
Assessing AI Certification Validity via Knowledge Graphs for Use Case Similarity

Anonymous Author(s)

Affiliation

Address

email

Abstract

With increased capabilities of AI models and, in particular large language models, it is necessary to verify their behavior is reliable, trustworthy and robust. However, once-off verification of AI models is not enough, as models are often open sourced and can be modified and deployed in different application context where the original behavior guarantees might not hold. In this work, we investigate the issue of when AI certification might cease to be valid in the AI life cycle. We propose leveraging use case similarity to assess whether original behavior claims hold and use knowledge graphs as a representation of a use case which allows modeling and easy modification of a broad use case context. We showcase on a real-world example how use cases represented as knowledge graphs can be compared to understand whether original AI verifications hold.

1 Introduction

Assessing the capabilities of AI models is essential to ensure safe and reliable behavior [9, 12, 5]. However, one-time AI model assessment is not enough [4, 10, 11]. The life cycle of an AI model often involves multiple stakeholders, each of which can modify the model either directly (e.g. fine-tuning) or by changing its application context (e.g. using it in a different domain or for a different purpose). In this work, we investigate whether AI certifications are invalidated by these changes. As an AI certification we consider a set of statements about an AI’s behavior supported by evidence (e.g. benchmarking results, alignment to goals, values, ethics or a policy such as EU AI Act). To understand whether an AI certification holds after a change in its life cycle, we propose comparing the AI use cases before and after the change. As an AI use case we consider the AI application context which can include multiple factors such as the domain of application, purpose or stakeholders. We propose that changes that do not alter the use case preserve the original certification, while substantial changes can invalidate it. We leverage Semantic Web technologies to represent use cases as knowledge graphs, enabling easy use case modification and comparison. We demonstrate the use of knowledge graphs can be used for representing and comparing AI use cases on a real-world algorithmic hiring example.

2 AI Certification via AI Use Case Similarity

Consider the following scenario: a model developer develops and publishes an AI model and outputs a certification verifying its behavior on a specific use case. Suppose then another stakeholder (model deployer in this text) who wants to reuse this AI model for their own use case. The model deployer might change the model internals (e.g. fine-tuning), the broader application context or both. We propose measuring the similarity between the two use cases, one in which the model was verified and the one in which it is getting deployed, to assess whether the original certification still holds.

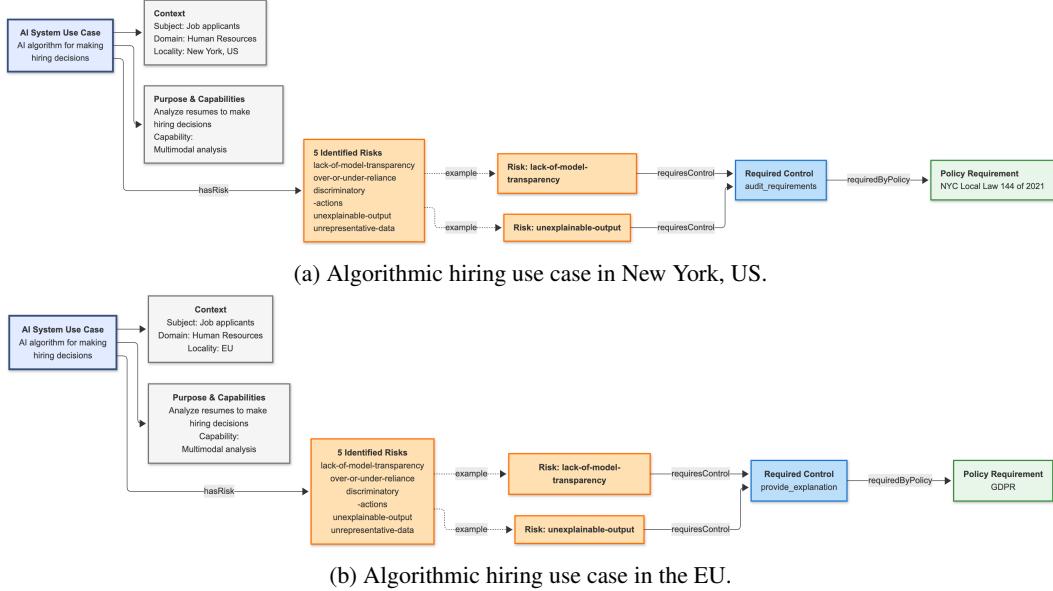


Figure 1: An example of how a change in one use case factor (locality) can lead to a substantially different knowledge graph representation, informing of new policies that have to be considered.

34 Knowledge Graphs for Use Case Similarity

35 A change in one use case factor (e.g. domain change) can trigger changes to others (e.g. to its AI
 36 subjects). Knowledge graphs allow use case comparison by taking into account all the individual
 37 factors and the impact of their relationships. For a given usecase, we construct a version of a Personal
 38 Knowledge Graph (PKG) [3] that includes the data of interest to the central entity, resulting in a
 39 star-type structure with the use case as the center. We use the AIRO ontology [8] which includes
 40 multiple factors such as domain, purpose, AI subjects and locality of use and expand it to include
 41 some other factors of interest such as regulatory policies for the purpose of demonstrating how small
 42 changes in the use case can affect these important factors. However, we do not prescribe the exact
 43 format of a use case representation, and note that a benefit of knowledge graphs is that they can be
 44 easily adapted and extended to fit different ontologies. To understand how similar two use cases are
 45 we propose measuring the similarity between their knowledge graph representation, for example by
 46 utilizing existing knowledge graph similarity metrics [6].

47 An Example: AI for Algorithmic Hiring

48 Here we demonstrate how knowledge graphs can be used to represent and compare AI use cases. We
 49 focus on the problem of AI for algorithmic hiring, as a real-world use case with multiple recorded
 50 incidents due to the lack of AI governance [1, 2]. Figure 1 demonstrates a scenario where an AI
 51 model for algorithmic hiring developed and verified in one locality (New York, US) is ported into
 52 another (EU). A change in one node of the knowledge graph (locality of use) triggers further changes
 53 in associated nodes leading to a substantially different graph. While the risks of the AI system remain
 54 the same, the associated controls and policies are different. The difference in knowledge graph
 55 representations demonstrates the impact of the use case modification.

56 3 Conclusion and Future Directions

57 This work is an initial investigation in how use cases similarity can be leveraged for governance. In
 58 future work we will investigate how different similarity measures can be used to compute use case
 59 similarity. Additionally, we hope to extend the knowledge graph representation to include the ability
 60 to associate sources and provenance to linkages in the knowledge graph. As a result multiple edges
 61 may connect, for example, risks controls to policies, opening the door to "dual governance" [7] where
 62 decisions can be informed at run time by different sources of obligations.

63 **References**

64 [1] E. Albaroudi, T. Mansouri, and A. Alameer. A comprehensive review of ai techniques for
65 addressing algorithmic bias in job hiring. *ai*, 5(1):383–404, 2024.

66 [2] L. Andrews and H. Bucher. Automating discrimination: Ai hiring practices and gender inequality.
67 *Cardozo L. Rev.*, 44:145, 2022.

68 [3] K. Balog and T. Kenter. Personal knowledge graphs: A research agenda. In *Proceedings of the*
69 *ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR)*, 2019.

70 [4] F. A. Batarseh, L. Freeman, and C.-H. Huang. A survey on artificial intelligence assurance.
71 *Journal of Big Data*, 8(1):60, 2021.

72 [5] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay. A survey on
73 adversarial attacks and defences. *CAAI Transactions on Intelligence Technology*, 6(1):25–45,
74 2021.

75 [6] Y. Dai, S. Wang, N. N. Xiong, and W. Guo. A survey on knowledge graph embedding:
76 Approaches, applications and benchmarks. *Electronics*, 9(5):750, 2020.

77 [7] A. Ghosh and D. Lakshmi. Dual governance: The intersection of centralized regulation and
78 crowdsourced safety mechanisms for generative ai. *arXiv preprint arXiv:2308.04448*, 2023.

79 [8] D. Golpayegani, H. J. Pandit, and D. Lewis. AIRO: An ontology for representing AI risks based
80 on the proposed EU AI Act and ISO risk management standards. In *Towards a Knowledge-Aware*
81 *AI*, volume 55, pages 51–65. IOS Press, 2022.

82 [9] X. Huang, W. Ruan, W. Huang, G. Jin, Y. Dong, C. Wu, S. Bensalem, R. Mu, Y. Qi, X. Zhao,
83 et al. A survey of safety and trustworthiness of large language models through the lens of
84 verification and validation. *Artificial Intelligence Review*, 57(7):175, 2024.

85 [10] A. S. Kapusta, D. Jin, P. M. Teague, R. Houston, J. Elliott, G. Y. Park, and S. S. Holdren. A
86 framework for the assurance of ai-enabled systems. In *Assurance and Security for AI-enabled*
87 *Systems 2025*, volume 13476, pages 109–120. SPIE, 2025.

88 [11] D. Kusnirakova and B. Buhnova. Rethinking certification for higher trust and ethical safeguarding
89 of autonomous systems. *arXiv preprint arXiv:2303.09388*, 2023.

90 [12] D. Pessach and E. Shmueli. A review on fairness in machine learning. *ACM Computing Surveys*
91 (*CSUR*), 55(3):1–44, 2022.