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ABSTRACT

Unsupervised novelty detection (UND), aimed at identifying novel samples, is es-
sential in fields like medical diagnosis, cybersecurity, and industrial quality con-
trol. Most existing UND methods assume that the training data and testing normal
data originate from the same domain and only consider the distribution variation
between training data and testing data. However, in real scenarios, it is common
for normal testing and training data to originate from different domains, a chal-
lenge known as domain shift. The discrepancies between training and testing data
often lead to incorrect classification of normal data as novel by existing methods.
A typical situation is that testing normal data and training data describe the same
subject, yet they differ in the background conditions. To address this problem,
we introduce a novel method that separates subject information from background
variation encapsulating the domain information to enhance detection performance
under domain shifts. The proposed method minimizes the mutual information
between the representations of the subject and background while modelling the
background variation using a deep Gaussian mixture model, where the novelty
detection is conducted on the subject representations solely and hence is not af-
fected by the variation of domains. Extensive experiments demonstrate that our
model generalizes effectively to unseen domains and significantly outperforms
baseline methods, especially under substantial domain shifts between training and
testing data.

1 INTRODUCTION

Novelty detection (Markou & Singh, 2003; Pimentel et al., 2014; Sabokrou et al., 2018; Pang et al.,
2021) has received considerable attention for its essential applications in finance, healthcare, and
security. In these fields, models must accurately predict in-distribution data and detect out-of-
distribution (OOD) inputs, representing novel or unseen cases. Failing to detect such inputs can
have serious consequences. OOD detection, often used interchangeably with novelty detection, is
also closely related to outlier detection (Hodge & Austin, 2004), anomaly detection (Chandola et al.,
2009), fault detection (Isermann, 1984), and one-class classification (Khan & Madden, 2014). For
instance, unsupervised anomaly assumes most or even all training data represent normal behaviour
or patterns and identifies the test data with any large deviations as anomalous. Therefore, it can be
regarded as a special case of unsupervised novelty detection.

Numerous novelty detection methods (Rumelhart et al., 1986; Schölkopf et al., 1999; Breunig et al.,
2000; Liu et al., 2008b; Schölkopf et al., 2001; Ruff et al., 2018; Viroli & McLachlan, 2019; Hu
et al., 2020; Cai & Fan, 2022) have been proposed, For classical methods, kernel density estimation
(KDE)(Parzen, 1962) utilizes a kernel function to estimate the density of data and treats the density
as novelty score. OC-SVM (Schölkopf et al., 2001) tries to separate normal data from novel data
by a hyperplane. Local outlier factor (LOF) (Breunig et al., 2000) regards data with lower density
than its surrounding data as novel data. Autoencoder (AE) (Hinton & Salakhutdinov, 2006) uses
reconstruction error as a novelty metric. Isolation forest (IF) (Liu et al., 2008a) uses the length of
iTree to detect novel samples. As for recent state-of-the-art methods, ALAD (Zenati et al., 2018)
based on bi-directional GANs, uses reconstruction errors based on these adversarially learned fea-
tures to determine if a data sample is novel. (Ruff et al., 2018) released DeepSVDD, which utilizes
a neural network to enclose the representations of normal data in a hypersphere in the latent space
with minimal volume. MO-GAAL (Liu et al., 2019) can directly generate informative potential
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outliers based on the mini-max game between a generator and a discriminator and n generate a
reference distribution for the whole dataset to provide sufficient information to assist the classifier
in describing a boundary that can separate novel samples from normal data effectively. DROCC
(Goyal et al., 2020) which is on the basis of low-dimensional manifold assumption on normal data,
generates negative samples to provide general and robust identification on novel samples. SUOD
(Zhao et al., 2021), which is a comprehensive acceleration framework for novelty (outlier) detection,
generates random low-dimensional subspace for base models and uses the output of unsupervised
models as pseudo ground truth. PLAD (Cai & Fan, 2022) which is based on perturbation learning,
learns small perturbations to perturb normal data and learns a classifier to classify the normal data
and the perturbed data into two different classes. Then, data classified as perturbed is considered to
be novel (anomalous). DIF (Xu et al., 2023), a deep-learning version of isolation forest (Liu et al.,
2008b), enables non-linear partition on subspaces of varying sizes, offering a more effective novelty
(anomaly) isolation solution.

Training data Testing data

Normal data (likely to be labeled as novel)

Figure 1: An illustration of the novelty detection task. The training data (left) consists of images
of the digit ’0’ presented in four backgrounds. The testing data (right) includes images of multiple
digits (0-9) in seen backgrounds and entirely unseen backgrounds. Although the ’0’ digits in the test
set are normal, some of them are likely to be labelled as novel due to the shift in background.

A significant limitation of many existing unsupervised novelty detection (UND) methods is that,
while they acknowledge the difference in distributions between training and test data, they often
assume that both training and normal test data originate from the same domain. However, in real-
world scenarios, it is common for normal test data and training data to be sourced from different
domains, a challenge referred to as domain shift. For example, training and normal test data may be
collected under varying environmental conditions, from different individuals, or at different times.
A typical instance of this issue arises when training and test data describe the same subject but differ
in background conditions, as illustrated in Figure 1. Such domain shifts can significantly affect
model performance by leading to misclassifications, particularly when the domain differences in the
test data are not accounted for during training (Wu et al., 2023).

To address the challenges of domain shift, methods such as domain generalization, empirical risk
minimization(ERM) (Vapnik, 1991) and invariant risk minimization (IRM)(Arjovsky et al., 2019)
have been developed. These approaches generally require task-specific labels (e.g., classification la-
bels) and domain labels to address domain differences in the training data. In some instances, hybrid
or auxiliary labels are necessary to further improve model performance. However, labelling domain-
specific information for each data point can be resource-intensive. In contrast, our proposed model
simplifies this process by only requiring the number of domains from which the data is sourced,
reducing the labelling burden.

To address the challenge of background (domain) shifts between training and normal test data in
unsupervised novelty detection, we propose a novel and effective method called Subject-Novelty
Detection (SND). SND disentangles subject information from background features in the training

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

data, allowing the model to focus on subject-specific features during novelty detection. This enables
SND to maintain strong performance even when the normal test data exhibits entirely different
background characteristics from the training data. Unlike other domain adaptation methods, which
often require both task and domain labels for each data point, SND only necessitates knowledge of
the number of domains, making it more efficient while preserving high accuracy in novelty detection.
Our main contributions are as follows:

• We introduce Subject-Novelty Detection (SND), which isolates subject information from
background variations, enabling robust detection even under significant domain shifts.

• SND eliminates the need for prior knowledge of the subject or background details. It only
requires information on the number of domains in the training data, making it efficient and
adaptable for detecting novelty in domain-shift scenarios.

• We extensively compare SND with existing methods and domain shift techniques, demon-
strating that SND achieves state-of-the-art results in various scenarios.

2 RELATED WORK

2.1 UNSUPERVISED NOVELTY DETECTION

Novelty detection (ND) is usually an unsupervised learning problem, where training data are un-
labeled and most or all of them are normal data. Novelty detection can be divided into two types.
The first type is to identify novel samples in a dataset by training a machine learning model, where
the novel samples or outliers are identified once the model training is finished. The methods of this
type are often based on density estimation or use some robust loss functions. The typical methods
include robust kernel density estimation, Gaussian mixture models, robust PCA (Xu et al., 2010;
Candès et al., 2011), low-rank representations (Liu et al., 2012), robust kernel PCA (Fan & Chow,
2019), etc. The second type is to train a model on a training dataset without any outliers or with a
very small fraction of unlabeled outliers. This setting is the same as unsupervised anomaly detection
and one-class classification. Typical methods include PCA, autoencoder (Rumelhart et al., 1986),
LOF (Breunig et al., 2000), Isolation forest (Liu et al., 2008b), OC-SVM (Schölkopf et al., 2001),
SVDD (Tax & Duin, 2004), Deep SVDD (Ruff et al., 2018), DAGMM (Viroli & McLachlan, 2019),
AnoGAN (Schlegl et al., 2017), HRN (Hu et al., 2020), PLAD (Cai & Fan, 2022), DPAD (Fu et al.,
2024), etc. In this study, we focus on the second type.

2.2 DOMAIN ADAPTATION AND TRANSFER LEARNING

Domain adaptation and transfer learning strategies play a pivotal role in enhancing the performance
of learning models when faced with new tasks or domains. Traditional machine learning models are
often trained on specific datasets, but real-world scenarios frequently present data distributions that
vary across tasks or domains. Domain adaptation techniques address discrepancies between data
distributions in source and target domains. These include instance re-weighting, feature mapping,
and adversarial learning (Tzeng et al., 2017). Transfer learning leverages knowledge from related
tasks to mitigate the data and computational requirements of new tasks, finding success in computer
vision and natural language processing domains (Pan & Yang, 2009).

Recent advances in domain adaptation and transfer learning include unsupervised domain adapta-
tion techniques that align source and target domain features without requiring target domain labels
(Tzeng et al., 2017). Multi-source domain adaptation improves model performance by integrating
data from multiple source domains (Zhao et al., 2018). Cross-modal transfer learning has made
strides in knowledge transfer between different modalities (Chen et al., 2019). Meta-learning tech-
niques, such as Model-Agnostic Meta-Learning (MAML), excel in rapid adaptation to new tasks
(Finn et al., 2017). Self-supervised learning reduces the need for labelled data in transfer learning
scenarios (Chen et al., 2020). More recently, some researchers explored OOD detection combined
with domain adaptation (Oza et al., 2020; Yang et al., 2023; Carvalho et al., 2024), focusing primar-
ily on transitioning from one scene to another.
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Figure 2: An overview of the proposed SND model.

3 UNSUPERVISED SUBJECT NOVELTY DETECTION

3.1 PROBLEM FORMULATION

To be precise, suppose we have a training dataset consisting of N images, denoted as D =
{x1,x2, . . . ,xN}, in which each xi ∈ RC×H×W has a background bi chosen from a set of K
different backgrounds B = {B1, B2, . . . , BK} and all or most of the N samples are normal. No-
tably, although the total number of backgrounds K is known, the specific background type of each
image is unknown. This setting is practical since data or images collected often come from different
backgrounds (or domains more generally) and labelling the backgrounds is costly. We consider a
test set D′ = {x′

1,x
′

2, . . . ,x
′

M}, where the background b
′

i of each x
′

i is chosen from a larger set
B̃ = {B1, B2, . . . , BK , BK+1, . . . , BK+K′}. Note that BK+1, . . . , BK+K′ are actually new back-
grounds different from B1, B2, . . . , BK and K ′ is unknown. Our goal is to learn a model from D
to determine whether a new sample from D′ is a novel sample in terms of the subject information
rather than the background information. This is a nontrivial task because the domain of normal data
changed, or in other words, the distribution of normal data changed.

A simple example of the task is shown in Figure 1, where the training set contains images of digit
′0′ with 4 different coloured backgrounds (white, yellow, blue, pink), and the testing set contains
images of digits (0−9) with 5 different coloured backgrounds (white, yellow, blue, pink, green). To
evaluate the performance of methods under extreme background shifts, the background of digit ′0′

(testing normal data) is set to a completely unseen green background, while backgrounds of digits
(1 − 9) (testing novel data) are set to all 5 colours. Our aim is to identify digits (1 − 9) as novel
samples which contain different subject information while treating digits 0 as normal samples which
differ from training data only in background information.

Classical ND tasks only consider the distribution difference between the training data and testing
novel data. Our tasks consider not only the distribution difference mentioned before but also the
background (domain) shift between training data and testing normal data, which leads to distribu-
tion difference between them. Thus unsupervised subject novelty detection is a more complicated
novelty detection task. Classical ND methods have high false positive rates on this task because they
will label the normal samples with new backgrounds as novel samples.

3.2 PROPOSED MODEL

We aim to address the challenge of isolating subject information from varying backgrounds for im-
proved novelty detection. One key point is to learn representations that separate subject and back-
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ground features in an unsupervised manner, allowing the model to detect novel subject information
despite shifts in background domains. The process of our method is illustrated in Figure 2.

The process begins with a feature extraction network Gθf : RC×H×W → Rd with parameters θf ,
which processes the input image x and generates a feature representation zf , i.e.,

zf = Gθf (x). (1)
This representation is then decomposed into two distinct components, a subject feature zs and a
background feature zb, through two neural networks Fθs : Rd → Rd and Fθb : Rd → Rd, i.e.,

zs = Fθs(zf ), zb = Fθb(zf ). (2)
It is nontrivial to guarantee that zs and zb exclusively represent the subject and background infor-
mation, respectively. With the insights provided by (Cheng et al., 2020), we propose to minimize
the mutual information I(zs; zb) between zs and zb, which will encourage the two parts to be statis-
tically independent. The mutual information is estimated using a neural network ξθm based on the
following formulation

ÎMI(zs; zb) =
1

N

N∑
i=1

log ξθm(z
(i)
b |z(i)s )− 1

N

N∑
j=1

log ξθm(z
(j)
b |z(i)s )

 . (3)

The full derivation of the mutual information estimation is detailed in Appendix A. It is worth noting
that making zs and zb independent cannot ensure that zs is composed of the subject information and
zb is composed of the background information. zs may represent background information while zb
may represent subject information. In other words, we cannot identify their correspondences.

Fortunately, by assuming that the number of background types is K and K is different from the num-
ber of potential clusters in the subject information, we can distinguish between subject information
and background information. Specifically, inspired by (Zong et al., 2018), we use a deep Gaussian
Mixture Model (GMM) with K components to model zb. Sθg : Rd → RK is a neural network
projecting zb to γ̂i

k, which represents the soft membership prediction for each mixture component.

γ̂i = softmax(Sθg (z
i
b)) (4)

The modelling will encourage zb to capture K clusters, making it different from the subject informa-
tion. Denoting π̂k the weight of the k-th Gaussian component, µ̂k ∈ Rd the mean, and Σ̂k ∈ Rd×d

the covariance matrix of the k-th component.

π̂k =
1

L

tL∑
i=t1

γ̂i
k, µ̂k =

∑tL
i=t1

γ̂i
kz

i
b∑tL

i=t1
γ̂i
k

, Σ̂k =

∑tL
i=t1

γ̂i
k(z

i
b − µ̂k)(z

i
b − µ̂k)

⊤∑tL
i=t1

γ̂i
k

(5)

Given a randomly sampled batch of data {xi}tLi=t1
⊆ D, {t1, . . . , tL} ⊆ {1, . . . , N} and their

background feature vectors {zib}
tL
i=t1

with batch size L, we define the following background energy
function

E(zib) = − log

(
K∑

k=1

π̂k(2π)
−d/2|Σ̂k|−1/2 exp

(
−1

2
(zib − µ̂k)

⊤Σ̂−1
k (zib − µ̂k)

))
(6)

The identification of zb together with its independence to zs sure that zs captures the subject infor-
mation naturally.

Nevertheless, we still need to ensure that zs and zb preserve the original information of the input x.
This can be done by letting them be able to reconstruct the input x. Specifically, we feed zs and zb
into two different decoders Hθ′

s
: Rd → RC×H×W and Hθ′

b
: Rd → RC×H×W , i.e.,

xs = Hθ′
s
(zs), xb = Hθ′

b
(zb), (7)

and summarize their outputs as the reconstruction for x, i.e.,
x̂ = xs + xb. (8)

By isolating subject and background information, our method can focus on detecting novelty in the
subject information, even when there is significant variation in the background. This feature decom-
position and reconstruction mechanism ensures robustness to background changes and facilitates
accurate novelty detection.
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3.3 TRAINING AND EVALUATION

Here, we summarize the entire process of the proposed method. Due to the mutual information esti-
mation and GMM parts, we can ensure that both zs and zb contain necessary information about the
subject and background respectively, without worrying that one has learned most of the information
while the other has not learned anything. The loss function Lrec(x, x̂) represents the reconstruction
error between the original image x and the reconstructed output image x̂, which is expressed as

Lrec(x, x̂) = ∥x− x̂∥22 . (9)
We calculate the weighted sum of all the loss terms to obtain the total loss for the proposed model:

Ltotal = Lrec(x,xr) + ω1E(zb) + ω2ÎMI(zs; zb), (10)
where ω1 and ω2 are non-negative hyperparameters and the parameters to learn are
{θf , θs, θb, θm, θg, θ

′
s, θ

′
b}

After our model is well-trained, we can use Kernel Density Estimation (KDE) which is a simple yet
effective method to conduct novelty detection. Specifically, we denote the subject feature vectors of
the training set as Ds = {z(1)s , z

(2)
s , . . . , z

(N)
s } = {Fθs(Gθf (x)) : x ∈ D}. Given a test sample

xnew, its subject feature vector is znew
s = Fθs(Gθf (xnew)). Thus, the novelty score (NS) of xnew is

given by the negative density of znew
s , i.e.,

NS(xnew) = −p̂(znew
s ) = − 1

n(2πh2)d/2

n∑
i=1

exp

(
−∥znew

s − z
(i)
s ∥2

2h2

)
(11)

where h is the bandwidth parameter controlling the smoothness of the estimated density, and d is
the dimensionality of zs. A higher novelty score NS(xnew) indicates that the subject of xnew has a
lower likelihood of belonging to the distribution of subjects in the training data D.

In general, the proposed method learns comprehensive subject features zs and background features
zb using our objective function defined in equation 10, which includes the weighted sum of recon-
struction loss, energy of zb, and mutual information between zs and zb. For novelty detection, KDE
fitted on the training set is applied to the subject feature zs of the test sample, and the novelty score
for a test sample is determined using equation 11.

4 EXPERIMENTS

In this section, we benchmark various methods using numerical experiments on several challenging
and widely used datasets. To evaluate performance, we selected 9 out of 10 classes from multiple
scenarios as normal classes in the training set where the model is trained on these 9 classes. For
testing, images from a different unseen background are used.

4.1 IMPLEMENTATION DETAILS AND DATASETS

We evaluated the proposed method on three challenging datasets: Multi-background MNIST, Multi-
background Fashion-MNIST, and Kurcuma. To address the limitations in variability in the original
MNIST and Fashion-MNIST datasets (LeCun et al., 1998; Xiao et al., 2017), we introduced domain
shifts by altering background colours. For the Multi-background MNIST dataset, the model was
trained using ‘blue’, ‘yellow’, and ‘white’ backgrounds and tested on a previously unseen ‘green’
background. Similarly, for the Multi-background Fashion-MNIST, the model was trained on ‘blue’,
‘green’, ‘purple’, and ‘white’ backgrounds and evaluated on a new ‘yellow’ background. These
setups evaluated the model’s generalization to unseen domains.

Additionally, the Kurcuma dataset, containing diverse real-world images, was used to further test the
model’s adaptability across synthetic and real-world scenarios. Detailed descriptions of the datasets
and additional results are provided in Appendices E and D.

Evaluation Methods and Metrics

We conducted an extensive performance evaluation by comparing our model against a wide range
of recent state-of-the-art novelty detection methods. It is worth noting that classical methods per-
form poorly when dealing with complex scenarios and high-dimensional data in this task, we in-
clude no classical methods in our baselines. Methods compared includes AnoGAN (Schlegl et al.,
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Table 1: Average AUROCs (%) in novelty detection on Multi-background MNIST. In each case, the
best result is marked in bold.

Method 0 1 2 3 4 5 6 7 8 9 Average

COPOD 62.82 70.33 63.77 64.41 65.80 64.33 64.44 66.05 63.81 65.95 65.17
SUOD 64.52 67.42 65.79 67.72 70.17 69.37 65.46 67.24 65.10 67.70 67.05
MO GAAL 61.41 72.20 69.40 77.73 65.74 58.00 71.48 71.23 73.13 73.63 69.40
DeepSVDD 63.92 58.84 72.46 56.69 48.24 88.63 66.82 76.00 62.02 62.95 65.66
ALAD 27.97 29.07 7.58 17.22 8.85 25.06 13.84 9.77 22.37 16.93 17.87
ECOD 57.29 61.46 60.37 60.41 62.13 61.19 60.22 61.29 59.67 61.53 60.56
INNE 61.23 57.83 63.72 63.15 61.80 66.64 62.72 65.09 58.84 61.37 62.24
AnoGAN 4.86 0.36 32.28 52.98 52.43 43.97 9.63 33.07 22.85 36.38 28.88

ERM 36.42 95.36 42.00 42.25 38.25 40.29 51.65 51.96 48.00 40.54 48.67
IRM 35.65 96.32 40.41 37.54 38.47 37.09 47.72 63.56 47.82 41.29 48.59
GNL 61.47 93.07 50.04 82.73 63.20 54.30 60.23 68.56 60.58 56.51 65.07

SND 85.74 97.68 71.35 84.40 75.55 74.59 90.39 85.09 80.24 74.08 82.27

2017), DeepSVDD (Ruff et al., 2018), XGBOD (Zhao & Hryniewicki, 2018), ALAD (Zenati et al.,
2018),INNE (Bandaragoda et al., 2018), MO-GAAL(Liu et al., 2019), COPOD (Li et al., 2020),
ROD (Almardeny et al., 2020), SUOD (Zhao et al., 2021), and ECOD (Li et al., 2022). The hyper-
parameters for the methods listed above were set according to the default settings provided by the
PyOD(Zhao et al., 2019).

Table 2: Average AUPRCs (%) in novelty detection on Multi-background MNIST. In each case, the
best result is marked in bold.

Method 0 1 2 3 4 5 6 7 8 9 Average

COPOD 22.78 27.06 23.24 23.56 24.28 23.51 23.57 24.41 23.27 24.36 24.00
SUOD 23.37 24.93 24.22 25.21 26.93 26.31 23.99 24.93 23.79 25.30 24.90
MO GAAL 28.55 35.31 35.44 38.52 29.82 28.87 37.22 32.62 35.99 35.87 33.82
DeepSVDD 26.82 22.42 43.75 23.85 25.15 67.47 31.67 37.81 41.87 30.85 35.17
ALAD 13.95 14.02 11.36 12.64 11.53 16.20 12.05 11.68 13.51 12.75 12.97
ECOD 20.47 22.11 21.64 21.66 22.41 22.01 21.61 22.04 21.38 22.15 21.75
INNE 24.32 23.76 26.23 25.97 25.81 27.78 25.75 27.13 24.26 24.82 25.58
AnoGAN 13.94 13.72 21.56 25.21 25.04 21.62 14.73 22.03 16.68 22.23 19.68

ERM 86.85 99.39 88.60 87.99 88.18 88.79 90.59 90.01 90.06 88.24 89.87
IRM 86.31 99.53 88.37 86.83 87.81 88.11 90.13 93.15 90.02 88.33 89.86
GNL 93.92 99.02 91.39 96.96 94.22 92.88 93.04 94.87 93.94 91.83 94.21

SND 97.49 99.73 95.30 97.56 96.40 94.42 98.69 97.15 97.24 96.16 97.01

Furthermore, we evaluated our approach against GNL, a recently proposed method for novelty de-
tection across domain transformations (Cao et al., 2023). The hyperparameters for GNL were set
following the recommendations from the original publication. We also compared our method with
two key domain adaptation techniques, ERM and IRM, both followed by a KDE step for novelty
detection. This allowed us to evaluate our model’s effectiveness in handling domain shifts and iden-
tifying novel data in unseen environments.

We employed two common metrics to evaluate the performance of novelty detection: (i) Area Under
the Receiver Operating Characteristic curve (AUROC), which can be interpreted as the probability
that a positive sample has a higher discriminative score than a negative sample; and (ii) Area Under
the Precision-Recall curve (AUPRC), an ideal metric for adjusting extreme differences between
positive and negative base rates.
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Table 3: Average AUROCs (%) in novelty detection on Multi-background Fashion-MNIST. In each
case, the best result is marked in bold.

Method 0 1 2 3 4 5 6 7 8 9 Average

COPOD 59.93 65.17 58.80 62.42 59.32 58.36 58.85 63.18 55.95 59.11 60.11
SUOD 63.23 65.37 61.04 65.43 62.08 62.79 61.18 63.30 61.60 62.97 62.90
MO GAAL 47.03 56.49 44.29 58.47 54.61 65.68 46.14 59.91 48.92 49.55 53.11
DeepSVDD 64.05 62.09 57.48 60.00 68.68 63.19 66.59 52.20 61.33 70.04 62.57
ALAD 39.54 31.90 35.54 25.79 29.30 21.12 31.76 15.40 36.37 34.10 30.08
ECOD 54.68 57.48 51.80 54.32 52.77 55.27 53.04 57.36 54.66 55.39 54.68
INNE 64.49 59.65 64.74 65.03 66.05 64.52 65.47 59.24 69.77 67.53 64.65
AnoGAN 85.23 97.20 57.19 87.02 53.07 56.32 40.99 48.52 67.14 78.11 67.08

ERM 58.61 32.47 56.45 45.37 47.14 90.60 53.76 39.74 55.78 36.16 51.61
IRM 57.80 32.01 56.92 43.71 48.29 89.72 52.01 37.21 56.09 30.12 50.39
GNL 63.31 88.55 43.68 81.34 57.19 77.82 43.47 85.12 40.00 72.69 65.32

SND 89.03 93.21 70.36 87.75 65.34 84.16 78.03 90.73 62.36 77.64 79.86

4.2 RESULTS AND DISCUSSION

In this section, we evaluate and analyze the performance of our method compared to recent state-of-
the-art novelty detection baseline methods across the mentioned datasets. SND consistently demon-
strates superior performance in the extensive experiments.

To further demonstrate the model’s robustness and generalization capabilities, we present results
from experiments on varying background colours and different numbers of backgrounds in the train-
ing dataset. These experiments allowed us to evaluate the model’s performance under domain shifts
with previously unseen backgrounds. The main text provides results for these two specific scenarios,
while results for additional experiments with different background settings are included in Appendix
F, Appendix G, and Appendix H for reference.

Table 4: Average AUPRCs (%) in novelty detection on Multi-background Fashion-MNIST. In each
case, the best result is marked in bold.

Method 0 1 2 3 4 5 6 7 8 9 Average

COPOD 21.98 23.84 21.57 22.32 21.61 20.71 21.61 22.95 20.81 20.91 21.83
SUOD 24.03 23.80 23.46 24.11 23.53 22.62 23.49 22.81 23.83 22.79 23.45
MO GAAL 20.10 26.41 20.72 32.13 26.82 28.55 18.11 26.98 20.40 21.79 24.20
DeepSVDD 27.54 25.60 24.12 24.13 30.16 27.19 29.25 24.63 27.70 33.01 27.33
ALAD 17.57 27.77 15.59 13.23 13.98 12.93 14.75 12.25 16.06 17.54 16.17
ECOD 19.97 20.43 19.17 19.24 19.33 19.60 19.53 20.46 20.43 19.58 19.77
INNE 25.99 23.34 26.04 26.36 26.50 25.46 26.56 24.11 28.62 27.21 26.02
AnoGAN 53.83 78.55 23.23 52.45 20.90 28.95 16.18 47.45 38.88 49.85 41.03

ERM 94.18 84.19 93.39 88.79 91.49 97.84 92.90 85.79 92.16 86.01 90.68
IRM 94.02 83.99 93.15 88.51 92.07 97.65 92.38 85.29 92.23 83.92 90.32
GNL 94.64 98.50 91.07 97.64 93.46 97.25 89.80 98.39 85.35 95.84 94.19

SND 98.12 95.72 95.46 98.53 93.62 98.63 96.36 98.79 92.98 97.13 96.53

In Table 1, we compare the performance of various methods on novelty detection using the Multi-
background MNIST dataset, focusing on AUROC scores. Our proposed method, SND, achieves the
highest average AUROC of 82.27%, outperforming baseline methods like COPOD (65.17%) and
SUOD (67.05%). ERM and IRM, two domain adaptation techniques followed by KDE for novelty
detection, perform significantly lower with averages of 48.67% and 48.59%, respectively. Notably,
SND excels in digits such as 0 (85.74%) and 1 (97.68%), demonstrating superior generalization
across different digits.

Table 2 shows that SND also leads in AUPRC scores with an average of 97.01%. This is significantly
higher than GNL (94.21%) and ERM (89.87%). The performance of SND is consistent across all
digits, particularly in digits like 1 (99.73%) and 7 (97.15%), confirming its robustness in novelty
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Table 5: Average AUROC (%) for Novelty Detection on the Kurcuma dataset using data from seven
different scenarios as test sets.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 47.60 46.97 48.78 55.30 47.37 49.41 48.87 50.12 50.27 49.41
COPOD 45.51 43.85 55.37 50.76 50.99 48.32 54.48 47.18 51.75 49.80
DeepSVDD 48.79 46.12 49.64 50.87 51.27 48.31 52.12 50.55 50.22 49.77
ECOD 45.97 43.95 55.23 50.63 49.10 49.31 54.56 47.37 49.52 49.51
INNE 47.09 41.52 58.66 53.47 45.48 42.89 59.00 47.60 52.87 49.84
AnoGAN 47.39 52.70 47.23 50.48 57.89 47.59 49.42 46.73 48.82 49.81

ERM 55.37 45.96 47.05 50.42 51.17 48.36 47.08 55.49 50.18 50.12
IRM 53.71 47.71 47.23 50.19 51.90 48.76 50.25 53.45 43.56 49.64
GNL 49.29 41.46 77.32 65.75 48.81 62.32 71.97 61.11 71.67 61.08

SND 72.70 71.56 74.13 65.85 78.67 59.98 64.18 71.72 70.85 69.96

detection tasks. This table highlights the effectiveness of SND in detecting novel examples even in
unseen domains.

In Table 3, which analyzes novelty detection on the **Multi-background Fashion-MNIST** dataset,
our method, SND, consistently achieves superior performance, with an average AUROC of 79.86%.
SND excels in several classes, particularly class 0 (89.03%) and class 1 (93.21%), outperforming
other methods such as GNL (65.32%) and DeepSVDD (62.57%). Both ERM and IRM show sig-
nificantly lower average AUROCs of 51.61% and 50.39%, respectively, indicating their reduced
effectiveness.

Table 6: Average AUPRC (%) for Novelty Detection on the Kurcuma dataset using data from seven
different scenarios as test sets.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 91.82 94.30 90.33 80.77 95.29 82.79 78.94 93.48 93.08 88.98
COPOD 91.31 94.45 91.74 79.00 94.96 82.72 81.30 93.22 93.24 89.10
DeepSVDD 92.14 94.15 90.22 79.04 95.52 83.07 81.11 93.72 92.96 89.10
ECOD 91.55 94.26 91.52 79.04 94.92 83.30 80.90 93.18 93.19 89.10
INNE 91.80 93.80 92.77 80.09 94.74 79.96 83.45 93.29 93.90 89.31
AnoGAN 92.36 95.32 89.04 79.28 96.49 82.30 80.20 93.05 93.29 89.04

ERM 93.41 94.52 89.41 79.38 95.86 82.08 77.95 94.62 92.93 88.91
IRM 93.45 94.79 88.99 79.95 95.81 83.22 77.84 94.42 92.96 89.05
GNL 91.88 93.97 96.47 85.65 95.08 88.77 89.14 95.23 96.52 92.52

SND 96.00 97.67 96.43 87.08 98.36 87.55 88.73 96.82 96.38 93.89

In Table 4, which evaluates AUPRC on the same dataset, SND again demonstrates robust perfor-
mance with an average AUPRC of 96.53%. It achieves high results in key classes such as class
0 (98.12%) and class 7 (98.79%), outperforming GNL’s average of 94.19%. ERM and IRM show
competitive, but lower results, underscoring SND’s superior capability in novelty detection under
domain shifts.

In Table 5, we summarize the average AUROC results for novelty detection using the Kurcuma
dataset, which includes seven distinct scenarios: SYNTHETIC, AKUD, CLIPART, EKUD, EKUD-
M1, EKUD-M2, and EKUD-M3. Each scenario corresponds to a specific category, 0 for bottle
opener, 1 for can opener, 2 for fork, 3 for knife, 4 for pizza cutter, 5 for spatula, 6 for spoon, 7 for
tongs, and 8 for whisk. SND achieves the best average AUROC of 69.96%, outperforming other
methods across most categories, including 0 (72.70%) and 4 (78.67%). GNL shows strong results in
category 2 (77.32%) but falls short overall with an average of 61.08%. ERM and IRM trail behind
with averages of 50.12% and 49.64%.
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Table 6 presents the average AUPRC scores. SND again leads with an average of 93.89%, excelling
in categories like 0 (96.00%) and 4 (98.36%). GNL performs well with an average of 92.52%, while
ERM and IRM show moderate performance, averaging around 89%. These results highlight the
superior performance of SND across varying domain shifts.

In conclusion, the combined analysis of AUROC and AUPRC metrics highlights SND’s strengths
in novelty detection. Its strong performance in both metrics places it ahead of existing techniques,
showing great potential for future research and practical applications

(a) Subject vs. Background (b) Subject vs. Original (c) Background vs. Original

Figure 3: t-SNE visualizations illustrating the separation of features: (a) Subject vs. Background,
(b) Subject vs. Original, and (c) Background vs. Original. We choose the class of “0” in Multi-
background MNIST to provide the visualization result.

T-SNE Analysis and Visualization

In addition, we employed image visualizations, t-SNE analysis, and quantitative evaluation to
demonstrate how our approach enhances novelty detection performance under domain shifts.

Figures 3a, 3b and 3c demonstrate the model’s capacity to isolate subject features across varying
scenarios, as shown through t-SNE visualizations. Specifically, Figure 3a shows the t-SNE projec-
tion of subject and background features, revealing distinct clusters that highlight effective feature
separation.

Figure 3b highlights the t-SNE results for subject and original image features, further confirming
that the model retains essential subject information while discarding irrelevant background details.
Finally, in 3c, the comparison of background features with those of the original images reveals the
model’s capacity to distinguish between background elements and the overall image characteristics.

The t-SNE plots collectively support the model’s effectiveness in handling domain shifts, under-
scoring the importance of the subject in achieving high accuracy in novelty detection. Additional
experimental results are provided in the Appendix B for further analysis.

5 CONCLUSION

In this paper, we propose a novel approach to novelty detection (ND) named SND. This method
disentangles subject and background information across different scenes and detects novelties using
only subject features. By reducing the mutual information between subject and background, we
achieve effective separation, demonstrating that our model significantly outperforms existing meth-
ods in ND scenarios with domain shifts. Experimental results demonstrate the method’s exceptional
performance in novelty detection scenarios where the testing data distribution differs from the train-
ing data. The proposed SND offers new insights and methods for ND research, holding significant
importance for real-world novelty detection tasks.

Future work could further optimize the SND method and explore its performance on more complex
datasets and practical applications to validate its broad applicability and robustness. We anticipate
that SND will play a greater role in high-stakes domains (such as finance, healthcare, and defence
intelligence), helping achieve more reliable novelty detection.
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APPENDIX FOR SND

A MI ESTIMATION

Mutual information (MI) is a fundamental measure of dependence between two random variables.
From an information-theoretic perspective, when learning distinct latent embeddings zs and zb, it is
preferable to minimize the mutual information between them. When zs and zb are independent, we
can directly obtain the feature vectors of the subject and the background respectively. The mutual
information between the subject part zs and the background part zb is defined as:

I(zs; zb) = Ep(zs,zb)

[
log

p(zs, zb)

p(zs)p(zb)

]
(12)

With feature pairs {(zis, zib)}Ni=1, the mutual information I(zs; zb) can be estimated as:

ÎMI =
1

N

N∑
i=1

log p(zib|zis)−
1

N2

N∑
i=1

N∑
j=1

log p(zjb|z
i
s)

=
1

N2

N∑
i=1

N∑
j=1

[
log p(zib|zis)− log p(zjb|z

i
s)
]

(13)

In the estimation ÎMI, log p(zib|zis) represents the conditional log-likelihood of the subject pair
(zis, z

i
b), and {log p(zjb|zis)}Nj=1 represents the conditional log-likelihood of the background infor-

mation for the pair (zis, z
j
b). The difference between log p(zib|zis) and log p(zjb|zis) is the contrastive

log-ratio between the two conditional distributions.

When the conditional distribution p(zb|zs) is known, MI can be directly estimated using equation 13
with samples {(zis, zib)}Ni=1.

However, in our experiments, calculating MI according to the above method is challenging because
the relationship between subject and background variables is unknown. To solve this problem, we
approximate p(zb|zs) using a variational distribution ξθm(zb|zs) with parameters θm. Given this
setup, the mutual information between subject and background can be expressed as:

IMI(zs; zb) = Ep(zs,zb)[log ξθm(zb|zs)]− Ep(zs)Ep(zb)[log ξθm(zb|zs)] (14)

Similar to the MI estimator ÎMI in equation 13, the unbiased estimator for MI with samples
{(zis, zib)}Ni=1 is:

ÎMI =
1

N2

N∑
i=1

N∑
j=1

[
log ξθm(zib|zis)− log ξθm(zjb|z

i
s)
]

(15)

=
1

N

N∑
i=1

log ξθm(zib|zis)−
1

N

N∑
j=1

log ξθm(zjb|z
i
s)

 (16)

According to Cheng et al. (2020), using the variational approximation ξθm , the modified MI no
longer guarantees an upper bound for I(x; y). However, the modified MI shares good properties
with the original MI. With a good variational approximation ξθm , the modified MI can still hold an
upper bound on mutual information.

B ABLATION EXPERIMENTS

We analyze the AUROC performance of anomaly detection models trained on features extracted
from three categories: subject, background, and original images. The dataset used for this analysis
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consists of images with three backgrounds Multi-background MNIST dataset for the training set and
a separate green background for the test set. The results in Figure 4 show that subject features have
the most significant impact on model performance, with the AUROC scores exhibiting substantial
variation across different classes. For certain classes, the subject feature AUROC approaches 90,
indicating its strong discriminative power. In contrast, background features demonstrate consistently
lower AUROC scores, suggesting a limited contribution to distinguishing anomalies, while original
image features show intermediate performance.

Figure 4: AUROC performance comparison across different image features (Subject, Background,
and Original) for novelty detection.

C ALGORITHM OVERVIEW

In Algorithm 1, we present the flowchart illustrating our method. This process is divided into two
main stages: the extraction of subject and background information, followed by novelty detection.
The algorithm begins by initializing the network parameters and performing feature extraction, de-
composition, and mutual information minimization to ensure statistical independence between sub-
ject and background features. To model the background components, a deep Gaussian Mixture
Model (GMM) is employed, and the overall loss function is computed for optimization. The testing
stage focuses on computing the novelty score for each test sample, which is used for identifying
novel subjects.

D MODEL STRUCTURE

In our proposed anomaly detection model, we integrate a Variational Autoencoder (VAE), a Con-
trastive Mutual Information Upper Bound (CLUB) module, and a Gaussian Mixture Model (GMM)
to address complex background and subject separation. The Encoder consists of four convolutional
layers with 64, 128, 256, and 512 filters, respectively. Each convolutional layer has a kernel size of
4x4, a stride of 2, and padding of 1, followed by batch normalization and LeakyReLU activation.
The output is then flattened and passed through fully connected layers to generate 128-dimensional
latent vectors for both the background and the subject.

The Decoder reconstructs the input image using transposed convolutional layers with the same struc-
ture as the encoder, but in reverse. Specifically, the decoder has four layers with 512, 256, 128, and
64 filters, and similarly employs batch normalization and LeakyReLU activation. The final output
layer uses a Sigmoid activation function to produce the reconstructed image.

To ensure effective disentanglement between the background and subject features, the CLUB mod-
ule estimates mutual information by learning mean and log variance through two fully connected
networks. Each network consists of linear layers with 128 inputs, followed by a 64-unit hidden
layer, LeakyReLU activation, and dropout.
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Algorithm 1 Subject Information Extraction for Novelty Detection with Domain Shifts (SND)

Require: Training dataset D = {x1,x2, . . . ,xN}, the number of different backgrounds K, testing
dataset D′ = {x′

i}Mi=1.
1: Stage 1: Extracting subject and background information
2: Initialize the network parameters {θf , θs, θb, θm, θg, θ

′
s, θ

′
b}

3: for each training epoch do
4: for each randomly sampled minibatch {xi}tLi=t1

, {t1, b2, . . . , tL} ⊆ {1, 2, . . . , N} do
5: Encode the data by zif= Gθf (xi).
6: Decompose zif into subject features zis and background features zib as equation 4
7: Minimize mutual information (MI) between zis and zib to ensure separation as equation 3
8: Fit a deep Gaussian Mixture Model (GMM) to zib to identify background components as

equation 6
9: Compute the total loss Ltotal as described in equation 10

10: Update {θf , θs, θb, θm, θg, θ
′
s, θ

′
b} through back-propagation.

11: end for
12: end for
13: Stage 2: Novelty detection
14: for each test sample xnew in D′ do
15: Extract znew

s = Fθs(Gθf (xnew))
16: Compute the novelty score based on the extracted znew

s and Ds as equation 11
17: end for
18: Output: Predictions {f̂(xi)}ni=1

Additionally, the background latent space is modelled using a Gaussian Mixture Model (GMM) with
three components. The GMM estimates the mean and covariance of the background latent vectors,
which are used to compute energy-based novelty scores, helping the model identify outliers based
on background variations.

E DATASET DESCRIPTION

Multi-background MNIST and Multi-background Fashion-MNIST Datasets

The Colored MNIST dataset was originally developed by IRM (Arjovsky et al., 2019) to encourage
classifiers to overfit on spurious features such as colour, rather than focusing on the intrinsic shape
features of the digits. For our specific task, we expanded on this concept by creating the Multi-
background MNIST and Multi-background Fashion-MNIST (Fashion-MNIST) datasets. These are
based on the original MNIST and Fashion-MNIST datasets but introduce significant domain shifts
to further challenge the models’ generalization capabilities.

The training set consists of images of digits (0-9) displayed on backgrounds with four different
colours: yellow, purple, red, and blue. The testing set consists of digits (0-9) placed on a green
background, which was not seen during training. Each digit is treated as the normal class in turn,
with the remaining digits considered anomalies for both training and testing.

In our study, we modified the original MNIST dataset, which features white digits on a black back-
ground. We randomly selected 4,000 images for the training set and 1,000 images for the test set. In
the modified dataset, we replaced the white digits with red, and the black backgrounds were sequen-
tially changed to various colours. In the first variation, the training set images have backgrounds
in white, purple, and blue, while the test set images feature a green background. In the second
variation, the training set backgrounds include yellow, white, purple, and blue, with the test set still
featuring a green background.

As we can see from Figure 5a, the training set consists of images of digits (0-9) displayed on back-
grounds with four different colours: yellow, purple, red, and blue. The testing set consists of digits
(0-9) placed on a green background, which was not seen during training. Each digit is treated as the
normal class in turn, with the remaining digits considered anomalies for both training and testing.
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(a) (b)

Figure 5: Visualization of the Multi-background MNIST dataset(a) and Multi-background Fashion-
MNIST dataset(b).

For the Fashion-MNIST dataset, we applied a similar approach. In the first variation, the training
set images have backgrounds in white, green, and blue, and the test set images have a yellow back-
ground. In the second variation, the training set backgrounds include green, white, purple, and blue
with the test set still featuring a yellow background. These modifications were designed to test the
model’s ability to generalize across different background colours and domain shifts.

As we can see from Figure 5b, the training set of Fashion-MNIST consists of images of fashion
items (such as T-shirts, trousers, shoes, etc.) displayed on four different background colours: blue,
green, purple, and white. The testing set consists of fashion items placed on the yellow background,
which were not seen during training. Each category of fashion item is treated as the normal class in
turn, with the remaining categories considered anomalies for both training and testing.

Figure 6: Visualization of the Kurcuma dataset. Each row represents a different dataset corpus, with
varying backgrounds ranging from real-world scenes (AKUD, EKUD) to synthetic (SYNTHETIC)
and clipart representations. The columns represent different kitchen utensil categories used for the
classification task. Each category was treated as the normal class, while all others were considered
anomalies.

Kurcuma

The Kurcuma collection is a comprehensive dataset for kitchen utensil recognition, specifically tar-
geting domain adaptation (DA) research in robotic home-assistance scenarios, which is shown in
Figure 6. It comprises seven distinct corpora, including four developed by the authors, featuring
colour images across nine classes: bottle opener, can opener, fork, knife, pizza cutter, spatula, spoon,
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tongs, and whisk. The images are captured in various scenes, including uniform backgrounds, tex-
tured surfaces, cluttered environments, and synthetic and clipart representations, with each image
having a consistent resolution of 256x256 pixels. This dataset is labelled, making it suitable for
supervised, unsupervised, and semi-supervised learning tasks.

In our experiments, each background was treated as unseen during training, and we performed a
complete training and testing cycle for each. Specifically, we designated one category as the normal
class for each background, while the remaining categories were treated as anomalies. This setup
allowed us to evaluate the robustness of our model to background shifts and class imbalances across
various kitchen utensil types.

A key component of this collection is the Edinburgh Kitchen Utensil Database (EKUD), which
includes 897 real-world images of utensils against uniform backgrounds. Following a curation pro-
cess, where we merged similar classes and eliminated under-represented or low-quality images, the
dataset was refined to 618 images across the nine classes. Additionally, the EKUD-M1 corpus mod-
ifies the backgrounds of EKUD images using patches from the Berkeley Segmentation Data Set,
creating a diverse set of 600 images that enrich the dataset for effective domain adaptation research.
Each image in these corpora is annotated with details such as class labels, background type, and
image source, facilitating further analysis and experimentation.

This setup highlights the challenges posed by background shifts and the need for models capable of
performing well in unseen environments, critical for domain adaptation tasks in real-world applica-
tions.

F RESULTS AND DISCUSSION ON MULTI-BACKGROUND MNIST

In this study, we evaluated several novelty detection methods on the Multi-background MNIST
dataset with a green background as the test set, where the training dataset consists of four different
backgrounds, using two metrics AUROC and AUPRC. The focus of our analysis is on the perfor-
mance of our method, SND, which is highlighted in the last row of each table. By comparing SND
with other established methods, we aim to demonstrate its effectiveness in accurately identifying
novel instances across diverse backgrounds.

In Table 7, the analysis of AUROC results for the Multi-background MNIST dataset shows that the
proposed SND method achieves the best overall performance with an average AUROC of 72.57%.
SND significantly outperforms other methods, particularly on digits like 1 (98.02%) and 7 (86.41%).
Comparatively, domain adaptation techniques such as ERM and IRM, which achieved averages of
51.03% and 50.12%, respectively, struggled to maintain high accuracy under domain shifts. Other
methods like GNL performed well on some specific digits, such as 3 (71.71%), but still fell short
in terms of overall consistency, further highlighting SND’s robust generalization capabilities across
unseen backgrounds.

Table 7: Average AUROCs (%) in novelty detection on Multi-background MNIST with four dif-
ferent coloured backgrounds used in the training set and the unseen green background used in the
testing set. In each case, the best result is marked in bold.

Method 0 1 2 3 4 5 6 7 8 9 Average

COPOD 62.82 70.33 63.77 64.41 65.80 64.33 64.44 66.05 63.81 65.95 65.17
SUOD 64.52 67.42 65.79 67.72 70.17 69.37 65.46 67.24 65.10 67.70 67.05
MO GAAL 61.41 72.20 69.40 77.73 65.74 58.00 71.48 71.23 73.13 73.63 69.40
DeepSVDD 63.92 58.84 72.46 56.69 48.24 88.63 66.82 76.00 62.02 62.95 65.66
ALAD 27.97 29.07 7.58 17.22 8.85 25.06 13.84 9.77 22.37 16.93 17.87
ECOD 57.29 61.46 60.37 60.41 62.13 61.19 60.22 61.29 59.67 61.53 60.56
INNE 61.23 57.83 63.72 63.15 61.80 66.64 62.72 65.09 58.84 61.37 62.24
AnoGAN 59.06 70.27 75.75 27.77 87.28 80.19 72.81 54.83 50.95 73.60 65.25

ERM 56.68 53.57 51.27 50.75 46.47 47.39 54.16 42.23 58.90 48.90 51.03
IRM 37.24 95.95 42.65 42.42 40.03 42.11 47.41 60.75 48.88 43.75 50.12
GNL 30.42 95.83 50.18 71.71 61.38 66.02 64.33 69.82 44.78 68.54 62.30

SND 61.47 98.02 66.21 67.38 68.93 68.73 70.77 86.41 67.74 70.05 72.57
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Table 8, the AUPRC results similarly emphasize SND’s superior performance with an average
score of 95.61%. The method’s success in detecting novelty is particularly evident on digits like
1 (99.73%) and 7 (97.78%). In comparison, models like GNL (93.46%) showed competitive but
lower results, and traditional methods such as COPOD and SUOD lagged significantly behind, with
averages around 24%. ERM and IRM performed better in terms of AUPRC, both near 90%, but were
still outperformed by SND across all digits. These results collectively demonstrate the effectiveness
of SND in addressing domain shifts and enhancing novelty detection in complex environments.

Table 8: Average AUPRCs (%) in novelty detection on Multi-background MNIST with four different
colored backgrounds used in the training set and the unseen green background used in the testing
set. In each case, the best result is marked in bold.

Method 0 1 2 3 4 5 6 7 8 9 Average

COPOD 22.78 27.06 23.24 23.56 24.28 23.51 23.57 24.41 23.27 24.36 24.00
SUOD 23.37 24.93 24.22 25.21 26.93 26.31 23.99 24.93 23.79 25.30 24.90
MO GAAL 28.55 35.31 35.44 38.52 29.82 28.87 37.22 32.62 35.99 35.87 33.82
DeepSVDD 26.82 22.42 43.75 23.85 25.15 67.47 31.67 37.81 41.87 30.85 35.17
ALAD 13.95 14.02 11.36 12.64 11.53 16.20 12.05 11.68 13.51 12.75 12.97
ECOD 20.47 22.11 21.64 21.66 22.41 22.01 21.61 22.04 21.38 22.15 21.75
INNE 24.32 23.76 26.23 25.97 25.81 27.78 25.75 27.13 24.26 24.82 25.58
AnoGAN 13.94 13.72 21.56 25.21 25.04 21.62 14.73 22.03 16.68 22.23 19.68

ERM 91.46 90.00 90.63 90.06 89.72 90.27 90.96 87.29 92.35 89.92 90.26
IRM 86.87 99.47 88.93 88.17 88.42 89.44 89.75 92.55 90.26 88.80 90.27
GNL 86.40 99.41 91.91 95.52 93.61 94.73 93.62 94.88 89.81 94.75 93.46

SND 93.23 99.73 94.51 94.48 95.21 95.49 95.61 97.78 95.17 94.89 95.61

In conclusion, the results show that SND is the most effective method for novelty detection on the
Multi-background MNIST dataset. Its superiority in both AUROC and AUPRC, combined with its
consistent performance across various categories, highlights its adaptability and precision. These
findings suggest that SND is a highly reliable and robust solution for novelty detection, outperform-
ing other approaches in both accuracy and precision.

G RESULTS AND DISCUSSION ON MULTI-BACKGROUND FASHION-MNIST

In this study, we conducted experiments on the Multi-background Fashion-MNIST dataset with a
yellow background as the test set, where the training dataset consists of three different backgrounds.

Table 9: Average AUROCs (%) in novelty detection on Multi-background Fashion-MNIST. The best
result is marked in bold.

Method T-
shirt

Trou-
ser

Pull-
over

Dress Coat Sandal Shirt Sneaker Bag Ankle
boot

Average

COPOD 50.58 49.40 50.37 49.62 50.28 50.01 51.06 49.92 54.64 50.07 50.59
SUOD 51.14 48.33 51.57 50.96 51.97 50.36 53.45 48.18 57.20 51.74 51.49
MO GAAL 41.62 30.33 82.63 25.56 46.63 33.89 63.64 19.00 46.02 56.31 44.56
DeepSVDD 53.58 29.64 45.44 47.80 42.56 55.28 46.83 53.32 44.02 35.68 45.42
ALAD 53.37 49.22 38.78 60.01 44.76 59.90 46.44 50.96 46.86 58.50 50.88
ECOD 49.61 46.99 48.99 47.42 48.83 49.87 50.48 48.26 54.83 49.86 49.51
INNE 56.15 52.63 57.98 54.68 58.02 65.53 59.93 58.08 63.30 59.97 58.63
AnoGAN 46.01 4.20 79.02 18.28 55.58 53.98 62.57 47.46 66.36 31.66 46.51

ERM 57.30 36.19 56.52 43.69 47.72 90.98 50.58 38.41 56.44 34.58 51.24
IRM 57.19 30.25 58.02 43.18 44.73 91.05 52.51 41.28 57.53 32.09 50.78
GNL 69.95 97.70 37.43 82.85 50.00 83.46 54.25 90.27 53.51 31.06 65.05

SND 79.36 93.36 84.58 74.46 75.33 91.29 77.93 91.92 65.49 94.39 82.81

In Table 9,, the AUROC results for novelty detection on the Multi-background Fashion-MNIST
dataset show that SND outperforms other methods with an average AUROC of 82.81%. SND
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achieves strong results across various classes, particularly for T-shirt (79.36%), Ankle boot
(94.39%), and Sneaker (91.92%). This demonstrates the model’s capability to generalize across dif-
ferent object types. Comparatively, GNL performs well on Trouser (97.70%) and Sneaker (90.27%)
but falls short in other categories, resulting in a lower overall average of 65.05%. ERM and IRM
also lag behind with averages of 51.24

In Table 10, SND again leads in AUPRC with an average of 97.62%, surpassing GNL’s 94.02%.
SND excels in categories such as Ankle boot (99.34%) and Sneaker (99.08%), highlighting its ro-
bustness in novelty detection. ERM and IRM, while competitive in AUPRC with averages around
90%, still fall short of SND’s performance. This consistent superiority in both AUROC and AUPRC
confirms SND’s ability to efficiently detect novelties even under significant domain shifts.

Table 10: Average AUPRCs (%) in novelty detection on Multi-background Fashion-MNIST. The
best result is marked in bold.

Method T-
shirt

Trou-
ser

Pull-
over

Dress Coat Sandal Shirt Sneaker Bag Ankle
boot

Average

COPOD 22.72 22.36 22.69 22.32 22.61 22.57 22.88 22.55 24.85 22.53 22.81
SUOD 23.69 21.86 23.93 22.76 23.89 22.56 24.70 21.88 26.64 23.01 23.49
MO GAAL 23.05 18.51 64.89 16.82 23.36 18.67 44.11 15.73 24.76 32.16 28.21
DeepSVDD 27.94 20.30 23.31 25.67 22.96 30.85 24.49 27.57 22.25 20.35 24.57
ALAD 26.97 26.87 19.65 28.74 22.01 30.79 22.24 28.29 22.61 31.60 25.98
ECOD 22.89 21.53 22.78 21.52 22.55 22.48 23.23 22.01 25.36 22.34 22.67
INNE 28.38 26.86 29.16 28.07 29.22 36.27 30.36 31.00 31.82 30.38 30.15
AnoGAN 24.82 13.93 52.54 16.16 32.49 24.28 41.05 22.49 35.82 18.27 28.18

ERM 93.83 85.09 93.41 88.30 91.97 98.13 91.75 85.13 92.33 85.32 90.53
IRM 93.87 83.41 93.61 88.22 90.81 97.99 92.67 86.30 92.38 84.45 90.37
GNL 95.59 99.72 88.87 97.94 91.35 98.02 92.54 98.95 91.30 85.91 94.02

SND 96.69 98.95 97.88 96.65 96.78 98.87 97.08 99.08 94.84 99.34 97.62

H RESULTS AND DISCUSSION ON KURCUMA

In the subsequent experiments, we selected different backgrounds to serve as anomalous settings
for detection. To clearly present the results, we used numerical labels to represent each category: 0
corresponds to bottle opener, 1 to can opener, 2 to fork, 3 to knife, 4 to pizza cutter, 5 to spatula, 6
to spoon, 7 to tongs, and 8 to whisk. The results from the tables illustrate a comparative analysis of
different novelty detection methods on the Kurcuma dataset across multiple environments, including
SYNTHETIC, AKUD, CLIPART, EKUD, and its variations (M1, M2 and M3). Each table presents
the performance of various methods in terms of average AUROC and AUPRC, offering a clear view
of the strengths and weaknesses of these approaches in different settings.

When considering the AUROC results, our method, SND, consistently outperforms the others across
all environments. For instance, in the synthetic environment (Table 11), SND achieves the highest
average AUROC of 65.28%, with strong performance in categories like 2 (73.62%) and 4 (71.84%).
In the AKUD environment (Table 13), SND again leads with an average AUROC of 65.02%, sig-
nificantly surpassing other methods such as COPOD and DeepSVDD. This pattern continues in the
other environments (Table 15,Table 17,Table 19,Table 21,Table 23), where SND delivers the highest
AUROC, demonstrating its robustness across varied backgrounds.

In terms of AUPRC (Table12, Table14, Table 16, Table18, Table20, Table22, Table24), SND consis-
tently achieves near-perfect precision, further solidifying its effectiveness in novelty detection. For
example, in the synthetic environment, SND obtains an average AUPRC of 93.57%, outperforming
all other methods in nearly every category. Similarly, in the AKUD and clipart environments, SND
leads with AUPRC values of 92.05% and 94.81%, respectively. These results indicate that SND
not only excels at detecting anomalies but also maintains high precision in classifying true positive
instances.

In summary, the analysis of both AUROC and AUPRC metrics across different environments high-
lights SND as the most effective method for novelty detection on the Kurcuma dataset. Its con-
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sistently high performance in varied and challenging scenarios demonstrates its adaptability and
reliability, making it a superior choice for tasks requiring accurate and precise anomaly detection.
These findings emphasize the potential of SND for future applications in novelty detection across
diverse domains.

Table 11: Average AUROCs (%) in novelty detection on the Kurcuma dataset using data from the
SYNTHETIC environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 45.86 45.87 57.29 56.37 57.20 44.43 51.43 54.81 50.30 51.51
COPOD 48.73 50.40 48.82 47.93 55.89 57.17 52.02 44.60 48.84 50.49
DeepSVDD 52.99 44.59 50.62 55.77 48.00 49.38 39.53 49.13 50.71 48.97
ECON 50.89 46.92 49.68 51.39 55.01 59.29 45.22 43.63 48.13 50.02
INNE 52.47 43.70 51.13 54.49 52.56 53.82 42.98 44.22 53.41 49.86
AnoGAN 50.86 45.45 51.05 50.97 53.35 58.60 41.89 46.56 48.37 49.68

ERM 51.01 47.32 49.64 53.28 46.21 42.78 51.02 54.64 52.75 49.85
IRM 49.91 46.65 50.08 51.35 46.71 42.81 51.54 55.05 52.29 49.60
GNL 45.13 39.63 63.97 60.34 54.75 64.86 60.54 54.28 68.55 56.89

SND 60.49 65.11 73.62 64.36 71.84 58.97 66.91 58.66 67.52 65.28

Table 12: Average AUPRCs (%) in novelty detection on the Kurcuma dataset using data from the
SYNTHETIC environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 89.51 89.29 92.28 75.38 93.33 89.41 91.38 91.90 91.07 89.28
COPOD 89.83 92.14 90.41 72.03 92.60 93.51 91.74 89.91 89.42 89.07
DeepSVDD 91.00 89.73 91.16 75.79 91.67 91.26 89.12 89.67 91.19 88.95
ECON 90.43 90.96 90.94 74.72 92.47 92.62 89.69 88.99 90.22 89.00
INNE 90.98 90.22 91.75 75.15 92.11 91.21 89.32 90.03 90.99 89.08
AnoGAN 90.60 90.56 91.23 73.65 92.37 93.63 88.94 89.22 90.75 88.99

ERM 91.25 90.09 90.55 75.20 90.27 88.78 91.51 92.07 90.50 88.91
IRM 90.75 90.19 90.31 73.98 90.92 88.77 91.81 92.21 91.03 88.89
GNL 88.73 89.81 94.35 76.66 92.71 92.94 92.25 92.71 94.43 90.51

SND 93.17 95.00 96.22 85.74 96.23 93.03 95.68 93.56 93.49 93.57

Table 13: Average AUROCs (%) in novelty detection on the Kurcuma dataset using data from the
AKUD environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 52.12 47.03 52.18 53.66 49.89 46.12 58.95 46.45 50.03 50.71
COPOD 49.67 28.30 63.17 51.98 45.88 41.13 53.09 40.97 46.33 46.72
DeepSVDD 42.33 32.59 61.60 48.24 43.65 32.59 56.53 44.84 53.01 46.15
ECON 47.01 27.34 63.93 52.19 43.43 38.97 61.83 40.39 51.00 47.34
INNE 44.64 21.61 69.22 47.41 44.22 40.49 66.69 47.20 62.84 49.37
AnoGAN 45.62 43.71 54.79 53.05 52.76 41.51 40.44 40.67 44.25 46.31

ERM 51.12 50.42 48.17 46.01 59.35 48.42 42.51 60.56 55.72 51.37
IRM 50.85 49.30 47.92 46.50 61.68 57.98 43.92 60.04 55.20 52.60
GNL 40.09 28.27 75.32 67.15 43.62 53.01 79.29 45.85 64.06 55.18

SND 59.55 63.25 73.12 55.80 69.32 61.17 58.54 72.22 72.24 65.02
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Table 14: Average AUPRCs (%) in novelty detection on the Kurcuma dataset using data from the
AKUD environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 84.95 93.53 94.35 66.63 93.14 92.95 89.10 94.15 95.06 89.32
COPOD 85.95 92.20 95.80 66.79 93.22 91.67 86.78 92.76 93.99 88.80
DeepSVDD 84.20 92.38 95.49 63.55 92.93 90.83 87.35 93.88 94.71 88.37
ECON 84.91 92.10 95.58 67.26 93.00 91.34 89.03 92.89 94.54 88.96
INNE 84.63 90.58 96.98 61.04 92.49 92.50 92.53 94.60 97.00 89.15
AnoGAN 83.64 94.08 94.43 67.72 93.14 90.78 82.58 92.94 94.46 88.20

ERM 85.02 95.05 93.47 63.45 94.75 93.50 82.26 95.97 95.31 88.75
IRM 84.88 95.09 92.80 62.65 95.42 95.15 82.80 95.92 95.20 88.88
GNL 83.31 92.65 97.70 73.29 91.36 95.01 95.31 94.34 96.41 91.04

SND 88.28 97.10 97.46 71.33 96.32 95.50 88.28 97.09 97.05 92.05

Table 15: Average AUROCs (%) in novelty detection on the Kurcuma dataset using data from the
CLIPART environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 44.27 64.30 42.34 65.56 45.90 55.27 58.66 55.56 57.28 54.35
COPOD 28.33 34.57 79.49 61.72 22.67 50.47 57.33 46.35 46.95 47.54
DeepSVDD 44.69 46.28 38.59 58.55 50.99 51.38 54.27 64.78 50.06 51.07
ECON 30.25 35.42 76.90 59.23 23.00 50.20 57.65 48.48 47.74 47.65
INNE 40.27 50.03 64.05 63.27 25.47 50.91 54.44 54.00 48.22 50.07
AnoGAN 67.28 68.59 19.47 50.66 74.08 49.48 47.38 57.01 61.74 55.08

ERM 68.47 61.95 27.16 40.59 73.63 53.95 44.38 54.89 35.14 51.13
IRM 74.20 64.59 26.10 43.45 70.30 45.41 47.25 55.66 37.39 51.59
GNL 45.38 40.42 76.14 44.79 38.23 67.30 80.86 48.82 69.48 56.82

SND 76.56 69.40 83.51 74.94 67.43 55.94 70.46 70.14 65.50 70.43

Table 16: Average AUPRCs (%) in novelty detection on the Kurcuma dataset using data from the
CLIPART environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 85.88 95.45 84.32 94.65 92.23 83.94 87.28 93.68 94.82 90.25
COPOD 81.43 90.94 95.77 94.01 85.98 80.98 87.76 92.11 93.71 89.19
DeepSVDD 85.16 91.88 83.81 93.48 91.73 81.79 87.51 95.77 93.08 89.36
ECON 81.85 91.11 95.24 93.62 85.97 80.78 87.69 92.41 93.74 89.16
INNE 84.34 93.36 92.31 93.71 87.01 80.85 86.85 93.01 93.65 89.45
AnoGAN 92.37 96.74 75.75 91.62 97.19 81.52 84.02 93.63 95.88 89.86

ERM 92.69 95.72 77.87 87.61 96.69 82.57 82.12 93.93 90.49 88.85
IRM 94.34 95.83 77.89 89.52 95.71 79.43 83.47 94.18 91.38 89.08
GNL 85.76 91.95 95.36 89.22 90.99 90.05 94.41 92.10 96.57 91.82

SND 95.27 96.03 97.17 96.35 97.63 85.93 92.02 96.54 96.32 94.81
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Table 17: Average AUROCs (%) in novelty detection on the Kurcuma dataset using data from the
EKUD environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 41.48 31.14 47.02 55.28 35.22 44.77 35.96 47.91 43.25 42.45
COPOD 43.18 42.46 47.27 47.59 60.86 49.65 59.40 44.11 56.52 50.12
DeepSVDD 42.89 44.16 49.93 47.45 55.63 59.78 61.82 48.60 55.75 51.78
ECON 43.78 41.07 47.18 45.69 57.71 52.68 59.78 42.29 50.53 48.97
INNE 41.40 34.75 62.20 51.81 44.61 36.19 72.95 35.82 46.72 47.38
AnoGAN 36.12 50.25 50.58 49.72 60.83 42.36 52.47 35.29 46.41 47.11

ERM 59.41 40.04 52.20 53.96 47.09 43.84 41.55 60.54 48.65 49.70
IRM 50.98 49.82 55.69 46.69 54.09 44.53 63.05 51.26 0.00 46.23
GNL 45.87 48.98 89.62 86.01 58.71 72.86 91.78 73.38 76.48 71.52

SND 84.27 75.31 73.05 68.58 87.41 67.62 66.95 89.78 85.37 77.59

Table 18: Average AUPRCs (%) in novelty detection on the Kurcuma dataset using data from the
EKUD environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 94.09 94.05 90.74 82.77 96.49 75.38 68.17 92.87 91.24 87.31
COPOD 95.22 95.84 89.71 78.52 98.56 80.49 77.96 93.66 94.01 89.33
DeepSVDD 94.88 95.60 90.80 79.23 98.35 82.94 80.35 94.16 94.36 90.07
ECON 95.67 95.58 88.95 77.59 98.46 82.06 77.36 93.52 93.81 89.22
INNE 94.98 94.18 93.44 82.23 97.71 74.39 84.00 92.57 93.54 89.67
AnoGAN 94.17 96.12 90.68 79.36 98.63 78.29 77.84 92.28 93.42 88.98

ERM 96.85 95.46 92.11 81.57 97.68 74.27 68.84 95.53 92.78 88.34
IRM 96.55 96.35 91.18 83.47 97.59 82.06 69.60 96.12 92.54 89.50
GNL 94.78 96.75 98.70 96.41 98.40 89.09 97.14 97.66 96.67 96.18

SND 99.03 98.92 95.35 88.17 99.65 86.59 84.80 97.54 99.22 98.78

Table 19: Average AUROCs (%) in novelty detection on the Kurcuma dataset using data from the
EKUD-M1 environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 45.10 50.03 51.66 52.45 49.34 51.97 50.07 51.77 45.09 49.72
COPOD 53.50 43.83 52.41 51.39 45.69 45.84 49.62 57.27 54.66 50.47
DeepSVDD 58.20 48.75 49.74 51.37 43.65 43.35 49.72 57.74 44.43 49.66
ECON 56.00 45.49 50.96 52.76 41.80 44.72 50.63 59.33 46.92 49.85
INNE 54.34 42.71 50.36 53.80 54.16 38.73 53.95 57.86 58.30 51.58
AnoGAN 53.09 52.74 54.08 51.55 46.03 46.86 49.72 54.01 47.37 50.61

ERM 54.83 47.75 50.07 50.54 54.51 47.10 51.78 47.10 55.09 50.97
IRM 49.66 47.34 50.03 48.28 55.35 50.53 51.41 47.81 54.36 50.53
GNL 44.72 45.21 68.45 86.97 56.24 63.08 61.64 74.25 74.85 63.93

SND 73.84 74.57 72.07 64.82 82.84 58.60 62.53 67.06 67.97 69.37
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Table 20: Average AUPRCs (%) in novelty detection on the Kurcuma dataset using data from the
EKUD-M1 environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 94.09 94.05 90.74 82.77 96.49 75.38 68.17 92.87 91.24 87.31
COPOD 95.22 95.84 89.71 78.52 98.56 80.49 77.96 93.66 94.01 89.33
DeepSVDD 94.88 95.60 90.80 79.23 98.35 82.94 80.35 94.16 94.36 90.07
ECON 95.67 95.58 88.95 77.59 98.46 82.06 77.36 93.52 93.81 89.22
INNE 94.98 94.18 93.44 82.23 97.71 74.39 84.00 92.57 93.54 89.67
AnoGAN 94.17 96.12 90.68 79.36 98.63 78.29 77.84 92.28 93.42 88.98

ERM 96.71 95.48 90.25 82.04 97.79 77.33 73.68 94.56 94.28 89.12
IRM 96.08 96.15 90.82 79.97 97.91 79.37 73.03 93.78 93.33 88.94
GNL 94.78 96.75 98.70 96.41 98.40 89.09 97.14 97.66 96.67 96.18

SND 99.03 98.92 95.35 88.17 99.65 86.59 84.80 97.54 99.22 98.78

Table 21: Average AUROCs (%) in novelty detection on the Kurcuma dataset using data from the
EKUD-M2 environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 49.12 51.28 44.00 53.53 54.99 53.97 48.50 49.08 56.57 51.23
COPOD 50.71 63.20 49.74 47.39 66.30 43.94 50.75 52.15 52.29 52.94
DeepSVDD 46.71 63.69 50.96 46.19 59.33 46.02 47.28 54.27 50.73 51.69
ECON 49.29 69.29 51.88 48.44 66.47 44.85 47.86 54.20 51.36 53.74
INNE 48.75 61.52 50.39 49.74 57.63 44.62 50.61 54.17 56.22 52.63
AnoGAN 41.77 65.88 50.51 48.79 65.74 45.48 51.09 56.53 52.56 53.15

ERM 48.06 35.68 48.81 54.30 34.21 53.36 51.51 49.88 49.66 47.27
IRM 47.58 32.85 50.59 54.35 33.93 52.43 51.01 48.16 48.26 46.57
GNL 58.57 42.00 83.79 67.45 50.86 56.94 69.78 62.93 70.46 62.53

SND 80.34 80.87 69.11 65.96 85.78 57.51 59.26 79.08 69.38 71.92

Table 22: Average AUPRCs (%) in novelty detection on the Kurcuma dataset using data from the
EKUD-M2 environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 95.83 96.50 88.91 82.50 97.79 81.29 74.06 94.50 94.18 89.51
COPOD 95.40 98.02 90.30 81.19 98.85 74.70 74.18 95.28 93.61 89.06
DeepSVDD 95.95 97.73 90.36 81.37 98.44 77.57 72.41 94.87 91.94 88.96
ECON 95.40 98.27 90.90 80.32 98.90 77.10 72.78 94.98 93.25 89.10
INNE 95.33 97.11 90.30 81.56 98.19 76.36 73.16 94.69 94.51 89.02
AnoGAN 94.98 98.07 90.42 82.08 98.71 75.28 74.26 95.31 93.51 89.18

ERM 95.44 94.99 89.33 83.71 96.52 80.67 73.88 94.00 93.39 89.10
IRM 95.58 94.51 90.55 83.45 96.08 80.40 73.59 93.78 92.54 88.94
GNL 97.31 95.43 97.64 87.49 97.33 84.24 86.38 95.73 96.59 93.13

SND 99.07 99.18 95.21 89.24 99.61 82.88 98.32 99.41 96.61 95.50
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Table 23: Average AUROCs (%) in novelty detection on the Kurcuma dataset using data from the
EKUD-M3 environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 55.23 39.13 46.94 50.28 39.00 49.35 38.54 45.24 49.37 45.90
COPOD 44.40 44.17 46.72 47.30 59.62 50.07 59.17 44.78 56.65 50.32
DeepSVDD 53.72 42.81 46.04 48.52 57.68 55.70 55.73 34.51 46.84 49.06
ECON 44.59 42.14 46.04 44.68 56.31 54.44 58.93 43.26 50.97 49.04
INNE 47.77 36.34 63.27 53.74 39.71 35.48 71.40 39.93 44.38 48.00
AnoGAN 37.02 42.28 50.15 48.58 52.44 48.84 62.92 37.07 41.08 46.71

ERM 54.67 38.52 53.31 54.25 43.17 49.09 46.78 60.86 54.22 50.54
IRM 52.79 43.41 50.20 60.73 41.24 47.60 43.59 56.19 57.43 50.35
GNL 65.26 45.71 83.93 47.53 39.29 58.21 59.89 68.29 77.82 60.66

SND 73.84 72.38 74.43 66.47 86.09 60.08 64.62 65.13 67.97 70.11

Table 24: Average AUPRCs (%) in novelty detection on the Kurcuma dataset using data from the
EKUD-M3 environment as the test set.

Method 0 1 2 3 4 5 6 7 8 Average

ALAD 96.92 95.24 90.60 81.81 96.93 76.29 67.75 92.28 93.32 87.91
COPOD 95.26 96.00 89.27 78.20 98.46 80.70 78.01 93.71 94.01 89.29
DeepSVDD 96.53 95.19 89.26 78.62 98.58 82.00 78.42 91.93 93.37 89.32
ECON 95.73 95.89 88.56 77.23 98.37 82.62 77.12 93.61 93.84 89.22
INNE 95.69 94.89 93.29 82.76 97.48 73.19 83.94 92.98 92.96 89.69
AnoGAN 94.26 95.47 89.62 78.63 97.88 79.34 81.05 92.54 91.93 88.97

ERM 95.91 94.85 92.31 82.10 97.33 77.43 73.38 96.27 93.73 89.26
IRM 95.95 95.44 89.40 86.62 97.02 77.36 70.56 94.95 94.67 89.11
GNL 97.61 95.09 97.84 79.86 96.98 84.27 81.51 96.54 97.61 91.92

SND 98.70 98.60 97.10 90.02 99.58 84.79 81.91 96.84 95.61 93.68
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