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Abstract

This paper provides a comprehensive error analysis of learning with vector-valued
random features (RF). The theory is developed for RF ridge regression in a fully
general infinite-dimensional input-output setting, but nonetheless applies to and
improves existing finite-dimensional analyses. In contrast to comparable work in
the literature, the approach proposed here relies on a direct analysis of the underly-
ing risk functional and completely avoids the explicit RF ridge regression solution
formula in terms of random matrices. This removes the need for concentration
results in random matrix theory or their generalizations to random operators. The
main results established in this paper include strong consistency of vector-valued
RF estimators under model misspecification and minimax optimal convergence
rates in the well-specified setting. The parameter complexity (number of random
features) and sample complexity (number of labeled data) required to achieve such
rates are comparable with Monte Carlo intuition and free from logarithmic factors.

1 Introduction

Supervised learning of an unknown mapping G : X → Y is a core task in machine learning. The
random feature model (RFM), proposed in [36, 37], combines randomization with optimization to
accomplish this task. The RFM is based on a linear expansion with respect to a randomized basis, the
random features (RF). The coefficients in this RF expansion are optimized to fit the given data of
input-output pairs. For popular loss functions, such as the square loss, the RFM leads to a convex
optimization problem which can be solved efficiently and reliably.

The RFM provides a scalable approximation of an underlying kernel method [36, 37]. While the for-
mer is based on an expansion in M random features φ( · ; θ1), . . . , φ( · ; θM ), the corresponding kernel
method relies on an expansion in values of a positive definite kernel function K( · , u1), . . . ,K( · , uN )
on a dataset of size N . Kernel methods are conceptually appealing, theoretically sound, and have
attracted considerable interest [1, 6, 40]. However, they require the storage, manipulation, and often
inversion of the kernel matrix K with entries K(ui, uj). The size of K scales quadratically in the
number of samples N , which can be prohibitive for large datasets. When the underlying input-output
map is vector-valued with dim(Y) = p, the often significant computational cost of kernel methods is
further exacerbated by the fact that each entry K(ui, uj) of K is, in general, a p-by-p matrix. Hence,
the size of K scales quadratically in both N and p. This severely limits the applicability of kernel
methods to problems with high-dimensional, or indeed infinite-dimensional, output space. In contrast,
learning with RF only requires storage of RF matrices whose size is quadratic in the number of
features M . When M ≪ Np, this implies substantial computational savings, with the most extreme
case being the infinite-dimensional setting in which p = ∞.

In the context of operator learning, the underlying target mapping is an operator G : X → Y with
infinite-dimensional input and output spaces. Such operators appear naturally in scientific computing
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and often arise as solution maps of an underlying partial differential equation. Operator learning
has attracted considerable interest, e.g., [3, 16, 20, 25, 27], and in this context, the RFM serves as
an alternative to neural network-based methods with considerable potential for a sound theoretical
basis. Indeed, an extension of the RFM to this infinite-dimensional setting has been proposed and
implemented in [32]. Although the results show promise, a mathematical analysis of this approach
including error bounds and rates of convergence has so far been outstanding.

Related work. Several papers have derived error bounds for learning with RF. Early work on the
RFM [37] proceeded by direct inspection of the risk functional, demonstrating that M ≃ N random
features suffice to achieve a squared error O(1/

√
N) for RF ridge regression (RR). This result was

considerably improved in [38], where
√
N logN random features were shown to be sufficient to

achieve the same squared error. This improvement in parameter complexity is based on the explicit
RF RR solution formula, combined with extensive use of matrix analysis and matrix concentration
inequalities. Similar analysis in [26] sharpens the parameter complexity to

√
N log dλK random

features. Here dλK is the number of effective degrees of freedom [2, 6], with λ the RR regularization
parameter and K the kernel matrix. In this context, we also mention related analysis in [2]. In all these
works, the squared error in terms of sample size N match the minimax optimal rates for kernel RR
derived in [6]. Going beyond the above error bounds, [2, 26, 38] also derive fast rates under additional
assumptions on the underlying data distribution and/or with improved RF sampling schemes.

Many works also study the interpolatory (M ≃ N) or overparametrized (M ≫ N) regimes in the
scalar output setting [10, 14, 15, 18, 29]. However, when p = dim(Y) ≫ 1 or p = ∞, such regimes
may no longer be relevant. This is because the kernel matrix K now has size Np-by-Np, and it is
possible that the number of random features M satisfies M ≪ Np even though M ≫ N . In this
case, high-dimensional vector-valued learning naturally operates in the underparametrized regime.

In the area of operator learning for scientific problems, approximation results are common [11, 13, 19,
17, 22, 24, 39, 41] but statistical guarantees are lacking, the main exceptions being [4, 12, 21, 31, 43]
in the linear operator setting and [6] in the nonlinear setting. The RFM also has potential for such
nonlinear problems. Indeed, vector-valued random Fourier features have been studied before [5, 30].
However, theory is only provided for kernel approximation, not generalization guarantees.

To summarize, while previous analyses have provided considerable insight into the generalization
properties of the RFM, they have almost exclusively focused on the scalar-valued setting. Given
the paucity of theoretical work beyond this setting, it is a priori unclear whether similar estimates
continue to hold when the RFM is applied to infinite-dimensional vector-valued mappings.

Contributions. The primary purpose of this paper is to extend earlier results on learning with
random features to the vector-valued setting. The theory developed in this work unifies sources of
error stemming from approximation, generalization, misspecification, and noisy observations. We
focus on training via ridge regression with the square loss. Our results differ from existing work not
only in the scope of applicability, but also in the strategy employed to derive our results. Similar
to [37], we do not rely on the explicit random feature ridge regression solution (RF-RR) formula,
which is specific to the square loss. One main benefit of this approach is that it entirely avoids the
use of matrix concentration inequalities, thereby making the extension to an infinite-dimensional
vector-valued setting straightforward. Our main contributions are now listed (see also Table 1).

(C1) Given N training samples, we prove that M ≃
√
N random features and regularization

strength λ ≃ 1/
√
N is enough to guarantee that the squared error is O(1/

√
N), provided

that the target operator belongs to a specific reproducing kernel Hilbert space (Thm. 3.7);

(C2) we establish that the vector-valued RF-RR estimator is strongly consistent (Thm. 3.10);

(C3) under additional regularity assumptions, we derive rates of convergence even when the target
operator does not belong to the specific reproducing kernel Hilbert space (Thm. 3.12);

(C4) we demonstrate that the approach of Rahimi and Recht [37] can be used to derive state-of-
the-art rates for the RFM which, for the first time, are free from logarithmic factors.

Outline. The remainder of this paper is organized as follows. We set up the ridge regression
problem in Sect. 2. The main results are stated in Sect. 3 and their proofs are sketched in Sect. 4.
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Sect. 5 provides a simulation study and Sect. 6 gives concluding remarks. Detailed proofs are deferred
to the supplementary material (SM).

Table 1: A summary of available error estimates for the RFM, with regularization parameter λ,
output space Y , and number of random features M . (⋆): the truth is assumed to be written as
G(u) = Eθ[α∗(θ)φ(u; θ)] with restrictive bound |α∗(θ)| ≤ R to avoid explicit regularization.

Paper Approach λ dim(Y) M Squared Error

Rahimi & Recht [37] “kitchen sinks” n/a (⋆) 1 N R/
√
N

Rudi & Rosasco [38] matrix concen. 1/
√
N 1

√
N log(N) 1/

√
N

Li et al. [26] matrix concen. 1/
√
N 1

√
N log(dλK) 1/

√
N

This work “kitchen sinks” 1/
√
N ∞

√
N 1/

√
N

2 Preliminaries

We now set up our vector-valued learning framework by introducing notational conventions, reviewing
random features, and formulating the ridge regression problem.

Notation. Let (Ω,F ,P) be a sufficiently rich probability space on which all random variables in
this paper are defined. Let X be the input space, Y the output space, and Θ a set. We consistently use
u to denote elements of X and θ for RF parameters in Θ. The set of probability measures supported
on a set Q is denoted by P(Q). We write expectation (in the sense of Bochner integration) with
respect to u ∼ ν ∈ P(X ) as Eu[ · ] and similarly for θ ∼ µ ∈ P(Θ). Independent and identically
distributed (iid) samples u1, . . . , uN from ν will be denoted by {un} ∼ ν⊗N and similarly for
{θm} ∼ µ⊗M . We write a ≃ b to mean that there exists a constant C ≥ 1 such that C−1b ≤ a ≤ Cb
and similarly for the one-sided inequalities a ≲ b and a ≳ b. We define a ∧ b := min(a, b).

Random features and reproducing kernel Hilbert spaces. Random features are defined by a
pair (φ, µ), where φ : X ×Θ → Y and µ ∈ P(Θ). Fixing θ ∼ µ defines a map φ( · ; θ) : X → Y .
Considering linear combinations of such maps leads to the following definition.
Definition 2.1 (Random feature model). The map Φ( · ;α) = Φ( · ;α, {θm}) : X → Y given by

u 7→ Φ(u;α) :=
1

M

M∑
m=1

αmφ(u; θm) (2.1)

is a random feature model (RFM) with coefficients α ∈ RM and fixed realizations {θm} ∼ µ⊗M .

Associated to the pair (φ, µ) is a reproducing kernel Hilbert space (RKHS) H of maps from X to Y
[32, Sect. 2.3]. Under mild assumptions (see SM B) assumed in our main results, it holds that

H =
{
G ∈ L2

ν(X ;Y)
∣∣G = E[α(θ)φ( · ; θ)] and α ∈ L2

µ(Θ;R)
}

(2.2)

with RKHS norm ∥G∥H = minα ∥α∥L2
µ

, where α ranges over all decompositions of G of the form in
(2.2). A minimizer αH of this problem always exists [2, Sect. 2.2]. We use this fact to identify any
G ∈ H with its minimizing αH ∈ L2

µ(Θ;R) without further comment.

Random feature ridge regression. Let P ∈ P(X ×Y) be the joint data distribution. The goal of
RF-RR is to estimate an underlying operator G : X → Y from finitely many iid input-output pairs
{(un, yn)}Nn=1 ∼ P⊗N , where typically the yn are noisy transformations of the point values G(un).
To describe RF-RR, we first make some definitions.
Definition 2.2 (Empirical risk). Writing Y = {yn} for the collection of observed output data and
fixing a regularization parameter λ > 0, the regularized Y -empirical risk of α ∈ RM is given by

Rλ
N (α;Y ) :=

1

N

N∑
n=1

∥yn − Φ(un;α)∥2Y + λ∥α∥2M , where ∥α∥2M :=
1

M

M∑
m=1

|αm|2 (2.3)

is a scaled Euclidean norm on RM . The regularized G-empirical risk, Rλ
N (α;G), is defined analo-

gously with G(un) in place of yn. In the absence of regularization, i.e., λ = 0, these expressions
define the Y -empirical risk and G-empirical risk, denoted by RN (α;Y ) and RN (α;G), respectively.
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RF-RR is the minimization problem minα∈RM Rλ
N (α;Y ). The minimizer, which we denote by α̂, is

referred to as trained coefficients and Φ( · ; α̂) the trained RFM. For M and N sufficiently large and
λ > 0 sufficiently small, we expect the trained RFM to well approximate G. This intuition is made
precise by quantitative error bounds and statistical performance guarantees in the next section.

3 Main results

The main result of this paper is an abstract bound on the population squared error (Sect. 3.2). From this
widely applicable theorem, several more specialized results are deduced. These include consistency
(Sect. 3.3) and convergence rates (Sect. 3.4) of the RF-RR estimator trained on noisy data. The
assumptions under which this theory is developed are provided next in Sect. 3.1.

3.1 Assumptions

Throughout this paper, we assume that the input space X is a Polish space and the output space Y is
a real separable Hilbert space. These are common assumptions in learning theory [6]. We view X
and Y as measurable spaces equipped with their respective Borel σ-algebras.

Next, we make the following minimal assumptions on the random feature pair (φ, µ).

Assumption 3.1 (Random feature regularity). Let ν ∈ P(X ) be the input distribution and (Θ,Σ, µ)
be a probability space. The random feature map φ : X × Θ → Y and the probability measure
µ ∈ P(Θ) are such that (i) φ is measurable; (ii) φ is uniformly bounded; in fact, ∥φ∥L∞ :=
ess sup(u,θ)∼ν⊗µ ∥φ(u; θ)∥Y ≤ 1; and (iii) the RKHS H corresponding to (φ, µ) is separable.

The boundedness assumption on φ is shared in general theoretical analyses of RF [26, 37, 38]; the
unit bound can always be ensured by a simple rescaling. We work in a general misspecified setting.

Assumption 3.2 (Misspecification). There exist ρ ∈ L∞
ν (X ;Y) and GH ∈ H such that the operator

G : X → Y satisfies the decomposition G = ρ+ GH.

Since Assumption 3.1 implies that H ⊂ L∞
ν (X ;Y), any G = GH + ρ as in Assumption 3.2 is

automatically bounded in the sense that G ∈ L∞
ν (X ;Y). Conversely, any G ∈ L∞

ν (X ;Y) allows
such a decomposition. We interpret ρ as a residual from the operator GH belonging to the RKHS.
It may be prescribed by the problem, as we will see later in the context of discretization errors
in operator learning (Ex. 3.9), or be arbitrary, as is customary in learning theory when the only
information about G is that it is bounded.

Our main goal is to recover G from iid data {(un, yn)} arising from the following statistical model.

Assumption 3.3 (Joint data distribution). The joint distribution P ∈ P(X × Y) of the random
variable (u, y) ∼ P is given by u ∼ ν with ν ∈ P(X ) and y = G(u) + η. Here, G satisfies
Assumption 3.2. The additive noise η is a random variable in Y that is conditionally centered,
E[η |u] = 0, and is subexponential: ∥η∥ψ1(Y) < ∞; see (A.7) for the definition of ∥ · ∥ψ1(Y).

Assumption 3.3 implies that G(u) = E[y |u]. In contrast to related work [2, 26, 37], we allow for
unbounded input-dependent noise. In particular, our results also hold for bounded or subgaussian
noise, as well as multiplicative noise (e.g., η = ξG(u) with E[ξ |u] = 0 and ∥ξ∥ψ1

< ∞).

3.2 General error bound

For any G, define the G-population risk functional or G-population squared error by

R(α;G) := Eu∼ν∥G(u)− Φ(u;α, {θm})∥2Y for α ∈ RM . (3.1)

The main result of this paper establishes an upper bound for this quantity that holds with high
probability, provided that the number of random features and number of data pairs are large enough.

Theorem 3.4 (G-population squared error bound). Suppose that G = ρ+GH satisfies Assumption 3.2.
Fix a failure probability δ ∈ (0, 1), regularization strength λ ∈ (0, 1), and sample size N . Let
{θm} ∼ µ⊗M be the M random feature parameters and {(un, yn)} ∼ P⊗N be the data according
to Assumption 3.3. For Φ the RFM (2.1) satisfying Assumption 3.1, let α̂ ∈ RM be the minimizer
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of the regularized Y -empirical risk Rλ
N ( · ;Y ) given by (2.3). If M ≥ λ−1 log(32/δ) and N ≥

λ−2 log(16/δ), then

Eu∼ν∥G(u)− Φ(u; α̂, {θm})∥2Y ≤ 79e3/2
(
∥G∥2L∞

ν
+ 2β(ρ, λ,GH, η)

)
λ (3.2)

with probability at least 1− δ, where

β(ρ, λ,GH, η) := 328∥GH∥2H + 2023e3∥η∥2ψ1(Y) + 8λ−1 Eu∼ν∥ρ(u)∥2Y + 18λ∥ρ∥2L∞
ν

(3.3)

is a function of ρ, λ, GH, and the law of the noise variable η.

The main elements of the proof of Thm. 3.4 will be explained in Sect. 4.
Remark 3.5 (Excess risk). We note that other work [26, 37, 38] often focuses on bounding the
excess risk Ê := E (Φ( · ; α̂))− infGH∈H E (GH), where E (F ) := E ∥y−F (u)∥2Y = Eu∼ν ∥G(u)−
F (u)∥2Y + E ∥η∥2Y . In particular, this bias-variance decomposition implies that Ê ≤ Eu∼ν∥G(u)−
Φ(u; α̂)∥2Y . Thus, Thm. 3.4 also gives a corresponding bound on the excess risk Ê .
Remark 3.6 (The β factor). In the well-specified setting, that is, G − GH = ρ ≡ 0, the factor β in
Thm. (3.4) satisfies the uniform bound

β(ρ, λ,GH, η) ≤ B := 328∥G∥2H + 2023e3∥η∥2ψ1(Y) . (3.4)

In particular, the constant B does not depend on λ in this case. Otherwise, β in general depends on
λ. We can characterize this dependence precisely if it is known that G ∈ L∞

ν (X ;Y). In this case,
Assumption 3.2 is satisfied with ρ := G − GH for any GH ∈ H. Choosing GH = Gϑ|ϑ=λ as in SM B
(which is optimal in the sense described there) and a short calculation deliver the bound

β(ρ, λ,GH, η) ≲ λ−1λr∧1 = λ−(1−r)+ (3.5)

if G additionally satisfies a particular r-th order regularity condition (see Lem. B.3 for the details).
Here, a+ := max(a, 0) for any a ∈ R. Thus, β is uniformly bounded if G ∈ H (r ≥ 1) and grows
algebraically as a power of λ−1 otherwise (0 ≤ r < 1).

Consequences. The general error bound (3.2) in Thm. 3.4 has several implications for vector-valued
learning with the RFM. First, it immediately implies a rate of convergence if G ∈ H.
Theorem 3.7 (Well-specified). Instantiate the hypotheses and notation of Thm. 3.4. Suppose that
ρ ≡ 0 so that G ∈ H (2.2). If M ≥ λ−1 log(32/δ) and N ≥ λ−2 log(16/δ), then

Eu∼ν∥G(u)− Φ(u; α̂)∥2Y ≤ 79e3/2
(
∥G∥2L∞

ν
+ 2B

)
λ ≲ λ (3.6)

with probability at least 1− δ, where the constant B ≥ 0 is defined by (3.4).

Given a number of samples N , Thm. 3.7 shows that RF-RR with regularization λ ≃ 1/
√
N and

number of features M ≳
√
N leads to a population squared error of size 1/

√
N with high probability.

This result should be compared to the previous state-of-the-art convergence rates in the literature
for RF-RR with iid sampled features [2, 26, 37, 38]. See Table 1, which indicates that our analysis
gives the lowest parameter complexity to date. We emphasize that such a convergence rate rests on
the assumption that G ∈ H. This corresponds to a compatibility condition between G and the pair
(φ, µ), i.e., the random feature map φ and the probability measure µ, which determine the RKHS H.
Designing suitable φ and µ for a given operator G remains an open problem. For an explanation of
the poor parameter complexity in Rahimi and Recht’s original paper [37], see [44, Appendix E].

Thm. 3.4 also implies convergence of R(α̂;G) when G ̸∈ H, as we will see in Sect. 3.3 and 3.4. But
first, the next corollary shows that the same general bound (3.2) also holds for the GH-population
squared error R(α̂;GH), up to enlarged constant factors. The proof is given in SM C.
Corollary 3.8 (GH-population squared error bound). Instantiate the hypotheses and notation of
Thm. 3.4. If M ≥ λ−1 log(32/δ) and N ≥ λ−2 log(16/δ), then there exists an absolute constant
C > 1 such that with probability at least 1− δ, it holds that

Eu∼ν∥GH(u)− Φ(u; α̂)∥2Y ≤ C
(
∥G∥2L∞

ν
+ 2β(ρ, λ,GH, η)

)
λ . (3.7)

Although our main goal is to learn G from noisy data, there are settings instead in which the learning of
GH ∈ H as in Cor. 3.8 is of primary interest, but only values of some approximation G ∈ L∞

ν (X ;Y)
are available. The following example illustrates this.
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Example 3.9 (Numerical discretization error). One practically relevant setting to which Cor. 3.8
applies arises when training a RFM from functional data generated by a numerical approximation
G = G∆ of some underlying operator GH ∈ H. Here ∆ > 0 represents a numerical parameter, such
as the grid resolution when approximating the solution operator of a partial differential equation.
In this setting, ρ = G∆ − GH is non-zero and it is crucial to include the discretization error in the
analysis, which we define as ε∆ := ∥ρ∥2L∞

ν
= ∥G∆ − GH∥2L∞

ν
. Assume η ≡ 0, so that α̂ minimizes

Rλ
N ( · ;Y ) = Rλ

N ( · ;G∆). Using Cor. 3.8, it follows that for M and N sufficiently large,

Eu∼ν∥GH(u)− Φ(u; α̂)∥2Y ≲ λ∥GH∥2H + ε∆ (3.8)

with high probability. Thus, as suggested by intuition, in addition to the error contribution that is
present when training on perfect data (the first term on the right-hand side), there is an additional
discretization error of size ε∆. We also see that the performance of RF-RR is stable with respect to
such discretization errors stemming from the training data. Actually obtaining a rate of convergence
would require problem-specific information about the particular numerical solver that is used.

3.3 Statistical consistency

We now return to the objective of recovering G from data. In particular, suppose that G ̸∈ H; the
RKHS, viewed as a hypothesis class, is misspecified. Our analysis demonstrates that statistical
guarantees for RF-RR are still possible in this setting.

To this end, assume that G ∈ L∞
ν (X ;Y). It follows that Assumption 3.2 is satisfied with ρ := G−GH

and GH ∈ H being any element of the RKHS. Applying Thm. 3.4 and minimizing over GH yields

Eu∼ν∥G(u)− Φ(u; α̂)∥2Y ≲ λ+ inf
GH∈H

{
Eu∼ν∥G(u)− GH(u)∥2Y + λ∥GH∥2H

}
(3.9)

with probability at least 1 − δ if M ≳ λ−1 log(2/δ) and N ≳ λ−2 log(2/δ). To obtain (3.9), we
enlarged constants and used the bound ∥ρ∥2L∞

ν
≲ ∥G∥2L∞

ν
+ ∥GH∥2L∞

ν
in (3.3).

If G is in the L2
ν-closure of H, then with high probability, the population squared error on the left

hand side of (3.9) converges to zero as λ → 0 (by application of Lem. B.2 to the second term on the
right). This is a statement about the (weak) statistical consistency of the trained RF-RR estimator; it
can be upgraded to an almost sure statement, as expressed precisely in the next main result.

Theorem 3.10 (Strong consistency). Suppose that G ∈ L∞
ν (X ;Y) belongs to the L2

ν(X ;Y)-closure
of H (2.2). Let {λk}k∈N ⊂ (0, 1) be a sequence of positive regularization parameters such that∑
k∈N λk < ∞. For Φ the RFM (2.1) satisfying Assumption 3.1 and for each k, let α̂(k) ∈ RMk be

the trained RFM coefficients that minimize the regularized Y -empirical risk Rλk

Nk
( · ;Y ) given by

(2.3) with Mk ≃ λ−1
k log(2/λk) iid random features and Nk ≃ λ−2

k log(2/λk) iid data pairs under
Assumption 3.3. It holds true that

lim
k→∞

Eu∼ν∥G(u)− Φ(u; α̂(k))∥2Y = 0 with probability one. (3.10)

The proof relies on a standard Borel–Cantelli argument. See SM C for the details.
Remark 3.11 (Universal RKHS). The assumption that G belongs to the L2

ν-closure of the RKHS H is
automatically satisfied if H is dense in L2

ν(X ;Y). This is equivalent to its kernel being universal [7, 9].
In this case, the trained RFM is a strongly consistent estimator of any G ∈ L∞

ν . However, we are
unaware of any practical characterizations of universality of the kernel in terms of its corresponding
random feature pair (φ, µ) for the vector-valued setting studied here.

3.4 Convergence rates

The previous subsection establishes convergence guarantees without any rates. We now establish
quantitative bounds. Throughout what follows, we denote by K : L2

ν(X ;Y) → L2
ν(X ;Y) the integral

operator (B.5) corresponding to the operator-valued kernel function of the RKHS H (see SM B).

Theorem 3.12 (Slow rates under misspecification). Suppose that G ∈ L∞
ν (X ;Y) and that As-

sumption 3.3 holds. Additionally, assume that G ∈ Im(Kr/2) for some r > 0, where K is the
integral operator corresponding to the kernel of RKHS H (2.2). Fix δ ∈ (0, 1) and λ ∈ (0, 1). For
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Φ the RFM (2.1) satisfying Assumption 3.1, let α̂ ∈ RM minimize Rλ
N ( · ;Y ) given by (2.3). If

M ≥ λ−1 log(32/δ) and N ≥ λ−2 log(16/δ), then with probability at least 1− δ it holds that

Eu∼ν∥G(u)− Φ(u; α̂)∥2Y ≲ λr∧1 . (3.11)

The implied constant in (3.11) depends only on ∥G∥L∞
ν

and ∥η∥ψ1(Y).

Thm. 3.12 provides a quantitative convergence rate as λ → 0. For r ≥ 1, i.e., when G ∈ H, we
recover the linear convergence rate of order λ from Thm. 3.7. The assumption that G ∈ Im(Kr/2)
can be viewed as a “fractional regularity” assumption on the underlying operator; indeed, in specific
settings it corresponds to a fractional (Sobolev) regularity of the underlying function. In general, it
appears difficult to check this condition in practice, which is one limitation of our result.

A quantitative analog to the almost sure statement of Thm. 3.10 also holds.

Corollary 3.13 (Strong convergence rate). Instantiate the hypotheses and notation of Thm. 3.10.
Assume in addition that G ∈ Im(Kr/2) for some r > 0. Let {λk}k∈N ⊂ (0, 1) be a sequence of
positive regularization parameters such that

∑
k∈N λk < ∞. For each k, let α̂(k) ∈ RMk be the

trained RFM coefficients with Mk ≃ λ−1
k log(2/λk) and Nk ≃ λ−2

k log(2/λk). It holds true that

lim sup
k→∞

(
Eu∼ν∥G(u)− Φ(u; α̂(k))∥2Y

λr∧1
k

)
< ∞ with probability one. (3.12)

Short proofs of both Thm. 3.12 and Cor. 3.13 may be found in SM C.

4 Proof outline for the main theorem

Our main results are all derived from Thm. 3.4, whose proof, schematically illustrated in Figure 1,
we now outline. Following [37], we break the proof into several steps that arise from the error
decomposition

R(α̂;G) = RN (α̂;G) +
[
R(α̂;G)− RN (α̂;G)

]
. (4.1)

Sect. 4.1 estimates the first term on the right hand side of (4.1) while Sect. 4.2 estimates the second.

Theorem 3.4
R(α̂;G) R(α̂;G) ≤ Rλ

N (α̂;G) +
[
R(α̂;G)− RN (α̂;G)

]

Proposition 4.1: ∃β s.t. w.h.p.,
λ∥α̂∥2M ≤ Rλ

N (α̂;G) ≤ βλ
Proposition 4.7: given β from 4.1, bounds

R(α̂;G)− RN (α̂;G)

Lemma 4.3
Rλ
N (α⋆;GH)

Lemma 4.5
2
N

∑N
n=1 ∥ρ(un)∥2

Lemma 4.6
2
N

∑N
n=1⟨−ηn,Φ(un;α

⋆)⟩
Lemma D.4 + Lemma D.5

supα∈A1

∣∣∣ 2N ∑N
n=1⟨ηn,Φ(un;α)⟩

∣∣∣

Lemma D.6 + Lemma D.7: for any t, bounds
supα∈At

|R(α;G)− RN (α;G)|

Figure 1: Flow chart illustrating the proof of Theorem 3.4.

4.1 Bounding the regularized empirical risk

The main technical contribution of this work is a tight bound on the G-empirical risk RN (α̂;G) for
the trained RFM. The analysis involves controlling several sources of error and careful truncation
arguments to avoid unnecessarily strong assumptions on the problem. The result is the following.

Proposition 4.1 (Regularized G-empirical risk bound). Let Assumptions 3.1 and 3.3 hold. Suppose
that G = ρ + GH satisfies Assumption 3.2. Fix δ ∈ (0, 1), λ ∈ (0, 1), M ∈ N, and N ∈ N.
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Let α̂ ∈ RM be the minimizer of the regularized Y -empirical risk Rλ
N ( · ;Y ) given by (2.3). If

M ≥ λ−1 log(16/δ) and N ≥ λ−2 log(8/δ), then

Rλ
N (α̂;G) ≤ λβ(ρ, λ,GH, η) (4.2)

with probability at least 1− δ, where the multiplicative factor β(ρ, λ,GH, η) is given by (3.3).

Since λ∥α̂∥2M ≤ Rλ
N (α̂;G), the next corollary controlling the norm (2.3) of α̂ is immediate. It plays

a crucial role in developing an upper bound for the second term on the right side of (4.1).
Corollary 4.2 (Trained RFM norm bound). Instantiate the hypotheses and notation of Prop. 4.1. Fix
δ ∈ (0, 1) and λ ∈ (0, 1). If M ≥ λ−1 log(16/δ) and N ≥ λ−2 log(8/δ), then

α̂ ∈ Aβ :=
{
α ∈ RM

∣∣ ∥α∥2M ≤ β
}

(4.3)

with probability at least 1− δ. The radius β := β(ρ, λ,GH, η) of the norm bound is given by (3.3).

The core elements of the proof of Prop. 4.1 are provided in the next few subsections, with the
full argument in SM D.1. The main idea is to upper bound the G-empirical risk by its regularized
counterpart and then decompose the latter into several (coupled) error contributions.

To do this, first fix any α ∈ RM . It holds that

Rλ
N (α;Y ) = Rλ

N (α;G) + 2

N

N∑
n=1

⟨ηn,G(un)− Φ(un;α)⟩Y +
1

N

N∑
n=1

∥ηn∥2Y (4.4)

because Y is a Hilbert space and yn = G(un) + ηn. Using this, a short calculation shows that

Rλ
N (α̂;G) =

[
Rλ
N (α̂;Y )− Rλ

N (α;Y )
]
+ Rλ

N (α;G) + 2

N

N∑
n=1

⟨ηn,Φ(un; α̂)− Φ(un;α)⟩Y

≤ Rλ
N (α;G) + 2

N

N∑
n=1

⟨−ηn,Φ(un;α)⟩Y +
2

N

N∑
n=1

⟨ηn,Φ(un; α̂)⟩Y . (4.5)

In the second line, we used the fact that α̂ minimizes Rλ
N ( · ;Y ). Since α ∈ RM is arbitrary, we have

the freedom to choose α so that the first term is small (see Sect. 4.1.1 and 4.1.2). With α fixed, the
second term averages to zero by our assumptions on the noise, and hence, we expect it to be small
with high probability (see Sect. 4.1.3).

The third term in (4.5) exhibits high correlation between the noise ηn and the trained RFM coefficients
α̂, making it more difficult to estimate. To control this last term, we first note that it is homogeneous
in ∥α̂∥M , which can be used to derive an upper bound in terms of a supremum over the unit ball with
respect to ∥ · ∥M . The resulting expression is then bounded with empirical process techniques (see
SM D.1.3). For the complete details of the required argument we refer the reader to SM D.1.

In the remainder of this subsection, we estimate the first two terms on the right hand side of (4.5).
Using the fact that G = ρ+ GH, the first term can be split into two contributions,

Rλ
N (α;G) ≤ 2Rλ

N (α;GH) +
2

N

N∑
n=1

∥ρ(un)∥2Y . (4.6)

These contributions to the first term in (4.5) are bounded in Sect. 4.1.1 and 4.1.2. The second term in
(4.5) is controlled in Sect. 4.1.3.

4.1.1 Bounding the approximation error

We begin with the term Rλ
N (α;GH), which may be viewed as an empirical approximation error

due to α being arbitrary. Its only dependence on the data is through {un} in (2.3). Intuitively,
this term should behave like its population counterpart. It is then natural to choose a Monte Carlo
approximation αm = αH(θm) for α, where αH ∈ L2

µ(Θ;R) is identified with GH as in (2.2).
However, our intuition that λ∥α∥2M should concentrate around λ∥αH∥2L2

µ
fails because it is generally

not possible to control the tail of the random variable |αH(θ)|2. We next show that this problem can
be overcome by a carefully tuned truncation argument combined with Bernstein’s inequality.
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Lemma 4.3 (Construction of approximator). Suppose that GH := G ∈ H. Fix δ ∈ (0, 1), λ > 0,
N ∈ N, and M ∈ N. Let {θm} ∼ µ⊗M and {un} ∼ ν⊗N . Define α⋆ ∈ RM componentwise by

α⋆m := αH(θm)1{|αH(θm)|≤T} , where T :=
√

λ−1 Eθ∼µ |αH(θ)|2 (4.7)

and GH = Eθ∼µ[αH(θ)φ( · ; θ)] with ∥GH∥2H = Eθ∼µ|αH(θ)|2. If M ≥ λ−1 log(4/δ), then with
probability at least 1− δ in the random feature parameters θ1, . . . , θM , it holds that

Rλ
N (α⋆;GH) ≤ 81λ∥GH∥2H. (4.8)

SM D.1.1 provides the proof.
Remark 4.4 (Well-specified and noise-free). Lem. 4.3 gives a O(λ) bound on the regularized GH-
empirical risk of a RFM trained on well-specified and noise-free iid data {un,GH(un)}.

4.1.2 Bounding the misspecification error

The second contribution to (4.6) is easily bounded by Bernstein’s inequality because ρ ∈ L∞
ν . We

refer the reader to SM D.1.2 for the detailed proof.
Lemma 4.5 (Concentration of misspecification error). Let ρ be as in Assumption 3.2. Fix δ ∈ (0, 1).
With probability at least 1− δ, it holds that

2

N

N∑
n=1

∥ρ(un)∥2Y ≤ 4Eu∼ν∥ρ(u)∥2Y +
9∥ρ∥2L∞

ν
log(2/δ)

N
. (4.9)

4.1.3 Bounding the noise error

The second term on the right hand side of (4.5) is a zero mean error contribution due to the noise
corrupting the output training data. By the fact that η is subexponential (Assumption 3.3), Bernstein’s
inequality delivers exponential concentration. The proof details are in SM D.1.3.
Lemma 4.6 (Concentration of noise error cross term). Let Assumptions 3.1 and 3.3 hold. Fix
α ∈ RM , {θm} ∼ µ⊗M , and δ ∈ (0, 1). With probability at least 1− δ, it holds that

2

N

N∑
n=1

⟨−ηn,Φ(un;α)⟩Y ≤ 16e3/2∥η1∥ψ1(Y)∥α∥M
√

log(2/δ)

N
. (4.10)

SM D.1.3 also details the techniques used to upper bound the third and final term in (4.5).

4.2 Bounding the generalization gap

Having bounded the empirical risk with approximation arguments, it remains to control the estimation
error R(α̂;G) − RN (α̂;G) due to finite data in (4.1). We call this the generalization gap: the
difference between the population test error and its empirical version. If α̂ satisfies ∥α̂∥2M ≤ t for
some t > 0, then one can upper bound the generalization gap by its supremum over this set. The main
challenge is to show existence of a (sufficiently small) t that satisfies this inequality. This is handled
by Cor. 4.2. As summarized in the following proposition, the resulting supremum of the empirical
process defined by the generalization gap is shown to be of size N−1/2 with high probability.
Proposition 4.7 (Uniform bound on the generalization gap). Let Assumption 3.1 hold. Suppose G
satisfies Assumption 3.2. Let {θm} ∼ µ⊗M for the RFM Φ given by (2.1). Fix δ ∈ (0, 1). For iid
input samples {un} ∼ ν⊗N , define the random variable

Eβ
(
{un}, {θm}

)
:= sup

α∈Aβ

∣∣∣∣ 1N
N∑
n=1

∥G(un)− Φ(un;α)∥2Y − Eu∥G(u)− Φ(u;α)∥2Y
∣∣∣∣ , (4.11)

where Aβ := {α′ ∈ RM | ∥α′∥2M ≤ β} and the deterministic radius β = β(ρ, λ,GH, η) is given in
(3.3) with G as above. If N ≥ log(1/δ), then with probability at least 1− δ it holds that

Eβ
(
{un}, {θm}

)
≤ 32e3/2

(
∥G∥2L∞

ν
+ β(ρ, λ,GH, η)

)√6 log(2/δ)

N
. (4.12)
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The proof of Prop. 4.7 is given in SM D.2. The argument is composed of two steps. The first is
to show that Eβ | {θm} concentrates around its (conditional) expectation (Lem. D.6). This follows
easily using the boundedness of the summands. The second step is to upper bound the expectation of
Eβ | {θm} (Lem. D.7). This is achieved by exploiting the Hilbert space structure of the Y-square loss
and the linearity of the RFM with respect to its coefficients.

4.3 Combining the bounds

Since we now have control over the G-empirical risk and the generalization gap, the G-population risk
is also under control by (4.1). The proof of Thm. 3.4 follows by putting together the pieces (SM C).

5 Numerical experiment

To study how our theory holds up in practice, we numerically implement the vector-valued RF-RR
algorithm on a benchmark operator learning dataset. The data {(un,G(un))}Nn=1 is noise-free, the
{un} are iid Gaussian random fields, and G : L2(T;R) → L2(T;R) is a nonlinear operator defined
as the time one flow map of the viscous Burgers’ equation on the torus T. SM E provides more
details about the problem setting and the choice of random feature pair (φ, µ).
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Figure 2: Squared test error of trained RFM for learning the Burgers’ equation solution operator.
All shaded bands denote two empirical standard deviations from the empirical mean of the error
computed over 10 different models, each with iid sampling of the features and training data indices.

Figure 2a shows the decay of the relative squared test error as M increases (with λ ≃ 1/M ) for fixed
N . The error closely follows the rate O(M−1) until it begins to saturate at larger M . This is due to
either G not belonging to the RKHS of (φ, µ) or the finite data error dominating. As implied by our
theory, the error does not depend on the discretized output dimension p < ∞. Figure 2b displays
similar behavior as N is varied (now with λ ≃ 1/

√
N and fixed M ). Overall, the observed parameter

and sample complexity reasonably validate our theoretical insights.

6 Conclusion

This paper establishes several fundamental results for learning with infinite-dimensional vector-
valued random features; these include strong consistency and explicit convergence rates. When the
underlying mapping belongs to the RKHS, the rates obtained in this work match minimax optimal
rates in the number of samples N , requiring only a number of random features M ≃

√
N . Despite

being derived in a very general setting, to the best of our knowledge, this provides the sharpest
parameter complexity in M , which is free from logarithmic factors for the first time.

There are several interesting directions for future work. These include deriving fast rates, relaxing the
boundedness assumption on the features and the true mapping, and accommodating heavier-tailed or
white noise distributions. Obtaining fast rates would require a sharpening of several estimates, and in
particular, replacing the global Rademacher complexity-type estimate, implicit in our work, by its
local counterpart. As our approach does not make use of an explicit solution formula, which is only
available for a square loss, this might pave the way for improved rates for other loss functions, such
as a general Lp-loss. We leave such potential extensions of the present approach for future work.
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Supplementary Material for:
Error Bounds for Learning with
Vector-Valued Random Features

A Concentration of measure

In this section, we recall two classical results from [35] that estimate the difference between empirical
averages and true averages of random vectors taking values in Banach spaces. These are then
specialized to the setting of subexponential random variables, which play a major role in this paper.
To set the notation, we use Pr to denote probability with respect to the underlying probability space.

The first result is a vector-valued Bernstein concentration inequality with various applications to
problems posed in infinite-dimensional Hilbert spaces [6, 28, 38]. It is used throughout this work.
Theorem A.1 (Vector-valued Bernstein inequality in Hilbert space). Let Z be an H-valued random
variable, where (H, ⟨·, ·⟩, ∥ · ∥) is a separable Hilbert space. Suppose there exist positive numbers
b > 0 and σ > 0 such that

E∥Z − EZ∥p ≤ 1

2
p!σ2bp−2 for all p ≥ 2 . (A.1)

For any δ ∈ (0, 1) and N ∈ N, denoting by {Zn}Nn=1 a sequence of N iid copies of Z, it holds that

Pr

{∥∥∥∥ 1

N

N∑
n=1

Zn − EZ

∥∥∥∥ ≤ 2b log(2/δ)

N
+

√
2σ2 log(2/δ)

N

}
≥ 1− δ . (A.2)

Proof. The result is a direct consequence of [35, Cor. 1, p. 144] in the iid Hilbert space setting. In
this case, it holds for any t > 0 that

Pr
{
∥SN − ESN∥ ≥ t

}
≤ 2 exp

(
− N2t2

2Nσ2 + 2Ntb

)
= 2 exp

(
− Nt2

2σ2 + 2bt

)
,

where Sn := 1
N

∑N
n=1 Zn. Setting the right hand side equal to δ, solving a quadratic equation for

t = t(δ), and using the inequality
√
a+ b ≤ √

a+
√
b to bound t(δ) from above leads to (A.2).

The most common use case of Bernstein’s inequality is in the following bounded setting.
Lemma A.2. Let Z be a (potentially) uncentered random variable such that

∥Z∥ ≤ c almost surely and E∥Z − EZ∥2 ≤ v2 (A.3)

for some c > 0 and v > 0. Then Z satisfies Bernstein’s moment condition (A.1) with b = 2c and
σ = v. If EZ = 0, then taking b = c suffices.

Proof. It holds that ∥Z − EZ∥ ≤ ∥Z∥+ E∥Z∥ ≤ 2c almost surely. We compute

E∥Z − EZ∥p = E[∥Z − EZ∥2∥Z − EZ∥p−2] ≤ E∥Z − EZ∥2(2c)p−2

≤ v2(2c)p−2 ≤ 1

2
p!v2(2c)p−2

because 1 ≤ p!/2 for all p ≥ 2. The centered improvement is trivial.

The second classic result we present is a one-sided Bernstein-type tail bound in a general Banach
space. We invoke this theorem to control the tails of suprema of empirical processes.
Theorem A.3 (Vector-valued Bernstein inequality in Banach space). Let Z be a Z-valued random
variable, where (Z, ∥ · ∥) is a separable Banach space. Suppose there exist positive numbers b > 0
and σ > 0 such that

E∥Z − EZ∥p ≤ 1

2
p!σ2bp−2 for all p ≥ 2 . (A.4)

For any δ ∈ (0, 1) and N ∈ N, denoting by {Zn}Nn=1 a sequence of N iid copies of Z, it holds that

Pr

{∥∥∥∥ 1

N

N∑
n=1

Zn

∥∥∥∥− E
∥∥∥∥ 1

N

N∑
n=1

Zn

∥∥∥∥ ≤ 2b log(1/δ)

N
+

√
2σ2 log(1/δ)

N

}
≥ 1− δ . (A.5)
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Proof. The assertion is [35, Cor. 1, p. 144] in the iid Banach space setting (hence only convergence
of norms in (A.5) instead of strong convergence). It is proved the same way as Thm. A.1.

In Theorem A.3, a random variable Z satisfying the Bernstein moment condition (A.4) is subexponen-
tial in the sense that ∥Z − EZ∥ is subexponential on R, i.e., exhibits exponential tail decay. Recall
that for a real-valued random variable Z, its subexponential norm may be defined by

∥Z∥ψ1
:= sup

p∈[1,∞)

(E|Z|p)1/p
p

. (A.6)

See [45, Sect. 2.7] for equivalent definitions. We say that Z is subexponential if its subexponential
norm is finite. Following [31, Sect. 4.3, pp. 19–20], for a random variable Z with values in a Banach
space (Z, ∥ · ∥Z) we define

∥Z∥ψ1(Z) :=
∥∥∥Z∥Z

∥∥
ψ1

= sup
p∈[1,∞)

(E∥Z∥pZ)1/p
p

(A.7)

as its subexponential norm. It is known that a random variable has finite subexponential norm if and
only if it satisfies the Bernstein moment condition (A.4) [see, e.g., 31, Appendix A.2]. Next, we give
explicit constants in the Bernstein moment condition that depend on the subexponential norm.

Proposition A.4 (Subexponential implies Bernstein moment condition). Let Z be a (Z, ∥ · ∥)-valued
subexponential random variable, that is, ∥Z∥ψ1(Z) < ∞. Then Z satisfies

E∥Z − EZ∥p ≤ 1

2
p!σ2bp−2 for all p ≥ 2 , (A.8)

where
σ2 := 4e

√
E∥Z − EZ∥2∥Z∥ψ1(Z) and b := 4e∥Z∥ψ1(Z) . (A.9)

Proof. By the Cauchy–Schwarz inequality,

E∥Z − EZ∥p = E[∥Z − EZ∥∥Z − EZ∥p−1] ≤ ∥Z − EZ∥L2
P
(E∥Z − EZ∥2p−2)1/2 .

The inequality |a+ b|q ≤ 2q−1(|a|q + |b|q), Jensen’s inequality, and ∥Z∥ψ1(Z) < ∞ show that

E∥Z − EZ∥2p−2 ≤ 22p−2 E∥Z∥2p−2 ≤ 22p−2(2p− 2)2p−2∥Z∥2p−2
ψ1(Z) .

Next, Stirling’s approximation (q/e)q ≤ q! and q! = q(q − 1)! ≥ 2(q − 1)! for q ≥ 2 yields

E∥Z − EZ∥p ≤ 22p−2∥Z − EZ∥L2
P
(p− 1)p−1∥Z∥p−1

ψ1(Z)

≤ (p!/2)∥Z − EZ∥L2
P
22p−2ep−1∥Z∥p−1

ψ1(Z) .

Rearranging the exponents to fit the Bernstein moment condition form completes the proof.

This leads to the following corollary, which is useful in the setting that the variance E∥Z −EZ∥2Z =
∥Z − EZ∥2

L2
P(Ω;Z)

of random variable Z is not small or hard to compute.

Corollary A.5 (Subexponential tail bound in Banach space). Fix N ∈ N. Let {Zn}Nn=1 be iid
random variables with values in a separable Banach space (Z, ∥ · ∥). Suppose that ∥Z1∥ψ1(Z) < ∞.
Let SN := 1

N

∑N
n=1 Zn. Fix δ ∈ (0, 1). With probability at least 1− δ, it holds that

∥∥SN∥∥− E
∥∥SN∥∥ ≤ 8e∥Z1∥ψ1(Z) log(1/δ)

N
+

√
8e∥Z1 − EZ1∥L2

P(Ω;Z)∥Z1∥ψ1(Z) log(1/δ)

N
.

(A.10)
In particular, if N ≥ log(1/δ), then with probability at least 1− δ it holds that

∥∥SN∥∥− E
∥∥SN∥∥ ≤

√
64e3∥Z1∥2ψ1(Z) log(1/δ)

N
. (A.11)
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Proof. Apply Prop. A.4 to Thm. A.3 to obtain the first assertion. For the second assertion, first note
that E∥Z1 − EZ1∥2 ≤ 4E∥Z1∥2 (by triangle inequality and using (a + b)2 ≤ 2(a2 + b2)) and
∥Z1∥2ψ1(Z) ≥ E∥Z1∥2/4 (by (A.7)). Since N ≥ log(1/δ), we have log(1/δ)/N ≤

√
log(1/δ)/N .

Combining these facts, it follows that the right hand side of (A.10) is bounded above by√
64e2∥Z1∥2ψ1(Z) log(1/δ)

N
+

√
32e∥Z1∥2ψ1(Z) log(1/δ)

N
≤

√
64(2e2 + e)∥Z1∥2ψ1(Z) log(1/δ)

N
.

We used
√
a+

√
b ≤

√
2(a+ b) on the right. Noting that 2e2 + e ≤ e3 completes the proof.

Comparing this result to a similar result [28, Prop. 7(i), pp. 4–5, the iid case], we note that (A.10) in
Cor. A.5 is sharper in the sense that the constant in the N−1/2 term depends on the variance of the
summands instead of just its subexponential norm (which can be much larger than the variance).

B Misspecification error with RKHS methods

Let K : X × X → L(Y) be an operator-valued kernel [32] corresponding to a separable2 RKHS H
of functions mapping X to Y . Here, L(Y) denotes the set of bounded linear operators from Y into
itself. In this section, we present a general analysis based on [42] for the approximation of elements
in L2

ν(X ;Y) by elements in the RKHS H. This problem is relevant to our learning theory framework
whenever the true data-generating map does not belong to the RKHS (2.2) associated to the given
random feature pair (φ, µ). Specializing to this setting, suppose that (φ, µ) satisfy Assumption 3.1.
Let K : (u, u′) 7→ Eθ∼µ[φ(u; θ)⊗Y φ(u′; θ)] be the corresponding limit random feature kernel. It
holds that K(u, u) is trace-class for each u ∈ X ν-almost surely because

tr(K(u, u)) = Eθ tr(φ(u; θ)⊗Y φ(u; θ)) = Eθ∥φ(u; θ)∥2Y ≤ ∥φ∥2L∞ < ∞ (B.1)
by the Fubini–Tonelli theorem. It follows from [8, Prop. 4.8, p. 394] that H is compactly embedded
into L2

ν(X ;Y) because

Eu∼ν∥K(u, u)∥L(Y) ≤ Eu∼ν tr(K(u, u)) ≤ ∥φ∥2L∞ < ∞ . (B.2)

We denote the canonical embedding by ι : H ↪→ L2
ν(X ;Y). Now let G ∈ L2

ν(X ;Y) be an arbitrary
operator. We consider an approximation Gϑ to G defined by

Gϑ := argmin
F∈H

{
∥G − ιF∥2L2

ν
+ ϑ∥F∥2H

}
. (B.3)

This operator has a simple representation.
Lemma B.1. There exists a unique solution Gϑ to (B.3) given by

Gϑ = (ι∗ι+ ϑ Id)−1ι∗G . (B.4)

Proof. The result is a consequence of convex optimization on Hilbert spaces and the fact that ι is a
bounded linear operator.

The adjoint of the inclusion map, ι∗ : L2
ν(X ;Y) → H, is given by the vector-valued reproducing

kernel property as the (Bochner) integral operator
F 7→ ι∗F = Eu∼ν [K( · , u)F (u)] . (B.5)

Since ι is compact, so is K := ιι∗ ∈ L(L2
ν(X ;Y)). The action of K is the same as that of the

integral operator ι∗ above. Since K is also symmetric, the spectral theorem yields the operator norm
convergent expansion K =

∑
j λjej ⊗L2(ν) ej . The sequence {λj} ⊂ R≥0 is a non-increasing

rearrangement of the eigenvalues of K and {ej} is its corresponding eigenbasis.

Now define the regularized RKHS approximation error

AG(ϑ) := inf
F∈H

{
∥G − ιF∥2L2

ν
+ ϑ∥F∥2H

}
(B.6)

which is parametrized by G ∈ L2
ν(X ;Y). We have the following convergence result for this error.

2The assumption of separability of the RKHS could be removed if additional conditions are placed on its
kernel that would imply separability, the most relevant being continuity-type assumptions. In the case Y = R,
it is known that existence of a Borel measurable feature map for the kernel suffices for separability of its
RKHS [34], which is much weaker than continuity. However, we are unaware of similar results for general Y .

16



Lemma B.2 (Convergence of regularized RKHS approximation error). Suppose that G is in the
L2
ν-closure of H. Under the prevailing assumptions of this section,

lim
ϑ→0

AG(ϑ) = 0 . (B.7)

Proof. By Lem. B.1 and the Woodbury identity [33, Thm. 1], it holds that

ιGϑ = ι(ι∗ι + ϑ IdH)−1ι∗G = K(K + ϑ IdL2
ν
)−1G = (K + ϑ IdL2

ν
)−1KG .

The second equality holds by simultaneous diagonalization. Writing G in the eigenbasis of K yields

G − ιGϑ =
[
IdL2

ν
−(K + ϑ IdL2

ν
)−1K

]
G =

∑
j∈N

ϑ

λj + ϑ
⟨ej ,G⟩L2

ν
ej .

Similarly, using the norm isometry between L2
ν and the RKHS [see, e.g., 8, pp. 403–404] we obtain

∥Gϑ∥2H = ∥K−1/2ιGϑ∥2L2
ν
= ∥K1/2(K + ϑ IdL2

ν
)−1G∥2L2

ν
=
∑
j∈N

( √
λj

λj + ϑ

)2

⟨ej ,G⟩2L2
ν
.

Since the infimum in (B.6) is attained at Gϑ (B.3), we deduce that

AG(ϑ) = ∥G − ιGϑ∥2L2
ν
+ ϑ∥Gϑ∥2H

=
∑
j∈N

ϑ2

(λj + ϑ)2
⟨ej ,G⟩2L2

ν
+
∑
j∈N

ϑλj
(λj + ϑ)2

⟨ej ,G⟩2L2
ν

=
∑
j∈N

( ϑ

λj + ϑ

)
⟨ej ,G⟩2L2

ν
.

Using ϑ/(λj + ϑ) ≤ 1 for each j ∈ N and G ∈ HL2
ν (the L2

ν-closure of H), it follows that

AG(ϑ) =
∑

{j∈N |λj ̸=0}

( ϑ

λj + ϑ

)
⟨ej ,G⟩2L2

ν
→ 0 as ϑ → 0 (B.8)

by dominated convergence.

The rate of convergence of AG to zero can be quantified under an additional regularity assumption.

Lemma B.3 (Convergence rate under Hölder source condition). Suppose G ∈ Im(Kr/2) for some
r ≥ 0. Then for any ϑ > 0, it holds under the prevailing assumptions of this section that

AG(ϑ) ≤ ∥K−r/2G∥2L2
ν(X ;Y) ×

{
ϑr, if r ∈ [0, 1] ,

ϑ∥K∥r−1
L(L2

ν)
, if r > 1 .

(B.9)

Proof. The proof closely follows the argument of Smale and Zhou [42, Thm. 4, p. 295]. By
hypothesis, there exists FG ∈ L2

ν(X ;Y) such that G = Kr/2FG . Then

AG(ϑ) =
∑
j∈N

ϑλrj
λj + ϑ

⟨ej , FG⟩2L2
ν
≤
(
sup
j∈N

ϑλrj
λj + ϑ

)
∥FG∥2L2

ν
.

For any j ∈ N, the argument of the supremum equals
ϑλrj

λj + ϑ
=
( λj
λj + ϑ

)( λj
λj + ϑ

)r−1 ϑ

(λj + ϑ)1−r
= ϑr

( λj
λj + ϑ

)r( ϑ

λj + ϑ

)1−r
.

This is bounded above by ϑr for all j ∈ N if r ≥ 0 and r ≤ 1. Otherwise, r > 1 and
ϑλrj

λj + ϑ
= ϑλr−1

j

( λj
λj + ϑ

)
≤ ϑλr−1

j .

Taking the supremum over j ∈ N completes the proof.

In Lem. B.3, G satisfies G ∈ H if r ≥ 1, and the rate of convergence of AG(ϑ) is at least as fast as
O(ϑ) as ϑ → 0. When r ∈ [0, 1), then G /∈ H and the rate becomes slower than linear in ϑ.
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C Proofs for section 3

In this section, we prove Thm. 3.4 and its main consequences.

Proof of Theorem 3.4. Under the hypotheses, (4.2) in Prop. 4.1 holds with probability at least 1− δ
provided that M ≥ λ−1 log(16/δ) and N ≥ λ−2 log(8/δ). That is, RN (α̂;G) ≤ Rλ

N (α̂;G) ≤ βλ,
where β = β(ρ, λ,GH, η) is given by (3.3). In particular, α̂ ∈ Aβ (4.3) on the same event (by
Cor. 4.2). It follows that, on this event,

R(α̂;G)− RN (α̂;G) ≤ sup
α∈Aβ

∣∣RN (α;G)− R(α;G)
∣∣ .

Application of Prop. 4.7 shows that the right hand side of the above display is bounded above by

32
√
6e3/2

(
∥G∥2L∞

ν
+ ∥φ∥2L∞β(ρ, λ,GH, η)

)
λ ≤ 79e3/2

(
∥G∥2L∞

ν
+ ∥φ∥2L∞β(ρ, λ,GH, η)

)
λ

with probability at least 1 − δ because N ≥ λ−2 log(8/δ) ≥ log(2/δ). Recalling (4.1), using
1 ≤ 79e3/2, and applying a union bound completes the proof.

Proof of Corollary 3.8. Since G = ρ+ GH, we compute

R(α̂;GH) =
∥∥GH − Φ( · ; α̂)

∥∥2
L2

ν
=
∥∥−ρ+ [G − Φ( · ; α̂)]

∥∥2
L2

ν

≤ 2∥ρ∥2L2
ν
+ 2∥G − Φ( · ; α̂)∥2L2

ν

= 2Eu∼ν∥ρ(u)∥2Y + 2R(α̂;G) .

By (3.2) and (3.3), we see that the term E∥ρ(u)∥2Y also appears in the upper bound for R(α̂;G).
Collecting like terms and enlarging constants proves the assertion.

Proof of Theorem 3.10. For k ∈ N and δ ∈ (0, 1), the trained RFM satisfies ∥G − Φ( · ; α̂(k))∥L2
ν
≤

csk for some deterministic constant c > 0, where the sequence sn → 0 as n → ∞ is given by the
right hand side of (3.9) with λ = λn for each n ∈ N (by Lem. B.2). This inequality holds with
probability at least 1 − δ if M ≳ λ−1

k log(2/δ) and N ≳ λ−2
k log(2/δ) by Thm. 3.4. Now choose

δ = λk. Then ∑
k∈N

Pr
{
∥G − Φ( · ; α̂(k))∥L2

ν
> csk

}
≤
∑
k∈N

λk < ∞ .

The first Borel–Cantelli lemma establishes that there exists an N-valued random variable k0 such that
∥G − Φ( · ; α̂(k))∥L2

ν
≤ csk for all k > k0 almost surely. This implies the desired result.

Proof of Theorem 3.12. Application of Thm. 3.4 leads to the high probability bound (3.9) by the
same argument from Sect. 3.3. Using that λ ≲ 1 and Lem. B.3 proves the assertion.

Proof of Corollary 3.13. Apply Thm. 3.12 to get a high probability bound. Choose λ = λk = δ.
Then the proof follows that of Thm. 3.10 except with {sk} replaced by {λ(r∧1)/2

k }.

D Proofs for section 4

This section provides proofs of the error bounds for the regularized empirical risk (SM D.1) and the
generalization gap (SM D.2).

D.1 Proofs for subsection 4.1: Bounding the regularized empirical risk

We now prove Prop. 4.1. Supporting results used in the proof appear after the argument in the
subsequent subsections (SM D.1.1, D.1.2, and D.1.3).
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Proof of Proposition 4.1. Our starting point is (4.5). We first note by linearity that

2

N

N∑
n=1

⟨ηn,Φ(un; α̂)⟩Y = ∥α̂∥M
(

2

N

N∑
n=1

〈
ηn,Φ(un; α̂/∥α̂∥M )

〉
Y

)

≤ ∥α̂∥M
(
2 sup
α′∈A1

∣∣∣∣∣ 1N
N∑
n=1

⟨ηn,Φ(un;α′)⟩Y
∣∣∣∣∣
)
,

where A1 =
{
α′ ∈ RM

∣∣ ∥α′∥2M ≤ 1
}

, provided that ∥α̂∥M > 0. Otherwise, the inequality in the
above display holds trivially. Next, we define

t :=
1

M

M∑
m=1

|α̂m|2 = ∥α̂∥2M , (D.1)

AλN,M := Rλ
N (α;G) + 2

N

N∑
n=1

⟨−ηn,Φ(un;α)⟩Y , and (D.2)

cN,M :=

(
2 sup
α′∈A1

∣∣∣∣∣ 1N
N∑
n=1

⟨ηn,Φ(un;α′)⟩Y
∣∣∣∣∣
)2

. (D.3)

The inequality in (4.5) and the arithmetic-mean–geometric-mean inequality imply that

λt ≤ Rλ
N (α̂;G) ≤ AλN,M +

√
cN,M t ≤ AλN,M +

1

2
λ−1cN,M +

1

2
λt . (D.4)

Subtracting λt/2 from both sides and multiplying through by 2λ−1 yields

t ≤ 2λ−1AλN,M + λ−2cN,M . (D.5)

Substituting (D.5) back into the right-most side of (D.4) gives

Rλ
N (α̂;G) ≤ 2AλN,M + λ−1cN,M . (D.6)

All of the above calculations hold with probability one. To complete our estimate of Rλ
N (α̂;G), it

remains to upper bound the AλN,M (D.2) and cN,M (D.3) terms. We begin with the latter.

Lemmas D.4 and D.5 (with t = 1) and (A.7) show that

√
cN,M ≤ 4∥η∥ψ1(Y)∥φ∥L∞√

N
+ 16e3/2∥η∥ψ1(Y)∥φ∥L∞

√
log(1/δ)

N

≤ 16e3/2∥η∥ψ1(Y)∥φ∥L∞

√
6 log(2/δ)

N

(D.7)

with probability at least 1 − δ if N ≥ log(2/δ) ≥ log(1/δ). We used the inequalities 4 ≤ 16e3/2,√
a+

√
b ≤

√
2(a+ b), and 1 ≤ 2 log(2/δ) to get to the last line.

Continuing, we bound AλN,M . It has several error contributions originating from two terms. The first
term in (D.2) is Rλ

N (α;G), where α ∈ RM is arbitrary. By Assumption 3.2, G = ρ+ GH so that

Rλ
N (α;G) ≤ λ∥α∥2M + 2RN (α;GH) +

2

N

N∑
n=1

∥ρ(un)∥2Y ≤ 2Rλ
N (α;GH) +

2

N

N∑
n=1

∥ρ(un)∥2Y .

(D.8)
By Lem. 4.5, it holds with probability at least 1− δ that

2

N

N∑
n=1

∥ρ(un)∥2Y ≤ 4Eu∥ρ(u)∥2Y +
9∥ρ∥2L∞

ν
log(2/δ)

N
. (D.9)

Next, we bound the first term on the right hand side in (D.8). Since GH ∈ H, there exists αH ∈
L2
µ(Θ;R) such that

GH = Eθ∼µ
[
αH(θ)φ( · ; θ)

]
and ∥GH∥2H = Eθ∼µ|αH(θ)|2 .
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With αH as in the above display, choose once and for all α ≡ α⋆ ∈ RM as in (4.7). By Lem. 4.3,

2Rλ
N (α⋆;GH) ≤ 162λ∥GH∥2H (D.10)

with probability at least 1− δ if M ≥ λ−1 log(4/δ). On the same event,

∥α⋆∥2M ≤ Eθ |αH(θ)|2
(
1 +

2 log(2/δ)

λM
+

√
2 log(2/δ)

λM

)
≤ 5Eθ |αH(θ)|2 = 5∥GH∥2H

by Lem. D.3. This fact and Lem. 4.6 (with α ≡ α⋆ as in (4.7)) shows that the second and final term
in AλN,M (D.2) satisfies with probability at least 1− δ the upper bound

2

N

N∑
n=1

⟨−ηn,Φ(un;α
⋆)⟩Y ≤ 40e3/2∥GH∥H∥η∥ψ1(Y)∥φ∥L∞

√
log(2/δ)

N
. (D.11)

Combining the estimates (D.7), (D.8), (D.9), (D.10), and (D.11), recalling (D.6), and invoking the
union bound, we deduce that if N ≥ λ−2 log(2/δ), then

Rλ
N (α̂;G) ≤ C0λ+ 8Eu∼ν∥ρ(u)∥2Y + 18∥ρ∥2L∞

ν
λ2

with probability at least 1− 4δ, where

C0 := 324∥GH∥2H + 80e3/2∥η∥ψ1(Y)∥φ∥L∞∥GH∥H + 1536e3∥η∥2ψ1(Y)∥φ∥2L∞

≤ (324 + 4)∥GH∥2H + 1936e3∥η∥2ψ1(Y)∥φ∥2L∞ .

In the last line, we used Young’s inequality with ε = 1/8, that is, ab ≤ εa2/2 + b2/(2ε) with
a = 80e3/2∥η∥ψ1(Y)∥φ∥L∞ and b = ∥GH∥H. This proves the asserted upper bound.

D.1.1 Proofs for subsection 4.1.1: Bounding the approximation error

Given a function α ∈ L2
µ(Θ;R), we denote its cut-off at level T > 0 by

θ 7→ α≤T (θ) := α(θ)1{|α(θ)|≤T} . (D.12)

This subsection is devoted to the proof of Lem. 4.3, which is based on the following three lemmas.
Lemma D.1. Suppose G ∈ H belongs to the RKHS H. Let α ∈ L2

µ(Θ;R) be such that G =

Eθ[α(θ)φ( · ; θ)]. Let u1, . . . , uN ∼ ν be iid samples and νN = 1
N

∑N
n=1 δun be the corresponding

empirical measure. Then almost surely,∥∥G − Eθ[α≤T (θ)φ( · ; θ)]
∥∥2
L2

νN

≤ ∥φ∥2L∞(Eθ |α(θ)|2)2
T 2

for all T > 0 . (D.13)

Proof. Fix u ∈ X and define α>T := α− α≤T . The claim follows from

∥G(u)− Eθ[α≤T (θ)φ(u; θ)]∥2Y = ∥Eθ[α>T (θ)φ(u; θ)]∥2Y ≤ ∥φ∥2L∞(Eθ |α>T (θ)|)2

and the observation that Eθ |α>T (θ)| ≤ Eθ |α(θ)|2/T .

The previous lemma controls the error incurred by truncating the coefficient function of elements in
the RKHS. The next lemma provides a bound on sample average approximations of these truncations.

Lemma D.2. Let u1, . . . , uN ∼ ν be iid samples and let νN = 1
N

∑N
n=1 δun

denote the correspond-
ing empirical measure. For α ∈ L2

µ(Θ;R), let Z = Z(θ) be the L2
νN (X ;Y)-valued random variable

defined for θ ∼ µ by
Z = α≤T (θ)φ( · ; θ) . (D.14)

If Z1, . . . , ZM are M iid copies of Z, then it holds with probability at least 1− δ that∥∥∥∥∥ 1

M

M∑
m=1

Zm − EZ

∥∥∥∥∥
2

L2
νN

≤ 32T 2∥φ∥2L∞ log2(2/δ)

M2
+

4∥φ∥2L∞ log(2/δ)Eθ |α(θ)|2
M

. (D.15)
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Proof. By boundedness of |α≤T | ≤ T , we have the trivial uniform upper bound ∥Zm∥L2
νN

≤
T∥φ∥L∞ for each m. The variance is bounded above as

σ2 := E ∥Z − EZ∥2L2
νN

≤ E ∥Z∥2L2
νN

≤ ∥φ∥2L∞ Eθ |α(θ)|2 .
By Lem. A.2 and Thm. A.1, it holds with probability at least 1− δ that∥∥∥∥∥ 1

M

M∑
m=1

Zm − EZ

∥∥∥∥∥
L2

νN

≤ 4T∥φ∥L∞ log(2/δ)

M
+

√
2σ2 log(2/δ)

M
.

Squaring both sides and substitution of the above bound on σ2 yields the claimed estimate.

The third lemma below develops a high probability bound on the empirical approximation of the
RKHS norm of truncated elements in the RKHS.
Lemma D.3. Let α ∈ L2

µ(Θ;R) and {θm} ∼ µ⊗M . With probability at least 1− δ, it holds that

1

M

M∑
m=1

|α≤T (θm)|2 ≤ Eθ |α(θ)|2 +
4T 2 log(2/δ)

M
+

√
2T 2 Eθ |α(θ)|2 log(2/δ)

M
. (D.16)

Proof. We apply Bernstein’s inequality (A.2) to the random variable Z(θ) := |α≤T (θ)|2 with θ ∼ µ
and M ∈ N iid copies Z1, . . . , ZM of Z defined by Zm = Z(θm) for each m. We note that |Z| ≤ T 2

by definition. The variance of Z satisfies the upper bound
σ2 := E|Z − EZ|2 ≤ E|Z|2 = Eθ |α≤T (θ)|4 ≤ T 2 Eθ |α(θ)|2 .

It follows from Lem. A.2 and Thm. A.1 that

1

m

M∑
m=1

Zm ≤ EZ +
4T 2 log(2/δ)

M
+

√
2σ2 log(2/δ)

M

with probability at least 1− δ. This in turn implies that

1

M

M∑
m=1

|α≤T (θm)|2 ≤ Eθ |α(θ)|2] +
4T 2 log(2/δ)

M
+

√
2T 2 E |α(θ)|2 log(2/δ)

M

with at least the same probability. This is the claim.

We are now in a position to prove Lem. 4.3.

Proof of Lemma 4.3. Write T := T (λ) and α := αH. Next, define α≤T ∈ L2
µ(Θ;R) by

θ 7→ α≤T (θ) := α(θ)1{|α(θ)|≤T} =

{
α(θ), if |α(θ)| ≤ T ,

0, otherwise .

We define α>T := α1{|α|>T} similarly, so that α ≡ α≤T +α>T holds true. Then for θ1, . . . , θM , we
have α⋆ ∈ RM given by α⋆m = α≤T (θm) for each m ∈ {1, . . . ,M}. We claim that Rλ

N (α⋆;G) ≤
(74∥φ∥2L∞ + 7)λEθ |αH(θ)|2 with high probability, which implies the asserted bound (4.8). To see
this, we make the error decomposition

Rλ
N (α⋆;G) = 1

N

N∑
n=1

∥∥∥∥∥G(un)− 1

M

M∑
m=1

α≤T (θm)φ(un; θm)

∥∥∥∥∥
2

Y

+
λ

M

M∑
m=1

|α≤T (θm)|2 (D.17)

≤ 2

N

N∑
n=1

∥G(un)− Eθ[α≤T (θ)φ(un; θ)]∥2Y (I)

+
2

N

N∑
n=1

∥∥∥∥∥ 1

M

M∑
m=1

α≤T (θm)φ(un; θm)− Eθ[α≤T (θ)φ(un; θ)]

∥∥∥∥∥
2

Y

(II)

+
λ

M

M∑
m=1

|α≤T (θm)|2 . (III)
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Each of the three terms (I)–(III) is estimated as follows.

By Lem. D.1, we can bound

(I) ≤ 2∥φ∥2L∞(Eθ |α(θ)|2)2
T 2

= 2λ∥φ∥2L∞ Eθ |α(θ)|2 .

Lem. D.2 delivers the bound

(II) ≤ 64T 2∥φ∥2L∞ log(2/δ)2

M2
+

8∥φ∥2L∞ log(2/δ)Eθ |α(θ)|2
M

= λEθ |α(θ)|2
(
64∥φ∥2L∞ log(2/δ)2

λ2M2
+

8∥φ∥2L∞ log(2/δ)

λM

)
with probability at least 1− δ.

Last, Lem. D.3 yields

(III) ≤ λE |α(θ)|2 + 4λT 2 log(2/δ)

M
+ λ

√
2T 2 E |α(θ)|2 log(2/δ)

M

= λEθ |α(θ)|2
(
1 +

4 log(2/δ)

λM
+

√
2 log(2/δ)

λM

)

with probability at least 1− δ.

Combining the three estimates, it follows that if

log(2/δ)

λM
≤ 1 ,

then
Rλ
N (α⋆;GH) = Rλ

N (α⋆;G) ≤ (74∥φ∥2L∞ + 7)λEθ |αH(θ)|2

with probability at least 1− 2δ. We used the fact that
√
2 ≤ 2. This is the claimed upper bound.

D.1.2 Proof for subsection 4.1.2: Bounding the misspecification error

Recall that ρ ∈ L∞
ν under Assumption 3.2. We now prove Lem. 4.5.

Proof of Lemma 4.5. Let Z1 = ∥ρ(u1)∥2Y , which is uncentered. Almost surely, Z1 ≤ ∥ρ∥2L∞
ν

and

E|Z1 − EZ1|2 ≤ EZ2
1 = Eu∼ν∥ρ(u)∥4Y ≤ ∥ρ∥2L∞

ν
Eu∼ν∥ρ(u)∥2Y .

Thus with probability at least 1− δ, Cor. A.2 and Thm. A.1 provide the bound

1

N

N∑
n=1

∥ρ(un)∥2Y ≤ Eu∥ρ(u)∥2Y +
4∥ρ∥2L∞

ν
log(2/δ)

N
+

√
2Eu∥ρ(u)∥2Y∥ρ∥2L∞

ν
log(2/δ)

N

≤ 2Eu∥ρ(u)∥2Y +

9
2∥ρ∥2L∞

ν
log(2/δ)

N
.

To get the last inequality, we used the arithmetic-mean–geometric-mean inequality
√
ab ≤ (a+ b)/2

to obtain √(
2Eu∥ρ(u)∥2Y

)(
∥ρ∥2L∞

ν
log(2/δ)/N

)
≤ Eu∥ρ(u)∥2Y +

1
2∥ρ∥2L∞

ν
log(2/δ)

N
.

Multiplying the penultimate chain of inequalities through by two completes the proof.
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D.1.3 Proofs for subsection 4.1.3: Bounding the noise error

This subsection provides proofs for the lemmas used to control the error stemming from iid noise
corrupting the output data as in Assumption 3.3. The estimates themselves could be improved by
using (A.10) instead of (A.11) and by tracking the noise variance E∥η∥2Y instead of bounding it above
by 4∥η∥2ψ1(Y). This would be relevant in settings where the noise is small or tends to zero with the
sample size. We defer such considerations to future work.

Proof of Lemma 4.6. Define Zn(α) := ⟨−ηn,Φ(un;α)⟩Y for each n. Conditioned on {θm}, it holds
that Zn is an iid copy of Z1. By the assumption E[η1 |u1] = 0, we have

EZ1(α) = E(u1,η1)[⟨−η1,Φ(u1;α)⟩Y ]
= Eu1∼ν [E[⟨−η1,Φ(u1;α)⟩Y |u1]]

= Eu1∼ν [⟨−E[η1 |u1],Φ(u1;α)⟩Y ]
= 0 .

(D.18)

Next,
|Z1(α)| ≤ ∥η1∥Y∥Φ(u1;α)∥Y ≤ ∥η1∥Y∥α∥M∥φ∥L∞

by two applications of the Cauchy–Schwarz inequality, one in Y and the other in RM . We deduce
that ∥Z1(α)∥ψ1

≤ ∥η1∥ψ1(Y)∥α∥M∥φ∥L∞ , conditioned on {θm}. Prop. A.4, Thm. A.1 (Bernstein’s
inequality), and a similar argument to that in the proof of Cor. A.5 deliver the asserted bound.

The next two lemmas are used in the proof of Prop. 4.1 to control the third and final term in (4.5).
Lemma D.4 (Linear empirical process: Concentration). Fix t > 0 and δ ∈ (0, 1). Define

Zt := sup
α∈At

∣∣∣∣ 1N
N∑
n=1

⟨ηn,Φ(un;α)⟩Y
∣∣∣∣ , where At :=

{
α ∈ RM

∣∣ ∥α∥2M ≤ t
}
. (D.19)

If N ≥ log(1/δ), then conditioned on the realizations {θm} in the family Φ it holds that

Zt ≤ E{(un,ηn)}[Zt] + 8e3/2∥η1∥ψ1(Y)∥φ∥L∞

√
log(1/δ)

N

√
t (D.20)

with probability at least 1− δ.

Proof. For any α ∈ At, we compute

|⟨η1,Φ(u1;α)⟩Y | =
∣∣∣∣ 1M

M∑
m=1

αm⟨η1, φ(u1; θm)⟩Y
∣∣∣∣

≤
(

1

M

M∑
m=1

|αm|2
)1/2(

1

M

M∑
m=1

⟨η1, φ(u1; θm)⟩2Y
)1/2

≤
√
t

(
∥η1∥2Y

1

M

M∑
m=1

∥φ(u1; θm)∥2Y
)1/2

.

We used the Cauchy–Schwarz inequality twice. By the boundedness of φ, the above display gives∥∥⟨η1,Φ(u1; · )⟩
∥∥
ψ1(C(At;R))

=
∥∥∥ sup
α∈At

∣∣⟨η1,Φ(u1;α)⟩Y
∣∣∥∥∥
ψ1

≤ ∥η1∥ψ1(Y)∥φ∥L∞
√
t .

The iid random variables ⟨ηn,Φ(un; · )⟩Y : α 7→ ⟨ηn,Φ(un;α)⟩Y (conditional on {θm}) are linear
and hence continuous. Application of (A.11) in Cor. A.5 to ⟨ηn,Φ(un; · )⟩Y taking value in the
separable Banach space C(At;R) of continuous functions from compact set At ⊂ RM into R,
equipped with the supremum norm, completes the proof.

The previous lemma gives a concentration bound for the linear empirical process and the next lemma
estimates its expectation.
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Lemma D.5 (Linear empirical process: Expectation). Fix t > 0. Define At as in Lem. D.4. Then

E{(un,ηn)} sup
α∈At

∣∣∣∣ 1N
N∑
n=1

⟨ηn,Φ(un;α)⟩Y
∣∣∣∣ ≤ ∥η1∥L2

P(Ω;Y)∥φ∥L∞

√
N

√
t . (D.21)

Proof. For any α ∈ At, the Cauchy–Schwarz inequality in RM delivers the bound∣∣∣∣ 1N
N∑
n=1

⟨ηn,Φ(un;α)⟩Y
∣∣∣∣ = ∣∣∣∣ 1M

M∑
m=1

αm
1

N

N∑
n=1

⟨ηn, φ(un; θm)⟩Y
∣∣∣∣

≤
(

1

M

M∑
m=1

|αm|2
)1/2

(
1

M

M∑
m=1

[
1

N

N∑
n=1

⟨ηn, φ(un; θm)⟩Y
]2)1/2

.

Let the left hand side of (D.21) be denoted by Ξt. We next note that

E{(un,ηn)}
[
⟨ηn, φ(un; θm)⟩Y

]
= Eun∼ν

[
E
[
⟨ηn, φ(un; θm)⟩Y |un

]]
= Eun∼ν [⟨E[ηn |un], φ(un; θm)⟩Y ]
= 0 .

Using the independence of (un, ηn) and (un′ , ηn′) for any two indices n ̸= n′, together with the
above observation, we thus obtain

E{(un,ηn)}
[
⟨ηn, φ(un; θm)⟩Y ⟨ηn′ , φ(un′ ; θm)⟩Y

]
= E(un,ηn)

[
⟨ηn, φ(un; θm)⟩Y

]
E(un′ ,ηn′ )

[
⟨ηn′ , φ(un′ ; θm)⟩Y

]
= 0 .

This implies that

Ξt ≤
√
t

N
E{(un,ηn)}

√√√√ 1

M

M∑
m=1

N∑
n,n′=1

⟨ηn, φ(un; θm)⟩Y ⟨ηn′ , φ(un′ ; θm)⟩Y

≤
√
t

N

√√√√ 1

M

M∑
m=1

N∑
n,n′=1

E{(un,ηn)}
[
⟨ηn, φ(un; θm)⟩Y ⟨ηn′ , φ(un′ ; θm)⟩Y

]

=

√
t√
N

√√√√ 1

M

M∑
m=1

E(u1,η1)

〈
η1, φ(u1; θm)

〉2
Y

≤
√
t√
N

∥η1∥L2
P(Ω;Y)∥φ∥L∞ .

We used Jensen’s inequality in the second line, independence and the zero-mean property of the
summands in the third line, and the Cauchy–Schwarz inequality in Y in the final line.

D.2 Proofs for subsection 4.2: Bounding the generalization gap

This subsection upper bounds the generalization gap with suprema techniques. We begin with the
following empirical process concentration inequality. It gives uniform control on the difference
between the empirical and population risk functionals. The process, as a function of its index α, is
quadratic because the RFM Φ( · ;α) is linear in α.
Lemma D.6 (Quadratic empirical process: Concentration). Fix t > 0 and δ ∈ (0, 1). Define

Zt := sup
α∈At

∣∣RN (α;G)− R(α;G)
∣∣ (D.22)

= sup
α∈At

∣∣∣∣ 1N
N∑
n=1

∥G(un)− Φ(un;α)∥2Y − Eu∼ν∥G(u)− Φ(u;α)∥2Y
∣∣∣∣ , (D.23)
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where
At :=

{
α ∈ RM

∣∣ ∥α∥2M ≤ t
}
. (D.24)

If N ≥ log(1/δ), then conditioned on the realizations {θm} in the family Φ, it holds that

Zt ≤ E{un}[Zt] + 32e3/2(∥G∥2L∞
ν

+ ∥φ∥2L∞t)

√
log(1/δ)

N
(D.25)

with probability at least 1− δ.

Proof. For any α ∈ At and n ∈ {1, . . . , N}, let

Xn(t, α) := ∥G(un)− Φ(un;α)∥2Y − Eu∼ν∥G(u)− Φ(u;α)∥2Y .

We compute

|X1(t, α)| ≤ 2∥G(u1)∥2Y + 2Eu∼ν∥G(u)∥2Y + 2∥Φ(u1;α)∥2Y + 2Eu∼ν∥Φ(u;α)∥2Y
≤ 4∥G∥2L∞

ν
+ 4∥φ∥2L∞t .

We used the fact that for any u ∈ X ν-almost surely, ∥Φ(u;α)∥2Y ≤ t∥φ∥2L∞ on the set At (by the
Cauchy–Schwarz inequality). This implies that∥∥X1(t, · )

∥∥
ψ1(C(At;R))

=
∥∥∥ sup
α∈At

|X1(t, α)|
∥∥∥
ψ1

≤ 4∥G∥2L∞
ν

+ 4∥φ∥2L∞t .

The Xn(t, · ) do indeed belong to C(At;R) almost surely, as they can be written as a sum of affine
and quadratic forms on RM in the α variable. Application of (A.11) in Cor. A.5 (taking the separable
Banach space to be C(At;R) equipped with the supremum norm) completes the proof.

Since the supremum concentrates around its mean, it remains to show that its mean is small as a
function of the sample size. The next lemma does this with Rademacher symmetrization.
Lemma D.7 (Quadratic empirical process: Expectation). Fix t > 0. Define Zt as in Lem. D.6.
Conditioned on the realizations {θm} in the family Φ, it holds that

E{un}[Zt] ≤
4∥G∥2L∞

ν√
N

+
4∥φ∥2L∞√

N
t . (D.26)

Proof. By Giné–Zinn symmetrization [see, e.g., 46, Sect. 4.2, Prop. 4.11, pp. 107–108],

E{un}[Zt] ≤ 2E sup
α∈At

∣∣∣∣ 1N
N∑
n=1

εn∥G(un)− Φ(un;α)∥2Y
∣∣∣∣, where εn

iid∼ Unif
(
{+1,−1}

)
,

because the original summands (conditioned on {θm}) are independent. The expectation on the
right is interpreted as the conditional expectation given {θm} (i.e., E{un},{εn} over the data and
Rademacher variables only). The right hand side is the Rademacher complexity of the RF model
class composed with the square loss. Expanding the square, it is bounded above by

2E{un},{εn}

∣∣∣∣ 1N
N∑
n=1

εn∥G(un)∥2Y
∣∣∣∣ (I)

+ 4E{un},{εn} sup
α∈At

∣∣∣∣ 1N
N∑
n=1

εn⟨G(un),Φ(un;α)⟩Y
∣∣∣∣ (II)

+ 2E{un},{εn} sup
α∈At

∣∣∣∣ 1N
N∑
n=1

εn∥Φ(un;α)∥2Y
∣∣∣∣ . (III)

We now estimate each term. The first term (I) satisfies the standard Monte Carlo bound

(I) ≤ 2

(
E
∣∣∣∣ 1N

N∑
n=1

εn∥G(un)∥2Y
∣∣∣∣2
)1/2

=
2√
N

(
1

N

N∑
n=1

E∥G(un)∥4Y

)1/2

≤
2∥G∥2L∞

ν√
N

.

25



For the second term (II), we begin by estimating the empirical average on the set At as∣∣∣∣ 1N
N∑
n=1

εn⟨G(un),Φ(un;α)⟩Y
∣∣∣∣ = ∣∣∣∣ 1M

M∑
m=1

αm

(
1

N

N∑
n=1

εn⟨G(un), φ(un; θm)⟩Y
)∣∣∣∣

≤
√
t

(
1

M

M∑
m=1

∣∣∣∣ 1N
N∑
n=1

εn⟨G(un), φ(un; θm)⟩Y
∣∣∣∣2)1/2

by the Cauchy–Schwarz inequality in RM . We deduce by Jensen’s inequality and independence that

(II) ≤ 4
√
t

N

(
1

M

M∑
m=1

N∑
n,n′=1

E[εnεn′ ]E{un}
[
⟨G(un), φ(un; θm)⟩Y⟨G(un′), φ(un′ ; θm)⟩Y

])1/2

=
4
√
t

N

(
1

M

M∑
m=1

N∑
n=1

Eu∼ν⟨G(u), φ(u; θm)⟩2Y
)1/2

.

A final application of the Cauchy–Schwarz inequality in Y in the last line shows that the second term
(II) is bounded above by 4

√
t∥G∥L∞

ν
∥φ∥L∞/

√
N . By Young’s inequality ab ≤ a2/2 + b2/2, we

further bound

4∥G∥L∞
ν
∥φ∥L∞

√
t√

N
=

(
2∥G∥L∞

ν

N1/4

)(
2∥φ∥L∞

√
t

N1/4

)
≤

2∥G∥2L∞
ν√

N
+

2∥φ∥2L∞t√
N

.

The third term (III) is estimated in a similar manner. Expanding the empirical average on At yields∣∣∣∣ 1N
N∑
n=1

εn∥Φ(un;α)∥2Y
∣∣∣∣ = ∣∣∣∣ 1M

M∑
m=1

αm

(
1

M

M∑
m′=1

αm′β
(N)
m,m′

)∣∣∣∣, where

β
(N)
m,m′ =

1

N

N∑
n=1

εn⟨φ(un; θm), φ(un; θm′)⟩Y .

The first equality in the above display satisfies the upper bound

√
t

(
1

M

M∑
m=1

∣∣∣∣ 1M
M∑

m′=1

αm′β
(N)
m,m′

∣∣∣∣2)1/2

≤
√
t

(
1

M

M∑
m=1

t

[
1

M

M∑
m′=1

∣∣β(N)
m,m′

∣∣2])1/2

=
t

N

√√√√ 1

M2

M∑
m,m′=1

∣∣∣∣ N∑
n=1

εn⟨φ(un; θm), φ(un; θm′)⟩Y
∣∣∣∣2

by two applications of the Cauchy–Schwarz inequality in RM . Finally, we deduce that

(III) ≤ 2t

N

√√√√ 1

M2

M∑
m,m′=1

N∑
n=1

E{un}
〈
φ(un; θm), φ(un; θm′)

〉2
Y

≤ 2t√
N

√√√√ 1

M2

M∑
m,m′=1

Eu
[
∥φ(u; θm)∥2Y∥φ(u; θm′)∥2Y

]
≤ 2t∥φ∥2L∞√

N

by Jensen’s inequality, the fact that E[εnεn′ ] = δn,n′ , and the Cauchy–Schwarz inequality in Y .

Combining the three estimates completes the proof.

The proof of the main generalization gap bound (4.12) is now immediate.
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Proof of Proposition 4.7. Lem. D.6 and D.7 (applied with t = β) show that

Eβ({un}, {θm}) ≤
4(∥G∥2L∞

ν
+ ∥φ∥2L∞β)
√
N

+ 32e3/2(∥G∥2L∞
ν

+ ∥φ∥2L∞β)

√
log(1/δ)

N
(D.27)

with conditional probability (over {θm}) at least 1− δ if N ≥ log(1/δ). Since δ does not depend on
{θm}, we deduce by the tower rule of conditional expectation that the event implied by (D.27) has
P-probability at least 1− δ as well. Using the inequalities 4 ≤ 32e3/2 and

√
a+

√
b ≤

√
2(a+ b)

shows that the expression in (D.27) is bounded above by

32e3/2
(
∥G∥2L∞

ν
+ ∥φ∥2L∞β

)√2(1 + log(1/δ))

N
.

Application of the inequality 1 ≤ 2 log(2/δ), valid for δ ∈ (0, 1), implies (4.12) as asserted.

E Numerical experiment details

In this appendix, we detail the setup of the numerical experiment from Sect. 5 and provide additional
visualization of the function-valued RFM’s discretization-independence in Figure 3. All code used to
produce the numerical results and figures in this paper are available at

https://github.com/nickhnelsen/error-bounds-for-vvRF.

A RFM with M features is trained on N input-output pairs {(un,G(un))}Nn=1 according to the
vector-valued RF-RR algorithm. The ground truth map G : L2(T;R) → L2(T;R) is a nonlinear
operator defined by u(0)(·) 7→ u(·, 1), where u = {u(x, t)}x,t solves the partial differential equation

∂u

∂t
+

∂

∂x

(
u2

2

)
= 10−1 ∂

2u

∂x2
, (x, t) ∈ T× (0,∞) ,

with initial condition u(·, 0) = u(0) ∈ L2(T;R). Here, T ≃ (0, 2π)per is the 1D torus which comes
with periodic boundary conditions. The initial conditions un ∼ ν are sampled iid from a centered
Matérn-like Gaussian process according to [23, Sect. 6.3, p. 32].

The random features are defined in a similar way to the Fourier Space RFs in [32, Sect. 3.1, p. 15]:

φ(u(0); θ) = 2.6 · ELU
(
F−1{1(|k|≤kmax)χk · (Fu(0))k · (Fθ)k}k∈Z

)
and θ ∼ µ ,

where µ is also a centered Matérn Gaussian measure with covariance operator 1.82(− d2

dx2 +152 Id)−3.
In the above display, F maps a function to its Fourier series coefficients, and F−1 expresses a Fourier
coefficient sequence as a function expanded in the Fourier basis. The filter χ is given by [32, Eqn.
3.6, p. 15] with δ = 0.32 and β = 0.1. We take kmax = 64. The feature map φ lifts the notion of
hidden neuron in neural network architectures to function space.

In Figures 2 and 3, the quantity represented on the vertical axis is an empirical approximation to the
relative Bochner squared error:

1
N ′

∑N ′

n=1∥G(u′
n)− Φ(u′

n; α̂, {θm})∥2L2

1
N ′

∑N ′

n=1∥G(u′
n)∥2L2

≈ Eu∼ν∥G(u)− Φ(u; α̂, {θm})∥2L2

Eu∼ν∥G(u)∥2L2

=
R(α̂;G)
R(0;G) . (E.1)

In (E.1), N ′ = 500 is the size of the test set {(u′
n,G(u′

n))}N
′

n=1, where {u′
n}N

′

n=1 ∼ ν⊗N
′

is disjoint
from the training input set {un}Nn=1. The input and output spaces are discretized on the same p-
point equally spaced grid in (0, 2π). Thus, the discretized version of any input or output function
belonging to X = Y = L2(T;R) may be identified with an element of Rp. In Figures 2a and 3a, the
regularization factor is chosen as λ = 7 · 10−4/M and as λ = 3 · 10−6/

√
N in Figures 2b and 3b.

A priori, it is not clear whether this operator learning benchmark satisfies our theoretical assumptions
because we cannot verify that the Burgers’ solution operator belongs to the RKHS of (φ, µ) (or
the range of some power of the RKHS kernel integral operator). At a more technical level, the
feature map φ uses an unbounded activation function (ELU, the exponential linear unit), while our
theory is only developed for bounded RFs (Assumption 3.1). Nevertheless, the empirically obtained
parameter and sample complexity in Figure 2 reasonably fit the main result of our well-specified
theory (Theorem 3.7).
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(a) Varying M,λ, p for fixed N = 1548.
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Figure 3: Squared test error—which empirically approximates the population risk R(α̂;G)—versus
discretized output space dimension p, where G is the Burgers’ equation solution operator (SM E).
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