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ABSTRACT

Recent advances in multimodal language models (MLLMs) have achieved re-
markable progress in vision-language reasoning, especially with the emergence of
“thinking with images,” which integrates explicit visual steps into the reasoning
process. While this paradigm strengthens image-based reasoning, a significant
challenge remains: models may arrive at correct answers by relying on irrele-
vant or spurious regions, driven by prior knowledge or dataset biases. Even when
the answer is correct, flawed reasoning indicates that the model has not truly un-
derstood the image, highlighting the critical importance of reasoning fidelity in
multimodal tasks. To address this issue, we propose DeFacto, a counterfactual
reasoning framework that jointly enforces accurate answering and faithful reason-
ing. A key component of our approach is the design of three complementary
training paradigms: (i) positive, (ii) counterfactual, and (iii) random-masking.
To enable these paradigms, we develop a pipeline that automatically localizes
question-relevant evidence and constructs positive, counterfactual, and random
variants, resulting in a dataset of about 100k images. Building on this framework,
we train multimodal language models with GRPO-based reinforcement learning,
where we design three complementary rewards to guide the model toward accu-
rate answering and evidence-grounded reasoning. Experiments on diverse bench-
marks demonstrate that DeFacto substantially improves both answer accuracy and
reasoning faithfulness, establishing a stronger foundation for interpretable multi-
modal reasoning. The code and datasets will be released upon acceptance.

1 INTRODUCTION

Vision-language models (VLMs)|Alayrac et al.| (2022);Li et al.| (2023a)); |[Zhu et al.|(2023)); Liu et al.
(2023} 20244a); Peng et al.| (2023); Bai et al.| (2023); [Team et al.| (2023); |Chen et al.| (2024c;b) have
achieved remarkable progress in recent years, demonstrating strong capabilities across a wide range
of multimodal tasks such as visual question answering, image captioning, and referring expression
comprehension. By leveraging large-scale pretraining and cross-modal alignment, these models can
generate fluent and semantically relevant outputs grounded in visual context. However, in complex
scenarios that require multi-step reasoning or fine-grained perception, existing models often rely
heavily on implicit language priors, producing plausible yet unfaithful responses that are weakly
grounded in the actual image. Instead of genuinely learning to reason over visual content, these
models often fall back on text-based chain-of-thought patterns, limiting their ability to handle cases
where critical evidence must be directly perceived from the image.

Recent advances in “thinking with images” Microsoft|(2024);|OpenAll (2025) emphasize the integra-
tion of explicit visual steps into the reasoning process to enhance transparency and visual grounding.
Early approaches employ supervised fine-tuning (SFT) |Ouyang et al.[(2022); Touvron et al.| (2023));
Liu et al.| (2023)); |Dettmers et al.|(2023)), where models are trained in a chain-of-thought (CoT)|Shao
et al.| (2024) manner to produce region-aware reasoning traces based on manually annotated visual
steps. To reduce the annotation burden, subsequent works explore reinforcement learning strategies
that allow models to autonomously develop visual interaction behaviors such as region cropping,
attention shifting, or zooming Zheng et al.[(2025)); |Cao et al.|(2025)); Liu et al.| (2025b); Zhang et al.
(2025b). Yet these approaches do not guarantee that the reasoning chains are faithful to the actual vi-
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Figure 1: Qualitative examples of failure cases. Left: Mislocalized Failure (park scene). Right:
Spurious Correctness (road scene).

sual evidence: since the model still has access to the entire image, it may either produce an incorrect
answer by focusing on irrelevant regions or arrive at the correct answer even when the highlighted
regions are unrelated. This issue is clearly illustrated in Fig. [T} where most existing models exhibit
two characteristic error modes: Mislocalized Failure, in which the model selects irrelevant regions
and consequently produces an incorrect answer, and Spurious Correctness, in which the answer
happens to be correct even though the selected regions are unrelated to the reasoning process. In
the park scene (left), GRIT mistakenly attends to the distant background, while Deepeyes zooms
in on a faint and indistinct fallen leaf, both of which fail to capture the evidence and lead to an
incorrect answer. In the road scene (right), GRIT fixates on the ground, and Deepeyes again zooms
in on a helmeted rider, producing a reasoning path that contradicts the very premise of the question.
These cases reveal a deeper problem: current approaches can still succeed superficially even when
their reasoning is disconnected from the actual evidence. However, correct answers alone are not
sufficient—the reasoning process itself must also be correct, since flawed reasoning often leads to
erroneous predictions. Such superficial success leads to poor generalization on out-of-distribution
inputs and undermines trustworthiness in downstream applications that demand evidence-based de-
cisions. What is needed is a training paradigm that enforces both correct evidence selection and
correct answering, ensuring that reasoning trajectories and final predictions are jointly faithful to the
visual input.

Motivated by these failure cases, we introduce DeFacto, a counterfactual reasoning framework that
aligns reasoning trajectories with visual evidence, ensuring predictions are both reliable and inter-
pretable. The core idea is to employ three complementary training forms that jointly constrain the
model’s behavior: (i) positive supervision, (ii) counterfactual abstention, and (iii) random masking
to strengthen evidence-grounded reasoning. In the positive case, the model is given the original
image and trained to predict bounding boxes that cover the essential evidence together with the cor-
rect answer, receiving positive feedback only when both the evidence selection and the answer are
correct. In the counterfactual case, the same question is paired with an image where the evidence
regions R have been masked; since the necessary visual evidence is no longer available, the model
is expected to abstain by outputting a designated token such as “unknown,” while any concrete an-
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swer is penalized. In the random-masking case, irrelevant regions R~ are masked independently
of the question, preventing the model from exploiting superficial correlations between the presence
of masks and abstention behavior. Training is performed with GRPO-based reinforcement learning,
where the reward integrates three components: (i) Answer Correctness Reward, (ii) Format Consis-
tency Reward, and (iii) Region Selection Coherence Reward. Through this design, DeFacto compels
the model to produce reasoning that is logically grounded, answers that are accurate, and predictions
where reasoning and outcomes remain consistent.

In practice, constructing counterfactual samples requires reliably identifying the question-relevant
regions. To this end, we adopt a structured two-stage extraction pipeline. First, a multimodal lan-
guage model (Qwen2.5-VL Bai et al.|(2025)) parses the question and generates a set of key descrip-
tors (e.g., “the red cup,” “the text on the shirt”). Next, candidate regions in the image are obtained
from a region proposal network (RPN)Ren et al.|(2015) and an OCR module|Islam et al.|(2017). The
OCR regions are further matched with textual descriptors to capture evidence critical for text-centric
questions. For visual objects, the descriptors are fed into an open-vocabulary detector (DINO-X |Ren
et al.|(2024))), which provides bounding boxes that serve as positive evidence regions. Finally, the re-
maining proposals from the RPN, after removing matched positives, are treated as irrelevant regions
for counterfactual construction. Using this pipeline, we construct a counterfactual dataset about
100k images, ensuring that positive, counterfactual, and random-masking instances differ only in
the availability of essential evidence while preserving unrelated context. Building on this dataset,
the model is further optimized with GRPO-based reinforcement learning. This training paradigm
enforces consistency between evidence selection and final predictions, ensuring that reasoning traces
remain faithful to visual cues. As illustrated in Fig. [T} our method consistently grounds its reasoning
in the correct regions (e.g., focusing on the three motorcycles on the road and their passengers),
thereby unifying reasoning steps with faithful visual evidence.

Our main contributions are threefold:

(1) We propose a counterfactual "thinking with images” framework that aligns the reasoning process
with essential visual evidence by jointly optimizing for answer correctness and region-level faithful-
ness via reinforcement learning. (2) We construct a new counterfactual dataset about 100k images
using a language-guided algorithm that integrates open-vocabulary detection with targeted masking,
ensuring that only question-relevant regions are removed while irrelevant context is preserved. (3)
We demonstrate, through extensive experiments on diverse benchmarks, that our approach consis-
tently improves both answer accuracy and visual grounding faithfulness over strong baselines.

2 RELATED WORK

Structured Thinking with Images in Vision-Language Models. The concept of ’thinking with
images” was initially highlighted in OpenAl 03 |Achiam et al.| (2023); |OpenAll (2025) and later
explored in works like COGCOM Q1 et al.| (2024) and GRIT |Fan et al.| (2025). Recent datasets
also highlight the importance of evaluating visual reasoning beyond raw perception. For example,
VisCoT |Shao et al,| (2024) provides visual-evidence for vqa, while datasets such as MSTI (Chen
et al.| (2024d) emphasize structured visual understanding across detection, entity grounding, and
answer generation. Existing approaches can be broadly categorized into two classes. The first
category includes GRIT, which combines natural language and bounding boxes via reinforcement
learning; REFOCUS [Fu et al.| (2025), which formulates visual editing as intermediate reasoning
steps; COGCOM |Qi et al| (2024), which models reasoning as visual manipulations such as crop-
ping and OCR; and VisionReasoner Liu et al.| (2025a), which unifies detection, segmentation, and
counting under one framework. The second category emphasizes grounding quality. Fast-and-Slow
Visual Agents [Sun et al.| (2024) model dual-system reasoning. DeepEyes Zheng et al.[(2025)) lever-
ages reinforcement learning to train multimodal chains-of-thought and dynamically invoke zoom-in
tools when visual evidence is ambiguous. MLLMs Know Where to Look [Zhang et al.| (2025a) im-
proves small-object perception by applying inference-time cropping strategies to highlight fine de-
tails. Chain-of-Focus|Zhang et al.|(2025b) further adapts zoom-in operations through reinforcement
learning, enabling multi-scale reasoning across cluttered scenes. Ground-R1 (Cao et al.[(2025) en-
hances faithfulness by introducing explicit reward signals that align reasoning outputs with grounded
evidence. V*|Wu & Xie|(2024) formulates guided visual search as a core cognitive mechanism to
explore high-resolution images efficiently. Visual-RFT [Liu et al.|(2025b) refines grounding via re-
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inforcement fine-tuning. As a result, they often fail to ensure that reasoning trajectories remain
consistent with the visual evidence, leaving open the need for a paradigm that jointly enforces faith-
ful reasoning steps and accurate answers.

Counterfactual Reasoning in Vision-Language Models. Counterfactual reasoning in VLMs can
be categorized into two types: counterfactual data generation and inference-based reasoning. The
first enhances robustness by constructing or augmenting counterfactual samples to reduce bias and
hallucination. For example, Learning Chain of Counterfactual Thought Zhang et al.|(2020) disentan-
gles factual knowledge from reasoning via CoBRa and CoCT datasets; C-VQA [Zhang et al.| (2024b)
and CRIPP-VQA [Patel et al.| (2022) construct benchmarks for counterfactual VQA in static and
video settings, respectively; Counterfactual Vision and Language Learning Abbasnejad et al.|(2020)
and Counterfactual Contrastive Learning Zhang et al. (2024c|) generate counterfactuals through
structural causal models and perturbation strategies, while CounterCurate |[Zhang et al.[(2024a)) im-
proves compositional reasoning by augmenting training data with physically grounded examples
and semantic counterfactuals using generative models. The second type focuses on inference with
mechanisms such as Counterfactual-based Saliency Maps [Wang et al.| (2023)) for contrastive visual
explanation, DiG-IN |Augustin et al.| (2024) for diffusion-guided latent edits, and Counterfactual
VQA Niu et al.[(2021)) for causal effect modeling. However, most existing approaches either treat
counterfactuals as data augmentation without explicitly constraining the reasoning process, or apply
them only at inference for explanation, leaving a gap in methods that can jointly enforce faithful
reasoning steps and correct answers during training.

3 METHOD

In this section, we present the overall framework of DEFACTO, our counterfactual “thinking with
images” approach. This section is organized into three parts: (1) the overall architecture and in-
ference pipeline (Section [3.1)); (2) the construction of counterfactual datasets via region masking
and open-vocabulary filtering (Section [3.2); and (3) the reinforcement learning strategy with a tai-
lored reward design that guides the model toward accurate answering, faithful reasoning, and their
consistency (Section [3.3).

3.1 OVERALL FRAMEWORK

DEFACTO is a vision-language reasoning framework that enforces region-level faithfulness in mul-
timodal question answering. It is designed to teach models not only where to look in the image but
also when to abstain if the necessary evidence is absent. By combining structured prompting with
counterfactual supervision, DEFACTO aligns the reasoning process with visual evidence rather than
spurious correlations.

As illustrated in Figure [2] given a question and an image, the model is prompted to produce outputs
in a structured format consisting of three fields. The <bbox> field contains one or more bounding
boxes encoded as JSON objects of the form {Position : [z1, y1, 22, y2], Confidence : p}, the <think>
field records a short rationale, and the <answer> field provides the final prediction. Multiple boxes
can be returned when multiple evidence regions are required. If no valid evidence exists, the model
outputs unknown in both the <bbox> and <answer> fields. This structured format ensures that every
reasoning trajectory is explicitly tied to visual evidence through bounding boxes and aligned with the
model’s final answer. Training is based on three complementary supervision forms. In the positive
case, evidence-bearing regions remain visible and the model is rewarded for selecting them and
producing the correct answer. In the counterfactual case, these regions are masked, and the model
is expected to abstain by outputting unknown. In the random-masking case, irrelevant regions are
occluded to prevent shortcut learning from superficial mask patterns. Together, these three forms
establish a consistent learning signal that requires both the reasoning path and the answer to be
faithful to the underlying visual support.

3.2 COUNTERFACTUAL DATASET CONSTRUCTION

Positive, Counterfactual, and Random Instances. Let R = {ry,r2,...,7,} denote the set of
candidate regions in an image I, obtained from a region proposal network (RPN) Ren et al.| (2015)
together with OCR to cover both object-level and text-bearing regions. Among them, R™ C R
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Figure 2: An overview of our counterfactual framework with three inputs: positive (full evidence),
counterfactual (masked evidence), and random (masked irrelevant regions), guiding the model to
answer correctly or abstain with “unknown.”

represents the evidence regions that are critical to answering the question ¢, while R~ = R\ R
denotes the remaining irrelevant regions. Based on these definitions, we construct three complemen-
tary training instances:

Ipos = (I,Q,RJr,y) Icf = (I\R*—,qaRiaycf) Irand = (I\R_aQ7R+7y), (1)

where y is the ground-truth answer, I, is the positive instance with evidence regions available,
I+ is the counterfactual instance where evidence regions are masked and the abstention label y.¢
(e.g., “Unknown”) is required, and I;,,q is the random-masking instance where irrelevant regions
are occluded to prevent shortcut learning.

Construction Process. To automatically construct I, Icf, and I, without manual annotations,
we follow three steps:

(1) Descriptor extraction. Given an image I and a question ¢, we employ a MLLM (Qwen2.5-VL Bai|
(2025)) to extract a set of key descriptors:

MLLM(I,(]) = {dl,dg,...,dm}, (2)

where each d; is a textual phrase (e.g., an object, attribute, or relation) that captures the visual
concepts in I explicitly mentioned or implied by ¢. As illustrated in Fig. [2] (“Automate Evidence
Masking”), for the question “What does his shirt say?”, the MLLM decomposes the query into
descriptors such as “a man” and “man’s shirt” as the critical evidence.

(2) Evidence localization. Let R = {ry,...,r,} be the set of candidate image regions. We em-

ploy the open-vocabulary detector DINO-X (2024), which computes grounding scores
OVD(r, k) for each r € R and k € K(q). Based on these scores, the regions are partitioned into
evidence and irrelevant sets:

Rt ={r € R| max OVD(r,k) > 7}, R™=R\R", 3)
keK(q)

where 7 is a confidence threshold. In the street example, R corresponds to bounding boxes cover-
ing the signboard, while R~ contains all other regions.



Under review as a conference paper at ICLR 2026

(3) Instance generation. Once R+ and R~ are obtained, the positive, counterfactual, and random-
masking instances are directly constructed as defined in Eq.

For counterfactual dataset construction, we leverage a broad collection of vi-

sual  question answering and document understanding benchmarks, including
VQAV2 Goyal et al.[(2017), OKVQA Marino et al.| (2019), GQA |[Hudson & Manning| (2019),
ScienceQA |Lu et al.|(2022), VizWiz |Gurari et al.|(2018)), TextVQA |Singh et al.[(2019),

OCRVQA Mishra et al.| (2019), AI2D |[Kembhavi et al.|(2016), DocVQA Mathew et al.|(2021)),
ChartQA Masry et al.|(2022), InfoVQA Mathew et al.|(2022), DeepForm Svetlichnaya| (2020),
Kleister KLC |Stanistawek et al.[(2021), WikiTableQuestions (WTQ)[Pasupat & Liang| (2015)),
TabFact|Chen et al.|(2019), and VisualMRC Tanaka et al[(2021)). This diverse coverage ensures
that counterfactual supervision is tested across natural images, scientific diagrams, documents,
charts, tables, and multi-source reasoning tasks. A detailed visualization of the dataset distribution
is provided in Appendix [B] Representative visualizations of the constructed dataset are provided in

Appendix [C] (Figures [5H20).

3.3 REINFORCEMENT LEARNING TRAINING

Sequential Reasoning Formulation. We formulate the reasoning process of DEFACTO as a
Markov Decision Process (MDP), where the model interacts with the question and image in a se-
quential manner. At each step, the state s, encodes the multimodal context, including the input
question, the image representation, and the history of previously predicted regions. The policy g
then outputs either a new bounding box that localizes question-relevant evidence or a special STOP
token to terminate the process.

Formally, the state at step ¢ is defined as

St:{Q7fv(I)7B<t}7 (4)

where ¢ is the question, f,, (I) the image representation, and B the set of bounding boxes predicted
before step ¢. The rollout continues until STOP is emitted or the maximum step limit is reached, and
the final answer is generated based on the accumulated trajectory.

Reward Design. To make training effective, we design three reward components. (1) Answer
Correctness Reward: encourages correct answers in positive/random cases, rewards “Unknown” in
counterfactual cases, and penalizes unsupported guesses. (2) Format Consistency Reward: ensures
outputs strictly follow the required schema. (3) Region Selection Coherence Reward: promotes
overlap with evidence regions R and penalizes overlap with irrelevant regions R ~, with no reward
in counterfactual cases.

The overall training signal combines these components into the composite reward in Eq. [5]
R = Rans + )\1 Rfmt + /\2 Rsela (5)
1. Answer Correctness Reward. To enforce correct behavior across the three training forms, we
define
acc(9,y*) = yunk unk(y) , t € {pos,rand},
————

Rans _ A penalize “Unknown” A . . (6)
Punk UnK(9) = Yauess [L —unk(§)] — Yeorr G =y"], t=cf,

reward “Unknown” penalize guess penalize even if correct

where acc(g,y*) € {0, 1} indicates answer correctness, and unk(f) € {0, 1} indicates an “Unknown”
response. Here vy« > 0 penalizes answering “Unknown” in positive or random cases, pyyx > 0 re-
wards “Unknown” in counterfactual cases, Yguess > 0 penalizes any concrete guess in counterfactual
cases, and Yeorr > “Yguess applies an even stronger penalty when the model outputs the correct answer
y* without access to evidence.

2. Format Consistency Reward. We encourage well-formed outputs and valid region indices
selected from the prompt:

)

R _ «, if output follows the required schema and indices are valid,
fmt 0, otherwise.
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Here, the “required schema” refers to the presence of <think>...</think> for the reasoning process,
<bbox>...</bbox> for the predicted bounding boxes, and <answer>...</answer> for the final answer.
In particular, the <bbox> field must contain well-formed bounding box coordinates in the format [x1,
y1, x2, y2], ensuring that the model explicitly grounds its predictions on localized visual regions.

3. Region Selection Coherence Reward. Let B = {bbox', ..., bbox"} be the set of bounding
boxes predicted before STOP. We define the overlap scores with evidence regions R and irrelevant
regions R~ as
¢t (b) = max IoU(b,7), ¢ (b) = max IoU(b, 7).
reR+ reR~

The reward is then defined as
Bros 171 %ben @1 (0) — Preg 1512 pep @ (D), t € {pos,rand}, B # &,
Ry =4 — 70, t € {pos,rand}, B =@, (8)
0, t = cf.

with /Bpos» Bnega Yo > 0.

The full training dynamics of each reward component, along with the corresponding hyperparameter
settings, are provided in the Appendix (see Table[J).

Training Strategy. Unlike prior works that require a supervised warm-up stage, we directly fine-
tune Qwen2.5-VL with reinforcement learning, using Group Relative Policy Optimization (GRPO)
and the composite reward in Eq. [6]and Eq.[8] GRPO compares multiple rollouts within a group and
rewards each according to its improvement over the group average, eliminating the need for a value
network and reducing variance. The objective is defined as:

(") ; < ;
£x(0) = Ei| o (RED) = 530 RED)) | ©)

T o1 (T(Z))

where we set the group size M = 4 to balance stability and exploration during training.

4 EXPERIMENT

4.1 SETUP

Baselines. We compare DEFACTO against a broad set of recent approaches that explicitly incor-
porate visual reasoning into multimodal language models. Specifically, we include the QWEN2.5-
VL [Bai et al.| (2025), a strong pretrained backbone widely used for visual understanding; VI-
CRoOP [Zhang et al.| (2025a), which improves small-object perception via inference-time cropping;
GRIT |Fan et al.|(2025)), which integrates grounded reasoning traces through reinforcement learning;
DEEPEYES |Zheng et al.|(2025), which incentivizes models to call visual tools during reasoning; and
VISUAL-SRI1 [Li et al.| (2025b), which enhances step-by-step visual reasoning with self-refinement.
This selection covers both state-of-the-art backbones and recent “thinking with images” algorithms
for visual reasoning.

Benchmarks. Our evaluation spans a diverse collection of visual reasoning benchmarks. For
general-purpose VQA, we use OKVQA |Marino et al| (2019), VQAv2 |Goyal et al.| (2017),
GQA Hudson & Manning| (2019), VizWiz |Gurari et al.| (2018)), ScienceQA |Lu et al.| (2022), and
VSR [Liu et al.| (2023)). For document- and structure-centric evaluation, we adopt DocVQA [Mathew
et al.| (2021), ChartQA Masry et al.|(2022)), InfoVQA Mathew et al.| (2022)), DeepForm Svetlichnaya
(2020), Kleister KL.C |Stanistawek et al.| (2021), and WikiTableQuestions (WTQ) Pasupat & Liang
(2015). To test text-intensive reasoning, we include TextVQA [Singh et al| (2019), AI2D |[Kemb-
havi et al.|(2016), and STVQA [Biten et al.| (2019)). We further evaluate on additional benchmarks,
including OCRBench |[Liu et al.| (2024c), MMstar |Chen et al.| (2024a), MMMU |Yue et al.| (2024),
MMB ; Liu et al.|(2024b)), and POPE Li et al.| (2023b)), with detailed results reported in Appendix E
(Table [6). In addition, to more rigorously assess reasoning faithfulness, we constructed a manu-
ally annotated test set of 1,000 images, where annotators labeled the regions most relevant to each
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Table 1: Results on General VQA Benchmarks (accuracy, %). A indicates improvements of DeFacto
over Qwen2.5-VL 7B.

Model Backbone VQAv2 OKVQA GQA SciQA VizWiz VSR
Qwen2.5-VL Qwen2.5-VL-7B 57.3 54.5 41.3 85.3 37.7 2.2

ViCrop LLaVA-1.5 (Vicuna-7B) 76.5 60.7 61.0 88.2 64.4 654
GRIT Qwen2.5-VL-3B 71.5 554 59.3 60.5 46.3 61.0
DeepEyes Qwen2.5-VL-7B - 46.9 473 59.2 25.1 27.3
Visual-SR1 Qwen2.5-VL-7B 71.5 45.1 58.5 88.6 32.0 62.3
DeFacto (ours) Qwen2.5-VL-7B 79.7 68.0 70.1 88.2 64.5 70.3
A (vs Qwen2.5-VL 7B) - +22.4 +13.5 +28.8 +2.9 +26.8  +68.1

Table 2: Results on Document VQA and Scene Text-centric Benchmarks (accuracy, %). A indicates
improvements of DeFacto over Qwen2.5-VL 7B.

Model \ Document VQA \ Scene Text-centric

| DocVQA  ChariQA  InfoVQA  DeepForm KLC WTQ | STVQA TextVQA  AI2D
Qwen2.5-VL 84.4 77.8 66.0 30.3 35.9 63.9 64.9 71.0 71.2
GRIT 76.4 68.7 49.1 15.8 19.9 35.7 71.3 734 77.2
ViCrop 33.7 52.5 54.9 21.9 334 54.3 74.0 63.4 69.2
DeepEyes 66.8 444 423 - 33.1 54.6 489 39.9 38.5
Visual-SR1 82.3 73.8 75.1 524 39.6 72.2 60.2 69.2 71.5
DeFacto (ours) 85.8 82.4 76.9 51.8 37.6 74.5 74.1 73.4 79.0
A (vs Qwen2.5-VL 7B) +1.4 +4.6 +10.9 +21.5 +1.7  +10.6 +9.2 +2.4 +7.8

question. The set contains 60% general VQA samples and 40% text-centric VQA samples. This
auxiliary dataset allows us to directly measure whether models ground their reasoning on the correct
evidence rather than relying on spurious priors.

Training Configuration. We train all models with the AdamW optimizer using a learning rate of
1x1075, (B, B2) = (0.9,0.999), and € = 1 x 108, Training is performed with a global batch size
of 8 and micro-batch size of 1 per GPU, combined with gradient accumulation steps of 2. Gradients
are clipped to a maximum norm of 1.0 to ensure stability. We enable BF16 precision training. All
experiments are conducted on 8§ NVIDIA H100 GPUs with 80GB memory each, and models are
trained for one epoch over the collected dataset.

4.2 MAIN RESULTS

Results on General VQA Benchmarks.  Table [1| compares DEFACTO with recent visual rea-
soning and thinking with images baselines on six widely used benchmarks. DEFACTO achieves
state-of-the-art performance across the board, outperforming the strongest competing method, Vi-
Crop, by clear margins. In particular, it improves over ViCrop by +3.2% on VQAv2, +7.3% on
OKVQA, and +9.1% on GQA, demonstrating stronger compositional and commonsense reasoning.
On perception-heavy datasets, DEFACTO also shows advantages: it slightly surpasses Visual-SR1
on SciQA while matching ViCrop on VizWiz, and it exceeds all baselines on VSR by +4.9%, con-
firming its robustness under visually complex or noisy conditions. These consistent gains over
the best-performing alternatives highlight the effectiveness of counterfactual training in enforcing
evidence-grounded reasoning.

Performance on Document and Text-centric Benchmarks.  As shown in Table 2] DEFACTO
also leads on document-style and scene text-centric benchmarks. It surpasses the strongest alter-
natives by notable margins, including +1.4% over Qwen2.5-VL on DocVQA, +4.6% on ChartQA,
and +1.8% over Visual-SR1 on InfoVQA. On DeepForm, although Visual-SR1 achieves the best
score, DEFACTO remains highly competitive with a close result of 51.8%. Similarly, while GRIT
ties for the highest score on TextVQA, DEFACTO delivers the best overall performance across all
text-centric tasks, including a +13.9% gain over Visual-SR1 on STVQA and a +1.8% improvement
over GRIT on AI2D. These results confirm that DEFACTO not only consistently outperforms the
strongest existing methods but also maintains competitive accuracy in the few cases where another
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baseline achieves the top result, establishing a new state of the art in document and OCR-centric
reasoning tasks.

Table 3: Comparison of reasoning faithfulness across models on the 1k faithfulness validation set.

Model mAP AP50 AP75  Accuracy (%)
GRIT 0.0 0.0 0.0 73.7
DeepEyes 0.0 22 0.9 44.0
Qwen2.5-VL + GRPO 204  28.8 18.9 65.0
DeFacto (ours) 30.6 36.1 24.8 79.4

Faithful reasoning evaluation. Table |3| complements the qualitative examples in Fig. [I| with a
large-scale quantitative evaluation on our 1k-image human-annotated validation set. The results re-
veal several consistent patterns. GRIT achieves relatively high answer accuracy, but its grounding
metrics remain nearly zero, suggesting that it has learned to rely on shortcuts rather than visually
grounded reasoning. Such shortcut behaviors allow the model to answer correctly without identify-
ing the relevant evidence, which is undesirable for faithful multimodal reasoning. DeepEyes shows
a different failure pattern: while it learns to invoke visual tools more actively, it does not reliably
learn where to focus. As a result, its predicted regions often diverge from the true evidence, leading
to low IoU-based AP despite occasional correct answers. GRPO improves over these baselines by
producing more stable predictions, but its evidence regions are still coarse and only partially aligned
with the annotated visual cues. In contrast, DeFacto achieves the highest grounding fidelity across
all metrics. The counterfactual reward and region-level constraints guide the model toward consis-
tently selecting the evidence required for its predicted answer, resulting in reasoning trajectories that
better reflect the underlying visual content.

4.3 ABLATION STUDY

We compare four training settings on Qwen2.5-VL 7B. (i) SFT (no CF): trained only on original
data. (ii) SFT (CF alignment): trained on original + counterfactual data, but counterfactuals are
supervised only with the “Unknown” label, together with random-masking. (iii) GRPO (no CF re-
ward): “No CF reward” means that GRPO training that uses only the first term of Eq. [f] (answer cor-
rectness) and the format reward, without the counterfactual answer constraint or the region-selection
coherence term. (iv) DeFacto (full): our complete framework with all three rewards.

Table 4: Ablation results on representative benchmarks (accuracy, %). A indicates improvements of
DeFacto over baselines.

Model Variant VQAv2 OKVQA SciQA VSR DocVQA TextVQA
Qwen2.5-VL (SFT, no CF) 61.2 42.0 82.7 54.5 51.9 56.0
Qwen2.5-VL (SFT, CF alignment) 66.5 55.7 84.7 53.7 84.3 73.0
Qwen2.5-VL (GRPO, no CF reward) 70.4 56.9 85.9 58.4 854 72.8
DeFacto (CF reward + GRPO) 79.7 68.0 88.2 70.3 85.8 73.4
A (vs GRPO no CF reward) +9.3 +11.1 +2.3 +11.9 +0.4 +0.6

Effect of Counterfactual Supervision. The first two rows show that introducing counterfactual
data with abstention alignment improves over standard SFT, with clear gains such as +5.3% on
VQAV2 and +13.7% on OKVQA. This suggests that counterfactual supervision effectively reduces
spurious correlations and strengthens evidence alignment.

Effect of Reinforcement Learning. GRPO without counterfactual rewards further boosts reason-
ing, e.g., +4.7% on VSR over SFT no CF. DeFacto achieves the best results overall, with additional
gains of +9.3% on VQAv2, +11.1% on OKVQA, and +11.9% on VSR compared to GRPO. Even
on DocVQA and TextVQA, improvements (+0.4%, +0.6%) remain consistent, confirming the im-
portance of counterfactual rewards for robust, region-faithful reasoning.
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Faithfulness Evaluation. In the experiment, we compared different training variants under the
same setup, using the same data, backbone, and hyperparameters. The results, shown in Table [3]
indicate that DeFacto outperforms all other variants in terms of mAP, AP50, AP75, and accuracy,
demonstrating that our approach effectively combines correct evidence selection and accurate an-
swering.

Table 5: Performance of Different Training Variants on the 1k-annotated Validation Set

Model Variant mAP AP50 AP75  Accuracy (%)
Qwen2.5-VL (Base) 2.3 1.2 1.5 55.1
Qwen2.5-VL + SFT (no CF) 15.7 13.9 12.8 61.4
Qwen2.5-VL + SFT (CF alignment) 18.9 16.4 15.7 63.8
Qwen2.5-VL + GRPO (no CF reward) 204  28.8 18.9 65.0
DeFacto (ours) 30.6 36.1 24.8 79.4

5 VISUALIZATION AND ERROR ANALYSIS

We first visualize and analyze several failure cases to better understand the limitations of DeFacto.
Our errors mainly fall into four categories: (1) semantic ambiguity in spatial expressions (Figure[3j),
such as interpreting “on top of” too literally; (2) unclear or subjective attribute definitions (Figure
[Bb). such as the notion of “large™; (3) ambiguous comparative reasoning (Figure k), where concepts
like “higher than” admit multiple valid interpretations; and (4) confusion in fine-grained human
action recognition (Figure 3{).

a) What is located on top of the shoe?  b) Does the black fireplace look large?
Ours (Defacto): cat Ours (Defacto): yes
GT: shoe lace GT: no

" = =, \\
What is the person to the left of the catcher doing?
Ours (Defacto): standing

GT: looking up

d)

¢)  Ours (Defacto): pipe
GT: ceiling

Figure 3: Four representative failure cases illustrating different types of semantic and perceptual
ambiguities.

Beyond failure cases, we further visualize comparisons between DeFacto and standard GRPO to
assess the quality of their reasoning paths. As shown in Appendix [D] (Figures 2TH28), DeFacto
consistently selects more accurate and semantically aligned evidence regions.
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ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or applications with foreseeable
ethical risks. All experiments are conducted on publicly available benchmarks or our automati-
cally constructed counterfactual dataset, which contains no personally identifiable information. We
therefore believe this research poses no ethical concerns.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility of our results. The full training pipeline, in-
cluding dataset construction, reward design, and reinforcement learning setup, is described in detail
in the main paper and appendix. Our implementation is based on the open-source open_r1|OpenAl
(2025) repository, which we modified to incorporate our counterfactual dataset, reward functions,
and GRPO training. The source code is provided in the supplementary materials to facilitate repro-
duction. Due to anonymity requirements and the large size of the dataset, we are unable to release
the full dataset at this stage; however, it will be made publicly available upon acceptance. In the
meantime, partial dataset visualizations are included in Appendix H to illustrate the construction
process and provide qualitative insights.
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APPENDIX

A ADDITIONAL RESULTS

Table [6] provides an extended comparison of DeFacto with both closed-source and publicly avail-
able vision-language models on additional benchmarks, including OCRBench, MMstar, MMMU,
MMB ;, and POPE. As shown, DeFacto achieves the best score on OCRBench (871) and com-
petitive performance across the remaining benchmarks. In particular, our method surpasses most
open-source models by a clear margin and remains close to strong closed-source systems such as
GPT-40. These results further demonstrate that DeFacto effectively balances answer accuracy and
reasoning faithfulness across diverse evaluation settings.

In addition, we also evaluate DeFacto on the MSTI 2.0 dataset (Chen et al.| (2024d), which jointly
assesses detection, entity recognition, and answer generation. As shown in Table[7] DeFacto consis-
tently improves over both the zero-shot Qwen2.5-VL model and the GRPO-CoT variant across EM,
F1, and AP metrics. This indicates that DeFacto’s counterfactual supervision also benefits structured
multimodal tasks requiring fine-grained grounding.

Table 6: Comparison with SOTA models on Various Benchmarks.

Model OCRB MMstar MMMU MMB;:: POPE
Closed-Source Models

GPT-40-0513 [Microsoft|(2024) 736 63.9 69.2 82.2 -
GPT-4V [Team 656 56.0 61.7 79.8 -
Gemini-1.5-Pro(Team et al.|(2024) 754 - 62.2 - -
Publicly Available Models

LLaVa-OneVision-0.5B |Li et al.|(2024) 565 37.7 314 50.3 -
InternVL2-1B [Team|(2024) 754 45.7 36.7 59.7 -
Eagle2-1B|Li et al.[(2025a) 767 48.5 38.8 63.0 -
InternVL2-2B |Team|(2024) 784 50.1 36.3 69.6 -
Eagle2-2B|Li et al.[(2025a) 818 56.4 43.1 74.9 -
InternVL2-8B |Team|(2024) 794 60.9 51.8 79.4 -
MiniCPM-V2.6 |Hu et al.[(2024) 852 57.5 49.8 78.0 -
LLaVA-One-Vision-7B [Li et al.| (2024) 622 61.7 48.8 80.9 -
InternVL2-26B [Team|(2024) 825 61.0 50.7 81.2 -
LLaMa-3.2-90B-Vision |Grattafiori et al.| (2024) 783 55.3 60.3 77.3 -
HyViLMZhu et al.|(2024) 596 - 41.8 76.6 -
Eagle2-9B|Li et al.| (2025a)) 868 62.6 56.1 80.6 -
Thinking with Images

GRIT [Fan et al.[(2025) 322 36.3 17.1 9.7 85.7
ViCrop|Zhang et al.|(2025a) 233 33.1 26.1 51.7 87.3
DeepEyes [Zheng et al.[(2025) 636 43.6 441 29.4 87.7
Visual-SR1 |Li et al.| (2025b) 449 62.8 57.2 77.4 86.0
Chain-of-focus |Zhang et al.| (2025b) 632 58.1 46.1 75.3 88.4
Pixel Reasoner|Su et al.| (2025) 597 62.9 52.5 78.5 87.8
DeFacto-7B (ours) 871 63.2 56.6 81.2 88.6

Table 7: Comparison of Qwen2.5-VL variants and DeFacto on the MSTI2.0 dataset.

Dev Test
EM FlI AP EM Fl1 AP

Qwen2.5-VL (Zero-shot) 222 1.1 12 186 26 0.7
Qwen2.5-VL (GRPO-CoT) 243 14 33 197 3.1 1.2
DeFacto (ours) 284 1.6 41 231 45 25
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B DATASET DISTRIBUTION VISUALIZATION

The full distribution of the 100k training samples is illustrated in Figure @ The dataset is divided
into three major groups: general VQA (47.67%), scene text-centric VQA (22.05%), and document-
oriented VQA (30.28%).

General VQA primarily corresponds to natural-image domains such as everyday scenes and ob-
jects, providing perception-heavy signals. Scene text-centric VQA consists largely of OCR-focused
questions in real-world contexts, capturing text in cluttered environments. Document-oriented VQA
covers structured layouts including documents, charts, tables, and forms, emphasizing fine-grained
text extraction and layout reasoning. This mixture ensures broad coverage across both natural-image
and document-like domains. By preventing dominance from any single modality and exposing the
model to heterogeneous visual structures, the dataset encourages stronger domain generalization
and reduces reliance on narrow visual priors. Such diversity is particularly important for improving
robustness in downstream tasks that span multiple visual domains.

General VQA Scene Text-centric VQA Doc-oriented VQA
VizWiz TextVQA AI2D VisualMRC
ScienceQA
DocVQA
VQav2 6.0% 11.0% 7.8% 5.0% TabFact
7%
30.0% 27.9% 21.5%
6.6%
5.7% wTQ
52.6% 19.9% L %w
OKVQA 81.2% 11.1%
\ KLC
GQA ChartQA
DeepForm
OCRVQA InfoVQA
total samples: 47674 total samples: 22047 total samples: 30279

Figure 4: VQA Data Distribution across different categories: General VQA, Scene-text VQA, and
Document-oriented VQA.

C VISUALIZATION OF COUNTERFACTUAL DATASET

In this section, we provide visualizations of the constructed counterfactual dataset. Each sample
consists of three views:

(a) Original: the original unmodified image.

(b) Original_smask: the image with task-relevant (key) regions masked out.

(c) Original_rmask: the image with task-irrelevant regions masked out.

Figures 5H20| show representative examples from the dataset.
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Question: What type of boat is this? Answer:

Answer: barge

(a) Original (b) Original_smask (c) Original_rmask

Figure 5: Visualization Example 1

Question: What is the red line represents? Answer:

Answer: Share of women who prefer a male boss

(a) Original (b) Original_smask (c) Original_rmask
ort pre amale boss, United Sates 1575 [ o i a male boss, United Sates, 1975 [ ple who report pr ]
_ — - )
D e -
~ - ~
-
-
L] - - . -
Figure 6: Visualization Example 2
Question: Which kind of food is to the left of the fork? Answer:
Answer: salad
(a) Original (b) Original_smask (c) Original_rmask

Figure 7: Visualization Example 3
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Question: What is the water in front of? Answer:

Answer: trees

(a) Original (b) Original_smask (c) Original_rmask

Figure 8: Visualization Example 4

Question: What is the frame made of? Answer:

Answer: wood

(a) Original (b) Original_smask (c) Original_rmask

Figure 9: Visualization Example 5

Question: Is the truck parked straight on a driveway? Answer:

Answer: no

(a) Original (b) Original_smask (c) Original_rmask

A

Figure 10: Visualization Example 6
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1080

1081

1082 Question: Which kind of animal is standing on the hay? Answer:
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095 Figure 11: Visualization Example 7
1096

1097

1098

1099

Answer: cow

(a) Original (b) Original_smask (c) Original_rmask

-

g B

I
I

1100 Question: What is the total direct enterprise investment of Ireland (in euros) in start-ups in 2015? Answer:
1101
1102
1103
1104
1105 (a) Original (b) Original_smask (c) Original_rmask

1106

Answer: 31m

Bocord number o g poteri start-ups
o v

s 1,556 €31Im

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

1119
1120 Answer: italica

Figure 12: Visualization Example 8

Question: what is the name of the wine? Answer:

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132 Figure 13: Visualization Example 9

1133

(a) Original (b) Original_smask (c) Original_rmask

21



Under review as a conference paper at ICLR 2026

Question: Who is wearing a vest? Answer:

Answer: woman

(a) Original (b) Original_smask (c) Original_rmask

) V(‘u 4us) §
] i‘é‘v%
=iy

Figure 14: Visualization Example 10

Question: what number gate is this? Answer:

Answer: 97

(a) Original (b) Original_smask (c) Original_rmask

Figure 15: Visualization Example 11

Question: where is this bus going? Answer:

Answer: 8mt st vincent

(a) Original (b) Original_smask (c) Original_rmask

e ros

Figure 16: Visualization Example 12
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Question: What color is the bag? Answer:

Answer: green

(a) Original (b) Original_smask (c) Original_rmask

o

Figure 17: Visualization Example 13

Question: What was the GDP per capita in Madagascar in 2020? Answer:

Answer: 501.76

(a) Original (b) Original_smask (c) Original_rmask

Figure 18: Visualization Example 14

Question: What company had a share of 16.5 percent of the world liner fleet? Answer:

Answer: Mediterranean Shg Co

(a) Original (b) Original_smask (c) Original_rmask
= = —
—— e I—
— [ - —

— — — -

— —- —

-~ -~ -

-~ -~ —

m- m- m-

= - —

= = -l

= = —

= = =

R = — -
—

Figure 19: Visualization Example 15
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Question: What hairstyle does the woman have? Answer:

Answer: ponytail

(a) Original (b) Original_smask (c) Original_rmask

Figure 20: Visualization Example 16

D VISUALIZATION EXAMPLES

Question: What'’s around the picture? . .
Ty — Defacto: the frame “ Grpo: flowers x

Figure 21: Visualization examples comparing DeFACTO and standard GRPO (Example 1)

Question: What is the device to the
right of the keyboard ? Defacto: a monitor V
GT: computer monitor

Figure 22: Visualization examples comparing DeFACTO and standard GRPO (Example 2)
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Question: What are the pieces of

furniture that are mounted on the
beige wall? Defacto: shelves v Grpo: desks x

GT: shelves

Figure 23: Visualization examples comparing DeFACTO and standard GRPO (Example 3)

Question: What contains cups? o o
GT: cupboard Defacto: cabinet v Grpo: kitchen x

Figure 24: Visualization examples comparing DeFACTO and standard GRPO (Example 4)

Question: What animal is standing on Defacto: There is no animal in the .
the grass? image Grpo: bird x
GT: None ge- V

Figure 25: Visualization examples comparing DeFACTO and standard GRPO (Example 5)
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Question: Is the male person to the

right of a cow? Defacto: no animal. v Grpo: yes x
GT: no

Figure 26: Visualization examples comparing DeFACTO and standard GRPO (Example 6)

Question: What kind of fruit is it? )
GT: apples Defacto: apple v

Figure 27: Visualization examples comparing DeFACTO and standard GRPO (Example 7)

Question: What ’s located on top of

the wall? Defacto: sign. v Grpo: motorcycle. x
GT: sign

Figure 28: Visualization examples comparing DeFACTO and standard GRPO (Example 8)
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E SYSTEM PROMPT EXAMPLE

System Prompt

Please answer my question based on the image I have provided. Identify the region in the
image that is most relevant to the question and provide bounding box coordinates.

Output requirements:

1. The bounding boxes must be wrapped in <bbox> ... </bbox> tags.

2. The thinking process must be wrapped in <think> ... </think> tags.

3. The final answer must be wrapped in <answer> ... </answer> tags.

Format of the response (must strictly follow this structure): <bbox>[’Position’: [x1, y1,
x2, y2], ’Confidence’: number] </bbox> <think> ... </think> <answer>...</answer>

The current question is:

F TRAINING CONFIGURATION DETAILS

Table 8] summarizes the key hyperparameters used in our experiments.

Table 8: Training configuration.

Parameter Value
Optimizer AdamW
Learning rate 1x1076
Adam betas (0.9, 0.999)
Adam € 1x1078
Weight decay 0.0
Precision BF16 (FP16 disabled)
Batch size (global) 8

Micro batch size / GPU 1

Gradient accumulation steps 2

Gradient clipping 1.0

ZeRO optimization
Overlap communication

Stage 3 with CPU offloading
Enabled

Pinned memory Enabled

Steps per print inf

Wall clock breakdown False

Hardware 8 x NVIDIA H100 (80GB)
Epochs 1

G PROMPT FOR EVALUATION

During evaluation, we employed Qwen3 as the judge model to score the generated answers. The
following prompt was used to guide the evaluation process:

Evaluation Prompt

"prompt”: "Human: You are responsible for proofreading the answers, you need to give
a score to the model’s answer by referring to the standard answer, based on the given
question. The full score is 1 point and the minimum score is @ points. Please output the
score in the format <score>: The evaluation criteria require that the closer the model’s
answer is to the standard answer, the higher the score. Note that the standard answer may
be a list containing multiple possible correct answers.”

H REWARD HYPERPARAMETERS

Table 0] reports the hyperparameter settings used in our reward design (Eq.[3). These values were
tuned to balance the contributions of the three reward components: answer correctness (R,ys), format
consistency (Rm), and region selection coherence (Rse)). The settings reflect the following intuition:
Yeorr 18 set larger than vy to penalize counterfactual “lucky guesses” more severely, pynx rewards
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correct abstentions in counterfactual cases, and 3. is emphasized to encourage stronger alignment
with evidence regions in positive/random cases. Together with the weighting (A1, o).

Table 9: Reward hyperparameter settings for the composite reward in Eq.

Component Parameter Value
“Yunk 0.2
Punk 1.0
Answer Correctness (R,,s) Yeuess 0.8
,YCOI‘I’ ]- . 0
Format Consistency (Rmt) a 1.0
Boos 1.0
Region Selection (Ry) Bree 0.6
Y& 05
Composite Reward (A1, \2) (0.3, 0.5)

I LIMITATIONS

While DeFacto demonstrates consistent improvements in answer accuracy and reasoning faithful-
ness, there are a few limitations to note. First, our current implementation relies on publicly available
detectors (e.g., RPN, OCR, and open-vocabulary models) for region proposal, which may introduce
occasional errors or inefficiencies; however, this can be alleviated as stronger detectors become
available. Second, our counterfactual dataset consists about 100k images, which is sufficient for
controlled experiments but still modest compared to large-scale pretraining corpora. Lastly, our
framework has so far been evaluated on static images, leaving the extension to videos and temporal
reasoning as an open direction for future work.

J BROADER IMPACT

Our work promotes safer and more interpretable multimodal reasoning by ensuring that models align
their predictions with visual evidence. Beyond algorithmic contributions, we release a large-scale
counterfactual dataset of about 100k images, which we believe will be a valuable resource for the
community to study faithful reasoning.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we employed LLMs in a limited capacity to support writing and presentation. Specif-
ically, we used an LLM to help with linguistic refinement in the Introduction and Related Work
sections, ensuring clarity and fluency of exposition. In addition, we used LLM assistance for for-
matting tasks in the Method and Experiment sections, such as rendering mathematical formulas into
standard IATEX notation and typesetting tables in the appropriate style. All core research contribu-
tions, including algorithm design, dataset construction, experimental execution, and analysis, were
entirely conducted by the authors without LLM involvement.

L CONCLUSION

In this work, we introduced DeFacto, the first vision-language reasoning framework explicitly
grounded in counterfactual supervision, designed to enforce region-faithful reasoning and abstention
behavior when critical evidence is missing. To enable this counterfactual reasoning paradigm, we
proposed an automatic pipeline for constructing counterfactual datasets, which leverages language
model parsing, open-vocabulary detection, and OCR to mask question-relevant regions without re-
quiring manual annotations. Using this pipeline, we built a counterfactual dataset about 100k im-
ages to support training and evaluation. Extensive experiments across multiple diverse benchmarks
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demonstrate that DeFacto consistently improves both answer accuracy and visual grounding faith-
fulness over strong baselines. Our ablation studies further confirm the necessity of counterfactual
training and region-level reward design in enhancing interpretability and robustness. We believe
these findings open new directions for integrating counterfactual supervision into multimodal rea-
soning systems, with potential extensions to video understanding and embodied Al.
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