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ABSTRACT

Image-to-image (I2I) translation is vital in computer vision tasks like style transfer
and domain adaptation. While recent advances in GAN have enabled high-quality
sample generation, real-world challenges such as noise and distortion remain sig-
nificant obstacles. Although Gaussian noise injection during training has been
utilized, its theoretical underpinnings have been unclear. This work provides a
robust theoretical framework elucidating the role of Gaussian noise injection in
I2I translation models. We address critical questions on the influence of noise
variance on distribution divergence, resilience to unseen noise types, and optimal
noise intensity selection. Our contributions include connecting f -divergence and
score matching, unveiling insights into the impact of Gaussian noise on aligning
probability distributions, and demonstrating generalized robustness implications.
We also explore choosing an optimal training noise level for consistent performance
in noisy environments. Extensive experiments validate our theoretical findings,
showing substantial improvements over various I2I baseline models in noisy set-
tings. Our research rigorously grounds Gaussian noise injection for I2I translation,
offering a sophisticated theoretical understanding beyond heuristic applications.

1 INTRODUCTION

Image-to-image (I2I) translation has seen remarkable advancements in recent years and has emerged
as a thriving field within computer vision. In particular, models based on Generative Adversarial
Network (GAN) have gained significant attention due to their ability to generate high-quality images
and fast inference speed (Goodfellow et al., 2020). However, their performance significantly suffers
when handling noisy or distorted inputs, as shown in Fig. 1. The degradation of input image quality is
a common occurrence in real-world scenarios, spanning from low-light conditions to data transmission
through noisy channels (Anaya & Barbu, 2018; Plotz & Roth, 2017; Yue et al., 2020; Zamir et al.,
2020), underscoring a critical vulnerability intrinsic to I2I models.

To address this challenge, we explore a simple and widely applicable approach for boosting the noise
resilience of I2I translation models. This involves injecting isotropic Gaussian noise into source
domain images during training, as shown in Fig. 1. Our research tackles three core questions:

• How does the variance of Gaussian noise introduced during training impact the divergence
between real and generated distributions?

• How does the presence of Gaussian noise in training data influence the model’s ability to
handle unseen noise distributions and intensities during inference?

• Is it possible to identify an optimal noise intensity during training that guarantees consistent
performance across diverse noise intensities during inference?
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Figure 1: Overview of our framework. When dealing with noisy inputs, the original I2I translation
model will get failed results (top). By applying the Noise Injection to the original model during
training, we successfully improve the noise robustness of the original model (bottom).

Our contributions to this discourse are multifaceted: Firstly, we establish a novel connection between
f -divergence and score matching, shedding light on the implications of Gaussian noise injection on
I2I model training. This provides valuable insights into how injected noise impacts the alignment of
probability distributions. Secondly, we demonstrate that for arbitrary source signal, the robustness
of I2I systems to Gaussian noise implies resilience to other noise types with a matched covariance
matrix, underscoring the advantages of Gaussian noise injection for enhancing general robustness.
Thirdly, our study addresses the selection of the optimal noise variance, ensuring stability across
diverse independent and identically distributed (i.i.d.) noise forms. Experimental results showcase the
significant performance improvement achieved by the Gaussian noise injection technique, effectively
reducing sensitivity to noise in various I2I translation models operating in noisy environments.

2 RELATED WORK

In the realm of reliable I2I translation, Chrysos et al. (2020) introduced the Robust Conditional
GAN (RoCGAN), featuring a dual-pathway generator architecture with a shared decoder. Empirical
evaluations in face super-resolution and inpainting tasks demonstrated RoCGAN’s ability to produce
consistent outputs even in the presence of noise and perturbations. However, the dual-pathway
architecture’s computational demands and prolonged training duration raise concerns, particularly
regarding its adaptability to larger generative models where computational efficiency is crucial.
Moreover, while Chrysos et al. (2020); Wang et al. (2021); Jia et al. (2021) also explored noise
injection for GAN-based I2I, the research mainly focused on empirical findings, lacking theoretical
analysis. Additionally, the simulation results were limited to supervised I2I with paired training
samples, leaving uncertainties about its effectiveness for unsupervised I2I models.

On the theoretical front, studies on unconditional GANs (Arjovsky & Bottou, 2017; Jenni & Favaro,
2019) have demonstrated that noise injection during training can significantly improve learning
consistency and mitigate issues like model overfitting. Recently, this approach has gained interest in
adversarial defence, with theoretical solid justification and promising empirical results in boosting
robustness and resilience (Cohen et al., 2019; Goodfellow et al., 2014; Madry et al., 2017; Pinot
et al., 2019; Lee et al., 2019; Xie et al., 2023; Yang et al., 2023a; Dong & Xu, 2023). Yet it is
essential to note that these successes in classification do not directly translate to the complex task of
I2I translation. The distinction is profound - classification tasks culminate in discrete outputs, while
I2I models generate entire images, introducing unique challenges.

Advancements in diffusion-based probabilistic models (Song et al., 2021; 2020; Dhariwal & Nichol,
2021) have also explored controlled Gaussian noise addition to input images during the diffusion
process. These studies have shown promise in both supervised (Saharia et al., 2022b;a; Batzolis et al.,
2021; Li et al., 2022) and unsupervised (Sasaki et al., 2021; Choi et al., 2021; Zhao et al., 2022;
Kwon & Ye, 2022; Su et al., 2023) I2I tasks. However, as we will demonstrate later, these models
also exhibit vulnerability to noisy inputs, highlighting the need to explore noise-robustness strategies.
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Figure 2: System diagram. (a) Training Phase: For each clean image x in the training set, it is
augmented with i.i.d. Gaussian noise, resulting in x̄. The generator then produces the corresponding
output, ȳ. (b) Inference Phase: A noise-corrupted test image, x̂, serves as the input to the generator,
synthesizing the image ŷ.

In summary, while Gaussian noise injection can enhance the noise robustness of I2I models, a
comprehensive investigation of its effectiveness, implications, and limitations is required. The main
aim of this paper is to provide a theoretical understanding of Gaussian noise injection’s role in
boosting the robustness of I2I translation models, rather than introducing new network architectures.

3 THEORETICAL ANALYSIS

Consider an image x ∈ Rd from the source domain X . In the GNI (Gaussian Noise Injection)
system of Fig. 2a, the GAN-based generative model G is trained by adding isotropic Gaussian
noise ē ∼ N (0, σ2

t Id) to each x ∈ X . This produces a noisy training image x̄ = x + ē, and the
corresponding output from the generator is ȳ = G(x̄). During inference, a noisy input image is
represented as x̂ = x+ e, and the corresponding output is ŷ = G(x̂), depicted in Fig. 2b. Unlike
prior methods such as randomized smoothing for classification, which inject Gaussian noise during
both training and inference, our framework only adds noise during training. This ensures quicker
inference, facilitating easy integration with numerous I2I systems.

In what follows, we utilize f -divergence (Polyanskiy, 2019) to study the influence of training noise
variance, adaptability to unseen noise, and the identification of optimal training noise intensity for
consistent performance. For brevity, notations, definitions, and proofs can be found in the Appendix.

3.1 RELATION BETWEEN f DIVERGENCE AND SCORE FUNCTION

Aligning the probability distributions of accurate and generated data is crucial to I2I translation, and
misalignment can result in unrealistic results. In this context, we examine the influence of Gaussian
noise injected into the source domain on this alignment. The theorem below describes how the
f -divergence between these distributions varies with the noise variance.
Theorem 1. Let PX,Y and QX,Y be two joint distributions on X × Y representing real data and
the data generated by a model, respectively. Define X̄ = X + σN , where N ∼ N (0, Id) is
standard d-dimensional isotropic Gaussian noise. Let P̄X̄,Y and Q̄X̄,Y represent the corresponding
distributions after Gaussian noise injection with their respective probability densities p̄(x̄,y) and
q̄(x̄,y). For the generator function f , if its second order derivative f ′′ exists andDf (PX,Y ∥ QX,Y )
is finite, then Df

(
P̄X̄,Y ∥ Q̄X̄,Y

)
satisfies

d

dσ2
Df

(
P̄X̄,Y ∥ Q̄X̄,Y

)
= −1

2
ηf (σ

2), (1)

in which ηf (σ2) represents the weighted mean square error between two score functions

ηf (σ
2) = EP̄X̄,Y

{
p̄(x̄,y)

q̄(x̄,y)
f ′′

(
p̄(x̄,y)

q̄(x̄,y)

)
∥∇x̄ log p̄(x̄,y)−∇x̄ log q̄(x̄,y)∥2

}
, (2)

where ∇x̄ log p̄(x̄,y) and ∇x̄ log q̄(x̄,y) are the score functions of p̄(x̄,y) and q̄(x̄,y), respectively.

The above theorem unveils how the rate of change ofDf

(
P̄ ∥ Q̄

)
concerning σ2 is portrayed through

ηf (σ
2
t ). In the case of KL-divergence, where f(t) = t log t, we can derive that

ηKL(σ
2) = EP̄X̄,Y

∥∇x̄ log p̄(x̄,y)−∇x̄ log q̄(x̄,y)∥2 , (3)
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identifying it as the Fisher divergence between p̄(x̄,y) and q̄(x̄,y) (Lyu, 2012; Verdú, 2010).

For small values of σ = σt, a Taylor series expansion yields

Df (PX,Y ∥ QX,Y ) = Df

(
P̄X+σtN ,Y ∥ Q̄X+σtN ,Y

)
+
σ2
t

2
ηf (σ

2
t ) + o(σ2

t ). (4)

Through optimization of the noise-injected term Df

(
P̄X+σtN ,Y ∥ Q̄X+σtN ,Y

)
for minimizing the

divergence between p̄(x + σtN , y) and q̄(x + σtN , y), the term ηf (σ
2
t ) tends to decrease. In the

ideal scenario where p̄(x+ σtN , y) = q̄(x+ σtN , y), the first two terms on the right side vanish,
leading to Df (PX,Y ∥ QX,Y ) = o(σ2

t ). Hence, by injecting Gaussian noise with small σ2
t and

aligning the noise-perturbed distributions during training, the model is guided to align the original,
noise-free distributions as well, which results in a coherent I2I transformation.

While previous research in information theory and machine learning has explored the relationship
between KL and Fisher divergences for marginal distributions (Verdú, 2010; Lyu, 2012; Kong et al.,
2023), we extend this understanding to f -divergence of joint distributions. This broader view deepens
our insight into divergence and noise injection, thereby fortifying the theoretical base for modelling
and manipulating complex dependencies within the I2I translation framework.

3.2 PERFORMANCE ANALYSIS FOR MISMATCHED NOISY INPUTS

This subsection explores the system’s capability to handle unseen noise during inference, as depicted
in Fig. 2b. Following the conventions of Theorem 1, let X and Y represent the clean source and
target domain random variables, and X̄ , Ȳ = G(X̄) denote the noisy counterparts during training.
Considering a new noisy input X̂ = X + E during inference, where E is independent of X

with zero mean and covariance matrix of Σe, the corresponding output is denoted by Ŷ = G(X̂).
Marginal distributions are denoted by P̄X̄ , P̂X̂ , Q̄Ȳ , Q̂Ŷ , and joint distributions by Q̄X̄,Ȳ and
Q̂X̂,Ŷ . Using data-processing properties in f -divergence (Polyanskiy, 2019), we have

Df

(
Q̂X̂,Ŷ ∥ Q̄X̄,Ȳ

)
= Df

(
P̂X̂ ∥ P̄X̄

)
, Df

(
Q̂Ŷ ∥ Q̄Ȳ

)
≤ Df

(
P̂X̂ ∥ P̄X̄

)
. (5)

The equations reveal insights for I2I models handling unseen noise. They show that the joint
input/output divergence equals the input marginal divergence. The output divergence is bounded
by this value, with equality under a reversible model. Many I2I models exhibit near reversibility,
approximating translation inversion. Paired I2I scenarios (Isola et al., 2017) span seasonal shifts,
sketch-to-realistic image conversion, face resolution alteration, and medical image translations (e.g.,
MRI to CT scans). Unpaired models like CycleGAN (Zhu et al., 2017) establish near reversibility
through cycle-consistency losses. Leveraging this property, the input marginal divergence Df

(
P̂X̂ ∥

P̄X̄

)
can estimate model behavior with unseen noise. For general signal sources, obtaining a closed-

form expression of the f -divergence is challenging. But with a Gaussian signal source, we can
explicitly derive the KL-divergence, as shown in the following Lemma:
Lemma 1. Let X be d-dimensional random variable with normal distribution N (µs,Σs). Assume
that it is corrupted by noise E with zero mean and covariance matrix Σe, independent of X . Denote
ρ(σ2

t ,Σe) ≜ DKL

(
P̂X+E∥N (µs,Σs + σ2

t Id)
)

. Then, ρ(σ2
t ,Σe) can be expressed as

ρ(σ2
t ,Σe) = −h(X +E) +

d

2
log(2π) +

1

2
log |Σ2|+

1

2
Tr

(
Σ−1

2 Σ1

)
, (6)

in which h(X+E) denotes the differential entropy of X+E, Σ1 = Σs+Σe and Σ2 = Σs+σ
2
t Id.

Eq. (6) allows for a closed-form solution of KL-divergence for a Gaussian source corrupted by
arbitrary noise. In particular, the lower bound of ρ(σ2

t ,Σe) is achieved when e follows a Gaussian
distribution N (0,Σe), i.e., ρ(σ2

t ,Σe) ≥ ρg(σ
2
t ,Σe) with

ρg(σ
2
t ,Σe) =

1

2

(
Tr

(
Σ−1

2 Σ1

)
+ log

|Σ2|
|Σ1|

− d

)
. (7)

This indicates that given the same Σe, non-Gaussian noise yields higher KL-divergence, as Gaussian
distribution maximizes the entropy. The next Theorem characterizes the behavior of ρ(σ2

t ,Σe):
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Theorem 2. Consider the KL-divergences denoted by ρ(σ2
t ,Σe) in (6) for general noise, and

ρg(σ
2
t ,Σe) in (7) for Gaussian noise. Under these definitions, the following properties hold:

1. Let Σe = σ2
eΣẽ, in which Σẽ is normalized covariance matrix with Tr(Σẽ) = d. Then,

ρ(σ2
t , σ

2
eΣẽ) is convex with respect to σ2

e . Additionally, for small σ2
e with σ2

e ≪ 1, the
following approximation is valid:

ρ(σ2
t , σ

2
eΣẽ) = ρg(σ

2
t , σ

2
eΣẽ) + o(σ2

e). (8)

2. If Σe ≥ σ2
t

2 Id, the inequality ρ(σ2
t ,Σe) < ρ(0,Σe) is satisfied.

Part 1 of the theorem implies that the KL-divergence first decreases and then increases with respect
to σ2

e , owing to the convex nature of ρ(σ2
t , σ

2
eΣẽ). Specifically, for Gaussian noise with Σẽ = Id, the

global optimum is at σ2
e = σ2

t . Furthermore, Eq. (8) indicates that non-Gaussian noise with small σ2
e

leads to a KL-divergence close to that of Gaussian noise with the same covariance matrix. Hence, an
I2I system that is robust to Gaussian noise can also tolerate other types of noises with the same Σe.

Part 2 of the theorem establishes a comparison between a system trained with Gaussian noise
injection and one trained only on clean images. Specifically, it asserts that for certain noise levels, as
characterized by Σe ≥ σ2

t

2 Id, the system trained with noise injection can better handle noisy inputs
compared to a system trained only on clean images. This not only underscores the practical advantage
of noise injection, but also provides a sound theoretical foundation for its effectiveness.

The next Theorem discusses the case for a non-Gaussian signal.
Theorem 3. Let X be a d-dimensional random vector with an arbitrary probability distribution and
finite entropy h(X). Denote θ(σ2

t , σ
2
eΣẽ) ≜ DKL

(
P̂X+E∥P̄X+σtN

)
, where the definitions of E,

Σẽ, N , σt and σ2
e are the same as those in Theorem 2. Let θg(σ2

t , σ
2
eΣẽ) denotes the special case of

θ(σ2
t , σ

2
eΣẽ) when E is Gaussian noise. Then,

1. For small σ2
e with σ2

e ≪ 1,

θ(σ2
t , σ

2
eΣẽ) = θg(σ

2
t , σ

2
eΣẽ) + o(σ2

e); (9)

2. When E is also iid Gaussian, θg(σ2
t , σ

2
eId) ≜ DKL

(
P̂X+σeN∥P̄X+σtN

)
satisfies

d

dσ2
e

θg(σ
2
t , σ

2
eId) = Ep̂(x̂)

{
−1

2
∥∇x̂ log p̂(x̂)∥2 + 1

2
∇x̂ log p̂(x̂) · ∇x̄ log p̄(x̄)

}
(10)

Eq. (9) generalizes the result of Eq. (8) to non-Gaussian sources, demonstrating that an I2I system’s
resilience to Gaussian noise ensures robustness against noises with the same covariance matrices,
regardless of whether the input signals are Gaussian or non-Gaussian. In the special case when E
is also iid Gaussian, one can get θg(σ2

t , σ
2
eId) by integrating the right-hand side of Eq. (10). In

particular, d
dσ2

e
θg(σ

2
t , σ

2
eId) = 0 when σ2

e = σ2
t . Hence, when σ2

e − σ2
t is small, using Taylor series

expansion at σ2
t , we have θg(σ2

t , σ
2
eI) = o(σ2

t − σ2
e).

3.3 SELECTION OF TRAINING NOISE INTENSITY

For i.i.d. inference noise with bounded σ2
e , the following corollary provides insights into choosing

the optimal training noise level by either minimizing worst-case KL-divergence or the average
KL-divergence given uniform noise variance distribution:
Corollary 1. Given an i.i.d. input noise e with Σe = σ2

eId and a bounded variance 0 ≤ σ2
e ≤ λmax,

define σ2
t,o as the optimal noise level that minimizes the worst-case KL distance ρ(σ2

t , σ
2
eId):

σ2
t,o = argmin

σ2
t

{
max

0≤σ2
e≤M

ρ(σ2
t , σ

2
eId)

}
. (11)

For this optimal level, it satisfies ρ(σ2
t,o,0d) = ρ(σ2

t,o, λmaxId). Besides, if σ2
e is uniformly distributed

between 0 and λmax, i.e.,σ2
e ∼ U(0, λmax), the optimal training noise intensity σ̄2

t,o that minimizes
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the average KL-divergence is 1
2λmax, i.e.,

σ̄2
t,o = argmin

σ2
t

Eσ2
e∼U(0,λmax)

{
ρ(σ2

t , σ
2
eId)

}
=

1

2
λmax. (12)

This corollary offers a theoretically sound method for determining the optimal training noise variance
for an arbitrary type of i.i.d. inference noise. It implies that to determine σ2

t,o in Eq. (11), one
can initiate the search at σ̄t,o = λmax/2 and proceed numerically until the condition ρ(σ2

t,o,0d) =

ρ(σ2
t,o, λmaxId) holds true.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Baselines & Datasets: We have employed the Gaussian noise-injected training methodology in
various I2I translation models and contrasted them with their original baselines. Specifically, 1.
HiFaceGAN (Yang et al., 2020), a GAN-based I2I model primarily utilized for Face Super-Resolution
task on real-life facial photographs; 2. GP-UNIT (Yang et al., 2023b), a generative prior-based
image translation model for converting images between unpaired data domains, such as Cat→Dog;
3. Sketch Transformer (Zhu et al., 2021), a Transformer-based photo-sketch paired transfer model.
During training, we follow the default settings of each baseline model and use the corresponding
datasets: FFHQ (Karras et al., 2019) (HiFaceGAN), AAHQ (Choi et al., 2020) (GP-UNIT), and
CUFS (Wang et al., 2018) (Sketch Transformer). For more details, please refer to Appendix C.

Evaluation Metrics: In line with prior research (Karras et al., 2019; Yang et al., 2023b; Zhao et al.,
2022), our evaluation primarily relies on the widely adopted Fréchet Inception Distance (FID) (Heusel
et al., 2017) and Kernel Inception Distance (KID) (Bińkowski et al., 2018) to assess the disparity
between generated images and target datasets regarding their respective distributions. Additionally,
for I2I translation models trained with paired datasets, we incorporate Learned Perceptual Image
Patch Similarity (LPIPS) (Zhang et al., 2018) and Peak Signal-to-Noise Ratio (PSNR). This metric
enables more accurate image similarity measurement, aligning with human perception.

Degradation Settings: To create noisy images, we first normalize pixel values to the range [0, 1].
Next, we add noise and clip the pixel values to stay within [0, 1]. The pixel values are then rescaled to
[0, 255) for image file creation. During training, zero-mean, isotropic Gaussian noise with σ2

t = 0.04
(unless specified otherwise) is introduced. In the inference stage, we evaluate three models under
five signal-independent noise types (Gaussian, Uniform, Color, Laplacian, and Salt & Pepper), each
with six intensity levels applied to all input images. Furthermore, we explore the performance
under signal-dependent noises, blur, JPEG compression, and other corruptions, as modelled in
Imagenet-C (Hendrycks & Dietterich, 2018). Additional details are available in Appendix C, Table 4.

4.2 EXPERIMENTAL RESULTS

Qualitative and Quantitative Evaluations: Tables 1 and 2 show the quantitative results of Cat→Dog
and Photo→Sketch translations, respectively, while Figs. 3 and 4 provide the corresponding qualita-
tive results. Our empirical findings, obtained under the default setting of σ2

t = 0.04, closely mirror the
insights from our theoretical analysis. First, as suggested by Theorem 1, the Gaussian noise-injected
model demonstrates the ability to effectively align noise-influenced distributions, ensuring a coherent
transformation between source and target domains. It outperforms GP-UNIT on Cat→Dog translation
across all settings, including clean inputs (Table 1). For Photo→Sketch, only marginal objective
degradation is observed on clean data, which is nearly visually imperceptible. Second, while the
baseline method excels on clean images, it experiences a significant decline under noisy conditions.
In contrast, GNI method demonstrates remarkable resilience across diverse noise types and intensities.
Though Theorem 2 considers Gaussian signals, experiments indicate Gaussian injection provides
noise robustness even for non-Gaussian images. In summary, simulation results substantiate the
theory of aligning noisy/clean distributions and showcase generalized noise robustness.

Fig. 3 also compares the noise injection approach to DiffuseIT (Kwon & Ye, 2022) on Cat→Dog
translation. Despite relying on isotrophic Gaussian denoising, DiffuseIT’s performance drops sub-
stantially under colored Gaussian noise. In contrast, GP-UNIT with GNI exhibits superior robustness
across all noise types.
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Table 1: Quantitative comparison on the Cat→Dog image translation task (reference-guided). In
the reference-guided approach, we randomly select 10 target domain images from the test set as
additional guides and synthesize a total of 5000 images. Furthermore, we employ the FID and
1000×KID metrics to evaluate.

Noise Type Metric Method Noise Intensity

Clean S1 S2 S3 S4 S5 S6

Gaussian
Noise

FID ↓ Baseline 17.82 18.28 18.95 20.82 22.13 26.95 36.84
+N (0, 0.04) 16.47 16.21 16.24 16.23 16.19 16.26 16.31

KID ↓ Baseline 7.08 7.91 8.79 10.53 11.35 15.48 23.03
+N (0, 0.04) 5.35 5.07 5.15 5.17 5.21 5.23 5.41

Uniform
Noise

FID ↓ Baseline 17.82 18.31 19.17 21.19 22.31 28.42 43.31
+N (0, 0.04) 16.47 16.13 16.16 16.21 16.32 16.27 16.15

KID ↓ Baseline 7.08 7.98 8.81 10.76 11.45 16.42 28.83
+N (0, 0.04) 5.35 5.06 5.09 5.23 5.26 5.27 5.43

Color
Noise

FID ↓ Baseline 17.82 18.48 19.94 22.91 25.11 31.85 47.26
+N (0, 0.04) 16.47 16.17 16.31 16.15 16.18 16.21 16.19

KID ↓ Baseline 7.08 8.31 9.68 12.09 14.02 19.33 31.78
+N (0, 0.04) 5.35 5.09 5.26 5.13 5.16 5.36 5.22

Laplacian
Noise

FID ↓ Baseline 17.82 18.39 19.06 20.38 21.13 24.77 30.95
+N (0, 0.04) 16.47 16.16 16.13 16.12 16.15 16.14 16.19

KID ↓ Baseline 7.08 8.01 8.72 9.99 10.74 13.49 18.67
+N (0, 0.04) 5.35 5.07 5.15 5.16 5.17 5.26 5.27

Salt & Pepper
Noise

FID ↓ Baseline 17.82 18.62 19.97 22.41 25.68 29.85 35.11
+N (0, 0.04) 16.47 16.11 16.28 16.26 16.08 16.07 16.99

KID ↓ Baseline 7.08 8.49 9.62 11.76 14.58 17.93 21.99
+N (0, 0.04) 5.35 4.99 5.23 5.26 5.19 5.18 5.29

Table 2: Quantitative comparison on Photo→Sketch image translation tasks. For photo-to-sketch,
we evaluate sketch synthesis using 338 test photos from the test set.

Noise Type Metric Method Noise Intensity

Clean S1 S2 S3 S4 S5 S6

Gaussian
Noise

FID ↓ Baseline 31.49 53.33 69.88 108.26 124.72 228.02 404.01
+N (0, 0.04) 64.12 34.53 31.25 31.16 32.39 40.95 64.87

LPIPS ↓ Baseline 0.3055 0.3991 0.4397 0.5123 0.5385 0.5994 0.6525
+N (0, 0.04) 0.3601 0.3186 0.3129 0.3119 0.3192 0.3411 0.4043

Uniform
Noise

FID ↓ Baseline 31.49 53.14 70.36 112.59 133.71 250.89 431.58
+N (0, 0.04) 64.12 34.94 31.71 31.68 32.93 44.39 79.62

LPIPS ↓ Baseline 0.3055 0.4003 0.4423 0.5182 0.5445 0.6098 0.6641
+N (0, 0.04) 0.3601 0.3185 0.3134 0.3161 0.3204 0.3488 0.4316

Color
Noise

FID ↓ Baseline 31.49 64.45 97.99 176.49 226.99 400.63 448.24
+N (0, 0.04) 64.12 32.52 31.71 36.71 42.19 71.65 135.09

LPIPS ↓ Baseline 0.3055 0.4176 0.4873 0.5726 0.5946 0.6519 0.6931
+N (0, 0.04) 0.3601 0.3194 0.3188 0.3227 0.3454 0.4125 0.5102

Laplacian
Noise

FID ↓ Baseline 31.49 51.48 68.01 101.18 115.63 181.81 321.31
+N (0, 0.04) 64.12 34.93 31.37 31.11 32.18 38.26 51.61

LPIPS ↓ Baseline 0.3055 0.3965 0.4337 0.5001 0.5248 0.5835 0.6341
+N (0, 0.04) 0.3601 0.3191 0.3134 0.3101 0.3169 0.3321 0.3702

Salt & Pepper
Noise

FID ↓ Baseline 31.49 69.78 110.24 162.21 258.34 365.98 443.48
+N (0, 0.04) 64.12 31.99 32.45 37.42 46.89 58.03 74.25

LPIPS ↓ Baseline 0.3055 0.4351 0.5201 0.5777 0.6199 0.6481 0.6671
+N (0, 0.04) 0.3601 0.3149 0.3187 0.3322 0.3576 0.3905 0.4303

Ablation study of training noise intensity: We conduct an ablation study of σ2
t for the photo-to-

sketch translation task. Fig. 4 shows the comparison of visual qualities. Fig. 5 further illustrates
the FID metrics for generated images by varying σ2

t with different types of i.i.d. noise at the
inference stage. Here, the setting of “Learnable σ2

t ” treats σ2
t as a tuned hyperparameter. We

observe that σ2
t controls the balance between robustness and quality - low values favor cleaner

inputs, while high values prioritize noisy cases. This highlights the need to select an appropriate σ2
t

balancing performance across expected conditions. With a maximum σ2
e = 0.16 in these simulations,
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 𝑅𝑅𝐶𝐶𝑅𝑅𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 𝑅𝑅𝐶𝐶𝑅𝑅𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 𝑅𝑅𝐶𝐶𝑅𝑅𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶

Figure 3: Noise injection method compared to DiffuseIT (Kwon & Ye, 2022) generation on the
Cat→Dog task. The baseline model is GP-UNIT, and the noise environment is Color noise. In each
pair of source and reference image comparisons, the first row is the result produced by the baseline
model, the second row is produced by DiffuseIT, and the third is produced by the noise injection.

Corollary 1 states the optimal σ2
t minimizing average KL-divergence is 0.16/2 = 0.08. Numerical

FID results in Table 7 (Appendix D) confirm that σ2
t = 0.08 yields the smallest average FID.

It is interesting to note that although our analysis uses the KL-divergence, for supervised
Photo→Sketch, the FID scores in Fig. 5 exhibit (near-) convexity in σ2

e , which follows a very
similar pattern as theoretical KL-divergence in Fig. 6(a). Besides, for i.i.d. noise, Part 2 of Theorem 2
indicates noise-trained systems can outperform clean-trained ones on noisy inputs given σ2

e > 0.5σ2
t .

FID scores in Fig. 5 agree with this theory. This empirically validates the value of our theoretical
analysis for anticipating how models respond to unseen noises.

Additional Results: Due to space constraints, we provide more results in Appendix D, which
includes theoretical results of Gaussian mixture model (GMM) signal sources, further simulation
results contrasting empirical and theoretical findings, results on various types of image corruptions,
out-of-domain tests, and comparisons between noise injection training and pre-denoising approaches.
We also discuss theoretical and implementation limitations, highlighting certain failure scenarios.

5 CONCLUSION

In this paper, we investigated the challenge of noise resilience in GAN-based I2I translation models,
focusing on the impact of injecting isotropic Gaussian noise into source domain images during training.
By establishing a novel connection between f -divergence and score matching, we illuminated how
Gaussian noise influences the alignment of probability distributions. We then demonstrated that for
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Figure 4: Photo→Sketch: Input photos with 4 noise types, each at 6 levels from clean to high severity,
and their corresponding sketch outputs.

Figure 5: FID score comparison on noisy input images for models trained with different Gaussian
noise levels. Test Noise Types: (a) Gaussian (b) Uniform, (c) Laplacian.

arbitrary signal sources, the robustness of I2I systems to Gaussian noise implies resilience to other
noise types with a matched covariance matrix. Additionally, we addressed the selection of an optimal
training noise variance. Extensive experimentation has validated our insights, showing a substantial
performance improvement across diverse I2I translation tasks in noisy environments. Our results
highlight the usefulness and efficiency of Gaussian noise injection for enhancing model robustness.
This work offers valuable perspective into leveraging noise for more resilient I2I systems. Overall, it
represents an important step towards reliable I2I translation in real-world noisy environments through
a rigorous theoretical grounding.
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A NOTATIONS AND DEFINITIONS

Notations: In this paper, capital letters indicate random variables or vectors, while lowercase letters
represent their realisations. For a random vector X , h(X) and J(X) denote its differential entropy
and Fisher information matrix, respectively. For two random vectors X and Y , I(X;Y ) corresponds
to their mutual information. The notation N (µ,Σ) represents a multidimensional normal (Gaussian)
distribution with mean µ and covariance matrix Σ. For a matrix A, Tr(A) and |A| denote its trace
and determinant, respectively. For a symmetric positive-definite matrix A, λi(A) represents the i-th
largest eigenvalue of A. For two real-valued symmetric matrices A and B, the notation A > B (or
A < B) indicates that A−B (or B −A ) is positive definite.

Definition of f -divergence: The f -divergence belongs to a class of statistical metrics designed to
quantify the discrepancies between two probability distributions. Let P and Q be distributions on
a measurable space X with density functions p and q, respectively. If P ≪ Q, the f -divergence
between these absolutely continuous distributions is defined as (Polyanskiy, 2019):

Df (P∥Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx, (13)

In this formula, f is a strictly convex, continuous function satisfying f(1) = 0, and is referred to
as the generator function. Popular f -divergences and their corresponding generator functions are
outlined in Table 3.

Table 3: List of f -divergences Df (P∥Q) and corresponding generator functions (Nielsen & Nock, 2013).

Name Df (P∥Q) Generator f(t)

Kullback-Leibler DKL =
∫
p(x) log p(x)

q(x) dx t log t

Neyman χ2 Dχ2 =
∫ (q(x)−p(x))2

q(x) dx (1−t)2
t

Total Variation DTV = 1
2

∫
|p(x)− q(x)| dx 1

2 |t− 1|
Squared Hellinger DH2 =

∫ (√
p(x)−

√
q(x)

)2

dx
(√
t− 1

)2
Jensen-Shannon DJSD = DKL

(
P
∥∥∥P+Q

2

)
+DKL

(
Q
∥∥∥P+Q

2

)
−(t+ 1) log 1+t

2 + t log t

Definition of small o: Let ξ(σ2
e) be a function of σ2

e . We say ξ(σ2
e) is o(σ2

e) as σ2
e approaches 0 if

and only if: limσ2
e→0

ξ(σ2
e)

σ2
e

= 0. This notation means that ξ(σ2
e) becomes insignificant relative to σ2

e

as σ2
e tends towards 0.

B THEORETICAL PROOFS

B.1 PROOF OF THEOREM 1

The theorem’s proof leverages the heat equation and Green’s identities in vector calculus, which is
similar to the proof of entropy power inequality in (Costa & Cover, 1984; Costa, 1985).

Proof. Note that Eq. (2) can be expanded as

d

dσ2
Df (P̄∥Q̄)

=
d

dσ2

∫ +∞

−∞

∫ +∞

−∞
q̄(x̄,y) · f

(
p̄(x̄,y)

q̄(x̄,y)

)
dx̄dy

=

∫ +∞

−∞

∫ +∞

−∞

∂q̄(x̄,y)

∂σ2
f

(
p̄(x̄,y)

q̄(x̄,y)

)
+ q̄(x̄,y)

∂

∂σ2
f

(
p̄(x̄,y)

q̄(x̄,y)

)
dx̄dy

=

∫ +∞

−∞

∫ +∞

−∞

∂q̄(x̄,y)

∂σ2

[
f

(
p̄(x̄,y)

q̄(x̄,y)

)
− p̄(x̄,y)

q̄(x̄,y)
· f ′

(
p̄(x̄,y)

q̄(x̄,y)

)]
+

∂p̄(x̄,y)

∂σ2
· f ′

(
p̄(x̄,y)

q̄(x̄,y)

)
dx̄dy.

(14)
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Using heat equation in diffusion, we know that

∂p̄(x̄,y)

∂σ2
=

1

2
∇x̄ · ∇x̄p̄(x̄,y) and

∂q̄(x̄,y)

∂σ2
=

1

2
∇x̄ · ∇x̄q̄(x̄,y),

where ∇x̄ is the gradient operator with regard to x̄ and ∇x̄ · ∇x̄ =
∑d
i=1

∂2

∂x̄2
i

. This leads to

d

dσ2
Df (P̄∥Q̄)

=
1

2

∫ +∞

−∞

∫ +∞

−∞
∇x̄ · ∇x̄p̄(x̄,y) · f ′

(
p̄(x̄,y)

q̄(x̄,y)

)
dx̄dy

+
1

2

∫ +∞

−∞

∫ +∞

−∞
∇x̄ · ∇x̄q̄(x̄,y)

[
f

(
p̄(x̄,y)

q̄(x̄,y)

)
− p̄(x̄,y)

q̄(x̄,y)
· f ′

(
p̄(x̄,y)

q̄(x̄, y)

)]
dx̄dy

(15)

For simplicity of presentation, we set p̄ = p̄(x̄,y), q̄ = q̄(x̄,y). As g′h = (gh)′ − gh′, the above
can be simplified as (Guo, 2009)

∇x̄ · ∇x̄p̄ ·
[
f ′

(
p̄

q̄

)]
+∇x̄ · ∇x̄q̄ ·

[
f

(
p̄

q̄

)
− p̄

q̄
f ′

(
p̄

q̄

)]
= ∇x̄ · ∇x̄

[
q̄f

(
p̄

q̄

)]
−∇x̄p̄ · f ′′

(
p̄

q̄

)
+
p̄

q̄
∇x̄q̄ · f ′′

(
p̄

q̄

)
.

(16)

For the first term, it can be simplified by Green’s formula:∫ +∞

−∞

∫ +∞

−∞
∇x̄ ·∇x̄

[
q̄f

(
p̄

q̄

)]
dx̄dy =

∫
S

∇x̄ · q̄f
(
p̄

q̄

)
·dS = ∇x̄ ·

∫
S

q̄f

(
p̄

q̄

)
·dS = 0, (17)

where S is a piece-wise smooth, closed, oriented surface in Rd. Since Df () is finite, the above result
can be obtained using a similar argument as Eq. (B.15) in (Costa, 1985).

The last two terms can be reduced to:

−∇x̄p̄ · f ′′
(
p̄

q̄

)
+

p̄

q̄
∇x̄q̄ · f ′′

(
p̄

q̄

)
= −q̄∇x̄

(
p̄

q̄

)
· f ′′

(
p̄

q̄

)
= −q̄f ′′

(
p̄

q̄

)
·
(
∇x̄

(
p̄

q̄

))2

. (18)

Organizing the previous derivations, the final result can be written in the following form:

d

dσ2
Df (P̄∥Q̄) = −1

2
EQ̄

{
f ′′

(
p̄(x̄,y)

q̄(x̄,y)

)∥∥∥∥∇x̄
p̄(x̄,y)

q̄(x̄,y)

∥∥∥∥2
}

= −1

2
EP̄

{
p̄(x̄,y)

q̄(x̄,y)
f ′′

(
p̄(x̄,y)

q̄(x̄,y)

)
∥∇x̄ log p̄(x̄,y)−∇x̄ log q̄(x̄,y)∥2

}
,

(19)

which completes the proof.

B.2 PROOF OF LEMMA 1

Proof. As shown in Table KL-divergence is the special case of f -divergence with f(t) = t log t in
Eq. (13)

DKL(P∥Q) =

∫
X
p(x) ln

(
p(x)

q(x)

)
dx. (20)

Assume that t(x̂) is the probability density function of PX̂ , the KL-divergence DKL(PX̂∥PX̄) =
DKL(PX̂∥N (µs,Σs + σ2

t Id)) can be expanded as

DKL(PX̂∥N (µs,Σs + σ2
t Id))

=− h(X̂)−
∫

t(x̂) log

(
(2π)−d/2 · det (Σ2)

−1/2 · exp
[
−1

2
(x̂− µs)

⊤ Σ−1
2 (x̂− µs)

])
dx̂

=− h(X̂) +
d

2
log(2π) +

1

2
log |Σ2| −

∫
t(x̂)

(
−1

2
(x̂− µs)

⊤ Σ−1
2 (x̂− µs)

)
dx̂,

(21)
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in which h(x̂) is the differential entropy of x̂. The last term can be further simplified as

−
∫

t(x̂)

(
−1

2
(x̂− µs)

⊤ Σ−1
2 (x̂− µs)

)
dx̂ =

1

2
E
[
Tr

(
(x̂− µs)

⊤ Σ−1
2 (x̂− µs)

)]
=

1

2
Tr

[
Σ−1

2 · E
(
(x̂− µs)

⊤ (x̂− µs)
)]

=
1

2
Tr

[
Σ−1

2 ·Σ1

]
,

(22)

where Σ1 = E
[
(x̂− µs)

⊤
(x̂− µs)

]
. Hence, Eq. (6) is proved.

B.3 PROOF OF THEOREM 2

Proof. Part 1 of the proof is based on the concave property of mutual information derived in (Payaró
& Palomar, 2009), while Part 2 is on matrices trace and determinant properties.

• Part 1:

– Proof of ρ(σ2
t , σ

2
eΣẽ)’s convexity in σ2

e :
For E = σeẼ, with covariance matrix Σe = σ2

eΣẽ, Eq. (6) gives:

ρ(σ2
t , σ

2
eΣẽ) =− h(X + σeẼ) +

d

2
log(2π) +

1

2
log |Σ2|

+
1

2
Tr

(
Σ−1

2 Σs

)
+
σ2
e

2
Tr

(
Σ−1

2 Σẽ

)
.

, (23)

in which Σ2 = Σs + σ2
t Id. The term σ2

e

2 Tr
(
Σ−1

2 Σẽ

)
is evidently convex in σ2

e .
To demonstrate the convexity of −h(X + σeẼ) in σ2

e , given X is Gaussian and
independent of Ẽ, we express it as:

−h(X + σeẼ) = −I(X + σeẼ; Ẽ) + log(2π) + log |X| ,
where I(X+σeẼ; Ẽ) denotes the mutual information between X+σeẼ and Ẽ. Given
X is Gaussian, it was previously established in Corollary 1 of (Payaró & Palomar,
2009) that the mutual information I(X +σeẼ; Ẽ) is concave with respect to σ2

e . This
implies that −I(X + σeẼ; Ẽ) and therefore, −h(X + σeẼ) is convex in σ2

e .
Remark: The work in (Payaró & Palomar, 2009) assumes Gaussian noise with an
arbitrary signal. In contrast, our analysis considers a Gaussian signal with arbitrary
noise. As a result, in our context, σ2

e serves the role analogous to the SNR in Corollary
1 of (Payaró & Palomar, 2009).

– Proof of Eq. (8):
It can be derived that

ρ(σ2
t ,Σe)− ρg(σ

2
t ,Σe) = h(X +Eg)− h(X +E)

= h(X + σeẼg)− h(X + σeẼ)
(24)

According to the generalized De Bruijn’s Identity (Proposition 7 in (Rioul, 2010))

d h(X + σeẼ)

dσ2
e

∣∣∣∣∣
σe=0

=
1

2
Tr (J(X)Σẽ) , (25)

in which J(X) is the Fisher information matrix of X . Hence, for small σe, using
first-order Taylor series expansion as in Eq. (37) of (Rioul, 2010), one can obtain

h(X + σeẼ) = h(X) +
σ2
e

2
Tr (J(X)Σẽ) + o(σ2

e). (26)

and similarly,

h(X + σeẼg) = h(X) +
σ2
e

2
Tr

(
J(X)Σẽg

)
+ o(σ2

e). (27)

When Σẽ = Σẽg , we have h(X + σeẼg)− h(X + σeẼ) = o(σ2
e). Combined with

Eq. (24), Eq. (8) is proved.
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• Part 2: Given Eq. (6), the difference ρg(0,Σe)− ρ(σ2
t ,Σe) can be expressed as:

ρ(0,Σe)− ρg(σ
2
t ,Σe)

=
1

2
log

∣∣Σs + σ2
t Id

∣∣− 1

2
log |Σs|

+
1

2
Tr

(
Σ−1
s (Σs +Σe)

)
− 1

2
Tr

((
Σs + σ2

t Id
)−1

(Σs +Σe)
)
.

(28)

The proof of ρ(0,Σe) ≥ ρ(σ2
t ,Σe) when Σe ≥ 1

2σ
2
t Id is equivalent to showing

Tr(Σ−1
s (Σs +Σe))− Tr((Σs + σ2

t Id)
−1(Σs +Σe)) > log

∣∣Σs + σ2
t Id

∣∣
|Σs|

. (29)

Bounding the left-hand side (LHS) of Eq. (29), we have:

Tr(Σ−1
s (Σs +Σe))− Tr((Σs + σ2

t Id)
−1(Σs + σ2

t Id − σ2
t Id +Σe))

=Tr(Σ−1
s Σe)− Tr((Σs + σ2

t Id)
−1Σe) + σ2

t Tr(Σs + σ2
t Id)

−1)

=Tr
((

Σ−1
s − (Σs + σ2

t Id)
−1

)
·Σe

)
+ σ2

t Tr
(
(Σs + σ2

t Id)
−1

)
(a)
> Tr

((
Σ−1
s − (Σs + σ2

t Id)
−1

)
· σ

2
t

2

)
+ σ2

t Tr
(
(Σs + σ2

t Id)
−1

)
=
σ2
t

2
Tr(Σ−1

s ) +
σ2
t

2
Tr

(
(Σs + σ2

t Id)
−1

)
=

1

2

d∑
i=1

σ2
t

λi(Σs)
+

1

2

d∑
i=1

σ2
t

λi(Σs) + σ2
t

=
1

2

d∑
i=1

(
σ2
t

λi(Σs)
+ 1− 1

1 + σ2
t /λi(Σs)

)
,

(30)

where the inequality at (a) arises from Σe ≥ σ2
t

2 Id and Σ−1
s > (Σs + σ2

t Id)
−1. The

right-hand side of Eq. (29) can be written as

log

∣∣Σs + σ2
t Id

∣∣
|Σs|

=
d∑
i=1

log

(
1 +

σ2
t

λi(Σs)

)
Next, consider the following function

ψ(x) =
1

2

(
x+ 1− 1

1 + x

)
− log(1 + x).

It is obvious that when x = 0, ψ(0) = 0 and d ψ(x)
dx = x2

2(1+x)2 > 0 for x > 0. Thus, ψ(x)
is strictly increasing for positive x, implying that

1

2

(
σ2
t

λi(Σs)
+ 1− 1

1 + σ2
t /λi(Σs)

)
> log

(
1 +

σ2
t

λi(Σs)

)
.

This establishes Eq. (29) and completes the proof.

Example: We evaluate an AR(1) signal model with d = 256 and its signal covariance matrix given
by Σs(k, l) = σ2

sρ
|k−l| (for 0 ≤ k, l ≤ d − 1). Parameters σ2

s = 0.125 and ρ = 0.95 are derived
from the normalized CUFS dataset. Fig. 6 illustrates ρg(σ2

t , σ
2
eΣẽ) across two different Σẽ. In

Fig. 6(a), i.i.d. noise is considered with Σẽ = Id. Meanwhile, Fig. 6(b) shows non-i.i.d. noise with
Σẽ = diag(1.6I64, 1.2I64, 0.8I64, 0.4I64). All curves display convex behavior in σ2

e , which agrees
with Part 1 of Theorem 2. Besides, as evident in Fig. 6(a), ρg(0, σ2

eId) > ρg(σ
2
t , σ

2
eId) whenever

σ2
e > 0.5σ2

t , reaffirming Part 2 of Theorem 2.
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Figure 6: Visualization of ρg(σ2
t , σ

2
eΣẽ) for AR(1) signal model with d = 256 and covariance matrix

Σs(k, l) = 0.95ρ|k−l| (for 0 ≤ k, l ≤ 255) . (a) i.i.d. noise with Σẽ = Id. (b) Non-i.i.d. noise with
Σẽ = diag(1.6I64, 1.2I64, 0.8I64, 0.4I64).

B.4 PROOF OF THEOREM 3

Proof. The previous proof in Theorem 2 is based on the assumption that the source signal is Gaussian
distributed. Here we further consider the non-Gaussian signal with arbitrary noise.

• Part 1

Expanding the KL-divergence,

θ(σ2
t , σ

2
eΣẽ) = DKL

(
P̂X+σeẼ

∥P̄X+σtN

)
= −h(X + σeẼ)−

∫ +∞

−∞
p̂(x+ σeẼ) log p̄(x+ σtN) dx.

(31)

According to the Lemma 1 in (Guo, 2009)
d

dσ2
e

p̂(x+ σeẼ)
∣∣∣
σe=0

=
1

2
∇x∇xp(x),

where p(x) is the probability density function of the clean data, and thus

d

dσ2
e

∫ +∞

−∞
p̂(x+ σeẼ) log p̄(x+ σtN) dx

∣∣∣∣
σe=0

=
1

2
∇xp(x) log p̄(x+ σtN). (32)

The first-order Taylor series expansion of the integral part of Eq. (31) can be derived,∫ +∞

−∞
p̂(x+ σeẼ) log p̄(x+ σtN) dx

=

∫ +∞

−∞
p(x) log p̄(x+ σtN) dx+

σ2
e

2
∇xp(x) log p̄(x+ σtN) + o(σ2

e).

(33)

By gathering Eq (26) and Eq. (33), the Taylor series expansion of the KL-divergence

θ(σ2
t , σ

2
eΣẽ) =− h(X)− σ2

e

2
Tr (J(X)Σẽ)−

∫ +∞

−∞
p(x) log p̄(x+ σtN) dx

− σ2
e

2
∇xp(x) log p̄(x+ σtN) + o(σ2

e).

(34)

The KL divergence for Gaussian noise can be expanded according to the Taylor series
expansion in Proposition 7 in (Rioul, 2010) as

θg(σ
2
t , σ

2
eΣẽ) = DKL

(
P̂X+σeẼg

∥P̄X+σtN

)
=
δ2

2
J(X)+ o(δ2),

(35)
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in which σe = σt + δ. Obviously the θ(σ2
t , σ

2
eΣẽ) only relates to the covariance matrix

Σe of the arbitrary noise instead of the noise distribution. When Σẽ = Σẽg
, one have

θ(σ2
t , σ

2
eΣẽ) = θg(σ

2
t , σ

2
eΣẽ) + o(σ2

e), and thus Eq. (9) is proved.

• Part 2:

Derive σ2
e of θg(σ2

t , σ
2
eId),

d

dσ2
t

θg(σ
2
t , σ

2
eId)

=− d

dσ2
t

h(X + σeN)− d

dσ2
t

∫ +∞

−∞
p̂(x̂) log p̄(x̄) dx.

(36)

Then we calculate derivatives one by one,

d

dσ2
t

h(X + σeN)

=−
∫ +∞

−∞

d

dσ2
t

p̂(x̂) dx̂−
∫ +∞

−∞

(
d

dσ2
t

p̂(x̂)

)
log p̂(x̂) dx̂

=0− 1

2

∫ +∞

−∞

(
∇2

x̂p̂(x̂)
)
log p̂(x̂) dx̂,

(37)

in which d
dσ2

t
p̂(x̂) = 1

2∇
2
x̂p̂(x̂). According to Green’s identity (Amazigo & Rubenfeld,

1980) if ϕ(x) and ψ(x) are twice continuously differentiable functions in Rn and if V is
any set bounded by a piecewise smooth, closed, and oriented surface S in Rn, then∫

V

ϕ∇2ψdV =

∫
S

ϕ∇ψ · ds−
∫
V

∇ϕ · ∇ψ dV (38)

where ∇ψ denotes the gradient of ψ,ds denotes the elementary area vector, and ∇ψ · ds
is the inner product of these two vectors. This identity plays the role of integration by
parts in Rn. To apply Green’s identity to Eq. (37), we let Vr be the n sphere of radius r
centered at the origin and having surface Sr. Then we use Green’s identity on Vr and Sr
with ϕ (x̂) = log p̂ (x̂) and ψ (x̂) = p̂ (x̂) and take the limit as r → ∞. Hence we obtain

d

dσ2
t

h(X + σeN) =− 1

2

∫ +∞

−∞
∇x̂p̂(x̂)∇x̂ log p̂(x̂) dx̂

=
1

2

∫ +∞

−∞

∥∇x̂p̂(x̂)∥2

p̂(x̂)
dx̂.

(39)

The second term in Eq. (36) can be further simplified by using Green’s identity in Eq. (38),

d

dσ2
t

∫ +∞

−∞
p̂(x̂) log p̄(x̄) dx = −1

2

∫ +∞

−∞
∇x̂p̂(x̂)∇x̄ log p̄(x̄) dx. (40)

Therefore, substituting Eq. (39) and Eq. (40) into Eq. (36),

d

dσ2
t

θg(σ
2
t , σ

2
eId)

=− 1

2

∫ +∞

−∞

∥∇x̂p̂(x̂)∥2

p̂(x̂)
dx̂+

1

2

∫ +∞

−∞
∇x̂p̂(x̂)∇x̄ log p̄(x̄) dx

=Ep̂(x̂)
{
−1

2
∥∇x̂ log p̂(x̂)∥2 + 1

2
∇x̂ log p̂(x̂) · ∇x̄ log p̄(x̄)

} (41)
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B.5 PROOF OF COROLLARY 1

Proof. We first prove that σ2
t,o satisfying ρ(σ2

t,o,0d) = ρ(σ2
t,o, λmaxId) is the optimal solution of

Eq. (11). For i.i.d. inference noise with Σe = σ2
eId, it can be easily derived from Eq. (6) that

∂ρ(σ2
t ,Σe)

∂σ2
t

=
1

2

∂ log |Σs + σ2
t Id|

∂σ2
t

+
1

2

∂ Tr
(
(Σs + σ2

t Id)
−1(Σs + σ2

eId)
)

∂σ2
t

=
d∑
i=1

σ2
t − σ2

e

2(σ2
t + λi(Σs))2

.

Hence, we know that for a fixed σ2
e , the function ρ(σ2

t , σ
2
eId) is decreasing in σ2

t when σ2
t < σ2

e and
increasing for σ2

t > σ2
e .

Therefore, for σ2
t in the range of σ2

t > σ2
t,o > 0, at σ2

e = 0, we have ρ(σ2
t ,0d) > ρ(σ2

t,o,0d).
Likewise, for σ2

t < σ2
t,o < λmax, at σ2

e = λmax, we have ρ(σ2
t , λmaxId) > ρ(σ2

t,o, λmaxId). As a
result, σ2

t,o is the optimal solution of Eq. (11).

Next, we derive the expression of σ̄t,o that minimizes the average KL-divergence when σ2
e is uniformly

distributed between 0 to λmax. Let ϕ(σ2
t ) = Eσ2

e∼U(0,λmax)

{
ρ(σ2

t , σ
2
eId)

}
. From Eq. (6), we can

obtain

ϕ(σ2
t )

=
1

λmax

∫ λmax

0

ρ(σ2
t , σ

2
eId) dσ

2
e

=
1

2λmax

∫ λmax

0

Tr
[
(Σs + σ2

t Id)
−1(Σs + σ2

eId)
]
+ log

∣∣Σs + σ2
t Id

∣∣− log
∣∣Σs + σ2

eId
∣∣− d dσ2

e

=
1

4
Tr

[
(2Σs + λmaxId) (σ

2
t Id +Σs)

−1
]
+

1

2
log

∣∣Σs + σ2
t Id

∣∣+ α,

where α = − 1
2

∫ λmax

0
log

∣∣Σs + σ2
eId

∣∣− d dσ2
e is a constant. Taking the derivative of ϕ(σ2

t ),

d

dσ2
t

ϕ(σ2
t )

=
d

dσ2
t

1

4
Tr

[
(2Σs + λmaxId) (σ

2
t Id +Σs)

−1
]
+

d

dσ2
t

1

2
log

∣∣Σs + σ2
t Id

∣∣
=− 1

4
Tr

[
(2Σs + 2λmaxId) (σ

2
t Id +Σs)

−2
]
+

1

2
Tr

[(
Σs + σ2

t Id
)−1

]
=
1

4
Tr

[(
2σ2

t − λmax

) (
Σs + σ2

t Id
)−2

]
.

As
(
Σs + σ2

t Id
)2
> 0, the above result implies that ϕ(σ2

t ) is a decreasing function when σ2
t <

1
2λmax

and an increasing one if σ2
t >

1
2λmax. Therefore, the minimal value of ϕ(σ2

t ) is achieved when
σ2
t = 1

2λmax.

B.6 EXTENDING TO GAUSSIAN MIXTURE MODELS (GMM) SOURCES

Gaussian Mixture Models (GMM) are often extended to fit a vector of unknown parameters. Given
that numerous natural image signals can be effectively represented by GMM, we therefore posit the
fitting of the source signal through a GMM assumption.

Consider a source signal x represented by the Gaussian mixture model that pX(x) =
∑N
k=1 πk ·

N (x|µk,Σk),
∑N
k=1 πk = 1 and πk > 0. Although we cannot get a closed-form expression of the

KL divergence for the GMM signal source, we can extend our results to its upper-bound, as listed
below:

• Extention of Lemma 1: By using the convexity property of KL-divergence, we have
DKL(P̂X+E∥P̄X+σtN ) ≤ ζ(σ2

t ,Σe).
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ζ(σ2
t ,Σe) =

N∑
k=1

πk ·DKL(P̂Xk+E∥P̄Xk+σtN )

=
N∑
k=1

πk · ρk(σ2
t ,Σe),

(42)

where X is d-dimensional random variable of the GMM represented source signal x, Xk

is the k-th Gaussian distribution with its weight πk for GMM and ρk(σ2
t ,Σe) is the KL-

divergence of k-th Gaussian distribution for arbitrary noise. The above equation implies
that for GMM fitted source signal, its KL-divergence concerning arbitrary noise is upper-
bounded by the weighted sum of the KL-divergence of N Gaussian source signals with
respect to arbitrary noise.

• Extension of Theorem 2: For ζ(σ2
t ,Σe) given above, when Σe = σ2

eΣẽ, ζ(σ2
t ,Σe) is also

convex in σ2
e as each ρk(σ2

t ,Σe) is convex in σ2
e . Likewise, ζ(σ2

t ,Σe) < ζ(0,Σe) when
Σe > σ2

t /2.

• Extension of Corollary 1: Under the assumptions of Corollary 1, the optimal solution

σ̄2
t,o = argmin

σ2
t

Eσ2
e∼U(0,λmax)

{
ζ(σ2

t , σ
2
eId)

}
(43)

is still σ̄2
t,o =

1
2λmax, which remains the same as that of the Gaussian source.

C EXPERIMENT SETTINGS

C.1 BASELINES

We have employed the Gaussian noise-injected training methodology in various image-to-image
translation models and contrasted them with their original baselines. Specifically,

• HiFaceGAN1 (Yang et al., 2020), a GAN-based I2I model primarily utilized for Face
Super-Resolution task on real-life facial photographs, was tested with the FFHQ dataset,
specifically on a 16× (32 → 512) environment.

• GP-UNIT2 (Yang et al., 2023b), a generative prior-based image translation model for
converting images between unpaired data domains, was subjected to the Cat→Dog image
translation task on the AFHQ dataset.

• Sketch Transformer3 (Zhu et al., 2021), a Transformer-based image translation model, was
evaluated on its ability to convert photo-sketch paired data from the CUFS dataset in the
Photo→Sketch image translation task.

C.2 DATASETS

We validate the GNI method on various datasets in the baseline models presented below: (1) FFHQ
natural face dataset (Karras et al., 2019). It comprises 70000 high-quality facial images. We selected
the 10000 images with the lowest serial number for training, while the final 1000 images were used for
testing. We perform a 16× face super-resolution task on this dataset, where the HR resolution is 512×,
and the LR resolution is 32×. (2) AFHQ animal dataset (Choi et al., 2020). It contains high-resolution
images of animal faces, including cats, dogs, and wild animals, from three domains with substantial
variations. Each domain comprises 500 test images. We perform the Cat→Dog image translation task
on this dataset. (3) CUFS face sketch dataset (Wang et al., 2018). It contains 188 identities from the
CUHK student database (Tang & Wang, 2003), 123 from the AR database (Martinez & Benavente,
1998), and 295 from the XM2VTS database (Messer et al., 1999). We perform the Photo→Sketch
image translation task on this dataset.

1https://github.com/Lotayou/Face-Renovation
2https://github.com/williamyang1991/GP-UNIT
3shared by the authors
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Table 4: Parameter configuration for noise intensity in the test set for testing I2I translation models.

Noise Type
Noise Blur Digital

Gaussian Uniform Color Laplacian Salt&Pepper Shot Speckle Glass Defocus Pixelate JPEG
σ2
e σ2

e σ2
e σ2

e Density Density Density Density Radius Density Quality

Intensity

1 0.01 0.01 0.01 0.01 0.05 60 0.15 1 1 0.5 30
2 0.02 0.02 0.02 0.02 0.10 40 0.25 2 2 1.0 25
3 0.04 0.04 0.04 0.04 0.15 25 0.35 3 4 1.5 20
4 0.05 0.05 0.05 0.05 0.20 12 0.45 4 5 2.0 15
5 0.09 0.09 0.09 0.09 0.25 5 0.55 6 6 2.5 10
6 0.16 0.16 0.16 0.16 0.30 3 0.65 7 7 3.0 6

C.3 DEGRADATION

We considered multiple types of image degradation, each with 6 different intensities from weak to
strong, as detailed in Table 4. The parameter configurations for noise, blur and digital degradation are
based on those used in (Hendrycks & Dietterich, 2018) for ImageNetC. For colored noise, we adopt
a strategy similar to (Kaneko & Harada, 2020) by applying a 2D Gaussian filter to i.i.d. Gaussian
noise with a standard deviation of 0.5 and a 7× 7 window size. To generate noisy images, we start
by normalizing the pixel intensities to fit the [0, 1] first. Then, after introducing the noise, we ensure
the pixel values remain bounded within the same range by a clipping operation. After that, we adjust
the pixel values to the [0, 255) range to produce an image file.

C.4 SETTING OF σ2
t

For i.i.d. noise, the peak inference noise level in our simulation is λmax = 0.16, as indicated in
Table 4. According to Corollary 1, the optimal value to minimize the average KL-divergence is
σ̄2
t,o = λmax/2 = 0.08. This value is noise type-independent and is straightforward to compute. In

our simulations, we set σ2
t = 0.04 by default. Several reasons motivate this choice over 0.08:

1. Model integrity for clean Images: Eq. (4) suggests a smaller σ2
t ensures the model’s

efficacy on noise-free images. A larger value risks training noise bias, undermining its
performance on clean data.

2. Near optimal Min-Max Value for Gaussian Noise: As depicted in Fig. 6(a), the optimal
σ2
t from Eq. (11) to minimize worst-case KL-divergence falls below λmax/2. Specifically,
σ2
t = 0.04 stands as a near-optimal min-max solution.

3. Visual quality vs. KL-divergence: While KL-divergence offers statistical insight, it might
not reflect the visual quality of translated images. Simulations suggest σ2

t = 0.04 strikes a
balanced robustness-quality trade-off.

C.5 TRAINING

During our training process, we follow the default settings of each baseline model, only substituting
clean images in the source domain with their noisy variants. Consequently, both training duration and
memory requirements remain unchanged. Drawing insights from prior work on unconditional GANs,
it’s suggested that incorporating noise into training images can improve convergence and enhance
training stability. Indeed, in our experiments, all three GAN-based I2I models achieved convergence
without any instances of model collapse—a frequent challenge in GAN training. Importantly, with a
noise intensity of σ2

t = 0.04, the Gaussian noise-injected model does not bias the noisy inputs, and
they demonstrate good performance on clean inputs as well, as we will show in the next Section.

D ADDITIONAL RESULTS

D.1 QUANTITATIVE RESULTS AND COMPARISON WITH THEORETICAL ANALYSIS

In the Cat→Dog translation task, the model, trained using Gaussian noise injection, shows superior
noise robustness over the baseline across five different noise scenarios, as highlighted in Table 5
(latent-guided). Even with significant noise interference, the GNI approach consistently delivers
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Figure 7: Comparison results of face super-resolution (a) FID results. (B) Theoretical results of
KL-divergence with Gaussian noise.

stable results. Besides, Table 6 demonstrates that the noise-injected model outperforms the baseline
in popular evaluation metrics like PSNR and FID for face super-resolution tasks. These results echo
our theoretical analysis on the following aspects:

1. Clean inputs: Despite training only with noisy source images, the Gaussian noise-injected
model effectively handle clean inputs, manifesting only slight objective result reductions.
This is consistent with insights from Eq. 4, as expounded in Theorem 1.

2. Resilience to various types of Noises: Part 1 of Theorem 2 indicates that for Gaussian
signal sources, resilience to Gaussian noise implies robustness to other noise types with
a matched covariance structure. Despite natural images not being strictly Gaussian, the
model trained solely on isotropic Gaussian noise demonstrates efficiency against varied
non-Gaussian distortions like Laplacian, uniform, colored Gaussian, and even erasure noises
like Salt & Pepper. Experiments empirically exhibit this generalized capability gained from
Gaussian noise injection.

3. Comparison with Baselines: Training with a noise intensity of σ2
t = 0.04 (specifically

at intensity level S3), Part 2 of Theorem 2 suggests the Gaussian noise-injected model
should surpass clean-trained counterparts for noisy inputs when the inference noise intensity
satisfies σ2

e > 0.5σ2
t = 0.02. As anticipated, the Gaussian noise-injected model excels for

inputs with i.i.d. noises (e.g., Gaussian, Uniform, Laplacian) at noise intensity level S2
(corresponding to σ2

e = 0.02) and above, validating the theoretical expectations.

In addition, for the face super-resolution task, Fig. 7 further compares the FID results vs. σ2
e

against the theoretical KL-divergence ρg(0.04, σ2
eId) predictions for Gaussian noise. To compute

ρg(0.04, σ
2
eId), we employ an AR(1) model for the FFHQ data with d = 256 and a covariance matrix

defined as Σs(k, l) = σ2
s · ρ|k−l| for 0 ≤ k, l ≤ d− 1. The parameters σ2

s = 0.16 and ρ = 0.9 are
informed by the normalized FFHQ dataset. Remarkably, the FID trends closely resemble the derived
KL-divergence, ρg(0.04, σ2

eId), presenting a convex nature in terms of σ2
e . With small σ2

e values, the
performance remains consistent acros s various i.i.d. noises. This parallels the insights from Part 1 of
Theorem 2 regarding KL-divergence.

In Table 7, we present average FID scores for Photo→Sketch task with different training noises
variances σ2

t . The simulation results in this table demonstrate that σ2
t = 0.08 yields the lowest

average FID scores. This empirical finding closely aligns with the prediction in Theorem 2, thus
providing strong empirical support for our theoretical analysis.

While our simulation results align in many respects with theoretical predictions, there are notable
discrepancies between simulation outcomes and theoretical anticipations:

1. Gaussian Source Assumption: Lemma 1 asserts that for a Gaussian source trained via
Gaussian noise injection, Gaussian noise during inference would result in the smallest
KL-divergence. Contrary to this, Fig. 7 reveals that Laplacian noise corruption often yields
superior objective results. This might stem from the inherently non-Gaussian nature of image
signals. Furthermore, we clip all test image pixel values to the range [0, 1) to produce noisy
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Table 5: Quantitative comparison on the Cat→Dog image translation task. In the latent-guided
approach, we randomly generate 10 latent codes as additional guides, and synthesize a total of 5000
images. Note: the random seed remains fixed at 777.

Noise Type Metric Method Noise Intensity

Clean S1 S2 S3 S4 S5 S6

Gaussian
Noise

FID ↓ Baseline 22.82 22.35 24.29 26.12 26.98 31.33 40.34
+N (0, 0.04) 25.04 23.81 22.89 22.29 22.21 21.88 21.76

KID ↓ Baseline 9.67 10.61 11.78 13.92 14.78 18.46 27.11
+N (0, 0.04) 9.89 9.14 8.52 8.09 7.99 7.82 7.88

Uniform
Noise

FID ↓ Baseline 22.82 23.61 24.28 26.42 27.74 32.42 45.38
+N (0, 0.04) 25.04 23.72 22.87 22.32 22.21 21.97 21.71

KID ↓ Baseline 9.67 10.81 11.78 13.94 15.66 20.19 30.56
+N (0, 0.04) 9.89 9.09 8.55 8.21 8.12 7.89 7.91

Color Noise
FID ↓ Baseline 22.82 23.47 24.85 27.49 29.17 35.31 48.61

+N (0, 0.04) 25.04 23.57 22.86 22.45 22.19 22.13 22.11

KID ↓ Baseline 9.67 11.03 12.51 15.19 16.89 22.08 33.98
+N (0, 0.04) 9.89 9.01 8.46 8.23 7.99 7.96 8.02

Laplacian Noise
FID ↓ Baseline 22.82 23.51 24.18 25.66 26.42 29.65 35.11

+N (0, 0.04) 25.04 23.79 22.97 22.47 22.36 21.92 21.76

KID ↓ Baseline 9.67 10.83 11.71 13.33 14.02 17.18 22.12
+N (0, 0.04) 9.89 9.18 8.58 8.25 8.09 7.79 7.74

Salt & Pepper
Noise

FID ↓ Baseline 22.82 23.86 26.42 27.53 31.67 35.91 41.11
+N (0, 0.04) 25.04 23.92 22.51 22.19 22.02 21.91 22.01

KID ↓ Baseline 9.67 10.61 11.78 13.92 14.78 18.46 27.11
+N (0, 0.04) 9.89 9.14 8.52 8.09 7.99 7.82 7.88

Table 6: Quantitative comparison on the Face Super-Resolution image translation task. For face
super-resolution, we adopt the configuration provided by HiFaceGAN (Yang et al., 2020), explicitly
selecting the final 1000 face images from the FFHQ dataset as our designated testset.

Noise Type Metric Method Noise Intensity

Clean S1 S2 S3 S4 S5 S6

Gaussian
Noise

FID ↓ Baseline 34.83 96.21 122.48 166.94 191.21 263.96 320.41
+N (0, 0.04) 43.94 37.15 36.62 36.98 38.04 46.81 60.01

PSNR ↑ Baseline 22.09 20.09 19.76 19.01 17.35 16.24 15.11
+N (0, 0.04) 20.43 21.23 21.65 21.59 21.14 20.51 19.77

Uniform
Noise

FID ↓ Baseline 34.83 95.74 124.22 173.31 197.33 279.81 329.63
+N (0, 0.04) 43.94 37.09 36.79 37.01 38.21 42.27 66.96

PSNR ↑ Baseline 22.09 20.11 18.99 17.69 17.25 16.06 24.76
+N (0, 0.04) 20.43 20.98 21.41 21.84 21.89 21.35 19.75

Color
Noise

FID ↓ Baseline 34.83 99.91 130.08 182.57 208.83 282.82 328.49
+N (0, 0.04) 43.94 37.91 37.39 36.81 40.11 48.99 65.11

PSNR ↑ Baseline 22.09 19.98 18.84 17.56 17.25 16.06 14.95
+N (0, 0.04) 20.43 20.95 21.31 21.74 21.83 21.71 20.94

Laplacian
Noise

FID ↓ Baseline 34.83 93.73 117.37 155.33 172.15 235.65 292.31
+N (0, 0.04) 43.94 37.76 37.01 36.76 37.88 43.82 51.51

PSNR ↑ Baseline 22.09 20.21 19.21 18.04 17.67 16.69 15.72
+N (0, 0.04) 20.43 20.95 21.31 21.74 21.83 21.71 20.94

Salt & Pepper
Noise

FID ↓ Baseline 34.83 112.66 153.43 201.41 250.88 291.62 317.24
+N (0, 0.04) 43.94 39.33 41.25 44.58 50.54 57.21 64.78

PSNR ↑ Baseline 22.09 19.38 17.98 17.01 16.23 15.54 14.94
+N (0, 0.04) 20.43 21.23 21.65 21.59 21.14 20.51 19.77
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Table 7: For Photo→Sketch image translation task, average FID scores comparison on noisy input
images of different intensities for models trained with different Gaussian noise levels.

Noise Type Noise Injection σ2
t

0 0.01 0.04 0.08 0.16 Learnable

Gaussian Noise 182.55 78.89 42.17 36.18 36.64 59.19
Uniform Noise 199.17 101.68 45.37 36.79 36.89 64.81
Laplacian Noise 152.09 64.12 39.17 36.99 37.01 52.41

Table 8: More image degradation test comparisons on Photo→Sketch task.

Type Metric Method Intensity

Clean S1 S2 S3 S4 S5 S6

Noise

Shot
Noise

FID ↓ Baseline 31.49 47.33 54.74 64.79 91.46 219.11 385.72
+N (0, 0.04) 64.12 38.93 35.07 32.49 30.85 39.41 58.06

LPIPS ↓ Baseline 0.3055 0.3851 0.4036 0.4286 0.4848 0.5885 0.6434
+N (0, 0.04) 0.3601 0.3329 0.3267 0.3212 0.3196 0.3459 0.3954

Speckle
Noise

FID ↓ Baseline 31.49 41.14 58.76 84.59 125.21 194.61 270.52
+N (0, 0.04) 64.12 42.91 34.44 32.22 34.08 41.16 51.73

LPIPS ↓ Baseline 0.3055 0.3684 0.4186 0.4721 0.5213 0.5637 0.5955
+N (0, 0.04) 0.3601 0.3453 0.3338 0.3216 0.3321 0.3634 0.3858

Blur

Glass
Blur

FID ↓ Baseline 31.49 31.72 48.45 52.53 64.82 83.08 91.04
+N (0, 0.04) 64.12 63.39 51.59 52.01 53.47 57.18 58.54

LPIPS ↓ Baseline 0.3055 0.3061 0.3512 0.3621 0.3869 0.4111 0.4231
+N (0, 0.04) 0.3601 0.3589 0.3521 0.3511 0.3559 0.3645 0.3704

Defocus
Blur

FID ↓ Baseline 31.49 32.17 36.38 45.86 52.59 64.22 92.82
+N (0, 0.04) 64.12 64.51 68.65 70.91 77.95 84.21 92.11

LPIPS ↓ Baseline 0.3055 0.3098 0.3232 0.3516 0.3678 0.3901 0.4256
+N (0, 0.04) 0.3601 0.3641 0.3701 0.3823 0.3931 0.4122 0.4213

Digital

Pixelate
FID ↓ Baseline 31.49 39.77 57.61 77.33 89.87 108.11 145.32

+N (0, 0.04) 64.12 62.59 64.04 67.14 74.08 85.41 100.01

LPIPS ↓ Baseline 0.3055 0.3282 0.3671 0.3987 0.4341 0.4611 0.4901
+N (0, 0.04) 0.3601 0.3641 0.3684 0.3752 0.3738 0.3869 0.4011

JPEG
FID ↓ Baseline 31.49 34.79 36.02 36.89 41.16 47.39 71.35

+N (0, 0.04) 64.12 62.51 61.22 60.63 59.21 55.52 53.72

LPIPS ↓ Baseline 0.3055 0.3192 0.3236 0.3301 0.3571 0.3699 0.4291
+N (0, 0.04) 0.3601 0.3611 0.3602 0.3631 0.3653 0.3665 0.3786

test images. Given the extended tails of Laplacian noise, this clipping could inadvertently
reduce noise levels.

2. FID vs. KL-Divergence in I2I Tasks: For supervised I2I tasks such as photo-to-sketch
translation and face super-resolution, FID scores largely mirror KL-divergence trends.
However, in the unsupervised Cat→Dog translation via the GP-UNIT model, FID results
diverge from theoretical KL calculations. This discrepancy might arise because, apart from
the source image, GP-UNIT integrates an additional latent code or reference image for I2I
translation. In contrast, our theoretical framework solely contemplates the source images as
inputs. As noise intensities escalate, FID and KID metrics for GP-UNIT models improve.

A comprehensive analysis of these results, especially the intriguing behavior of GP-UNIT models
under increased noise, will be the subject of our future investigations.

D.2 QUANTITATIVE RESULTS OF OTHER IMAGE DEGRADATION MODELS

We also assessed the effectiveness of Gaussian noise injection in handling other image degradation
models outlined in Imagenet-C. These models include a range of degradations, including signal-
dependent noises such as shot and speckle noises, as well as various blurring operators and digital
operations like JPEG compression and pixelation (as detailed in Table 4).
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Table 9: More image degradation test comparisons on Cat→Dog task (latent-guided).

Type Metric Method Intensity

Clean S1 S2 S3 S4 S5 S6

Noise

Shot
Noise

FID ↓ Baseline 22.82 24.42 23.74 24.31 26.09 30.91 37.51
+N (0, 0.04) 25.04 24.03 23.44 22.85 22.39 21.76 21.88

KID ↓ Baseline 9.67 10.86 11.09 11.59 13.49 18.27 24.51
+N (0, 0.04) 9.89 9.31 8.98 8.46 8.12 7.79 7.91

Speckle
Noise

FID ↓ Baseline 22.82 23.36 24.25 25.41 26.98 29.35 31.53
+N (0, 0.04) 25.04 24.25 23.02 22.37 22.08 21.99 21.91

KID ↓ Baseline 9.67 10.69 11.64 12.97 14.53 16.97 19.15
+N (0, 0.04) 9.89 9.46 8.61 8.37 7.96 8.07 7.92

Blur

Glass
Blur

FID ↓ Baseline 22.82 22.85 23.91 23.04 23.12 23.51 23.98
+N (0, 0.04) 25.04 25.06 25.09 25.18 24.89 24.61 24.51

KID ↓ Baseline 9.67 9.69 9.82 9.86 10.06 10.44 10.56
+N (0, 0.04) 9.89 9.88 9.92 10.03 9.98 9.91 9.77

Defocus
Blur

FID ↓ Baseline 22.82 23.08 23.41 24.71 25.71 26.52 27.13
+N (0, 0.04) 25.04 25.92 26.01 26.02 25.91 25.69 25.45

KID ↓ Baseline 9.67 9.81 9.98 10.71 11.31 11.97 12.45
+N (0, 0.04) 9.89 10.44 10.61 10.67 10.59 10.48 10.29

Digital

Pixelate
FID ↓ Baseline 22.82 22.89 23.31 23.42 23.85 23.91 24.01

+N (0, 0.04) 25.04 25.29 25.84 26.01 25.81 25.71 25.69

KID ↓ Baseline 9.67 9.72 9.82 10.06 10.21 10.44 10.91
+N (0, 0.04) 9.89 10.03 10.35 10.51 10.54 10.45 10.42

JPEG
FID ↓ Baseline 22.82 22.91 22.95 23.01 23.26 23.41 24.36

+N (0, 0.04) 25.04 25.19 24.94 25.21 25.41 25.49 25.53

KID ↓ Baseline 9.67 9.79 10.01 10.07 10.35 10.53 12.24
+N (0, 0.04) 9.89 10.03 9.77 9.96 10.11 10.25 10.31

Table 10: More image degradation test comparisons on Cat→Dog task (reference-guided).

Type Metric Method Intensity

Clean S1 S2 S3 S4 S5 S6

Noise

Shot
Noise

FID ↓ Baseline 17.82 18.36 18.39 19.08 20.71 26.51 34.07
+N (0, 0.04) 16.47 16.29 16.21 16.06 16.19 15.97 16.01

KID ↓ Baseline 7.08 8.04 8.06 8.72 10.03 14.61 21.08
+N (0, 0.04) 5.35 5.23 5.13 5.01 5.21 5.09 5.16

Speckle
Noise

FID ↓ Baseline 17.82 18.34 19.09 20.41 22.41 24.55 27.45
+N (0, 0.04) 16.47 16.39 16.11 16.03 16.04 16.07 16.15

KID ↓ Baseline 7.08 7.95 8.61 9.82 11.46 13.31 15.51
+N (0, 0.04) 5.35 5.25 5.11 5.08 5.12 5.26 5.27

Blur

Glass
Blur

FID ↓ Baseline 17.82 17.89 17.91 17.96 17.99 18.06 18.11
+N (0, 0.04) 16.47 16.45 16.44 16.46 16.55 16.48 16.47

KID ↓ Baseline 7.08 7.09 7.23 7.31 7.33 7.46 7.48
+N (0, 0.04) 5.35 5.34 5.32 5.33 5.44 5.38 5.39

Defocus
Blur

FID ↓ Baseline 17.82 17.84 17.91 18.46 18.92 19.01 19.36
+N (0, 0.04) 16.47 16.74 16.81 16.79 16.69 16.68 16.55

KID ↓ Baseline 7.08 7.09 7.11 7.15 7.53 7.86 8.31
+N (0, 0.04) 5.35 5.54 5.61 5.57 5.53 5.56 5.45

Digital

Pixelate
FID ↓ Baseline 17.82 17.86 17.93 17.94 17.96 17.99 18.16

+N (0, 0.04) 16.47 16.46 16.66 16.79 16.67 16.64 16.69

KID ↓ Baseline 7.08 7.09 7.12 7.17 7.26 7.43 7.89
+N (0, 0.04) 5.35 5.32 5.48 5.62 5.54 5.56 5.58

JPEG
FID ↓ Baseline 17.82 17.85 17.85 17.96 18.06 18.49 19.91

+N (0, 0.04) 16.47 16.49 16.43 16.53 16.54 16.69 16.74

KID ↓ Baseline 7.08 7.10 7.25 7.53 7.56 7.91 9.56
+N (0, 0.04) 5.35 5.37 5.31 5.32 5.34 5.38 5.51
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Table 11: More image degradation test comparisons on Face Super-Resolution task.

Type Metric Method Intensity

Clean S1 S2 S3 S4 S5 S6

Noise

Shot
Noise

FID↓ Baseline 34.83 86.23 98.06 114.55 162.75 261.81 308.57
+N (0, 0.04) 43.94 37.61 37.21 36.97 39.11 47.25 59.41

PSNR↑ Baseline 22.09 20.56 20.04 19.32 18.07 16.62 15.76
+N (0, 0.04) 20.43 21.02 21.16 21.29 21.32 20.43 19.45

Speckle
Noise

FID↓ Baseline 34.83 78.13 109.01 147.72 191.09 225.86 256.43
+N (0, 0.04) 43.94 38.25 38.15 39.33 43.71 49.43 56.81

PSNR↑ Baseline 22.09 20.85 19.47 18.23 17.28 16.59 16.06
+N (0, 0.04) 20.43 20.99 21.19 21.21 20.63 20.18 19.75

Blur

Glass
Blur

FID↓ Baseline 34.83 34.86 35.89 36.12 37.45 40.55 42.41
+N (0, 0.04) 43.94 43.91 43.85 43.84 43.81 43.78 43.56

PSNR↑ Baseline 22.09 22.07 22.05 22.03 21.98 21.89 21.87
+N (0, 0.04) 20.43 20.43 20.45 20.46 20.52 20.59 20.62

Defocus
Blur

FID↓ Baseline 34.83 34.84 34.88 34.91 34.96 35.01 35.06
+N (0, 0.04) 43.94 43.95 43.88 43.75 43.71 43.68 43.59

PSNR↑ Baseline 22.09 22.08 22.05 22.01 21.95 21.94 21.91
+N (0, 0.04) 20.43 20.42 20.46 20.56 20.63 20.73 20.81

Digital

Pixelate
FID↓ Baseline 34.83 34.93 35.68 35.86 38.31 38.89 40.78

+N (0, 0.04) 43.94 44.01 43.64 44.02 43.95 43.97 43.96

PSNR↑ Baseline 22.09 22.05 22.01 21.97 21.94 21.91 21.88
+N (0, 0.04) 20.43 20.43 20.52 20.53 20.62 20.67 20.76

JPEG
FID↓ Baseline 34.83 38.56 39.56 42.01 46.51 56.16 81.39

+N (0, 0.04) 43.94 44.19 44.42 44.71 45.11 47.81 57.32

PSNR↑ Baseline 22.09 21.96 21.92 21.84 21.33 21.35 20.04
+N (0, 0.04) 20.43 21.98 21.72 21.51 21.41 21.47 21.11

Table 12: Robustness evaluation to multiple image degradations on the Cat→Dog image translation
task (latent-guided). Note: +Noise1 and +Noise2 represent using Gaussian and Shot noise to
perturb the degraded image.

Setting Blur Digital Mixing

Glass Blur Defocus Blur Pixelate JPEG Glass Blur + Pixelate Defocus Blur + JPEG

Baseline 23.12 25.71 23.85 23.26 26.35 25.93
Noise Injection 24.89 25.91 25.81 25.41 25.86 25.99

Baseline+Noise1 26.98 28.99 27.81 26.75 28.51 29.51
Noise Injection+Noise1 22.21 22.75 22.53 22.41 22.44 22.61

Baseline+Noise2 26.24 27.31 26.56 26.01 27.11 27.44
Noise Injection+Noise2 22.67 22.84 22.81 22.49 23.05 22.75

The objective results for all three tasks are summarized in Tables 8 to 11. Table 12 further provides
results for combinations of these degradation models. Our key findings from these tables are as
follows:

• For corruptions involving signal-dependent noises alone, models trained with GNI consis-
tently demonstrated substantial improvements over baseline models trained solely on clean
images, mirroring those observed with signal-independent noises.

• In cases where degradations included blurring, pixelation, or JPEG compression without
additional noise, models trained with GNI were occasionally outperformed by the baselines,
particularly at low to medium degradation intensities.

• In combined degradation models, whenever the noise component was present (e.g.,
JPEG+noise or Blur+noise), models trained with GNI consistently exhibited significant
enhancements over the baseline models, as shown in Table 12. This observation is par-
ticularly relevant to real-world scenarios where noises are often present, emphasizing the
effectiveness of GNI in I2I tasks.

Notably, as demonstrated in Table 12, in cases where the corruption model excluded the noise
component, the addition of a small amount of noise to the input images proved effective in producing
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Figure 8: Comparison of reference-guided generation for Cat→Dog under the interference of
Gaussian noise. Each source image is guided using two reference images. On the left is the result
obtained by the baseline (GP-UNIT), and on the right is the result obtained by applying noise injection
to the baseline model.

outputs with stable quality. These findings provide further insights into the robustness and potential
of Gaussian noise injection in I2I for various degradations.

D.3 ADDITIONAL QUALITATIVE RESULTS

In this subsection, we present additional comparative findings. Precisely, Figs. 8 through 12 depict
the results of the Cat→Dog image translation task when subjected to Gaussian noise, Uniform noise,
Color noise, Laplacian noise, and Salt & Pepper noise. Meanwhile, Figs. 13 to 17 reveal results
from the same noisy environment, guided by latent factors. Furthermore, Figs. 18 through 22
display the translation outcomes of the Face Super-Resolution image translation task when exposed to
Gaussian noise, Uniform noise, Color noise, Laplacian noise, and Salt & Pepper noise. These visual
representations confirm the significant enhancement in noise robustness of various image-to-image
translation models achieved by the GNI training method, all without incurring additional resource
overhead.

Fig. 23 and 24 show the image conversion results under different image degradation and their
combinations on tasks Cat→Dog and Photo→Sketch respectively. As can be seen here, systems
trained with Gaussian noise injection produce pictures with more stable visual qualities compared
with those baseline models.

D.4 COMPARISON WITH DENOISING-BASED APPROACHES

An alternative to noise injection is to denoise the noisy input and feed these denoised images into
an I2I model trained solely on clean images. In the context of photo-to-sketch translation, Table 13
and Fig. 25 compare the results of denoising-based approaches against the noise-injection method.
Specifically, we employed CBM3D (Mäkinen et al., 2020) for images tainted by Gaussian noise and
median filtering (using a 5×5 window) for those affected by Salt & Pepper noise. Visually, the quality
of outputs from the noise-injection approach is comparable to those achieved through denoising.
However, noise injection offers several advantages over the denoising-based pre-processing strategy:
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Figure 9: Comparison of reference-guided generation for Cat→Dog under the interference of Uniform
noise. Each source image is guided using two reference images. On the left is the result obtained
by the baseline (GP-UNIT), and on the right is the result obtained by applying noise injection to the
baseline model.

1. Generality: Unlike denoising, which often requires precise noise details, the GNI mothod
is broadly applicable without specific noise characterizations.

2. Adaptive Robustness: the GNI approach naturally conditions the I2I model to diverse
perturbations, enhancing its resilience.

3. Efficiency: Bypassing the denoising step reduces computational overhead, offering faster
translations, especially for high-resolution inputs.

4. Scalability: the GNI mothod’s adaptability ensures relevance against evolving noise chal-
lenges without extensive re-engineering.

In essence, while denoising-based pre-processing attempts to "clean" the input, noise injection
empowers the model to "understand" and "adapt" to the noise.

D.5 OUT-OF-DOMAIN RESULTS

The Sketch Transformer was trained on a highly specific dataset. In this subsection, we demonstrate
its capability in handling out-of-domain (OOD) face photos when the model is trained using noise
injection. As depicted in Fig. 26, the model reliably translates OOD face photos into sketches,
even in noise perturbations. However, compared to its performance on the in-domain CUFS test
dataset, the model’s resistance to noise slightly drops. This decrease in resilience becomes especially
evident at higher noise levels, revealing visible distortions and suggesting an opportunity for future
enhancements.

Regarding the two remaining image translation tasks, the employed training datasets boast even
greater expanses. As a result, their capacity to handle data beyond their designated domains is a topic
afforded less discourse. Instead, the focus leans towards assessing whether the data input model
necessitates supplementary data processing and ancillary procedures.
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Figure 10: Comparison of reference-guided generation for Cat→Dog under the interference of Color
noise. Each source image is guided using two reference images. On the left is the result obtained
by the baseline (GP-UNIT), and on the right is the result obtained by applying noise injection to the
baseline model.

D.6 LIMITATIONS

In this subsection, we examine the limitations of the noise injection method. Our prior simulations
predominantly employed uni-directional I2I models. Both visual and metric evaluations indicate that
generated image quality may suffer, particularly in scenarios with clean or low-intensity noise.

Besides, the method’s efficacy appears less consistent for bidirectional I2I translations. This is
demonstrated in Table 14, which presents FID scores, and Fig. 27, which depicts qualitative results
when noise injection is applied to CycleGAN (Zhu et al., 2017) for Horse→Zebra translation task.
Notably, the Gaussian noise-injected model struggles with clean inputs, and despite better FID scores
with noisy inputs, visual distortions, especially around the zebra’s head and legs, are evident. It is,
therefore, crucial to acknowledge that when applied to bi-directional I2I translation models, the GNI
mothod cannot be considered a straightforward "plug-and-play" solution. Adaptations in network
architectures and/or loss functions might be requisite to achieve desired results.
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Figure 11: Comparison of reference-guided generation for Cat→Dog under the interference of
Laplacian noise. Each source image is guided using two reference images. On the left is the result
obtained by the baseline (GP-UNIT), and on the right is the result obtained by applying noise injection
to the baseline model.
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Figure 12: Comparison of reference-guided generation for Cat→Dog under the interference of Salt
& Pepper noise. Each source image is guided using two reference images. On the left is the result
obtained by the baseline (GP-UNIT), and on the right is the result obtained by applying noise injection
to the baseline model.
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Figure 13: Comparison of latent-guided generation for Cat→Dog under the interference of Gaussian
noise. Each source image is guided using two style latents randomly sampled from N (0, 1). On
the left is the result obtained by the baseline (GP-UNIT), and on the right is the result obtained by
applying noise injection to the baseline model.
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Figure 14: Comparison of latent-guided generation for Cat→Dog under the interference of Uniform
noise. Each source image is guided using two style latents randomly sampled from N (0, 1). On
the left is the result obtained by the baseline (GP-UNIT), and on the right is the result obtained by
applying noise injection to the baseline model.
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Figure 15: Comparison of latent-guided generation for Cat→Dog under the interference of Color
noise. Each source image is guided using two style latents randomly sampled from N (0, 1). On
the left is the result obtained by the baseline (GP-UNIT), and on the right is the result obtained by
applying noise injection to the baseline model.
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Figure 16: Comparison of latent-guided generation for Cat→Dog under the interference of Laplacian
noise. Each source image is guided using two style latents randomly sampled from N (0, 1). On
the left is the result obtained by the baseline (GP-UNIT), and on the right is the result obtained by
applying noise injection to the baseline model.
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Figure 17: Comparison of latent-guided generation for Cat→Dog under the interference of Salt &
Pepper noise. Each source image is guided using two style latents randomly sampled from N (0, 1).
On the left is the result obtained by the baseline (GP-UNIT), and on the right is the result obtained by
applying noise injection to the baseline model.
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Figure 18: Comparison of Face super-resolution task under Gaussian noise corruption. Each example
has the baseline in the 1st row and the +N (0, 0.04) in the 2nd. The same format is followed for
results under other noise types in the subsequent figures.
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Figure 19: Face Super-Resolution comparison under Uniform noise interference.
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Figure 20: Face Super-Resolution comparison under Color noise interference.
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Figure 21: Face Super-Resolution comparison under Laplacian noise interference.
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Figure 22: Face Super-Resolution comparison under Salt & Pepper noise interference.
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Figure 23: Image translation results to multiple image degradation on the Cat→Dog image translation
task (latent-guided). Note: Each source image is guided using two reference images. The selected
noise intensity is S3 and other degradation intensity is S4.

Table 13: Comparison with Denoising-based Approach on FID scores
for Photo→Sketch translation.

Methods Clean Salt & Pepper Gaussian Noise

S2 S4 S6 S3 S5 S6

Denoising-based 31.47 61.11 114.32 241.08 36.46 41.02 45.35
+N (0, 0.04) 64.12 32.45 46.89 74.25 31.16 40.95 64.87
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Figure 25: Comparison of denoising-based pre-processing. First row: Input images.
Column (a): Clean. Columns (b)-(d): Images corrupted with Salt & Pepper noise
densities of 0.1, 0.2, and 0.3. Columns (e)-(g): Images corrupted with i.i.d. Gaussian
noises of σ2

e=0.04, 0.09, and 0.16. Second row: Results using denoising and baseline
sketch transformer. Column (a): Unprocessed. Columns (b)-(d): Median filters
applied. Columns(e)-(g): CBM3D (Mäkinen et al., 2020) denoising applied. Third
row: Outputs from the models trained using Gaussian noise injection.
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Figure 24: Image translation results to multiple image degradation on the Photo→Sketch image
translation task.
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Figure 26: Out-of-domain results of Photo→Sketch task under the interference of Salt & Pepper
noise and Uniform noise. (a) Input photos not disturbed by noise; (b) Input photo disturbed by
Uniform noise of intensity S4; (c) Input photo disturbed by Salt & Pepper noise of intensity S4.
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Table 14: FID comparison on the Horse→Zebra image translation task using Cycle-GAN
model. We use the same FID calculation method as in (Zhu et al., 2017).

σ2
e 0 0.01 0.04 0.05 0.09 0.16

Baseline 76.92 92.15 118.29 135.64 147.34 180.82
+N (0, 0.04) 283.97 114.91 58.32 54.11 54.54 50.45
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Figure 27: Failure results for Horse→Zebra translation in Cycle GAN model. Noise
injection techniques might require customization for diverse models; otherwise, one may
attain inferior results.
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