual GRPO Training

Positive
���� = (�,  �,  ℛ+,  �)

Counterfactual
��� = (�\ℛ+ , �,  ℛ−,  ���)

Random
����� = (�\ℛ− , �,  ℛ+, �)

...

Vision Encoder

Large Language Model

Region prompt

...

...

Positive and Random Example Counterfactual Example

Output

<bbox>"Bbox1", "Bbox2"<bbox>
<think>  Bbox1 covers the 
person; Bbox2 ...</think>
<answer>Hollister</answer>

<bbox>"Bbox1", "Bbox2"<bbox>
<think>These boxes do not 
include the ...</think>
<answer>Unknown</answer>

Region Selection Coherence

Format Consistency

Reward Function

<bbox>...</bbox>

<think> ...</think>

<answer>...</answer>

Hollister �∗            

Unknown

� = ���� + �1���� + �2����

Answer Correctness

ℛ+ ℛ ℛ−

Update

Figure 2: An overview of our counterfactual framework with three inputs: positive (full evidence),
counterfactual (masked evidence), and random (masked irrelevant regions), guiding the model to
answer correctly or abstain with “unknown.”

denotes the remaining irrelevant regions. Based on these definitions, we construct three complemen-
tary training instances:

Ipos = (I, q,R+, y) Icf = (I\R
+

, q,R−, ycf) Irand = (I\R
−
, q,R+, y), (1)

where y is the ground-truth answer, Ipos is the positive instance with evidence regions available,
Icf is the counterfactual instance where evidence regions are masked and the abstention label ycf
(e.g., “Unknown”) is required, and Irand is the random-masking instance where irrelevant regions
are occluded to prevent shortcut learning.

Construction Process. To automatically construct Ipos, Icf, and Irand without manual annotations,
we follow three steps:

(1) Descriptor extraction. Given an image I and a question q, we employ a MLLM (Qwen2.5-VL Bai
et al. (2025)) to extract a set of key descriptors:

MLLM(I, q) = {d1, d2, . . . , dm}, (2)

where each di is a textual phrase (e.g., an object, attribute, or relation) that captures the visual
concepts in I explicitly mentioned or implied by q. As illustrated in Fig. 2 (“Automate Evidence
Masking”), for the question “What does his shirt say?”, the MLLM decomposes the query into
descriptors such as “a man” and “man’s shirt” as the critical evidence.

(2) Evidence localization. Let R = {r1, . . . , rn} be the set of candidate image regions. We em-
ploy the open-vocabulary detector DINO-X Ren et al. (2024), which computes grounding scores
OVD(r, k) for each r ∈ R and k ∈ K(q). Based on these scores, the regions are partitioned into
evidence and irrelevant sets:

R+ = {r ∈ R | max
k∈K(q)

OVD(r, k) > τ}, R− = R \R+, (3)

where τ is a confidence threshold. In the street example, R+ corresponds to bounding boxes cover-
ing the signboard, while R− contains all other regions.
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(3) Instance generation. Once R+ and R− are obtained, the positive, counterfactual, and random-
masking instances are directly constructed as defined in Eq. 1.

For counterfactual dataset construction, we leverage a broad collection of vi-
sual question answering and document understanding benchmarks, including
VQAv2 Goyal et al. (2017), OKVQA Marino et al. (2019), GQA Hudson & Manning (2019),
ScienceQA Lu et al. (2022), VizWiz Gurari et al. (2018), TextVQA Singh et al. (2019),
OCRVQA Mishra et al. (2019), AI2D Kembhavi et al. (2016), DocVQA Mathew et al. (2021),
ChartQA Masry et al. (2022), InfoVQA Mathew et al. (2022), DeepForm Svetlichnaya (2020),
Kleister KLC Stanisławek et al. (2021), WikiTableQuestions (WTQ) Pasupat & Liang (2015),
TabFact Chen et al. (2019), and VisualMRC Tanaka et al. (2021). This diverse coverage ensures
that counterfactual supervision is tested across natural images, scientific diagrams, documents,
charts, tables, and multi-source reasoning tasks. Representative visualizations of the constructed
dataset are provided in Appendix H (Figures 4–19).

3.3 REINFORCEMENT LEARNING TRAINING

Sequential Reasoning Formulation. We formulate the reasoning process of DEFACTO as a
Markov Decision Process (MDP), where the model interacts with the question and image in a se-
quential manner. At each step, the state st encodes the multimodal context, including the input
question, the image representation, and the history of previously predicted regions. The policy πθ

then outputs either a new bounding box that localizes question-relevant evidence or a special STOP
token to terminate the process.

Formally, the state at step t is defined as

st = {q, fv(I), B<t}, (4)

where q is the question, fv(I) the image representation, and B<t the set of bounding boxes predicted
before step t. The rollout continues until STOP is emitted or the maximum step limit is reached, and
the final answer is generated based on the accumulated trajectory.

Reward Design. To make training effective, we design three reward components. (1) Answer
Correctness Reward: encourages correct answers in positive/random cases, rewards “Unknown” in
counterfactual cases, and penalizes unsupported guesses. (2) Format Consistency Reward: ensures
outputs strictly follow the required schema. (3) Region Selection Coherence Reward: promotes
overlap with evidence regions R+ and penalizes overlap with irrelevant regions R−, with no reward
in counterfactual cases.

The overall training signal combines these components into the composite reward in Eq. 5.

R = Rans + λ1 Rfmt + λ2 Rsel, (5)

1. Answer Correctness Reward. To enforce correct behavior across the three training forms, we
define

Rans =


acc(ŷ, y∗) − γunk unk(ŷ)︸ ︷︷ ︸

penalize “Unknown”

, t ∈ {pos, rand},

ρunk unk(ŷ)︸ ︷︷ ︸
reward “Unknown”

− γguess [1− unk(ŷ)]︸ ︷︷ ︸
penalize guess

− γcorr 1[ŷ = y∗]︸ ︷︷ ︸
penalize even if correct

, t = cf,
(6)

where acc(ŷ, y∗)∈{0, 1} indicates answer correctness, and unk(ŷ)∈{0, 1} indicates an “Unknown”
response. Here γunk > 0 penalizes answering “Unknown” in positive or random cases, ρunk > 0 re-
wards “Unknown” in counterfactual cases, γguess > 0 penalizes any concrete guess in counterfactual
cases, and γcorr > γguess applies an even stronger penalty when the model outputs the correct answer
y∗ without access to evidence.

2. Format Consistency Reward. We encourage well-formed outputs and valid region indices
selected from the prompt:

Rfmt =

{
α, if output follows the required schema and indices are valid,
0, otherwise.

(7)

6
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Here, the “required schema” refers to the presence of <think>...</think> for the reasoning process,
<bbox>...</bbox> for the predicted bounding boxes, and <answer>...</answer> for the final answer.
In particular, the <bbox> field must contain well-formed bounding box coordinates in the format [x1,
y1, x2, y2], ensuring that the model explicitly grounds its predictions on localized visual regions.

3. Region Selection Coherence Reward. Let B = {bbox1, . . . , bboxk} be the set of bounding
boxes predicted before STOP. We define the overlap scores with evidence regions R+ and irrelevant
regions R− as

ϕ+(b) = max
r∈R+

IoU(b, r), ϕ−(b) = max
r∈R−

IoU(b, r).

The reward is then defined as

Rsel =


βpos

1
|B|

∑
b∈B ϕ+(b) − βneg

1
|B|

∑
b∈B ϕ−(b), t ∈ {pos, rand}, B ̸= ∅,

− γ∅, t ∈ {pos, rand}, B = ∅,

0, t = cf.

(8)

with βpos, βneg, γ∅ > 0.

The full training dynamics of each reward component, along with the corresponding hyperparameter
settings, are provided in the Appendix (see Fig. 3 and Table 5).

Training Strategy. Unlike prior works that require a supervised warm-up stage, we directly fine-
tune Qwen2.5-VL with reinforcement learning, using Group Relative Policy Optimization (GRPO)
and the composite reward in Eq. 6 and Eq. 8. GRPO compares multiple rollouts within a group and
rewards each according to its improvement over the group average, eliminating the need for a value
network and reducing variance. The objective is defined as:

Lπ(θ) = Ei

 πθ(τ
(i))

πθold(τ
(i))

(
R(τ (i))− 1

M

M∑
j=1

R(τ (j))
) , (9)

where we set the group size M = 4 to balance stability and exploration during training. Figure 3
shows the learning dynamics of the three reward components defined in Eq. 6 and Eq. 8, as well as
the total reward.
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Figure 3: Reward curves during training. Each subplot corresponds to one component of the reward:
(a) Answer Reward, (b) Format Reward, (c) Region Selection Reward, and (d) Total Reward. Solid
lines denote the mean across runs, and shaded areas denote standard deviation.

4 EXPERIMENT

4.1 SETUP

Baselines. We compare DEFACTO against a broad set of recent approaches that explicitly incorpo-
rate visual reasoning into multimodal language models. Specifically, we include QWEN2.5-VL Bai
et al. (2025), a strong pretrained backbone widely used for visual understanding; VICROP Zhang
et al. (2025a), which improves small-object perception via inference-time cropping; GRIT Fan
et al. (2025), which integrates grounded reasoning traces through reinforcement learning; DEEP-
EYES Zheng et al. (2025), which incentivizes models to call visual tools during reasoning; and
VISUAL-SR1 Li et al. (2025b), which enhances step-by-step visual reasoning with self-refinement.
This selection covers both state-of-the-art backbones and recent “thinking with images” algorithms
for visual reasoning.
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Table 1: Results on General VQA Benchmarks (accuracy, %). ∆ indicates improvements of DeFacto
over Qwen2.5-VL 7B.

Model Backbone VQAv2 OKVQA GQA SciQA VizWiz VSR

Qwen2.5-VL Qwen2.5-VL-7B 57.3 54.5 41.3 85.3 37.7 2.2
ViCrop LLaVA-1.5 (Vicuna-7B) 76.5 60.7 61.0 88.2 64.4 65.4
GRIT Qwen2.5-VL-3B 71.5 55.4 59.3 60.5 46.3 61.0
DeepEyes Qwen2.5-VL-7B – 46.9 47.3 59.2 25.1 27.3
Visual-SR1 Qwen2.5-VL-7B 71.5 45.1 58.5 88.6 32.0 62.3

DeFacto (ours) Qwen2.5-VL-7B 79.7 68.0 70.1 88.2 64.5 70.3
∆ (vs Qwen2.5-VL 7B) – +22.4 +13.5 +28.8 +2.9 +26.8 +68.1

Table 2: Results on Document VQA and Scene Text-centric Benchmarks (accuracy, %). ∆ indicates
improvements of DeFacto over Qwen2.5-VL 7B.

Model Document VQA Scene Text-centric

DocVQA ChartQA InfoVQA DeepForm KLC WTQ STVQA TextVQA AI2D

Qwen2.5-VL 84.4 77.8 66.0 30.3 35.9 63.9 64.9 71.0 71.2
GRIT 76.4 68.7 49.1 15.8 19.9 35.7 71.3 73.4 77.2
ViCrop 33.7 52.5 54.9 21.9 33.4 54.3 74.0 63.4 69.2
DeepEyes 66.8 44.4 42.3 – 33.1 54.6 48.9 39.9 38.5
Visual-SR1 82.3 73.8 75.1 52.4 39.6 72.2 60.2 69.2 71.5

DeFacto (ours) 85.8 82.4 76.9 51.8 37.6 74.5 74.1 73.4 79.0
∆ (vs Qwen2.5-VL 7B) +1.4 +4.6 +10.9 +21.5 +1.7 +10.6 +9.2 +2.4 +7.8

Benchmarks. Our evaluation spans a diverse collection of visual reasoning benchmarks. For
general-purpose VQA, we use OKVQA Marino et al. (2019), VQAv2 Goyal et al. (2017),
GQA Hudson & Manning (2019), VizWiz Gurari et al. (2018), ScienceQA Lu et al. (2022) and
VSR Liu et al. (2023). For document- and structure-centric evaluation, we adopt DocVQA Mathew
et al. (2021), ChartQA Masry et al. (2022), InfoVQA Mathew et al. (2022), DeepForm Svetlichnaya
(2020), Kleister KLC Stanisławek et al. (2021), and WikiTableQuestions (WTQ) Pasupat & Liang
(2015). To test text-intensive reasoning, we include TextVQA Singh et al. (2019), AI2D Kembhavi
et al. (2016) and STVQA Biten et al. (2019). We further evaluate on several benchmarks, includ-
ing OCRBench Liu et al. (2024c), MMstar Chen et al. (2024a), MMMU Yue et al. (2024), and
MMB1.1 Liu et al. (2024b), with detailed results reported in Appendix E (Table 6).

Training Configuration. We train all models with the AdamW optimizer using a learning rate of
1×10−6, (β1, β2) = (0.9, 0.999), and ϵ = 1×10−8. Training is performed with a global batch size
of 8 and micro-batch size of 1 per GPU, combined with gradient accumulation steps of 2. Gradients
are clipped to a maximum norm of 1.0 to ensure stability. We enable BF16 precision training. All
experiments are conducted on 8 NVIDIA H100 GPUs with 80GB memory each, and models are
trained for one epoch over the collected dataset.

4.2 MAIN RESULTS

Results on General VQA Benchmarks. Table 1 compares DEFACTO with recent visual rea-
soning and thinking with images baselines on six widely used benchmarks. DEFACTO achieves
state-of-the-art performance across the board, outperforming the strongest competing method, Vi-
Crop, by clear margins. In particular, it improves over ViCrop by +3.2% on VQAv2, +7.3% on
OKVQA, and +9.1% on GQA, demonstrating stronger compositional and commonsense reasoning.
On perception-heavy datasets, DEFACTO also shows advantages: it slightly surpasses Visual-SR1
on SciQA while matching ViCrop on VizWiz, and it exceeds all baselines on VSR by +4.9%, con-
firming its robustness under visually complex or noisy conditions. These consistent gains over
the best-performing alternatives highlight the effectiveness of counterfactual training in enforcing
evidence-grounded reasoning.

Performance on Document and Text-centric Benchmarks. As shown in Table 2, DEFACTO
also leads on document-style and scene text-centric benchmarks. It surpasses the strongest alter-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

natives by notable margins, including +1.4% over Qwen2.5-VL on DocVQA, +4.6% on ChartQA,
and +1.8% over Visual-SR1 on InfoVQA. On DeepForm, although Visual-SR1 achieves the best
score, DEFACTO remains highly competitive with a close result of 51.8%. Similarly, while GRIT
ties for the highest score on TextVQA, DEFACTO delivers the best overall performance across all
text-centric tasks, including a +13.9% gain over Visual-SR1 on STVQA and a +1.8% improvement
over GRIT on AI2D. These results confirm that DEFACTO not only consistently outperforms the
strongest existing methods but also maintains competitive accuracy in the few cases where another
baseline achieves the top result, establishing a new state of the art in document and OCR-centric
reasoning tasks.

4.3 ABLATION STUDY

We compare four training settings on Qwen2.5-VL 7B. (i) SFT (no CF): trained only on original
data. (ii) SFT (CF alignment): trained on original + counterfactual data, but counterfactuals are
supervised only with the “Unknown” label, together with random-masking. (iii) GRPO (no CF
reward): GRPO training that uses only the first term of Eq. 6 (answer correctness) and the format
reward, while removing the region-selection reward. (iv) DeFacto (full): our complete framework
with all three rewards.

Table 3: Ablation results on representative benchmarks (accuracy, %). ∆ indicates improvements of
DeFacto over baselines.

Model Variant VQAv2 OKVQA SciQA VSR DocVQA TextVQA

Qwen2.5-VL (SFT, no CF) 61.2 42.0 82.7 54.5 51.9 56.0
Qwen2.5-VL (SFT, CF alignment) 66.5 55.7 84.7 53.7 84.3 73.0
Qwen2.5-VL (GRPO, no CF reward) 70.4 56.9 85.9 58.4 85.4 72.8
DeFacto (CF reward + GRPO) 79.7 68.0 88.2 70.3 85.8 73.4

∆ (vs GRPO no CF reward) +9.3 +11.1 +2.3 +11.9 +0.4 +0.6

Effect of Counterfactual Supervision. The first two rows show that introducing counterfactual
data with abstention alignment improves over standard SFT, with clear gains such as +5.3% on
VQAv2 and +13.7% on OKVQA. This suggests that counterfactual supervision effectively reduces
spurious correlations and strengthens evidence alignment.

Effect of Reinforcement Learning. GRPO without counterfactual rewards further boosts reason-
ing, e.g., +4.7% on VSR over SFT no CF. DeFacto achieves the best results overall, with additional
gains of +9.3% on VQAv2, +11.1% on OKVQA, and +11.9% on VSR compared to GRPO. Even
on DocVQA and TextVQA, improvements (+0.4%, +0.6%) remain consistent, confirming the im-
portance of counterfactual rewards for robust, region-faithful reasoning.

5 CONCLUSION

In this work, we introduced DeFacto, the first vision-language reasoning framework explicitly
grounded in counterfactual supervision, designed to enforce region-faithful reasoning and abstention
behavior when critical evidence is missing. To enable this counterfactual reasoning paradigm, we
proposed an automatic pipeline for constructing counterfactual datasets, which leverages language
model parsing, open-vocabulary detection, and OCR to mask question-relevant regions without re-
quiring manual annotations. Using this pipeline, we built a counterfactual dataset about 100k im-
ages to support training and evaluation. Extensive experiments across multiple diverse benchmarks
demonstrate that DeFacto consistently improves both answer accuracy and visual grounding faith-
fulness over strong baselines. Our ablation studies further confirm the necessity of counterfactual
training and region-level reward design in enhancing interpretability and robustness. We believe
these findings open new directions for integrating counterfactual supervision into multimodal rea-
soning systems, with potential extensions to video understanding and embodied AI.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or applications with foreseeable
ethical risks. All experiments are conducted on publicly available benchmarks or our automati-
cally constructed counterfactual dataset, which contains no personally identifiable information. We
therefore believe this research poses no ethical concerns.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility of our results. The full training pipeline, in-
cluding dataset construction, reward design, and reinforcement learning setup, is described in detail
in the main paper and appendix. Our implementation is based on the open-source open r1 OpenAI
(2025) repository, which we modified to incorporate our counterfactual dataset, reward functions,
and GRPO training. The source code is provided in the supplementary materials to facilitate repro-
duction. Due to anonymity requirements and the large size of the dataset, we are unable to release
the full dataset at this stage; however, it will be made publicly available upon acceptance. In the
meantime, partial dataset visualizations are included in Appendix H to illustrate the construction
process and provide qualitative insights.
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APPENDIX A. SYSTEM PROMPT EXAMPLE

System Prompt

Please answer my question based on the image I have provided. Identify the region in the
image that is most relevant to the question and provide bounding box coordinates.
Output requirements:
1. The bounding boxes must be wrapped in <bbox> ... </bbox> tags.
2. The thinking process must be wrapped in <think> ... </think> tags.
3. The final answer must be wrapped in <answer> ... </answer> tags.
Format of the response (must strictly follow this structure): <bbox>[’Position’: [x1, y1,
x2, y2], ’Confidence’: number] </bbox> <think> ... </think> <answer>...</answer>
The current question is:

APPENDIX B.TRAINING CONFIGURATION DETAILS

Table 4 summarizes the key hyperparameters used in our experiments.

Table 4: Training configuration.

Parameter Value

Optimizer AdamW
Learning rate 1 × 10−6

Adam betas (0.9, 0.999)
Adam ϵ 1 × 10−8

Weight decay 0.0
Precision BF16 (FP16 disabled)
Batch size (global) 8
Micro batch size / GPU 1
Gradient accumulation steps 2
Gradient clipping 1.0
ZeRO optimization Stage 3 with CPU offloading
Overlap communication Enabled
Pinned memory Enabled
Steps per print inf
Wall clock breakdown False
Hardware 8 × NVIDIA H100 (80GB)
Epochs 1

APPENDIX C. PROMPT FOR EVALUATION

During evaluation, we employed Qwen3 as the judge model to score the generated answers. The
following prompt was used to guide the evaluation process:

Evaluation Prompt

"prompt": "Human: You are responsible for proofreading the answers, you need to give
a score to the model’s answer by referring to the standard answer, based on the given
question. The full score is 1 point and the minimum score is 0 points. Please output the
score in the format <̈score>.̈ The evaluation criteria require that the closer the model’s
answer is to the standard answer, the higher the score. Note that the standard answer may
be a list containing multiple possible correct answers."

APPENDIX D. REWARD HYPERPARAMETERS

Table 5 reports the hyperparameter settings used in our reward design (Eq. 5). These values were
tuned to balance the contributions of the three reward components: answer correctness (Rans), for-
mat consistency (Rfmt), and region selection coherence (Rsel). The settings reflect the following
intuition: γcorr is set larger than γguess to penalize counterfactual “lucky guesses” more severely, ρunk
rewards correct abstentions in counterfactual cases, and βpos is emphasized to encourage stronger
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alignment with evidence regions in positive/random cases. Together with the weighting (λ1, λ2),
these hyperparameters yield the reward dynamics shown in Fig. 3.

Table 5: Reward hyperparameter settings for the composite reward in Eq. 5.

Component Parameter Value

Answer Correctness (Rans)

γunk 0.2
ρunk 1.0
γguess 0.8
γcorr 1.0

Format Consistency (Rfmt) α 1.0

Region Selection (Rsel)
βpos 1.0
βneg 0.6
γ∅ 0.5

Composite Reward (λ1, λ2) (0.3, 0.5)

APPENDIX E. ADDITIONAL RESULTS

Table 6 provides an extended comparison of DeFacto with both closed-source and publicly available
vision-language models on additional benchmarks, including OCRBench, MMstar, MMMU, and
MMB1.1. As shown, DeFacto achieves the best score on OCRBench (871) and competitive perfor-
mance across the remaining three benchmarks. In particular, our method surpasses most open-source
models by a clear margin and remains close to strong closed-source systems such as GPT-4o, while
slightly improving over Eagle2-9B on OCRBench. These results further demonstrate that DeFacto
effectively balances answer accuracy and reasoning faithfulness, yielding robust gains across diverse
evaluation settings.

Table 6: Comparison with SoTA models on Various Benchmarks.

Model OCRBench MMstar MMMU MMB1.1

Closed-Source Models

GPT-4o-0513 Microsoft (2024) 736 63.9 69.2 82.2
GPT-4V Team 656 56.0 61.7 79.8
Gemini-1.5-Pro Team et al. (2024) 754 - 62.2 -

Publicly Available Models

LLaVa-OneVision-0.5B Li et al. (2024) 565 37.7 31.4 50.3
InternVL2-1B Team (2024) 754 45.7 36.7 59.7
Eagle2-1B Li et al. (2025a) 767 48.5 38.8 63.0
InternVL2-2B Team (2024) 784 50.1 36.3 69.6
Eagle2-2B Li et al. (2025a) 818 56.4 43.1 74.9
InternVL2-8B Team (2024) 794 60.9 51.8 79.4
MiniCPM-V2.6 Hu et al. (2024) 852 57.5 49.8 78.0
LLaVA-One-Vision-7B Li et al. (2024) 622 61.7 48.8 80.9
InternVL2-26B Team (2024) 825 61.0 50.7 81.2
LLaMa-3.2-90B-Vision Grattafiori et al. (2024) 783 55.3 60.3 77.3
HyViLMZhu et al. (2024) 596 - 41.8 76.6
Eagle2-9B Li et al. (2025a) 868 62.6 56.1 80.6
DeFacto-7B (ours) 871 63.2 66.0 81.2

APPENDIX F. LIMITATIONS

While DeFacto demonstrates consistent improvements in answer accuracy and reasoning faithful-
ness, there are a few limitations to note. First, our current implementation relies on publicly available
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detectors (e.g., RPN, OCR, and open-vocabulary models) for region proposal, which may introduce
occasional errors or inefficiencies; however, this can be alleviated as stronger detectors become
available. Second, our counterfactual dataset consists about 100k images, which is sufficient for
controlled experiments but still modest compared to large-scale pretraining corpora. Lastly, our
framework has so far been evaluated on static images, leaving the extension to videos and temporal
reasoning as an open direction for future work.

APPENDIX G. BROADER IMPACT

Our work promotes safer and more interpretable multimodal reasoning by ensuring that models align
their predictions with visual evidence. Beyond algorithmic contributions, we release a large-scale
counterfactual dataset of about 100k images, which we believe will be a valuable resource for the
community to study faithful reasoning.

APPENDIX H. VISUALIZATION OF COUNTERFACTUAL DATASET

In this section, we provide visualizations of the constructed counterfactual dataset. Each sample
consists of three views:

(a) Original: the original unmodified image.

(b) Original smask: the image with task-relevant (key) regions masked out.

(c) Original rmask: the image with task-irrelevant regions masked out. Figures 4–19 show repre-
sentative examples from the dataset.

Question: What type of boat is this? Answer:

Answer: barge

(a) Original (b) Original_smask (c) Original_rmask

Figure 4: Visualization Example 1
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Question: What is the red line represents? Answer:

Answer: Share of women who prefer a male boss

(a) Original (b) Original_smask (c) Original_rmask

Figure 5: Visualization Example 2

Question: Which kind of food is to the left of the fork? Answer:

Answer: salad

(a) Original (b) Original_smask (c) Original_rmask

Figure 6: Visualization Example 3

Question: What is the water in front of? Answer:

Answer: trees

(a) Original (b) Original_smask (c) Original_rmask

Figure 7: Visualization Example 4
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Question: What is the frame made of? Answer:

Answer: wood

(a) Original (b) Original_smask (c) Original_rmask

Figure 8: Visualization Example 5

Question: Is the truck parked straight on a driveway? Answer:

Answer: no

(a) Original (b) Original_smask (c) Original_rmask

Figure 9: Visualization Example 6

Question: Which kind of animal is standing on the hay? Answer:

Answer: cow

(a) Original (b) Original_smask (c) Original_rmask

Figure 10: Visualization Example 7
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Question: What is the total direct enterprise investment of Ireland (in euros) in start-ups in 2015? Answer:

Answer: 31m

(a) Original (b) Original_smask (c) Original_rmask

Figure 11: Visualization Example 8

Question: what is the name of the wine? Answer:

Answer: italica

(a) Original (b) Original_smask (c) Original_rmask

Figure 12: Visualization Example 9

Question: Who is wearing a vest? Answer:

Answer: woman

(a) Original (b) Original_smask (c) Original_rmask

Figure 13: Visualization Example 10
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Question: what number gate is this? Answer:

Answer: 97

(a) Original (b) Original_smask (c) Original_rmask

Figure 14: Visualization Example 11

Question: where is this bus going? Answer:

Answer: 8mt st vincent

(a) Original (b) Original_smask (c) Original_rmask

Figure 15: Visualization Example 12

Question: What color is the bag? Answer:

Answer: green

(a) Original (b) Original_smask (c) Original_rmask

Figure 16: Visualization Example 13
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Question: What was the GDP per capita in Madagascar in 2020? Answer:

Answer: 501.76

(a) Original (b) Original_smask (c) Original_rmask

Figure 17: Visualization Example 14

Question: What company had a share of 16.5 percent of the world liner fleet? Answer:

Answer: Mediterranean Shg Co

(a) Original (b) Original_smask (c) Original_rmask

Figure 18: Visualization Example 15

Question: What hairstyle does the woman have? Answer:

Answer: ponytail

(a) Original (b) Original_smask (c) Original_rmask

Figure 19: Visualization Example 16
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APPENDIX H. THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we employed LLMs in a limited capacity to support writing and presentation. Specif-
ically, we used an LLM to help with linguistic refinement in the Introduction and Related Work
sections, ensuring clarity and fluency of exposition. In addition, we used LLM assistance for for-
matting tasks in the Method and Experiment sections, such as rendering mathematical formulas into
standard LATEX notation and typesetting tables in the appropriate style. All core research contribu-
tions, including algorithm design, dataset construction, experimental execution, and analysis, were
entirely conducted by the authors without LLM involvement.
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